Hydrogen Chemisorption on Pt Single Crystal Surfaces in Acidic Solutions

PDF Version Also Available for Download.

Description

Hydrogen chemisorption from dilute acidic solution onto Pt single crystal surfaces was examined using an electrochemical cell directly coupled to LEED/Auger analytical system. No pre-anodization was used prior to observing hydrogen adsorption by cyclic voltammetry so that clean surfaces having the ordered structures indicated by LEED were studied. The problem of contributions from non-ordered parts of the electrode like support wires and edges was solved by using a gold evaporation masking technique. The specific contribution of atomic imperfections to the voltammetry curve was deduced from the ordered and countable imperfections occurring on high Miller index single crystal surfaces that have ... continued below

Physical Description

48 p.

Creation Information

Ross, Philip N., Jr. April 1, 1980.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Hydrogen chemisorption from dilute acidic solution onto Pt single crystal surfaces was examined using an electrochemical cell directly coupled to LEED/Auger analytical system. No pre-anodization was used prior to observing hydrogen adsorption by cyclic voltammetry so that clean surfaces having the ordered structures indicated by LEED were studied. The problem of contributions from non-ordered parts of the electrode like support wires and edges was solved by using a gold evaporation masking technique. The specific contribution of atomic imperfections to the voltammetry curve was deduced from the ordered and countable imperfections occurring on high Miller index single crystal surfaces that have a stepped structure. The H-Pt bond energy Has found to be structure sensitive, and sensitive both to local site geometry and long range order in the surface. The bond strength was found to vary systematically: n(111)x(100) > (100) > n(111)x(111) > (110) > (111). Distinct states for hydrogen at steps versus hydrogen on terraces could be distinguished. The (110) surface is shown to be a (111) vicinal, probably the [3(111) x 2(111)] microfacetted surface. The zero coverage heat of adsorption on the well-ordered (111) surface (48 kJ/mol) in solutions is the same as the value reported by Ertl and co-workers for adsorption on a (111) surface in vacuum. Adsorption Isotherms for hydrogen on the (111) and (100) surfaces is adequately fit by the classical model for immobile adsorption at single sites with nearest neighbor repulsive interaction.

Physical Description

48 p.

Source

  • Journal Name: Surface Science; Journal Volume: 102; Journal Issue: 2-3

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBL-10444
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 1030581
  • Archival Resource Key: ark:/67531/metadc837823

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 1980

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Oct. 2, 2017, 5:05 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ross, Philip N., Jr. Hydrogen Chemisorption on Pt Single Crystal Surfaces in Acidic Solutions, article, April 1, 1980; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc837823/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.