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Abstract
We present a lightweight method of checkpointing

application-specified persistent data structures to files. With
this method, the programmer marks static variables that need
to be persistent with a PERM qualifier, and uses a persistent
variant of a dynamic memory allocator. Static and dynamic
persistent data structures reside in a memory-mapped file. At
checkpoint time, persistent variables and structures are synced
to their associated files. Our method offers a new level of very
fast, lightweight checkpoint particularly suitable for node lo-
cal storage. The checkpoint files can be used by other inter-
node or global checkpoint schemes such as Scalable Check-
point and Restart (SCR). We describe the checkpoint mecha-
nism and evaluate its performance. Source is available from
http://computation.llnl.gov/casc/perm/.

1 Introduction
Long duration supercomputing applications periodically

save program state to persistent storage, a process called
checkpointing. Typically the programs running on the nodes
of the supercomputer synchronize with each other and collec-
tively agree to perform a checkpoint. They each copy pro-
gram variables to one or more files in the storage area network,
and when all checkpoint data has been sent to the global file
system, they collectively resume. A compute cluster usually
consists of highly interconnected nodes containing CPU and
memory, but no local storage. The compute cluster is con-
nected over lower bandwidth links to a storage area network
holding the global file system. If nodes go down during a run,
the application restarts by reading the last complete checkpoint
file(s) from the global file system, restoring program state, and
resuming computation from the restored state. The amount of
program state saved to a checkpoint file can range from the
entire program image [1] to a small selection of application-
designated data structures.

As node counts of supercomputing clusters continue to
grow, it is generally recognized that future systems will ex-
perience shorter mean time between failure (MTBF) than at
present, making reliability a dominant concern. For exas-
cale systems, the cost of checkpointing to a global file system
will increase to the point that a full system checkpoint will
take longer than the compute cluster’s MTBF. System archi-
tecture level mitigation strategies include incorporating per-
sistent memory into each node or into an I/O node, allowing
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#include "jemalloc/jemalloc.h"

typedef struct {/* ... */} home_st;
PERM home_st *home; /* mark home persistent */

int main(int argc, char *argv[])
{

int do_restore = argc > 1 &&
strcmp("-r", argv[1]) == 0;

const char *mode = (do_restore) ? "r+" : "w+";

perm(PERM_START, PERM_SIZE);
mopen("app.mmap", mode, (size_t)1 << 30);
bopen("app.back", mode);
if (do_restore) {

restore();
} else {

home = (home_st *)malloc(sizeof(home_st));
/* initialize home struct... */
backup();

}

for (;/* each step */;) {
/* Application_Step(); */
backup();

}

free(home);
mclose();
bclose();
return(0);

}

Figure 1: Example checkpoint and restore program with full
persistence. The perma allocator replaces the system allocator.

checkpoints to be collected within the machine. Node level
checkpoints are used by the Scalable Checkpoint and Restart
(SCR) [2] library in which checkpoint files in memory or local
storage are replicated and distributed among nodes in the su-
percomputer, allowing restart to occur even if nodes are lost to
hardware failure. SCR also supports multi-level checkpoints in
which every so often, the intra-machine checkpoints are writ-
ten out to the global file system. Our checkpoint method is
complementary to SCR. It produces a checkpoint file that can
be distributed within the SCR framework.

The conventional method to do an application-specific
checkpoint is to initially call a library function to define the
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data types of variables to be checkpointed and then to per-
form the checkpoint by copying variables individually through
library calls. To make checkpointing more transparent, we
have designed and implemented a new method perma for very
lightweight checkpointing using memory-mapped files. Us-
ing perma, the application programmer designates certain vari-
ables to be persistent, and further specifies a file to hold the
variables. Our library maps the file into the address space of
the application, and allocates the variables to addresses within
the address range of the mapped file. The variables are used
normally within the program code. A call to the perma backup
function creates a checkpoint of the variables declared as per-
sistent. The application doesn’t have to write code to copy
variables individually to the checkpoint file. Perma works with
any file within the environment of the application: node local,
I/O node file system, or global file system.

Two approaches can be used to introduce persistent vari-
ables into an application, namely full persistence and partial
persistence. The full persistence approach makes all variables
persistent while the partial persistence approach identifies a
core set of variables as persistent. Remaining global variables
must be reinitialized upon restart. Achieving full persistence
is simple to implement; however, reaching partial persistence
requires an intimate knowledge of the application source code
and data flow within the application and requires application-
specific restart code. An example program with full persis-
tence is shown in Figure 1.

In Section 2, we describe the lightweight checkpoint method
perma in greater detail and describe the implementation of the
underlying dynamic memory allocator. In Section 4, we eval-
uate the method on the LULESH shock hydrodynamics com-
pact application. Section 5 summarizes and sketches future
directions.

2 Perma Method
The perma method uses a persistent heap management li-

brary that contains a dynamic-memory allocator (e.g. malloc,
free). The perma memory allocator replaces the standard ’C’
dynamic memory allocation functions with compatible ver-
sions that provide persistent memory to application programs.
Memory allocated with the perma allocator will persist be-
tween program invocations after a call to a checkpoint func-
tion. This function essentially saves the state of the heap and
registered global variables to a file which may reside in flash
memory or other node local storage. A few other functions are
also provided by the library to manage checkpoint files. Global
variables in an application can be marked persistent and be in-
cluded in a checkpoint by using a compiler attribute defined
as PERM. The perma checkpoint method is not dependent on
the programming model and works with distributed memory
or shared memory programs.

2.1 API
The persistent form of the allocation functions can be pre-

fixed with a string of choice when the library is configured.
For instance, a user may choose a prefix of perm_ to form

/* Register a block as persistent memory */
int perm(void *ptr, size_t size);

/* Open and map file into core memory */
int mopen(const char *fname, const char *mode,

size_t size);

/* Close memory-mapped file */
int mclose(void);

/* Flushes in-core data to memory-mapped file */
int mflush(void);

/* Open backup file */
int bopen(const char *fname, const char *mode);

/* Close backup file */
int bclose(void);

/* Backup globals and heap to backup file */
int backup(void);

/* Restore globals and heap from backup file */
int restore(void);

Figure 2: Programing Interface

perm_malloc(), perm_free(), etc. In addition to the allo-
cation functions, the perma library consists of several func-
tions to manage files associated with the persistent heap (see
Figure 2). The functions perm(), mopen(), and bopen()
should be called before any allocation functions. Global vari-
ables are registered as persistent by calling the perm() func-
tion at run time. By using the PERM attribute in a declaration,
global variables will be combined by the linker into a contigu-
ous block. Predefined macros give the start address and size of
the PERM block. The mopen() function specifies the memory-
mapped file that holds the persistent heap and the bopen()
function specifies the backup file that will be written during
checkpoint. Specifying these files separately allows indepen-
dent operations on the files, which is particularly important
when checkpointing with SCR. The mflush() function copies
registered global variables to a reserved area in the persistent
heap and then flushes any modified pages out to the memory-
mapped file. A checkpoint is made with the backup() func-
tion, which saves registered global variables and a snapshot of
the persistent heap to a backup file. Persistent variables and
the heap can be restored from a backup file with a call to the
restore() function.

2.1.1 C++ Support
Several macros and a custom C++ allocator are included in

the library to support C++. Figure 3 shows the use of the cus-
tom allocator (PERM_NS::allocator<type>) with the stan-
dard template library (STL). The allocation macro PERM_NEW
uses the placement syntax of new to allocate and construct ob-
jects. PERM_FREE is used for fundamental types that do not
have a destructor, whereas PERM_DELETE calls the destructor
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#include <list>
#include "jemalloc/pallocator.h"
using namespace std;

class globals {/* ... */};

PERM globals *home; /* mark home persistent */
PERM list<int, PERM_NS::allocator<int> > plist;

int main(int argc, char *argv[])
{

...
home = PERM_NEW(globals);
plist.push_back(/* ... */);
...
PERM_DELETE(home, globals);
return(0);

}

Figure 3: C++ example of the perma allocator

for an object and frees the memory. The new and delete oper-
ators for individual classes may also be overridden to use the
persistent allocation functions.

2.2 Persistent Memory Allocation
Dynamic persistent variables are allocated in memory-

mapped pages associated with a file. To create a persis-
tent memory region, we use the mmap system call to es-
tablish a mapping between a process’ address space and a
file. We map a file containing the heap into memory us-
ing the MAP_NORESERVE, MAP_SHARED, and MAP_FIXED flags.
MAP_NORESERVE tells mmap to not reserve swap space for
the mapping. This allows us to map a persistent heap that is
greater in size than the available physical memory in the sys-
tem. With MAP_SHARED, storing to this region of memory is
equivalent to writing to the memory-mapped file. MAP_FIXED
allows us to specify the starting address for the mapping. This
is essential for our checkpointing mechanism as we want to
keep the address space deterministic across program runs.

2.2.1 Persistent Bookkeeping
An important feature of a persistent dynamic memory allo-

cator is the ability to allocate and deallocate memory across
program runs. This requires that the memory allocator’s book-
keeping data structure and variables must survive across pro-
gram runs.

Our persistent memory allocator is built from jemalloc [3].
Jemalloc is a scalable concurrent malloc implementation that
manages memory in multiples of 4 MB chunks by default.
Bookkeeping data for huge allocations, those larger than a
chunk, are stored in a red-black tree. Smaller allocations are
usually managed by “arenas,” which carve chunks into smaller
allocations called page runs. Information about page runs are
stored at the beginning of each chunk. The number of arenas is
equal to four times the number of processors so that multiple
threads can each allocate from separate arenas without lock
contention.

In jemalloc, bookkeeping data is held in global variables and
in a separate internal heap. For example, the nodes of the red-
black tree for huge allocations come from the internal heap and
root pointers to these nodes are stored in global variables. In
order to allocate and deallocate across program runs, all book-
keeping data must be persistent. To achieve this, the location
of the allocator’s bookkeeping data is modified to reside in the
first chuck of memory-mapped address space.

2.3 Static Persistent Variables
Statically allocated persistent variables must also be pre-

served. Typically, static variables are pointers to dynamically
allocated data structures. These persistent pointer variables al-
low a program to keep track of allocated memory across pro-
gram runs. Preserving the state of static persistent variables is
achieved though compiler support. Through the use of GCC’s
section attribute, persistent static variables will be stored in a
section of the executable labeled “persistent”. During check-
point, this region of memory is copied to a reserved area in the
memory-mapped address space.

2.3.1 ELF Executable Format
The Executable and Linkable Format (ELF) is a file for-

mat for executables under Linux. An ELF executable consists
of two headers and several sections/segments. The program
header contains information about the segments used during
run-time. The section header contains information about the
sections for linking and relocation. Common sections include
.text (executable code), .data (initialized data), and .bss (unini-
tialized global data).

When an executable is loaded into memory, these sections
are loaded into the beginning of the virtual address space.
For example, void *p = perm_malloc(1), would normally
create the pointer variable p in the stack. If p were declared as
a global variable, it would be stored in the .bss section. The
issue we have now is that the value of p would be lost if per-
sistent state were recovered from a checkpoint. We cannot
issue another perm_malloc because this would allocate a dif-
ferent region in the virtual address space. In order to recover
p, we make use of GCC’s section attribute. By associating
a section attribute to a global pointer variable, we force the
global pointer variable to be stored in the “persistent” section.
By having all persistent pointer variables stored in the “persis-
tent” section, we can easily backup and restore these addresses
pointing to dynamic data structures in the persistent heap. We
associate a variable with the persistent section attribute sim-
ply by using the PERM qualifier as shown in Figure 1. PERM is
defined as __attribute__((section("persistent"))).

2.3.2 Restoring Static Persistent Variables
Static persistent variables are backed up during checkpoint

operations. The beginning and end address of the persistent
section is stored as a symbol in the executable and is ac-
cessible by declaring extern void *__start_persistent
and extern void *__stop_persistent. During check-
point operations, we copy the persistent section, which is reg-
istered with a call to perm(), to a reserved area in the memory-
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mapped region. On a restore, we simply copy the saved area
back to the persistent section in memory. This restores all
static persistent state, including persistent pointer variable ad-
dresses, to the state of the last checkpoint.

2.4 Checkpointing Mechanism
When a program crashes, we cannot guarantee that the

memory-mapped file is in a consistent state, as we can’t con-
trol when the OS might flush dirty pages out to the file. There-
fore, in a checkpoint, we copy the used portion of the mapped
persistent region to a backup file. The backup consists of
bookkeeping data, persistent variables, and the persistent heap.
On restart, we restore these persistent components from the
backup file.

2.5 Kernel Parameters
In order for the checkpoint mechanism to function and per-

form well, several kernel parameters need to be set. Modern
Linux kernels features Address Space Layout Randomization
(ASLR) techniques to improve computer security by randomly
arranging key components of executables, such as the library,
heap, and stack. Our checkpointing technique relies on a de-
terministic virtual address space. ASLR can be disabled by
setting /proc/sys/kernel/randomize_va_space to 0.

The Linux kernel also tends to flush dirty pages in mem-
ory to their associated memory-mapped file. If the memory-
mapped region is very large, this can lead to performance
degradation, especially if the memory-mapped file is stored
on disk. By default, the Linux kernel flushes dirty pages ev-
ery 30 seconds and in the background when the fraction of
dirty pages in main memory is above 10%. We do not re-
quire the kernel to flush dirty pages to the memory-mapped
file because we can manually flush dirty pages to disk during
our checkpoint call. Since we rollback to a previous check-
point state, losing dirty pages during a program crash is not
important. Because of this, any flush to disk in between check-
points can degrade performance drastically. To disable peri-
odic page flush we set /proc/sys/vm/dirty_writeback_centisecs
to 0. To reduce the number of page flushes due to a high ra-
tio of dirty pages, we set /proc/sys/vm/dirty_background_ratio
and /proc/sys/vm/dirty_ratio to 100.

3 SCR Integration
Integration of the perma method with SCR is straightfor-

ward since SCR uses a similar file-based checkpoint model.
As shown in Figure 4, the SCR routines are added around the
perma backup() function. During a checkpoint, the persistent
heap of each node is saved to the SCR file framework. Since
nodes query SCR for a new filename before each checkpoint,
bopen() is called each time.

4 Evaluation
Our evaluation uses a shock hydrodynamics compact ap-

plication recently developed at LLNL to simulate the relative
motion of materials when subjected to force. The LULESH

template<class T>
struct PersistentType {

typedef std::vector<T,PERM_NS::allocator<T> >
vector;

};

PERM struct Domain {
...
/* coordinates */
PersistentType<Real_t>::vector m_x;
PersistentType<Real_t>::vector m_y;
PersistentType<Real_t>::vector m_z;
...

} domain;

Figure 5: Persistent STL data structures in C++

code [4] is derived from the Lagrangian part of ALE3D, the
Arbitrary Lagrangian Eulerian program. LULESH simulates
the Sedov blast wave problem [5] in three spatial dimensions.
We evaluate the OpenMP threaded version of this C++ code
[6], which has 3117 lines of code. With the help of the code
author, we added checkpointing to this program.

While the bulk of the LULESH code remained unchanged,
a few additions and modifications were necessary to use the
perma checkpoint method. To designate persistent variables,
we added the PERM attribute to the domain global data struc-
ture as in Figure 5. Persistent arrays within this structure were
designated as PersistentType<Real_t>::vector. In the
program main, we added the initialization calls for the perma
library, and the backup call to perform the checkpoints peri-
odically in the simulation loop, similar to the example shown
in Figure 1. Inserting perma checkpointing into this program
increased the code size to 3172, of which 13 lines actually do
the checkpoint. The other lines are associated with adding the
PERM attribute and adding the persistent allocator to extend
the STL template.

For comparison purposes, we also wrote a checkpoint ver-
sion that explicitly wrote each persistent variable to a file as
raw binary data, using C file I/O. For restart, each variable was
read back in the same order it had been checkpointed. This
version represents the lower bound on checkpoint overhead:
only the variables needed for restart are written to the file; the
data is not encoded to make it readable in a general format (e.g.
HDF5); and C file I/O is used as opposed to C++. This version
takes 3435 lines of code. We label this the manual approach.

The experiments distinguish three categories of checkpoint-
ing (no checkpointing, checkpoint, and checkpoint followed
by sync), two methods to do a checkpoint (manual and perma),
and three problem sizes (45 element edges, 68, and 90). A
checkpoint file was written every 30 seconds or so. For the
size 45 case, four checkpoints were written, for 68 there were
sixteen checkpoints, and for 90 there were 52 checkpoints. For
all experiments, the checkpoint file was written to node local
storage in /tmp. The experiments were run on a single node,
an 8-core Intel with 8 GB memory running RedHat 5 (2.6.18)
with the configuration options described in Section 2.5. For
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  ... 

 

  // Get full path to checkpoint file 

  char file[SCR_MAX_FILENAME]; 

  SCR_Route_file(name, file); 

 

  // Copy persistent heap to SCR file 
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  // Done writing checkpoint file 

  SCR_Complete_checkpoint(valid); 

  ... 
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Figure 4: Checkpoint persistent heap with SCR

Table 1: Checkpoint size (MB)
Version 45 68 90
Manual 28.00 97.22 224.47
Perma 54.52 201.30 394.30

Table 2: Relative run times and lines of code
Description 45 68 90 LOC

Base: no checkpoint 1 1 1 1
jemalloc, no checkpoint 0.989 1.089 1.050 1.013
manual checkpoint 1.020 1.024 1.027 1.102
perma checkpoint 1.002 1.090 1.052 1.018
manual checkpoint, sync 1.040 1.086 1.175 1.102
perma checkpoint, sync 1.049 1.090 1.054 1.018

each problem size, the timing results are normalized to the run
time of the base OpenMP version for that problem size. Ta-
ble 1 shows the sizes of the checkpoint files, and Table 2 shows
run times and lines of code.

Table 1 shows that the perma method requires more storage
than the manual method. This is because static persistent data,
the allocator’s bookkeeping data structures, and unused heap
space are written to the checkpoint file in addition to the ac-
tual data that is being checkpointed. Since our usage model
assumes node local storage, the extra space is not significant.

In our evaluation, we measured the cost of using the perma
allocator without actually doing a checkpoint. This compares
the jemalloc allocator with the standard C library malloc. The
results show that for the size 45 case, there is no performance
penalty for using jemalloc. In fact, it is a bit faster than the
base case. As the problem size grows, using jemalloc shows
overhead of 8.9% for size 68 and 5% for size 90.

The checkpoint versions that don’t sync out the checkpoint
file are understandably faster than those that sync the file out
to the storage controller. We measure both because of the use
case in which this checkpoint method is combined with inter-
node or global checkpoint methods. It is not necessary to sync

out the file in our checkpoint code if SCR is going to distribute
it.

Of the two variants that don’t sync the checkpoint file, the
perma checkpoint is faster than the manual approach for size
45, but has 3% more overhead for size 68 and 4% more over-
head for size 90. When the file sync is done, perma has 0.9%
more overhead for the 45 size and 6.6% more overhead for
size 68 than the manual approach. However, for size 90, man-
ual has 2.1% more overhead than perma. Overall, perma is
competitive to the lower bound on checkpoint overhead for
the measured problem and sizes.

4.1 Discussion
The checkpoint method discussed in this work is novel rel-

ative to the present state of practice in checkpointing HPC
codes. In current practice, the checkpoint data is written often
in a portable, self-describing format that is used for analysis
and visualization as well as checkpoints. Often, a library such
as silo [7] is used by the application programmer to describe
the particular high level data structure to be checkpointed, as-
signing textual names to various components. This description
is stored in the file along with the data that is passed to the li-
brary during a checkpoint. The data file is thus self-describing
and usable through the library to many other programs.

In contrast, our checkpoint file is specific to a particular ver-
sion of a program compiled with a specific compiler and run
with specific libraries and OS. All those have to be the same
to allow valid restart. It is intended for the exascale environ-
ment in which doing node local checkpoints might be the only
scalable alternative, and the checkpoint files are needed only
for a few hours. These lightweight checkpoints could augment
a less frequent heavy weight checkpoint to be used for visual-
ization and analysis.

In contrast to the practice of writing out persistent data ex-
plicitly, one data structure at a time, our library provides a
generic method of checkpointing. The application program-
mer merely allocates variables from a persistent heap. It is not
necessary to write code to copy each persistent variable to the
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file. Similarly, on restart, the entire persistent environment is
restored in a few memcpy operations. From a software engi-
neering perspective, this greatly reduces the effort and poten-
tial bugs, as evidenced in the lines of code comparison. Perma
shows a 1.8% LOC overhead over the base code, while the
manual method incurs a 10.2% overhead.

5 Conclusions
This work describes a new method of checkpointing with

memory-mapped files. It is complementary to inter-node
checkpoint methods such as SCR, and could also be used
with global methods such as PLFS [8]. Our method could be
used in conjunction with future persistent memory technology
such as 3D PCM directly attached to the memory bus [9]),
Mnemosyne [10], or NV-Heaps [11]. Our approach is agnos-
tic to the storage interface and can accommodate local disk,
high performance SSD, or PCM attached to the memory bus.
Like Mnemosyne, we take advantage of named linker sections
and implement a persistent dynamic memory allocator. Our
allocator is based on jemalloc rather than hoard or dlmalloc.

Our approach is orthogonal to the inter-node parallelization
method, and therefore should work equally well with MPI,
GA, and other methods. Future work is to test this premise
by using perma in MPI codes and with other programming
models.
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