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ABSTRACT

Analyzing and grouping documents by content is a complex problem.  One explored method of solving this problem 
borrows from nature, imitating the fl ocking behavior of birds.  Each bird represents a single document and fl ies toward 
other documents that are similar to it.  One limitation of this method of document clustering is its complexity O(n2).  
As the number of documents grows, it becomes increasingly diffi cult to receive results in a reasonable amount of 
time.  However, fl ocking behavior, along with most naturally inspired algorithms such as ant colony optimization 
and particle swarm optimization, are highly parallel and have experienced improved performance on expensive 
cluster computers.  In the last few years, the graphics processing unit (GPU) has received attention for its ability 
to solve highly-parallel and semi-parallel problems much faster than the traditional sequential processor.  Some 
applications see a huge increase in performance on this new platform.  The cost of these high-performance devices 
is also marginal when compared with the price of cluster machines.  In this paper, we have conducted research to 
exploit this architecture and apply its strengths to the document fl ocking problem.  Our results highlight the potential 
benefi t the GPU brings to all naturally inspired algorithms.  Using the CUDA platform from NVIDIA®, we developed a 
document fl ocking implementation to be run on the NVIDIA® GEFORCE 8800.  Additionally, we developed a similar 
but sequential implementation of the same algorithm to be run on a desktop CPU.  We tested the performance 
of each on groups of news articles ranging in size from 200 to 3,000 documents.  The results of these tests were 
very signifi cant.  Performance gains ranged from three to nearly fi ve times improvement of the GPU over the CPU 
implementation.  This dramatic improvement in runtime makes the GPU a potentially revolutionary platform for 
document clustering algorithms.

INTRODUCTION

Analysts are continually faced with the extremely diffi cult task 
of extracting relevant data from thousands to millions of documents 
at a time.  This problem is exacerbated by the large quantities of 
data generated through the use of computing systems, information 
systems, and sensor systems.  The need for fast, effi cient document 
analysis has driven the research community to develop and improve 
document clustering methods.  One method, document fl ocking [4], 
is a nature-inspired computational model for simulating the dynamics 
of a fl ock of entities.  This method takes an agent-based approach 
and relies on emergent organization to effectively cluster documents.  
The effectiveness of this approach relies on the organization that 
arises through a group of agents interacting through simple rules.  In 
the case of document clustering, similar documents fl ock together, 
loosely organizing themselves according to subject.  This method 

has met with success in clustering documents quickly, performing 
better than traditional methods such as K-means [4].  Unfortunately 
it needs to be implemented on expensive cluster computers when 
trying to analyze more than a few hundred documents at a time.  
Not only are these cluster-computers expensive, but they also lack 
portability and are impractical in certain environments.  Our 
research investigates the possibility of implementing this algorithm 
on more portable machines, thereby bringing the clustering ability 
to the analyst.  In our work, we compared the runtime performance 
of sequential and parallel versions of the document flocking 
algorithm.  Using an NVIDIA® GPU platform we saw a dramatic 
fi vefold improvement over the sequential CPU implementation.  
Ultimately, we are working toward illustrating a low-cost, high-
capacity parallel computational platform suitable for most naturally 
inspired cooperative applications.  
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MATERIALS AND METHODS

Document Clustering

Cluster analysis is a descriptive data mining task, which 
involves dividing a set of objects into a number of clusters.  The 
motivation behind clustering a set of data is to fi nd its inherent 
structure and expose that structure as a set of groups [1].  The data 
objects within each group should exhibit a large degree of similarity 
while the similarity among different clusters should be minimal 
[2].  Document clustering is a fundamental operation used in 
unsupervised document organization, automatic topic extraction, 
and information retrieval.  It provides a structure for effi ciently 
browsing and searching text.

There are two major clustering techniques: partitioning 
and hierarchical [2].  Many document clustering algorithms can 
be classifi ed into these two groups.  In recent years, it has been 
recognized that the partitioning techniques are well suited for 
clustering large document datasets due to their relatively low 
computational requirements [10].  The best-known partitioning 
algorithm is the K-means algorithm and its variants [11].  This 
algorithm is simple, straightforward and based on the firm 
foundation of analysis of variances.  One drawback of the K-means 
algorithm is that the clustering result is sensitive to the selection of 
the initial cluster centroids and may converge to local optima, instead 
of global ones.  Another limitation of the K-means algorithm is that 
it requires a prior knowledge of the approximate number of clusters 
for a document collection.  Flocking-based clustering is classifi ed as 
a type of partitioning algorithm.

Flocking Behavior

Social animals in nature often exhibit a form of emergent 
collective behavior known as ‘fl ocking.’ The fl ocking model is 
a biologically inspired computational model for simulating the 
animation of a fl ock of entities.  It represents group movement 
as seen in fl ocks of birds and schools of fi sh.  In this model each 
individual makes movement decisions without any communication 
with others.  Instead, it acts according to a small number of simple 
rules, dependent only upon neighboring members in the fl ock and 
environmental obstacles.  These simple local rules generate a complex 
global behavior of the entire fl ock.  The basic fl ocking model was 
fi rst proposed by Craig Reynolds [5], in which he referred to each 
individual as a “boid”.  This model consists of three simple steering 
rules that each boid needs to execute at each instance over time: 
separation (steering to avoid collision with neighbors); alignment 
(steering toward the average heading and matching the velocity 
of neighbors); cohesion (steering toward the average position of 
neighbors).  These rules describe how a boid reacts to other boids’ 
movement in its local neighborhood.  The degree of locality is 
determined by the range of the boid’s sensor.  The boid does not 
react to the fl ock mates outside its sensor range.  These rules of 
Reynolds’ boid fl ocking behavior are suffi cient to reproduce natural 
group behaviors on the computer.

It has been shown, however, that these rules alone are not 
suffi cient to simulate fl ocking behavior in nature [4].  A Multiple 

Species Flocking (MSF) model was developed to more accurately 
simulate fl ocking behavior among a heterogeneous population.  MSF 
includes a feature similarity rule that allows each boid to discriminate 
among its neighbors and only fl ock with those similar to itself.  The 
addition of this rule allows the use of fl ocking behavior to organize 
groups of heterogeneous documents into homogenous subgroups.

The Graphics Processing Unit

The GPU serves as a specialized processor that is tailored to 
make extremely fast graphics calculations.  Demands for increasingly 
realistic visual representations in simulation and entertainment have 
driven the development of the GPU.  As is evident in Fig. 1, the most 
recent iteration of NVIDIA®’s GPU has a theoretical performance 
of over 100 times more fl oating point operations per second than 
the current top-of-the-line desktop CPU (the 3.0 GHz Intel Core2 
Duo).  This difference arose from the evolution of the GPU on 
highly parallel, computationally intensive calculations rather than 
data caching and fl ow control [6].

The immense computational power of the GPU was noticed 
by developers and a move to exploit this power was made.  A 
community of general-purpose GPU programmers quickly arose 
(www.gpgpu.org) and pioneered programming on the GPU.  In the 
early stages, programming for the GPU was non-intuitive.  Vertex 
shader languages, such as Sh, Cg, and OpenGL, were the only ones 
available for general use with the GPU and these focused entirely on 
the graphics paradigm.  Consequently, they did not have appropriate 
naming constructs for general use and therefore were not particularly 
programmer friendly.  Also, early GPU architectures had basic 
limitations that prevented some common programming operations 
[3].  To solve some of these problems and encourage general use of 
the GPU, NVIDIA® developed the GPU language CUDA as well 
as a more robust architecture for its GPUs.

NVIDIA® CUDA

CUDA stands for Compute Unifi ed Device Architecture [6].  
It is a C-like language that allows programmers to easily write 
programs to run on certain NVIDIA® GPUs.  CUDA 1.0, used 
in this research, was released in July 2007.  CUDA programs can 

Figure 1. Floating-Point Operations per Second for the CPU and GPU 
[6].



134 U.S. Department of Energy Journal of Undergraduate Research 

http://www.scied.science.doe.gov

run using any graphics cards that use the G8x architecture [6].  
Depending on the model number, members of the G8x family will 
have between two and sixty-four SIMD (Single Instruction stream 
Multiple Data stream) processors.  Each SIMD processor contains 
eight processing elements and has access to 16KB of fast, locally 
shared memory, 64KB of locally cached texture memory, and 64KB 
of locally cached constant memory.  All multiprocessors also have 
access to slower main device memory.

Since CUDA was developed to be run on a parallel architecture, 
certain parallel programming constructs and limitations are inherent 
to the language.  Execution on this architecture is thread-based.  
Threads are organized into blocks and executed in groups of 32 
threads called warps.  Blocks are organized in groups called grids.  
All threads in a single block will execute on a single multi-processor 
and can exchange data through that processor’s shared memory.  The 
algorithm that is executed on the GPU directly is called a kernel.  
To run a kernel on the GPU, dimensions for the number of blocks 
and the number of threads per block must be specifi ed.  The unique 
ID of each thread and block is then used to access data unique to 
it.  The relationship between grids, blocks, threads, and memory is 
illustrated in Fig. 2.  A thread running on the GPU does not have 
access to CPU main memory.  Once a kernel is run by the host 
(CPU), its GPU blocks all communication to and from the host, 
until all threads spawned by the kernel die.  During kernel execution 
the host does not spin and can spawn additional kernels in other 
graphics cards present in the system. 

Experimental Environment

In setting up our research we made an attempt to use low cost, 
commercially available equipment to help highlight the cost and 
performance benefi ts of our approach.  All tests were run on a single 
desktop workstation, the Dell Precision 370.  This machine houses 
4GB of RAM and a single 3.6 GHz Intel processor with hyper-
threading.  We added an NVIDIA® Geforce 8800GTS graphics 
card to the workstation to enable the use of CUDA.  The 8800GTS 
contains 14 SIMD processors and has 648 MB of device memory.  
All experiments were run under Windows XP Service Pack 2, and 
CUDA programs ran under CUDA 1.0.

Challenges

One fundamental challenge of programming in CUDA is 
adapting to the Single Program Multiple Data (SPMD) paradigm.  
SPMD is different from traditional parallel paradigms in that 
multiple instances of a single program act on a body of data.  
Each instance of this program uses unique offsets to manipulate 
pieces of that data.  Data parallelism fi ts well in this paradigm 
while operational parallelism does not.  Figure 6 provides a visual 
representation of the data fl ow in our implementation.

Once the programming paradigm is understood, there are 
additional diffi culties in using the CUDA language.  Since each 
warp is executed on a single SIMD processor, divergent threads in 
that warp can severely impact performance.  To take advantage of all 
eight processing elements in the multiprocessor, a single instruction is 
used to process data from each thread.  However, if one thread needs 
to execute different instructions due to a conditional divergence, 
all other threads must wait until the divergent thread rejoins them.  
Thus, divergence forces sequential thread execution, negating a 
large benefi t provided by SIMD processing.  Another limitation in 
CUDA is the lack of communication and, consequently, the lack of 
synchronization between blocks.  This creates possible problems of 
data consistency, typical of parallel modifi cation of singular values.  
Currently, all functionality must be written into the kernel code.  In 
the future, libraries could be written for CUDA as device functions 
to help streamline the development process.

Debugging can be diffi cult in CUDA.  A debug mode is 
available in the CUDA compiler which forces sequential execution 
on the CPU by emulating the GPU architecture.  While this mode 
is useful for most general types of debugging, some errors are not 
exposed.  The emulator cannot detect any concurrency problems 
as its execution is sequential.  Write and read hazard behavior is 
undefi ned during thread execution on the GPU, so the programmer 
must be cautious to avoid these errors.  While running a kernel 
on the GPU, no access is provided to the standard output.  This 
effectively turns the GPU into a black box when it comes to runtime 
behavior.

The largest constraint for us in our work was the shortage of 
fast, local memory.  The large amount of document information 
and the method of document comparison forced frequent reading 
from global device memory.  This memory is not cached and has 
a penalty of hundreds of clock cycles per read associated with it.  

Figure 2. Thread, Block, and Grid memory relations [6].
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We tried to reduce the impact of this problem by caching some 
document terms in shared memory for fast access.  Another less 
costly problem we ran into was the requirement of thread divergence 
in the implementation.  Certain conditional statements could not 
be avoided.  This seemed to have some effect on the performance, 
but not a signifi cant one when compared with the performance 
degradation of global memory reads.

In an effort to improve the speed of position retrieval and 
distance calculation, all document positions were stored in texture 
memory.  This design decision did improve the performance of our 
implementation on the GPU, but it put a hard limit on the number 
of documents that could be compared (roughly 3,600).

Implementation

The document flocking algorithm that we used in our 
research was developed by Cui and Potok [4].  This approach treats 
documents as boids and uses the MSF model to cluster based on 
a similarity comparison between documents.  Rather than use the 
feature similarity rule, we nullifi ed the alignment and cohesion 
rules for documents that were not similar.  Thus, for dissimilar 
documents, separation is the only active rule, causing them to repel 
one another.  This algorithm was implemented in CUDA 1.0 and 
was run on the GPU of our test workstation.  Another similar but 
sequential implementation was written in C and run on the CPU 
of the same machine.

Adapting the document fl ocking algorithm used in an SPMD 
environment is not overly diffi cult.  We implement the algorithm 
in two kernels.  The fi rst kernel creates a thread for each document 
pair (n2 threads in total) and compares their locations to determine 
if the distance between them is within the neighborhood threshold.  
If the distance is small enough, a document comparison is initiated.  
This comparison computes the linear distance between the two 
documents’ feature vectors.  If that distance is small enough, the 
documents are deemed similar and treat each other as fl ock mates.  
Similar documents contribute to the fi nal velocity of each using 
the separation, cohesion, and alignment rules discussed earlier.  
Dissimilar documents contribute to the fi nal velocity of each using 
only the separation rule.  Once each document’s infl uence on the rest 
of the population is calculated, the second kernel is run.  This kernel 
spawns n threads, each updating the fi nal velocity and position of a 
single document.  Limitations are in place in this kernel to prevent 
velocity from changing drastically in each generation.  This forces 
each document to make gradual turns, exposing them to a larger 
number of neighbors and more accurately simulating the behavior 
of birds.  When this kernel is fi nished executing, a generation is 
fi nished and the cycle begins again.

Testing

We conducted testing on populations of documents ranging 
from 200 to 3,000 documents in increments of 200 documents.  We 
tested each population size 30 times and then averaged the runtime 
of each.  We used randomly generated values for the initial position 
and velocity of each document for each test to prevent accidental 

initial seeding optimization.  Each test ran the fl ocking simulation 
for 200 generations.  This means that documents updated their 
positions and velocities 200 times based on other documents present 
in their neighborhood.  Based on our observations, 200 generations 
was an adequate number to allow the documents to converge into 
stable clusters of similar documents (Fig. 3).

Flock Parameters

The fl ock parameters of each simulation were identical.  The 
“fl ying” space of the documents was 300x300 units.  This size space 
was selected to allow adequate room for each document to move.  
Each document had a static neighborhood radius of 30 units and 
a constant speed of 3 units per generation.  These parameters were 
selected based on the fl ying space size and the observed behavior of 
the fl ocks.  Each document had a maximum limit of a 0.35 radian 
deviation from its old velocity.  We gave each rule a weight that 
encouraged system behavior typical of fl ocking birds.  The use of 
these weights is described in Cui [4].  We assigned a weight of 3 to 
the alignment rule, 5 to the separation rule, and 3 to the cohesion 
rule.  The document feature vector linear distance threshold was 
2.50.  This value was selected as it was small enough to clearly 
differentiate groups in the fl ock while not being so small that it 
prevented fl ocking altogether.

Documents

We compiled the documents used for clustering in our 
experiments from RSS news feeds and press releases from February 
20–28, 2006 in no particular order.  We initially processed the 
documents by stripping out HTML tags, stop words, numbers, 
and punctuation.  We then stemmed the document content using 
a Porter Stemming algorithm [16].  Finally, we generated a term 
frequency list using TF-ICF [7] and normalized these frequencies 
for direct document comparison.

Timing

In the CUDA implementation, we used the timer in the cutil 
library to measure the execution time of each test.  Similarly, the 
CPU implementation uses the Windows XP high precision timer 
in the windows library.

Figure 3. Snapshots of Document Flocking running on the GPU with 
2,000 documents at generations 2(a), 55(b), and 200(c).
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RESULTS

Through our experiments we observed that document fl ocking 
on the GPU is many times faster than its CPU counterpart (see Fig. 
5).  We observed that with 200 documents the GPU implementation 
is roughly three times faster than the CPU version.  As we increased 
the number of documents in our test set, the improvement increased.  
For 1,000 documents, we saw an improvement of four times over the 
CPU.  From 1,400 to 3,000 documents the improvement levels off 
and remains constant at approximately 4.6 times improvement of the 
GPU over the CPU.  Figure 4 uses a logarithmic scale to illustrate 
that while the performance has drastically improved the complexity 
of each implementation remains equivalent.  The runtime of each 
grows at the same rate, though at different magnitudes.

DISCUSSION AND CONCLUSION

The results that we have presented here add to the already 
substantial body of work that supports the GPU as a powerful, 
general computational device.  This power is especially evident when 
applied to highly parallel algorithms.  Other biologically inspired 
algorithms should benefi t when implemented on the GPU.  We 

believe that with continued development, document fl ocking on the 
GPU would be an extremely versatile data clustering solution.  The 
low cost and portability of the GPU could allow analysts to cluster 
large data sets anywhere they are needed.  The low cost could also 
encourage small businesses to use document clustering techniques 
in new ways.  In future work, performance could be increased 
further if a faster document-to-document comparison technique 
was implemented.  This was our most substantial bottleneck to 
additional performance gains.  Distributing the document fl ocking 
algorithm across many GPU’s could also substantially improve the 
number of documents that can be handled during a simulation, 
possibly allowing millions of documents to be clustered quickly.  
We did not conduct our tests on the fastest graphics card available 
from NVIDIA®.  The currently unreleased Tesla architecture has 
52 additional multiprocessors with over twice the amount of device 
memory.  These additional capabilities would greatly enhance the 
already high performance we saw in our tests.
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Figure 6. Document Flocking in CUDA.

Figure 4. Document Flocking runtime, CPU vs. GPU, logarithmic.

Figure 5. Document Flocking runtime, CPU vs. GPU, bar graph.
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