
DISCLAIMER    

This  document  was  prepared  as  an  account  of  work  sponsored  by  the  United  States  

Government.  While  this  document  is  believed  to  contain  correct  information,  neither  the  

United  States  Government  nor  any  agency  thereof,  nor  the  Regents  of  the  University  of  

California,  nor  any  of  their  employees,  makes  any  warranty,  express  or  implied,  or  assumes  

any  legal  responsibility  for  the  accuracy,  completeness,  or  usefulness  of  any  information,  

apparatus,  product,  or  process  disclosed,  or  represents  that  its  use  would  not  infringe  

privately  owned  rights.  Reference  herein  to  any  specific  commercial  product,  process,  or  

service  by  its  trade  name,  trademark,  manufacturer,  or  otherwise,  does  not  necessarily  

constitute  or  imply  its  endorsement,  recommendation,  or  favoring  by  the  United  States  

Government  or  any  agency  thereof,  or  the  Regents  of  the  University  of  California.  The  views  

and  opinions  of  authors  expressed  herein  do  not  necessarily  state  or  reflect  those  of  the  

United  States  Government  or  any  agency  thereof  or  the  Regents  of  the  University  of  

California.  

  



On-demand Overlay Networks for Large 

Scientific Data Transfers 

Lavanya Ramakrishnan*, Chin Guok*, Keith Jackson*, Ezra Kissel
+
 , D. Martin Swany

+
, Deborah 

Agarwal*  

*Lawrence Berkeley National Laboratory, Berkeley, CA 
+ 

University of Delaware, Newark, DE 

 
Abstract. Large scale scientific data transfers are 

central to scientific processes. Data from large 

experimental facilities have to be moved to local 

institutions for analysis or often data needs to be moved 

between local clusters and large supercomputing 

centers.  In this paper, we propose and evaluate a 

network overlay architecture to enable high-

throughput, on-demand, coordinated data transfers 

over wide-area networks. Our work leverages Phoebus 

and On-demand Secure Circuits and Advance 

Reservation System (OSCARS) to provide high 

performance wide-area network connections. OSCARS 

enables dynamic provisioning of network paths with 

guaranteed bandwidth and Phoebus enables the 

coordination and effective utilization of the OSCARS 

network paths. Our evaluation shows that this 

approach leads to improved end-to-end data transfer 

throughput with minimal overheads. The achieved 

throughput using our overlay was limited only by the 

ability of the end hosts to sink the data. 

Keywords – Overlay Networks, Scientific Data 
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I. INTRODUCTION 

Data has become central to scientific computations 
and collaborations[1]. Scientific users typically 
generate the data at instruments and computational 
facilities and then transfer this data from those sites to 
their local clusters and desktops to facilitate analysis 
and sharing of data and results with collaborators that 
might be geographically distributed.  

Peta-scale data is usually analyzed where it was 
generated [36]. However, most science experiments 
and models only generate terabytes of data, and this 
data is moved to where the analysis of the data takes 
place.  An example, is the experiments conducted at 
the Advanced Light Source (ALS) facility [2]. 
Scientists from around the country spend days to 
weeks in Berkeley gathering data from ALS X-ray 
detector experiments. Each data set collected from a 
typical experiment at the beamline contains about 
10GB of data and about one data set is produced per 
hour. Overall a total of about 0.5 TB is generated over 
24 hours.  The data generated during the experiment 
subsequently needs to be transported to the scientist’s 

home institution for interactive scientific analysis and 
long term archiving. Today these data transfers are 
accomplished by scientists hand-carrying portable 
disks.  

At a recent ESnet
1
 Workshop in 2007[1], DOE 

experiment facility users made it clear they would like 
to stop hand-carrying the data and outlined their needs 
to transfer large-scale data over the network, increased 
data throughput capabilities, distributed data analysis, 
and reliable “cargo-carrying” wide-area network 
infrastructure. 

International scientific experiments such as Atlas 
[38] and CMS [39] schedule computations to run on a 
diverse set of globally distributed resources. 
Intermediate data products are moved between 
resources during the analysis to reach the next 
computation stage and high throughput for the data 
transfer is required to enable timely completion of the 
computations. A third example is cloud computing 
which provides on-demand access to resources on a 
pay-as-you-go model [4]. Data movement in and out 
of these clouds is a major open challenge. 

These scientific use cases illustrate the following 
needs: 

• High-throughput, on-demand data transfer 
over wide-area networks  

• Infrastructure in the network that can provide 
network service predictability by managing 
dynamic data transfer paths 

• Simple client-side tools that allow end 
scientists to better utilize the available 
throughput of wide-area networks.  

In this paper, we describe our high-throughput, on-
demand data transfer architecture in detail and 
evaluate its effectiveness for large-scale, wide-area 
data transfers. The on-demand nature of our 
architecture enables scientists to move their data and 
computation between any source and destination 
pairs. We report on our experiences in using this 
architecture to orchestrate wide-area data transfers on 
ESnet.   

                                                             
1
 ESnet is a multi-10Gbps backbone Tier 1 ISP 

connecting DOE research facilities and compute 

resources. 



Specifically, in this paper, we make the following 
contributions  

• Describe a secure, reliable, light-weight, on-
demand overlay architecture to manage ad-
hoc scientific data transfers over the wide-
area. 

• Demonstrate the advantage of dynamic on-
demand overlay networks by comparing and 
contrasting it with the performance, overhead, 
and bottlenecks associated with current data 
transfer mechanisms. 

The rest of this paper is organized as follows. We 
provide background and related work in Section II. 
We present our system architecture along with design 
and implementation details in Section III. We detail 
our evaluation and results in Section IV. We discuss 
the various aspects of the system with respect to use 
in real production environments in Section V and 
conclude in Section VI. 

II. BACKGROUND  

Wide-area networking infrastructure facilities such 
as ESnet provide the capacity to enable rapid transfer 
of terabyte data sets, but, existing high-throughput 
data transfer techniques require extensive system and 
network administration skills to manually tune the 
network protocol parameters in the end-point 
machines and network infrastructure along the path.  
Scientists rarely have the resources to implement 
tuned end-to-end paths.  

Some sites have implemented optimized data 
transfer nodes dedicated to moving large-scale data 
(e.g., Data transfer nodes at NERSC [27]). This 
approach works well when the transfers are between 
well-known end-points since these paths can be 
optimized. However, this approach does not 
generalize to moving data to any arbitrary remote site. 
Previous work has suggested a variety of strategies 
such as alternate path routing [24],[25],[26],[30] or 
public storage servers located strategically in the 
network to optimize such data transfers [3]. But these 
strategies incur an administrative burden to maintain 
the servers and are not scalable to arbitrary 
destinations.  

 One of the key issues is that these wide-area bulk 
data transfers require high-bandwidth over a high 
latency link. TCP’s congestion avoidance on high 
latency links with even a small amount of packet loss 
will experience significantly less throughput than is 
available. The end-to-end performance seen by the 
user is also affected by TCP parameters (e.g. window 
size) and slow loss recovery due to high round trip 
times.  

Distributed network storage [3] has been proposed 
as a way to manage data transfers using locality and 
caching of data. However maintenance of file servers 

at different points in the network is a nightmare for 
system and network administrators. 

Application overlays have been effective in 
providing data aggregation and dissemination services 
in the general Internet[5],[6],[7],[19],[20]. Application 
overlays create a virtual topology on top of the 
physical network and optimize network utilization for 
the application data traffic. Application layer overlay 
networks, such as Gnutella [6], BitTorrent [5] and 
Skype [7] address the needs of applications with 
replicas, asymmetrical links, multiple source and 
destination choices for each file. Existing work at the 
application layer [8],[9],[10],[11],[12],[13],[14],[15], 
[16],[17],[18],[19],[20] can be applied to produce 
algorithms and protocols that make efficient and 
effective use of resources at lower layers of the 
network stack. 

Our approach leverages the benefits of application 
overlays but embeds the overlay in the underlying 
network. We create on-demand embedded overlays 
for scientific applications to make efficient and 
effective use of the available network resources. Our 
system leverages Phoebus[21],[22] and OSCARS[23] 
to implement the on-demand overlay capability. 
Phoebus provides us the routing infrastructure to 
select an optimal path. High-bandwidth network 
segments are provisioned using the prototype 
OSCARS (On-demand Secure Circuits and Advanced 
Reservation System) service. Phoebus and OSCARS 
are both light-weight services and do not require 
access to storage or other high-end resources. 

In earlier work, improvements to GridFTP used 
multi-hop path splitting and multi-pathing[30] to 
alleviate problems with current networks. However 
these algorithms are applied at the protocol level and 
require changes to the middleware such as GridFTP. 
Also, in earlier work, alternate path routing and 
selection have been used to alleviate the problems 
with current networks [24],[25],[26]. Phoebus is 
similar to this work in that it provides an alternate 
path for data transfers but the Phoebus-OSCARS 
combination differs in spirit as it addresses the need 
for the Internet architecture to support such 
applications on-demand and it provides better quality 
of service to applications.  

We describe our data transfer architecture in detail 
in the next section. 



III. DATA TRANSFER  ARCHITECTURE 

Figure 1 shows the system components in our 
architecture to facilitate wide-area data transfers. 
Phoebus manages end-to-end throughput for long-
distance data transfers by splitting the network path 
into constituent segments. OSCARS enables on-
demand provisioning of secure circuits with 
guaranteed bandwidth. Using OSCARS on the high 
latency portions of the path allows Phoebus to obtain 
high bandwidth across the wide-area.  

A client wishing to transfer data connects to a 
close-by Phoebus gateway and the Phoebus gateway 
then interacts securely with the OSCARS servers to 
obtain a reservation for a guaranteed bandwidth path 
to the Phoebus gateway nearest the destination. The 
OSCARS server checks to see if the reservation 
request can be satisfied. If the reservation can be 
satisfied the OSCARS servers configure the path. 
Once the circuit is setup the Phoebus gateway relays 
the data to the other Phoebus gateway which then 
sends it to the final destination. We detail the system 
components and our design decisions in the rest of 
this section.  

A. Phoebus 

Phoebus provides an infrastructure for managing 
high-performance wide-area networks that splits a 
single end-to-end data transfer session into multiple 
sessions on distinct network segments. The Phoebus 
gateways can use specific transport protocols and 
properties for each segment. Phoebus gateway 
provides basic buffering and ‘store and forward’ 
capabilities to facilitate different network link speeds.  

The Phoebus gateway can be configured to tweak 
protocol specific parameters (e.g. TCP parameters, 
OSCARS authentication and reservation information) 
on incoming and outgoing connections and on 

connections to particular destinations. The gateway is 
configured with next hop information for each 
destination or subnet. The next hop in the path might 
be another Phoebus gateway or a direct connection to 
the end host. For example, a Phoebus gateway in 
Berkeley would redirect all traffic headed to Indiana 
University’s subnet to the Phoebus gateway running at 
Starlight in Chicago and the Phoebus gateway at 
Starlight would then forward the traffic directly to the 
end host.  

In our architecture we deploy Phoebus gateways 
close to our data source and at major wide-area 
network access points. The path between the Phoebus 
gateways is managed using the OSCARS framework. 
This strategy can be expanded easily to include 
multiple Phoebus gateways and multiple OSCARS 
provisioned pipes along the path.  

B. OSCARS 

OSCARS is a service that enables advance 
reservation of guaranteed bandwidth paths. OSCARS 
operates within ESnet and has the capability to 
interoperate with other network domains. OSCARS 
software infrastructure uses a web services model and 
supports PKI for authentication. The OSCARS 
service allows users to request a reservation from a 
source to a destination over a specified network path 
at a specified bandwidth for a specified duration. The 
OSCARS server interacts with the network devices 
along the path to configure the virtual circuit (VC). 
OSCARS supports user driven advanced reservations 
of dynamic VCs at layer 2 (Ethernet VLANs), and 
layer 3 (IP).  

Phoebus initiates a request to the OSCARS server 
for a circuit when it gets a request that can benefit 
from a provisioned network path. Phoebus then 
periodically polls the OSCARS server and waits for 
the circuit to be setup. Once Phoebus notices that the 

 

Figure 1. System components framework to facilitate high-speed data transfers      



circuit is setup, it continues the data transfer that was 
initiated by the client along the newly setup path.   

C. Quality of Service  

The high latency in the wide-area transfers makes 
it hard for TCP congestion recovery algorithms to 
react in a timely manner. In our approach, we split our 
network path into two low latency paths at the ends 
and we use OSCARS to guarantee the required 
bandwidth over the high latency segment. Thus we are 
able to achieve superior levels of performance. This 
approach provides higher reliability levels since any 
problems in the end links can recover quickly due to 
the fact that they are low latency paths [35].  

D. Cost and Usability  

The OSCARS service that dynamically provisions 
and guarantees bandwidth is currently available to a 
limited set of users at no cost. As OSCARS becomes 
more widely used, it is likely to introduce a cost 
model. However, this is not unlike the allocation 
scheme used for shared computational resources 
today.  In the case of deadline scheduling, where 
network and compute resources must be co-scheduled, 
the allocation framework may be closely coupled. 

The Phoebus infrastructure is light-weight and has 
minimal impact on the end-user’s interaction with 
existing software tools. The Phoebus wrapper library 
needs to be installed on the system that processes the 
packet headers to redirect traffic to the closest 
Phoebus gateway.  Once these are installed on a 
system, socket based programs work transparently to 
the end-user. The Globus GridFTP server can with  
minor (already available) patches support the Phoebus 
stack through Globus XIO[34].  

E. Robustness 

Phoebus and OSCARS are both research, software 
projects. Experimental versions of the Phoebus 

software package are available today [33] for 
applications that might need large-scale, wide-area 
data transfers. Our extensive testing didn’t reveal any 
functional problems. While additional testing and 
work would be needed to make these services 
available more widely on production systems, the 
light-weight design of these services means that it will 
be relatively easy to ensure robustness. 

F. Security 

Our infrastructure is inherently as secure as 
existing systems involved in the operation i.e., the end 
systems and the network infrastructure. OSCARS 
requires PKI authentication and the Phoebus 
installation is configured to use the appropriate 
credential. Existing security mechanisms such as Grid 
Security Infrastructure (GSI) can be used in this 
environment for end-to-end authentication, as 
required by tools such as GridFTP. Additional support 
will be needed to support user credential delegation at 
the Phoebus and OSCARS layer f they are to be used 
in multi-user production environments. 

IV. EVALUATION 

In our evaluation we compare and contrast the 
non-overlay end-to-end throughput with that obtained 
through our embedded dynamic overlay approach. 
Additionally we study the overhead associated with 
our system components. In the rest of this section we 
discuss our testbed setup, present measurements to 
show our system overheads, and present our 
throughput comparison results using iperf and 
GridFTP.  

A. Testbed Setup 

We have a wide-area network testbed setup 
between Lawrence Berkeley National Lab (LBL) in 
Berkeley, California and Indiana University (IU) in 
Bloomington, Indiana. Figure 2 shows the network 

 

Figure 2. Network data plane topology of testbed 



topology plane of our testbed. Each experiment was 
run multiple times over a period of two months. The 
average results are presented.  

Machines. At LBL, we used three machines 
bosshog – a local cluster machine, doright – a desktop 
machine, dtn – a production data transfer node at 
NERSC [27]. The first machine (bosshog) is 1G 
connected to a router at Berkeley, the second machine 
(doright) is 100Mb connected, and the third machine 
(dtn) is 10G connected to the ESnet router. Similarly 
we have three machines at IU – tank, hulk and test. 
These machines are 1G connected to the Internet. The 
machines at LBL have been tuned for optimal long 
latency TCP performance over the Internet. 

Phoebus gateways. The ESnet routers at Berkeley 
and Chicago each have commodity linux boxes that 
are the Phoebus gateways. The circuits between the 
Phoebus gateways are managed through OSCARS.  

Client Tools. We use two client tools to 
characterize the behavior of the system.  We use iperf 
[28] for measuring throughput across the links. We 
also perform throughput tests using GridFTP [29] in 
memory-memory mode and with various randomly 
generated large files.   

Theoretical Bandwidth. 

We measured the latency on our links and used the 
buffer size to calculate the theoretical bandwidth 
possible on each of the links. This gives us an upper 
bound on what to expect across the paths. The 
theoretical bandwidth between IU and LBL on the 
Internet is 578 Mbps. The maximum theoretical 
bandwidth from IU to LBL through the Phoebus 
gateways is significantly higher due to low latency at 
the end links and higher bandwidth available between 
the phoebus gateways (Table 1). Of course the actual 
bandwidth possible on these paths is limited by the 
low-bandwidth link which is 1 Gbps on all paths. 
Based on the theoretical bandwidth comparison we 

expect between 1.5 and 2 times speedup with our 
overlay networks approach.  

Measured Bandwidth. We measured the  
bandwidth between different links in our testbed 
(Table 2). The bandwidth over the Internet between 
LBL and IU was between 350-400 Mbps. Tests from 
LBL to IU resulted in the higher bandwidth values 
(around 400Mbps). This was due to the TCP 
performance tuning of the LBL machine (bosshog). 
Tests from the IU and LBL hosts to the Phoebus 
gateways had bandwidths greater than 930 Mbps, 
which defines the upper limit on throughput we could 
achieve using the overlay network path. We also 
collected measurements from Windows machines that 
are representative of many scientists’ desktop 
machines. Measurements from Windows server 
machines from LBL to IU, and to the Phoebus box at 
LBL, showed that Windows Server 2008 out 
performed Windows Server 2003 due to a better tuned 
TCP stack.  

 
tank (IU) 
(Mbps) 

phoebus-lbl 
(Mbps) 

Bosshog (LBL) 392 942 

phoebus-star 935 - 

LBL-Windows-2003 8.78 430 

LBL-Windows-2008 368 950 

 
bosshog 

(LBL)(Mbps) 
phoebus-

star (Mbps) 

Tank (IU) 290 931 

phoebus-lbl 942 - 
Table 2. Measured Bandwidth between links on 

our testbed. 

B. System overheads and bottlenecks 

We measured the overhead associated with 
initiating and setting up an OSCARS circuit. On 
average, the setup overhead was less than 2 minutes. 
For large data transfers this overhead is a very small 
percentage of the actual data transfer time. 

Second, we measured the overhead of Phoebus 
itself. For this experiment we measured the bandwidth 
between two machines in the LBL network with and 
without Phoebus. Figure 3 shows the bandwidth 
comparison across machines in the LBL network 
through the direct path and through the Phoebus 
gateway in California. For this case, a desktop 
machine at LBL (doright)  connected at 100Mbps was 
used as the sink for data transfers from the dtn 
(NERSC). The data transfer was limited by the 
smallest link capacity which was 100 Mbps in this 
case. As observed, the performance with and without 
the Phoebus gateway was comparable and the 
minimal difference arises from cross network 
congestion. Similarly we measured the traffic from 
dtn (NERSC) to bosshog (LBL). We observed that the 
bandwidth peaked around 940Mbps. Based on these 

 Window 
Size (MB) 

Latency 
(ms) 

Theoretical 
Bandwidth 

 

tank(IU) to 
bosshog 

(LBL) 

4 58 578 Mbps 

tank(IU)-
phoebus-star 

4 6 5.6 Gbps* 

phoebus-
star-

phoebus-lbl 

16 52 2.5 Gbps 

phoebus-lbl-
bosshog 

(LBL) 

16 0.265 506 Gbps* 

Table 1. Theoretical bandwidth possible between 

IU and LBL and the individual links in our overlay 

network path. * The actual bandwidth is limited by 

the links which are 1 Gbps. 



results, Phoebus did not add any perceptible overhead 
to the system and the throughput that can be achieved 
is limited only by the bandwidth on the constituent 
links. Next we compared the throughput of wide-area 
end-to-end transfers.  

 

 

Figure 3. Bandwidth comparisons across two 

machines in the LBL network when transfer is a) direct 

across the internet and b) through a Phoebus gateway 

that redirects traffic. 

C. Throughput comparison 

 

Figure 4.  Bandwidth comparison across the 

different machine pairs across LBL and IU a) direct b) 

dynamic overlay.  

iPerf. For our first set of tests we used iPerf 
(TCP). We compared the throughput difference 
between best-effort non-overlay routing (Direct) and 
the dynamic overlay system (Figure 4). We performed 
these experiments over various data transfer paths 
between LBL and IU. We compared the direct 
throughput with throughput using the Phoebus 
coordinated OSCARS circuit. In all cases, we saw an 
improvement of at least two times the bandwidth 
throughput as a result of using the overlay. 

Next, we compared the performance of Phoebus 
without OSCARS and our on-demand overlay 
approach (with OSCARS). We did a test from the data 
transfer node (dtn) to IU (tank). Without OSCARS 

(i.e. best effort routing between the Phoebus boxes), 
we observed bandwidths around 890Mbps. Using  
OSCARS to provision the link between the two boxes 
we were able to get bandwidth around 940Mbps. 
Using Phoebus to route the traffic through ESnet 
enables routing over a high bandwidth path adding 
OSCARS to reserve the required bandwidth, we are 
able to do even better (because we do not see any loss 
on the reserved link).  

GridFTP memory transfers. We performed a 
series of GridFTP memory to memory (i.e., /dev/zero 
to /dev/null) tests across LBL and IU to compare the 
throughput while accounting for the dynamic overlay 
setup time etc. These tests helped us understand the 
effective network performance possible with GridFTP 
without the effects of disks and other system factors 
(Figure 5). 

       

 
Figure 5. Comparison of throughput with GridFTP 

memory transfers 

 These tests showed that even for short transfers 
(of < 10 minutes) it was possible to achieve much 
higher effective throughput using the dynamic overlay 
network.   

GridFTP file transfers. Finally we performed a 
series of tests to understand the throughput that was 
possible with actual disk to disk file transfers. The 
effective throughput from file transfers is affected by 
a number of factors including disk access speeds [31].   

We measured the time taken to transfer different 
file sizes from tank (IU) to bosshog (LBL) and dtn 
(NERSC) with a single stream.  As seen in Figure 6, 
for a 10GB file transfer from tank (IU) to bosshog 
(LBL), the direct approach, i.e., best effort routing, 
was slightly better than the dynamic overlay approach 
(due to the overlay setup overhead). However for 
larger files the effective throughput with the dynamic 
overlay approach exceeded that of the direct transfer 
approach (significantly shorter transfer times).  



 
Figure 6. Comparison of time to transfer data 

using the direct and dynamic overlay approach using 

GridFTP single streams 

GridFTP Parallel Streams. Next, we studied the 
effects of parallel streams on the data transfers over 
the direct and dynamic overlay approach. These tests 
were performed from the data transfer node – dtn 
(NERSC) to test (IU). Using parallel streams with the 
direct approach (i.e, best-effort routing) improved the 
performance as expected. For large file transfers, four 
parallel streams from dtn (NERSC) to test (IU) gave 
the best performance. The data transfer node at 
NERSC has been tuned for large-scale data transfers 
and four streams had been previously documented as 
the best configuration to use.  

 
Figure 7. Comparison of time to transfer data 

between direct and dynamic overlay between data 

transfer node at NERSC and test at IU with varying 

number of streams (p=1, 2, or 4) 

The dynamic overlay approach achieved better 
performance than the direct Internet routing even for 
file sizes as small as 10GB. Using parallel streams 
had little or no effect (p=4) when using the dynamic 
overlay approach since the performance with one 
stream already reached the limit of the IU host. In 
fact, for p=2, for larger files, we saw a drop in 
performance compared to using a single stream (due 
to overhead). Overall, the dynamic overlay did show 
better performance than what was achievable for data 
transfers from dtn (NERSC) with direct Internet 
routing. 

Summary. Our evaluation shows that we can get 
an effective and higher data transfer throughput, using 
the dynamic, on-demand embedded overlay networks. 

V. DISCUSSION 

Earlier work [21], [22], [23] and our experiments 
show that overlays embedded in the network using 
Phoebus and OSCARS provide a robust infrastructure 
that enables high throughput wide-area data transfers 
for end-user applications. In the remainder of this 
section we discuss our experiences. 

Science Data Network and Internet2. All the 
tests described in this paper were carried out using 
ESnet. Phoebus and OSCAR deployments of the same 
capability can be made available on Internet2. This 
early work paves the way for future deployments 
across ESnet and Internet2 enabling wider 
accessibility of this infrastructure for wide-area, large-
scale, on-demand data transfers. 

End-to-end throughput typically limited by the 

end hosts. The end-to-end throughput is dependent on 
a number of factors. The combined infrastructure of 
Phoebus and OSCARS allows us to achieve 
consistently high throughput across the wide-area 
network but the overall achieved throughput of a data 
transfer can only be as good as the slowest link in the 
path or disk at the source or destination. Our results 
from the data transfer node at NERSC/LBL show that 
this problem can be addressed by using systems that 
are optimized for disk and network operations. In 
cases such as the ALS, the data transfer throughput 
will be the maximum possible to the remote host if a 
machine like dtn is installed at the ALS. Then, using 
the overlay network, the end user gets the same data 
transfer throughput to the remote file server as if the 
file transfer was originating local to the remote 
location. 

Protocols.  Phoebus provides support for UDT 
and in some cases UDT can provide improved 
performance on links with packet loss[22]. However, 
by using OSCARS on our wide-area links, we see no 
loss in the wide-area so UDT does not provide any 
performance advantage in our overlay environment. 
Phoebus and OSCARS provides support for multiple-
users and multiple streams. 

Gateway Configuration. The Phoebus gateways 
play a critical role in this infrastructure. It is important 
that these boxes are properly positioned in the 
network topology and well connected with the router. 
In our deployment, these machines run Ubuntu-Server 
8.04. These machines were configured to use a Virtual 
Local Area Network (VLAN). Some network 
administration expertise was required for this 
configuration.  

The Phoebus and the OSCARS clients that run on 
the network gateways are light-weight services that 
can run on simple Linux machines connected to a 
router. If Linux based routers become more common 
place, these services could be directly run on the 
router minimizing equipment needed.  

Debugging and Tuning. It is important that the 
Phoebus boxes are tuned to get good performance. 



Achieving good performance from 10Gbps Ethernet 
cards requires tuning on each card and machine to 
enable enhancements such as interrupt coalescing. 
Additionally due to the nature of layer 2 networks, 
debugging in these networks is tedious and time 
consuming. Tools such as perfSONAR[37]  help with 
the troubleshooting. 

File Servers. Sites such as LBL where large scale 
data is produced, can deploy well tuned file servers 
close to the source of the data. These file servers when 
used with the embedded on-demand overlays 
described in this paper can enable data transfers across 
the wide-area that achieve the performance of a local 
transfer at the remote institution. 

VI. CONCLUSIONS 

On-demand, embedded overlays enable high-
throughput, large-scale scientific data transfers across 
the wide-area. The overlays use Phoebus to split 
network connections into a series of connections. This 
divides the data transfer path into low-latency ‘local’ 
links and a high-latency wide-area link. The high-
latency wide-area link’s path and bandwidth is 
reserved and managed using OSCARS, which 
provides guaranteed bandwidth. Our experiments 
show that this approach leads to increased large-scale, 
data transfer throughput end-to-end with minimal 
system overhead. This throughput can also be 
achieved with GridFTP transfers. Thus, a user can 
achieve large file transfers using the overlays that are 
typically as fast as the time to load or store the data 
from/to a locally mounted disk.   Using data transfer 
nodes and on-demand, embedded overlays is an 
effective replacement for hand-carrying data disks. 
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