Considerations Against a Force Compensated Coil

PDF Version Also Available for Download.

Description

The cost of structural components in a large superconducting coil may well exceed the coil and cryostat cost. As a result, the idea of constructing a system composed of two different coil types assembled in such a way that the forces balance and reduce the total structural requirement is oft proposed. A suitable geometry has never been found for the fundamental reason that there can be no force compensated solution. In this paper, the general problem is presented and an analysis of the energy stored and stresses produced in the structure are described in a fundamental way. Finally, the relation ... continued below

Creation Information

Hassenzahl, W. August 1, 1988.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The cost of structural components in a large superconducting coil may well exceed the coil and cryostat cost. As a result, the idea of constructing a system composed of two different coil types assembled in such a way that the forces balance and reduce the total structural requirement is oft proposed. A suitable geometry has never been found for the fundamental reason that there can be no force compensated solution. In this paper, the general problem is presented and an analysis of the energy stored and stresses produced in the structure are described in a fundamental way. Finally, the relation between structural mass M and stored energy E, M {ge} {rho}E/{sigma}{sub w}, that is valid for all, magnetic systems is developed, where {rho} is the density of the structure and {sigma}{sub w} is the working stress in the structure.

Source

  • 1988 Applied Superconductivity Conference, San Francisco, CA, August 21-25, 1988

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBL-24993-Rev
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 1011109
  • Archival Resource Key: ark:/67531/metadc837872

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 1988

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • June 15, 2016, 6:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hassenzahl, W. Considerations Against a Force Compensated Coil, article, August 1, 1988; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc837872/: accessed July 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.