
DISCLAIMER

This document was prepared as an account of work sponsored by the United States

Government. While this document is believed to contain correct information, neither the

United States Government nor any agency thereof, nor the Regents of the University of

California, nor any of their employees, makes any warranty, express or implied, or assumes

any legal responsibility for the accuracy, completeness, or usefulness of any information,

apparatus, product, or process disclosed, or represents that its use would not infringe

privately owned rights. Reference herein to any specific commercial product, process, or

service by its trade name, trademark, manufacturer, or otherwise, does not necessarily

constitute or imply its endorsement, recommendation, or favoring by the United States

Government or any agency thereof, or the Regents of the University of California. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof or the Regents of the University of

California.

On-demand Overlay Networks for Large

Scientific Data Transfers

Lavanya Ramakrishnan*, Chin Guok*, Keith Jackson*, Ezra Kissel
+
 , D. Martin Swany

+
, Deborah

Agarwal*

*Lawrence Berkeley National Laboratory, Berkeley, CA
+

University of Delaware, Newark, DE

Abstract. Large scale scientific data transfers are

central to scientific processes. Data from large

experimental facilities have to be moved to local

institutions for analysis or often data needs to be moved

between local clusters and large supercomputing

centers. In this paper, we propose and evaluate a

network overlay architecture to enable high-

throughput, on-demand, coordinated data transfers

over wide-area networks. Our work leverages Phoebus

and On-demand Secure Circuits and Advance

Reservation System (OSCARS) to provide high

performance wide-area network connections. OSCARS

enables dynamic provisioning of network paths with

guaranteed bandwidth and Phoebus enables the

coordination and effective utilization of the OSCARS

network paths. Our evaluation shows that this

approach leads to improved end-to-end data transfer

throughput with minimal overheads. The achieved

throughput using our overlay was limited only by the

ability of the end hosts to sink the data.

Keywords – Overlay Networks, Scientific Data

transfers, Advanced Reservations, Dynamic Provisioning

I. INTRODUCTION

Data has become central to scientific computations
and collaborations[1]. Scientific users typically
generate the data at instruments and computational
facilities and then transfer this data from those sites to
their local clusters and desktops to facilitate analysis
and sharing of data and results with collaborators that
might be geographically distributed.

Peta-scale data is usually analyzed where it was
generated [36]. However, most science experiments
and models only generate terabytes of data, and this
data is moved to where the analysis of the data takes
place. An example, is the experiments conducted at
the Advanced Light Source (ALS) facility [2].
Scientists from around the country spend days to
weeks in Berkeley gathering data from ALS X-ray
detector experiments. Each data set collected from a
typical experiment at the beamline contains about
10GB of data and about one data set is produced per
hour. Overall a total of about 0.5 TB is generated over
24 hours. The data generated during the experiment
subsequently needs to be transported to the scientist’s

home institution for interactive scientific analysis and
long term archiving. Today these data transfers are
accomplished by scientists hand-carrying portable
disks.

At a recent ESnet
1
 Workshop in 2007[1], DOE

experiment facility users made it clear they would like
to stop hand-carrying the data and outlined their needs
to transfer large-scale data over the network, increased
data throughput capabilities, distributed data analysis,
and reliable “cargo-carrying” wide-area network
infrastructure.

International scientific experiments such as Atlas
[38] and CMS [39] schedule computations to run on a
diverse set of globally distributed resources.
Intermediate data products are moved between
resources during the analysis to reach the next
computation stage and high throughput for the data
transfer is required to enable timely completion of the
computations. A third example is cloud computing
which provides on-demand access to resources on a
pay-as-you-go model [4]. Data movement in and out
of these clouds is a major open challenge.

These scientific use cases illustrate the following
needs:

• High-throughput, on-demand data transfer
over wide-area networks

• Infrastructure in the network that can provide
network service predictability by managing
dynamic data transfer paths

• Simple client-side tools that allow end
scientists to better utilize the available
throughput of wide-area networks.

In this paper, we describe our high-throughput, on-
demand data transfer architecture in detail and
evaluate its effectiveness for large-scale, wide-area
data transfers. The on-demand nature of our
architecture enables scientists to move their data and
computation between any source and destination
pairs. We report on our experiences in using this
architecture to orchestrate wide-area data transfers on
ESnet.

1
 ESnet is a multi-10Gbps backbone Tier 1 ISP

connecting DOE research facilities and compute

resources.

Specifically, in this paper, we make the following
contributions

• Describe a secure, reliable, light-weight, on-
demand overlay architecture to manage ad-
hoc scientific data transfers over the wide-
area.

• Demonstrate the advantage of dynamic on-
demand overlay networks by comparing and
contrasting it with the performance, overhead,
and bottlenecks associated with current data
transfer mechanisms.

The rest of this paper is organized as follows. We
provide background and related work in Section II.
We present our system architecture along with design
and implementation details in Section III. We detail
our evaluation and results in Section IV. We discuss
the various aspects of the system with respect to use
in real production environments in Section V and
conclude in Section VI.

II. BACKGROUND

Wide-area networking infrastructure facilities such
as ESnet provide the capacity to enable rapid transfer
of terabyte data sets, but, existing high-throughput
data transfer techniques require extensive system and
network administration skills to manually tune the
network protocol parameters in the end-point
machines and network infrastructure along the path.
Scientists rarely have the resources to implement
tuned end-to-end paths.

Some sites have implemented optimized data
transfer nodes dedicated to moving large-scale data
(e.g., Data transfer nodes at NERSC [27]). This
approach works well when the transfers are between
well-known end-points since these paths can be
optimized. However, this approach does not
generalize to moving data to any arbitrary remote site.
Previous work has suggested a variety of strategies
such as alternate path routing [24],[25],[26],[30] or
public storage servers located strategically in the
network to optimize such data transfers [3]. But these
strategies incur an administrative burden to maintain
the servers and are not scalable to arbitrary
destinations.

 One of the key issues is that these wide-area bulk
data transfers require high-bandwidth over a high
latency link. TCP’s congestion avoidance on high
latency links with even a small amount of packet loss
will experience significantly less throughput than is
available. The end-to-end performance seen by the
user is also affected by TCP parameters (e.g. window
size) and slow loss recovery due to high round trip
times.

Distributed network storage [3] has been proposed
as a way to manage data transfers using locality and
caching of data. However maintenance of file servers

at different points in the network is a nightmare for
system and network administrators.

Application overlays have been effective in
providing data aggregation and dissemination services
in the general Internet[5],[6],[7],[19],[20]. Application
overlays create a virtual topology on top of the
physical network and optimize network utilization for
the application data traffic. Application layer overlay
networks, such as Gnutella [6], BitTorrent [5] and
Skype [7] address the needs of applications with
replicas, asymmetrical links, multiple source and
destination choices for each file. Existing work at the
application layer [8],[9],[10],[11],[12],[13],[14],[15],
[16],[17],[18],[19],[20] can be applied to produce
algorithms and protocols that make efficient and
effective use of resources at lower layers of the
network stack.

Our approach leverages the benefits of application
overlays but embeds the overlay in the underlying
network. We create on-demand embedded overlays
for scientific applications to make efficient and
effective use of the available network resources. Our
system leverages Phoebus[21],[22] and OSCARS[23]
to implement the on-demand overlay capability.
Phoebus provides us the routing infrastructure to
select an optimal path. High-bandwidth network
segments are provisioned using the prototype
OSCARS (On-demand Secure Circuits and Advanced
Reservation System) service. Phoebus and OSCARS
are both light-weight services and do not require
access to storage or other high-end resources.

In earlier work, improvements to GridFTP used
multi-hop path splitting and multi-pathing[30] to
alleviate problems with current networks. However
these algorithms are applied at the protocol level and
require changes to the middleware such as GridFTP.
Also, in earlier work, alternate path routing and
selection have been used to alleviate the problems
with current networks [24],[25],[26]. Phoebus is
similar to this work in that it provides an alternate
path for data transfers but the Phoebus-OSCARS
combination differs in spirit as it addresses the need
for the Internet architecture to support such
applications on-demand and it provides better quality
of service to applications.

We describe our data transfer architecture in detail
in the next section.

III. DATA TRANSFER ARCHITECTURE

Figure 1 shows the system components in our
architecture to facilitate wide-area data transfers.
Phoebus manages end-to-end throughput for long-
distance data transfers by splitting the network path
into constituent segments. OSCARS enables on-
demand provisioning of secure circuits with
guaranteed bandwidth. Using OSCARS on the high
latency portions of the path allows Phoebus to obtain
high bandwidth across the wide-area.

A client wishing to transfer data connects to a
close-by Phoebus gateway and the Phoebus gateway
then interacts securely with the OSCARS servers to
obtain a reservation for a guaranteed bandwidth path
to the Phoebus gateway nearest the destination. The
OSCARS server checks to see if the reservation
request can be satisfied. If the reservation can be
satisfied the OSCARS servers configure the path.
Once the circuit is setup the Phoebus gateway relays
the data to the other Phoebus gateway which then
sends it to the final destination. We detail the system
components and our design decisions in the rest of
this section.

A. Phoebus

Phoebus provides an infrastructure for managing
high-performance wide-area networks that splits a
single end-to-end data transfer session into multiple
sessions on distinct network segments. The Phoebus
gateways can use specific transport protocols and
properties for each segment. Phoebus gateway
provides basic buffering and ‘store and forward’
capabilities to facilitate different network link speeds.

The Phoebus gateway can be configured to tweak
protocol specific parameters (e.g. TCP parameters,
OSCARS authentication and reservation information)
on incoming and outgoing connections and on

connections to particular destinations. The gateway is
configured with next hop information for each
destination or subnet. The next hop in the path might
be another Phoebus gateway or a direct connection to
the end host. For example, a Phoebus gateway in
Berkeley would redirect all traffic headed to Indiana
University’s subnet to the Phoebus gateway running at
Starlight in Chicago and the Phoebus gateway at
Starlight would then forward the traffic directly to the
end host.

In our architecture we deploy Phoebus gateways
close to our data source and at major wide-area
network access points. The path between the Phoebus
gateways is managed using the OSCARS framework.
This strategy can be expanded easily to include
multiple Phoebus gateways and multiple OSCARS
provisioned pipes along the path.

B. OSCARS

OSCARS is a service that enables advance
reservation of guaranteed bandwidth paths. OSCARS
operates within ESnet and has the capability to
interoperate with other network domains. OSCARS
software infrastructure uses a web services model and
supports PKI for authentication. The OSCARS
service allows users to request a reservation from a
source to a destination over a specified network path
at a specified bandwidth for a specified duration. The
OSCARS server interacts with the network devices
along the path to configure the virtual circuit (VC).
OSCARS supports user driven advanced reservations
of dynamic VCs at layer 2 (Ethernet VLANs), and
layer 3 (IP).

Phoebus initiates a request to the OSCARS server
for a circuit when it gets a request that can benefit
from a provisioned network path. Phoebus then
periodically polls the OSCARS server and waits for
the circuit to be setup. Once Phoebus notices that the

Figure 1. System components framework to facilitate high-speed data transfers

circuit is setup, it continues the data transfer that was
initiated by the client along the newly setup path.

C. Quality of Service

The high latency in the wide-area transfers makes
it hard for TCP congestion recovery algorithms to
react in a timely manner. In our approach, we split our
network path into two low latency paths at the ends
and we use OSCARS to guarantee the required
bandwidth over the high latency segment. Thus we are
able to achieve superior levels of performance. This
approach provides higher reliability levels since any
problems in the end links can recover quickly due to
the fact that they are low latency paths [35].

D. Cost and Usability

The OSCARS service that dynamically provisions
and guarantees bandwidth is currently available to a
limited set of users at no cost. As OSCARS becomes
more widely used, it is likely to introduce a cost
model. However, this is not unlike the allocation
scheme used for shared computational resources
today. In the case of deadline scheduling, where
network and compute resources must be co-scheduled,
the allocation framework may be closely coupled.

The Phoebus infrastructure is light-weight and has
minimal impact on the end-user’s interaction with
existing software tools. The Phoebus wrapper library
needs to be installed on the system that processes the
packet headers to redirect traffic to the closest
Phoebus gateway. Once these are installed on a
system, socket based programs work transparently to
the end-user. The Globus GridFTP server can with
minor (already available) patches support the Phoebus
stack through Globus XIO[34].

E. Robustness

Phoebus and OSCARS are both research, software
projects. Experimental versions of the Phoebus

software package are available today [33] for
applications that might need large-scale, wide-area
data transfers. Our extensive testing didn’t reveal any
functional problems. While additional testing and
work would be needed to make these services
available more widely on production systems, the
light-weight design of these services means that it will
be relatively easy to ensure robustness.

F. Security

Our infrastructure is inherently as secure as
existing systems involved in the operation i.e., the end
systems and the network infrastructure. OSCARS
requires PKI authentication and the Phoebus
installation is configured to use the appropriate
credential. Existing security mechanisms such as Grid
Security Infrastructure (GSI) can be used in this
environment for end-to-end authentication, as
required by tools such as GridFTP. Additional support
will be needed to support user credential delegation at
the Phoebus and OSCARS layer f they are to be used
in multi-user production environments.

IV. EVALUATION

In our evaluation we compare and contrast the
non-overlay end-to-end throughput with that obtained
through our embedded dynamic overlay approach.
Additionally we study the overhead associated with
our system components. In the rest of this section we
discuss our testbed setup, present measurements to
show our system overheads, and present our
throughput comparison results using iperf and
GridFTP.

A. Testbed Setup

We have a wide-area network testbed setup
between Lawrence Berkeley National Lab (LBL) in
Berkeley, California and Indiana University (IU) in
Bloomington, Indiana. Figure 2 shows the network

Figure 2. Network data plane topology of testbed

topology plane of our testbed. Each experiment was
run multiple times over a period of two months. The
average results are presented.

Machines. At LBL, we used three machines
bosshog – a local cluster machine, doright – a desktop
machine, dtn – a production data transfer node at
NERSC [27]. The first machine (bosshog) is 1G
connected to a router at Berkeley, the second machine
(doright) is 100Mb connected, and the third machine
(dtn) is 10G connected to the ESnet router. Similarly
we have three machines at IU – tank, hulk and test.
These machines are 1G connected to the Internet. The
machines at LBL have been tuned for optimal long
latency TCP performance over the Internet.

Phoebus gateways. The ESnet routers at Berkeley
and Chicago each have commodity linux boxes that
are the Phoebus gateways. The circuits between the
Phoebus gateways are managed through OSCARS.

Client Tools. We use two client tools to
characterize the behavior of the system. We use iperf
[28] for measuring throughput across the links. We
also perform throughput tests using GridFTP [29] in
memory-memory mode and with various randomly
generated large files.

Theoretical Bandwidth.

We measured the latency on our links and used the
buffer size to calculate the theoretical bandwidth
possible on each of the links. This gives us an upper
bound on what to expect across the paths. The
theoretical bandwidth between IU and LBL on the
Internet is 578 Mbps. The maximum theoretical
bandwidth from IU to LBL through the Phoebus
gateways is significantly higher due to low latency at
the end links and higher bandwidth available between
the phoebus gateways (Table 1). Of course the actual
bandwidth possible on these paths is limited by the
low-bandwidth link which is 1 Gbps on all paths.
Based on the theoretical bandwidth comparison we

expect between 1.5 and 2 times speedup with our
overlay networks approach.

Measured Bandwidth. We measured the
bandwidth between different links in our testbed
(Table 2). The bandwidth over the Internet between
LBL and IU was between 350-400 Mbps. Tests from
LBL to IU resulted in the higher bandwidth values
(around 400Mbps). This was due to the TCP
performance tuning of the LBL machine (bosshog).
Tests from the IU and LBL hosts to the Phoebus
gateways had bandwidths greater than 930 Mbps,
which defines the upper limit on throughput we could
achieve using the overlay network path. We also
collected measurements from Windows machines that
are representative of many scientists’ desktop
machines. Measurements from Windows server
machines from LBL to IU, and to the Phoebus box at
LBL, showed that Windows Server 2008 out
performed Windows Server 2003 due to a better tuned
TCP stack.

tank (IU)
(Mbps)

phoebus-lbl
(Mbps)

Bosshog (LBL) 392 942

phoebus-star 935 -

LBL-Windows-2003 8.78 430

LBL-Windows-2008 368 950

bosshog

(LBL)(Mbps)
phoebus-

star (Mbps)

Tank (IU) 290 931

phoebus-lbl 942 -
Table 2. Measured Bandwidth between links on

our testbed.

B. System overheads and bottlenecks

We measured the overhead associated with
initiating and setting up an OSCARS circuit. On
average, the setup overhead was less than 2 minutes.
For large data transfers this overhead is a very small
percentage of the actual data transfer time.

Second, we measured the overhead of Phoebus
itself. For this experiment we measured the bandwidth
between two machines in the LBL network with and
without Phoebus. Figure 3 shows the bandwidth
comparison across machines in the LBL network
through the direct path and through the Phoebus
gateway in California. For this case, a desktop
machine at LBL (doright) connected at 100Mbps was
used as the sink for data transfers from the dtn
(NERSC). The data transfer was limited by the
smallest link capacity which was 100 Mbps in this
case. As observed, the performance with and without
the Phoebus gateway was comparable and the
minimal difference arises from cross network
congestion. Similarly we measured the traffic from
dtn (NERSC) to bosshog (LBL). We observed that the
bandwidth peaked around 940Mbps. Based on these

 Window
Size (MB)

Latency
(ms)

Theoretical
Bandwidth

tank(IU) to
bosshog

(LBL)

4 58 578 Mbps

tank(IU)-
phoebus-star

4 6 5.6 Gbps*

phoebus-
star-

phoebus-lbl

16 52 2.5 Gbps

phoebus-lbl-
bosshog

(LBL)

16 0.265 506 Gbps*

Table 1. Theoretical bandwidth possible between

IU and LBL and the individual links in our overlay

network path. * The actual bandwidth is limited by

the links which are 1 Gbps.

results, Phoebus did not add any perceptible overhead
to the system and the throughput that can be achieved
is limited only by the bandwidth on the constituent
links. Next we compared the throughput of wide-area
end-to-end transfers.

Figure 3. Bandwidth comparisons across two

machines in the LBL network when transfer is a) direct

across the internet and b) through a Phoebus gateway

that redirects traffic.

C. Throughput comparison

Figure 4. Bandwidth comparison across the

different machine pairs across LBL and IU a) direct b)

dynamic overlay.

iPerf. For our first set of tests we used iPerf
(TCP). We compared the throughput difference
between best-effort non-overlay routing (Direct) and
the dynamic overlay system (Figure 4). We performed
these experiments over various data transfer paths
between LBL and IU. We compared the direct
throughput with throughput using the Phoebus
coordinated OSCARS circuit. In all cases, we saw an
improvement of at least two times the bandwidth
throughput as a result of using the overlay.

Next, we compared the performance of Phoebus
without OSCARS and our on-demand overlay
approach (with OSCARS). We did a test from the data
transfer node (dtn) to IU (tank). Without OSCARS

(i.e. best effort routing between the Phoebus boxes),
we observed bandwidths around 890Mbps. Using
OSCARS to provision the link between the two boxes
we were able to get bandwidth around 940Mbps.
Using Phoebus to route the traffic through ESnet
enables routing over a high bandwidth path adding
OSCARS to reserve the required bandwidth, we are
able to do even better (because we do not see any loss
on the reserved link).

GridFTP memory transfers. We performed a
series of GridFTP memory to memory (i.e., /dev/zero
to /dev/null) tests across LBL and IU to compare the
throughput while accounting for the dynamic overlay
setup time etc. These tests helped us understand the
effective network performance possible with GridFTP
without the effects of disks and other system factors
(Figure 5).

Figure 5. Comparison of throughput with GridFTP

memory transfers

 These tests showed that even for short transfers
(of < 10 minutes) it was possible to achieve much
higher effective throughput using the dynamic overlay
network.

GridFTP file transfers. Finally we performed a
series of tests to understand the throughput that was
possible with actual disk to disk file transfers. The
effective throughput from file transfers is affected by
a number of factors including disk access speeds [31].

We measured the time taken to transfer different
file sizes from tank (IU) to bosshog (LBL) and dtn
(NERSC) with a single stream. As seen in Figure 6,
for a 10GB file transfer from tank (IU) to bosshog
(LBL), the direct approach, i.e., best effort routing,
was slightly better than the dynamic overlay approach
(due to the overlay setup overhead). However for
larger files the effective throughput with the dynamic
overlay approach exceeded that of the direct transfer
approach (significantly shorter transfer times).

Figure 6. Comparison of time to transfer data

using the direct and dynamic overlay approach using

GridFTP single streams

GridFTP Parallel Streams. Next, we studied the
effects of parallel streams on the data transfers over
the direct and dynamic overlay approach. These tests
were performed from the data transfer node – dtn
(NERSC) to test (IU). Using parallel streams with the
direct approach (i.e, best-effort routing) improved the
performance as expected. For large file transfers, four
parallel streams from dtn (NERSC) to test (IU) gave
the best performance. The data transfer node at
NERSC has been tuned for large-scale data transfers
and four streams had been previously documented as
the best configuration to use.

Figure 7. Comparison of time to transfer data

between direct and dynamic overlay between data

transfer node at NERSC and test at IU with varying

number of streams (p=1, 2, or 4)

The dynamic overlay approach achieved better
performance than the direct Internet routing even for
file sizes as small as 10GB. Using parallel streams
had little or no effect (p=4) when using the dynamic
overlay approach since the performance with one
stream already reached the limit of the IU host. In
fact, for p=2, for larger files, we saw a drop in
performance compared to using a single stream (due
to overhead). Overall, the dynamic overlay did show
better performance than what was achievable for data
transfers from dtn (NERSC) with direct Internet
routing.

Summary. Our evaluation shows that we can get
an effective and higher data transfer throughput, using
the dynamic, on-demand embedded overlay networks.

V. DISCUSSION

Earlier work [21], [22], [23] and our experiments
show that overlays embedded in the network using
Phoebus and OSCARS provide a robust infrastructure
that enables high throughput wide-area data transfers
for end-user applications. In the remainder of this
section we discuss our experiences.

Science Data Network and Internet2. All the
tests described in this paper were carried out using
ESnet. Phoebus and OSCAR deployments of the same
capability can be made available on Internet2. This
early work paves the way for future deployments
across ESnet and Internet2 enabling wider
accessibility of this infrastructure for wide-area, large-
scale, on-demand data transfers.

End-to-end throughput typically limited by the

end hosts. The end-to-end throughput is dependent on
a number of factors. The combined infrastructure of
Phoebus and OSCARS allows us to achieve
consistently high throughput across the wide-area
network but the overall achieved throughput of a data
transfer can only be as good as the slowest link in the
path or disk at the source or destination. Our results
from the data transfer node at NERSC/LBL show that
this problem can be addressed by using systems that
are optimized for disk and network operations. In
cases such as the ALS, the data transfer throughput
will be the maximum possible to the remote host if a
machine like dtn is installed at the ALS. Then, using
the overlay network, the end user gets the same data
transfer throughput to the remote file server as if the
file transfer was originating local to the remote
location.

Protocols. Phoebus provides support for UDT
and in some cases UDT can provide improved
performance on links with packet loss[22]. However,
by using OSCARS on our wide-area links, we see no
loss in the wide-area so UDT does not provide any
performance advantage in our overlay environment.
Phoebus and OSCARS provides support for multiple-
users and multiple streams.

Gateway Configuration. The Phoebus gateways
play a critical role in this infrastructure. It is important
that these boxes are properly positioned in the
network topology and well connected with the router.
In our deployment, these machines run Ubuntu-Server
8.04. These machines were configured to use a Virtual
Local Area Network (VLAN). Some network
administration expertise was required for this
configuration.

The Phoebus and the OSCARS clients that run on
the network gateways are light-weight services that
can run on simple Linux machines connected to a
router. If Linux based routers become more common
place, these services could be directly run on the
router minimizing equipment needed.

Debugging and Tuning. It is important that the
Phoebus boxes are tuned to get good performance.

Achieving good performance from 10Gbps Ethernet
cards requires tuning on each card and machine to
enable enhancements such as interrupt coalescing.
Additionally due to the nature of layer 2 networks,
debugging in these networks is tedious and time
consuming. Tools such as perfSONAR[37] help with
the troubleshooting.

File Servers. Sites such as LBL where large scale
data is produced, can deploy well tuned file servers
close to the source of the data. These file servers when
used with the embedded on-demand overlays
described in this paper can enable data transfers across
the wide-area that achieve the performance of a local
transfer at the remote institution.

VI. CONCLUSIONS

On-demand, embedded overlays enable high-
throughput, large-scale scientific data transfers across
the wide-area. The overlays use Phoebus to split
network connections into a series of connections. This
divides the data transfer path into low-latency ‘local’
links and a high-latency wide-area link. The high-
latency wide-area link’s path and bandwidth is
reserved and managed using OSCARS, which
provides guaranteed bandwidth. Our experiments
show that this approach leads to increased large-scale,
data transfer throughput end-to-end with minimal
system overhead. This throughput can also be
achieved with GridFTP transfers. Thus, a user can
achieve large file transfers using the overlays that are
typically as fast as the time to load or store the data
from/to a locally mounted disk. Using data transfer
nodes and on-demand, embedded overlays is an
effective replacement for hand-carrying data disks.

VII. ACKNOWLEDGEMENTS

This work was supported by the Director, Office
of Science, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231. . The authors
would like to thank DOE (DOE FG02-04Er25642)
and Internet2 for Phoebus funding.

The authors would like to thank Evangelos
Chaniotakis and David Robertson for helping with use

of the OSCARS server.

 REFERENCES

[1] A. Szalay and J. Gray, “Science in an exponential world,”
Nature, Vol 440, 23 March 2006.

[2] BES Science Network Requirements report of the Basic

Energy Sciences Network Requirements Workshop. LBNL
Technical Report LBNL/PUB-981. June 2007.

[3] J. Plank, A. Bassi, M. Beck, T. Moore, D. M. Swany, and R.

Wolski, Managing Data Storage in the Network. IEEE
Internet Computing vol 5, Issue 5, Pages 50-58, Sep. 2001.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,

A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica
and M. Zaharia. Above the Clouds: A Berkeley View of

Cloud Computing. Technical Report No. UCB/EECS-2009-

28, EECS Department, University of California, Berkeley,
Feb 2009.

[5] “BitTorrent”, http://www.bittorrent.com/

[6] “Gnutella”, http://www.gnutella.com/

[7] “Skype”, http://www.skype.com/

[8] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A.

Rowstron, and A. Singh. Split-stream:High-bandwidth
Content Distribution in Cooperative Environments. In

Proceedings of the 19th ACM Symposium on Operating
System Principles, October 2003.

[9] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling

Conferencing Applications on the Internet using an Overlay
Multicast Architecture. In Proceedings of ACM SIGCOMM,

August 2001.

[10] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,

and Jr. J. W. O’Toole. Overcast: Reliable Multicasting with
an Overlay Network. In Proceedings of Operating Systems

Design and Implementation (OSDI), October 2000.

[11] D. Kostic, R. Braud, C. Killian, E. Vandekieft, J. W.
Anderson, A. C. Snoeren, and A. Vahdat. Maintaining High-

Bandwidth Under Dynamic Network Conditions. In
Proceedings of USENIX ’05, 2005.

[12] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and A.

Vahdat. Using Random Subsets to Build Scalable Network
Services. In Proceedings of the USENIX Symposium on

Internet Technologies and Systems, March 2003.

[13] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet:
High Bandwidth Data Dissemination Using and Overlay

Mesh. In Proceedings of the 19th ACM Symposium on
Operating System Principles, October 2003.

[14] K. S. Park and V. S. Pai. Deploying large file transfer on an

http content distribution network. In Proceedings of the First
Workshop on Real, Large Distributed Systems (WORLDS

‘04), 2004.

[15] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed
Object Location and Routing for Large-scale Peer-to-Peer

Systems. In Middleware 2001, November 2001.

[16] A. Rowstron, A. Kermarrec, M. Castro, and P. Druschel.

SCRIBE: The Design of a Large-scale Event Notification
Infrastructure. In Third International Workshop on

Networked Group Communication, November 2001.

[17] R. Sherwood, R. Braud, and B. Bhattacharjee. Slurpie: A
Cooperative Bulk Data Transfer Protocol. In Proceedings of

IEEE INFOCOM, 2004.

[18] A. C. Snoeren, K. Conley, and D. K. Gifford. Mesh-Based
Content Routing Using XML. In Proceedings of the 18th

ACM Symposium on Operating Systems Principles (SOSP
‘01), October 2001.

[19] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.

Balakrishnan, Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications, ACM SIGCOMM 2001,

August 2001.

[20] A. Young, J. Chen, Z. Ma, A. Krishnamurthy, L. Peterson,
and R. Y. Wang. Overlay mesh construction using

interleaved spanning trees. In Proceedings of IEEE
INFOCOM, 2004.

[21] A. Brown, A., E. Kissel, M. Swany, G. Almes, Phoebus:

A Session Protocol for Dynamic and Heterogeneous
Networks. Technical Report 2008:334, University of

Delaware, 2008

[22] E. Kissel, A. Brown, M. Swany, Improving GridFTP

Performance Using the Phoebus Session Layer. SC 2009
Conference, Proceedings of the ACM/IEEE, 2009.

[23] C. P. Guok, D. W. Robertson, E. Chaniotakis, M. R.

Thompson, W. Johnston, B. Tierney. "A User Driven

Dynamic Circuit Network Implementation", DANMS 2008,
IEEE 2008.

[24] N. Rao. Netlets: End-to-end QoS mechanisms for distributed

computing over internet using two-paths. Int. Conf. on
Internet Computing, 2001.

[25] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end

arguments in system design. ACM Transactions on Computer
Systems, 2(4):277.

[26] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris.

The case for resilient overlay networks. In 8th Annual
Workshop on Hot Topics in Operating Systems (HotOS-VIII),

May 2001.

[27] NERSC Data Transfer Nodes.
http://www.nersc.gov/nusers/systems/datatran/.

[28] Iperf http://sourceforge.net/projects/iperf/.

[29] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.
Dumitrescu, I. Raicu, I. Foster.The Globus Striped GridFTP

Framework and Server. Proceedings of Super Computing
2005 (SC05), November 2005.

[30] G. Khanna, U. Catalyurek, T. Kurc, R. Kettimuthu, P.

Sadayappan, I. Foster and J. Saltz. Using Overlays For
Efficient Data Transfer Over Shared Wide-Area Networks.

Proceedings of the 2008 ACM/IEEE conference on
Supercomputing (SC 2008), November 2008

[31] W. Allcock and J. Bresnahan, "Maximizing Your Globus

Toolkit™ GridFTP Server," in ClusterWorld, vol. 2, pp. 1—
7, 2004.

[32] OSCARS Project Website http://www.es.net/OSCARS/.

[33] Phoebus Project Page,

http://damsl.cis.udel.edu/projects/phoebus/about.php.

[34] W. Allcock, J. Bresnahan, R. Kettimuthu, J. Link. The
Globus eXtensible Input/Output System (XIO): A protocol

independent IO system for the Grid. Proceedings of the Joint
Workshop on High-Performance Grid Computing and High-

Level Parallel Programming Models held in conjunction with
International Parallel and Distributed Processing

Symposium (IPDPS 2005), April 2005.

[35] M. Allman, V. Paxson, and W. Stevens, TCP Congestion

Control. RFC. RFC Editor., 1999

[36] G. Bell, J. Gray, A. Szalay, "Petascale Computational
Systems," Computer, vol. 39, no. 1, pp. 110-112, Jan. 2006.

[37] PerfSONAR http://www.perfsonar.net/

[38] Atlas Experiment http://atlas.ch/

[39] Compact Muon Solenoid (CMS) Experiment

http://cms.web.cern.ch/cms/index.html

