Soret Effect Study on High-Pressure CO2-Water Solutions Using UV-Raman Spectroscopy and a Concentric-Tube Optical Cell

PDF Version Also Available for Download.

Description

Spatially resolved deep-UV Raman spectroscopy was applied to solutions of CO2 and H2O (or D2O), which were subject to a temperature gradient in a thermally regulated high-pressure concentric-tube Raman cell in an attempt to measure a Soret effect in the vicinity of the critical point of CO2. Although Raman spectra of solutions of CO2 dissolved in D2O at 10 MPa and temperatures near the critical point of CO2 had adequate signal-to-noise and spatial resolution to observe a Soret effect with a Soret coefficient with magnitude of |ST| > 0.03, no evidence for an effect of this size was obtained for ... continued below

Physical Description

PDFN

Creation Information

Windisch, Charles F.; McGrail, B. Peter & Maupin, Gary D. January 1, 2012.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 73 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Spatially resolved deep-UV Raman spectroscopy was applied to solutions of CO2 and H2O (or D2O), which were subject to a temperature gradient in a thermally regulated high-pressure concentric-tube Raman cell in an attempt to measure a Soret effect in the vicinity of the critical point of CO2. Although Raman spectra of solutions of CO2 dissolved in D2O at 10 MPa and temperatures near the critical point of CO2 had adequate signal-to-noise and spatial resolution to observe a Soret effect with a Soret coefficient with magnitude of |ST| > 0.03, no evidence for an effect of this size was obtained for applied temperature gradients up to 19oC. The presence of 1 M NaCl did not make a difference. In contrast, the concentration of CO2 dissolved in H2O was shown to vary significantly across the temperature gradient when excess CO2 was present, but the results could be explained simply by the variation in CO2 solubility over the temperature range and not to kinetic factors. For mixtures of D2O dissolved in scCO2 at 10 MPa and temperatures close to the critical point of CO2, the Raman peaks for H2O were too weak to measure with confidence even at the limit of D2O solubility.

Physical Description

PDFN

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PNNL-21156
  • Grant Number: AC05-76RL01830
  • DOI: 10.2172/1043128 | External Link
  • Office of Scientific & Technical Information Report Number: 1043128
  • Archival Resource Key: ark:/67531/metadc837930

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 2012

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Dec. 9, 2016, 7:18 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 73

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Windisch, Charles F.; McGrail, B. Peter & Maupin, Gary D. Soret Effect Study on High-Pressure CO2-Water Solutions Using UV-Raman Spectroscopy and a Concentric-Tube Optical Cell, report, January 1, 2012; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc837930/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.