
132 U.S. Department of Energy Journal of Undergraduate Research

http://www.scied.science.doe.gov

FLOCKING-BASED DOCUMENT CLUSTERING ON THE GRAPHICS PROCESSING UNIT

 JESSE ST. CHARLES, ROBERT M. PATTON, THOMAS E. POTOK, AND XIAOHUI CUI

Jesse St. Charles was born in Chattanooga, TN and grew up on nearby
Signal Mountain. He attended the University of Tennessee at Chattanooga,

receiving a Bachelor of Science with dual concentrations in Computer Science:
Scientifi c Applications and Software Systems and a minor in mathematics in
December 2007. He is currently in his second SULI appointment with the
ASER group at Oak Ridge National Laboratory. He hopes to begin a doctoral
program in computer science in the fall of 2008. His research interests include
emergent behavior, complex systems, self-organizing systems, and swarm
intelligence.

Dr. Xiaohui Cui is an associate research scientist in the Computational
Sciences & Engineering Division of Oak Ridge National Laboratory.

He received his Ph.D. degree in Computer Science and Engineering from
University of Louisville in 2004. His research interests include swarm
intelligence, agent based modeling and simulation, emergent behavior in
complex system, high performance computing, information retrieval and
knowledge discovering. His current research focuses in developing new
computational algorithms inspired from biological models. His research works
include collective intelligence of multi-agent system, parallel and distributed
knowledge discovering, swarm based social simulation, and adaptive agent
cognitive modeling.

ABSTRACT

Analyzing and grouping documents by content is a complex problem. One explored method of solving this problem
borrows from nature, imitating the fl ocking behavior of birds. Each bird represents a single document and fl ies toward
other documents that are similar to it. One limitation of this method of document clustering is its complexity O(n2).
As the number of documents grows, it becomes increasingly diffi cult to receive results in a reasonable amount of
time. However, fl ocking behavior, along with most naturally inspired algorithms such as ant colony optimization
and particle swarm optimization, are highly parallel and have experienced improved performance on expensive
cluster computers. In the last few years, the graphics processing unit (GPU) has received attention for its ability
to solve highly-parallel and semi-parallel problems much faster than the traditional sequential processor. Some
applications see a huge increase in performance on this new platform. The cost of these high-performance devices
is also marginal when compared with the price of cluster machines. In this paper, we have conducted research to
exploit this architecture and apply its strengths to the document fl ocking problem. Our results highlight the potential
benefi t the GPU brings to all naturally inspired algorithms. Using the CUDA platform from NVIDIA®, we developed a
document fl ocking implementation to be run on the NVIDIA® GEFORCE 8800. Additionally, we developed a similar
but sequential implementation of the same algorithm to be run on a desktop CPU. We tested the performance
of each on groups of news articles ranging in size from 200 to 3,000 documents. The results of these tests were
very signifi cant. Performance gains ranged from three to nearly fi ve times improvement of the GPU over the CPU
implementation. This dramatic improvement in runtime makes the GPU a potentially revolutionary platform for
document clustering algorithms.

INTRODUCTION

Analysts are continually faced with the extremely diffi cult task
of extracting relevant data from thousands to millions of documents
at a time. This problem is exacerbated by the large quantities of
data generated through the use of computing systems, information
systems, and sensor systems. The need for fast, effi cient document
analysis has driven the research community to develop and improve
document clustering methods. One method, document fl ocking [4],
is a nature-inspired computational model for simulating the dynamics
of a fl ock of entities. This method takes an agent-based approach
and relies on emergent organization to effectively cluster documents.
The effectiveness of this approach relies on the organization that
arises through a group of agents interacting through simple rules. In
the case of document clustering, similar documents fl ock together,
loosely organizing themselves according to subject. This method

has met with success in clustering documents quickly, performing
better than traditional methods such as K-means [4]. Unfortunately
it needs to be implemented on expensive cluster computers when
trying to analyze more than a few hundred documents at a time.
Not only are these cluster-computers expensive, but they also lack
portability and are impractical in certain environments. Our
research investigates the possibility of implementing this algorithm
on more portable machines, thereby bringing the clustering ability
to the analyst. In our work, we compared the runtime performance
of sequential and parallel versions of the document flocking
algorithm. Using an NVIDIA® GPU platform we saw a dramatic
fi vefold improvement over the sequential CPU implementation.
Ultimately, we are working toward illustrating a low-cost, high-
capacity parallel computational platform suitable for most naturally
inspired cooperative applications.

U.S. Department of Energy Journal of Undergraduate Research 133

http://www.scied.science.doe.gov

MATERIALS AND METHODS

Document Clustering

Cluster analysis is a descriptive data mining task, which
involves dividing a set of objects into a number of clusters. The
motivation behind clustering a set of data is to fi nd its inherent
structure and expose that structure as a set of groups [1]. The data
objects within each group should exhibit a large degree of similarity
while the similarity among different clusters should be minimal
[2]. Document clustering is a fundamental operation used in
unsupervised document organization, automatic topic extraction,
and information retrieval. It provides a structure for effi ciently
browsing and searching text.

There are two major clustering techniques: partitioning
and hierarchical [2]. Many document clustering algorithms can
be classifi ed into these two groups. In recent years, it has been
recognized that the partitioning techniques are well suited for
clustering large document datasets due to their relatively low
computational requirements [10]. The best-known partitioning
algorithm is the K-means algorithm and its variants [11]. This
algorithm is simple, straightforward and based on the firm
foundation of analysis of variances. One drawback of the K-means
algorithm is that the clustering result is sensitive to the selection of
the initial cluster centroids and may converge to local optima, instead
of global ones. Another limitation of the K-means algorithm is that
it requires a prior knowledge of the approximate number of clusters
for a document collection. Flocking-based clustering is classifi ed as
a type of partitioning algorithm.

Flocking Behavior

Social animals in nature often exhibit a form of emergent
collective behavior known as ‘fl ocking.’ The fl ocking model is
a biologically inspired computational model for simulating the
animation of a fl ock of entities. It represents group movement
as seen in fl ocks of birds and schools of fi sh. In this model each
individual makes movement decisions without any communication
with others. Instead, it acts according to a small number of simple
rules, dependent only upon neighboring members in the fl ock and
environmental obstacles. These simple local rules generate a complex
global behavior of the entire fl ock. The basic fl ocking model was
fi rst proposed by Craig Reynolds [5], in which he referred to each
individual as a “boid”. This model consists of three simple steering
rules that each boid needs to execute at each instance over time:
separation (steering to avoid collision with neighbors); alignment
(steering toward the average heading and matching the velocity
of neighbors); cohesion (steering toward the average position of
neighbors). These rules describe how a boid reacts to other boids’
movement in its local neighborhood. The degree of locality is
determined by the range of the boid’s sensor. The boid does not
react to the fl ock mates outside its sensor range. These rules of
Reynolds’ boid fl ocking behavior are suffi cient to reproduce natural
group behaviors on the computer.

It has been shown, however, that these rules alone are not
suffi cient to simulate fl ocking behavior in nature [4]. A Multiple

Species Flocking (MSF) model was developed to more accurately
simulate fl ocking behavior among a heterogeneous population. MSF
includes a feature similarity rule that allows each boid to discriminate
among its neighbors and only fl ock with those similar to itself. The
addition of this rule allows the use of fl ocking behavior to organize
groups of heterogeneous documents into homogenous subgroups.

The Graphics Processing Unit

The GPU serves as a specialized processor that is tailored to
make extremely fast graphics calculations. Demands for increasingly
realistic visual representations in simulation and entertainment have
driven the development of the GPU. As is evident in Fig. 1, the most
recent iteration of NVIDIA®’s GPU has a theoretical performance
of over 100 times more fl oating point operations per second than
the current top-of-the-line desktop CPU (the 3.0 GHz Intel Core2
Duo). This difference arose from the evolution of the GPU on
highly parallel, computationally intensive calculations rather than
data caching and fl ow control [6].

The immense computational power of the GPU was noticed
by developers and a move to exploit this power was made. A
community of general-purpose GPU programmers quickly arose
(www.gpgpu.org) and pioneered programming on the GPU. In the
early stages, programming for the GPU was non-intuitive. Vertex
shader languages, such as Sh, Cg, and OpenGL, were the only ones
available for general use with the GPU and these focused entirely on
the graphics paradigm. Consequently, they did not have appropriate
naming constructs for general use and therefore were not particularly
programmer friendly. Also, early GPU architectures had basic
limitations that prevented some common programming operations
[3]. To solve some of these problems and encourage general use of
the GPU, NVIDIA® developed the GPU language CUDA as well
as a more robust architecture for its GPUs.

NVIDIA® CUDA

CUDA stands for Compute Unifi ed Device Architecture [6].
It is a C-like language that allows programmers to easily write
programs to run on certain NVIDIA® GPUs. CUDA 1.0, used
in this research, was released in July 2007. CUDA programs can

Figure 1. Floating-Point Operations per Second for the CPU and GPU
[6].

134 U.S. Department of Energy Journal of Undergraduate Research

http://www.scied.science.doe.gov

run using any graphics cards that use the G8x architecture [6].
Depending on the model number, members of the G8x family will
have between two and sixty-four SIMD (Single Instruction stream
Multiple Data stream) processors. Each SIMD processor contains
eight processing elements and has access to 16KB of fast, locally
shared memory, 64KB of locally cached texture memory, and 64KB
of locally cached constant memory. All multiprocessors also have
access to slower main device memory.

Since CUDA was developed to be run on a parallel architecture,
certain parallel programming constructs and limitations are inherent
to the language. Execution on this architecture is thread-based.
Threads are organized into blocks and executed in groups of 32
threads called warps. Blocks are organized in groups called grids.
All threads in a single block will execute on a single multi-processor
and can exchange data through that processor’s shared memory. The
algorithm that is executed on the GPU directly is called a kernel.
To run a kernel on the GPU, dimensions for the number of blocks
and the number of threads per block must be specifi ed. The unique
ID of each thread and block is then used to access data unique to
it. The relationship between grids, blocks, threads, and memory is
illustrated in Fig. 2. A thread running on the GPU does not have
access to CPU main memory. Once a kernel is run by the host
(CPU), its GPU blocks all communication to and from the host,
until all threads spawned by the kernel die. During kernel execution
the host does not spin and can spawn additional kernels in other
graphics cards present in the system.

Experimental Environment

In setting up our research we made an attempt to use low cost,
commercially available equipment to help highlight the cost and
performance benefi ts of our approach. All tests were run on a single
desktop workstation, the Dell Precision 370. This machine houses
4GB of RAM and a single 3.6 GHz Intel processor with hyper-
threading. We added an NVIDIA® Geforce 8800GTS graphics
card to the workstation to enable the use of CUDA. The 8800GTS
contains 14 SIMD processors and has 648 MB of device memory.
All experiments were run under Windows XP Service Pack 2, and
CUDA programs ran under CUDA 1.0.

Challenges

One fundamental challenge of programming in CUDA is
adapting to the Single Program Multiple Data (SPMD) paradigm.
SPMD is different from traditional parallel paradigms in that
multiple instances of a single program act on a body of data.
Each instance of this program uses unique offsets to manipulate
pieces of that data. Data parallelism fi ts well in this paradigm
while operational parallelism does not. Figure 6 provides a visual
representation of the data fl ow in our implementation.

Once the programming paradigm is understood, there are
additional diffi culties in using the CUDA language. Since each
warp is executed on a single SIMD processor, divergent threads in
that warp can severely impact performance. To take advantage of all
eight processing elements in the multiprocessor, a single instruction is
used to process data from each thread. However, if one thread needs
to execute different instructions due to a conditional divergence,
all other threads must wait until the divergent thread rejoins them.
Thus, divergence forces sequential thread execution, negating a
large benefi t provided by SIMD processing. Another limitation in
CUDA is the lack of communication and, consequently, the lack of
synchronization between blocks. This creates possible problems of
data consistency, typical of parallel modifi cation of singular values.
Currently, all functionality must be written into the kernel code. In
the future, libraries could be written for CUDA as device functions
to help streamline the development process.

Debugging can be diffi cult in CUDA. A debug mode is
available in the CUDA compiler which forces sequential execution
on the CPU by emulating the GPU architecture. While this mode
is useful for most general types of debugging, some errors are not
exposed. The emulator cannot detect any concurrency problems
as its execution is sequential. Write and read hazard behavior is
undefi ned during thread execution on the GPU, so the programmer
must be cautious to avoid these errors. While running a kernel
on the GPU, no access is provided to the standard output. This
effectively turns the GPU into a black box when it comes to runtime
behavior.

The largest constraint for us in our work was the shortage of
fast, local memory. The large amount of document information
and the method of document comparison forced frequent reading
from global device memory. This memory is not cached and has
a penalty of hundreds of clock cycles per read associated with it.

Figure 2. Thread, Block, and Grid memory relations [6].

U.S. Department of Energy Journal of Undergraduate Research 135

http://www.scied.science.doe.gov

We tried to reduce the impact of this problem by caching some
document terms in shared memory for fast access. Another less
costly problem we ran into was the requirement of thread divergence
in the implementation. Certain conditional statements could not
be avoided. This seemed to have some effect on the performance,
but not a signifi cant one when compared with the performance
degradation of global memory reads.

In an effort to improve the speed of position retrieval and
distance calculation, all document positions were stored in texture
memory. This design decision did improve the performance of our
implementation on the GPU, but it put a hard limit on the number
of documents that could be compared (roughly 3,600).

Implementation

The document flocking algorithm that we used in our
research was developed by Cui and Potok [4]. This approach treats
documents as boids and uses the MSF model to cluster based on
a similarity comparison between documents. Rather than use the
feature similarity rule, we nullifi ed the alignment and cohesion
rules for documents that were not similar. Thus, for dissimilar
documents, separation is the only active rule, causing them to repel
one another. This algorithm was implemented in CUDA 1.0 and
was run on the GPU of our test workstation. Another similar but
sequential implementation was written in C and run on the CPU
of the same machine.

Adapting the document fl ocking algorithm used in an SPMD
environment is not overly diffi cult. We implement the algorithm
in two kernels. The fi rst kernel creates a thread for each document
pair (n2 threads in total) and compares their locations to determine
if the distance between them is within the neighborhood threshold.
If the distance is small enough, a document comparison is initiated.
This comparison computes the linear distance between the two
documents’ feature vectors. If that distance is small enough, the
documents are deemed similar and treat each other as fl ock mates.
Similar documents contribute to the fi nal velocity of each using
the separation, cohesion, and alignment rules discussed earlier.
Dissimilar documents contribute to the fi nal velocity of each using
only the separation rule. Once each document’s infl uence on the rest
of the population is calculated, the second kernel is run. This kernel
spawns n threads, each updating the fi nal velocity and position of a
single document. Limitations are in place in this kernel to prevent
velocity from changing drastically in each generation. This forces
each document to make gradual turns, exposing them to a larger
number of neighbors and more accurately simulating the behavior
of birds. When this kernel is fi nished executing, a generation is
fi nished and the cycle begins again.

Testing

We conducted testing on populations of documents ranging
from 200 to 3,000 documents in increments of 200 documents. We
tested each population size 30 times and then averaged the runtime
of each. We used randomly generated values for the initial position
and velocity of each document for each test to prevent accidental

initial seeding optimization. Each test ran the fl ocking simulation
for 200 generations. This means that documents updated their
positions and velocities 200 times based on other documents present
in their neighborhood. Based on our observations, 200 generations
was an adequate number to allow the documents to converge into
stable clusters of similar documents (Fig. 3).

Flock Parameters

The fl ock parameters of each simulation were identical. The
“fl ying” space of the documents was 300x300 units. This size space
was selected to allow adequate room for each document to move.
Each document had a static neighborhood radius of 30 units and
a constant speed of 3 units per generation. These parameters were
selected based on the fl ying space size and the observed behavior of
the fl ocks. Each document had a maximum limit of a 0.35 radian
deviation from its old velocity. We gave each rule a weight that
encouraged system behavior typical of fl ocking birds. The use of
these weights is described in Cui [4]. We assigned a weight of 3 to
the alignment rule, 5 to the separation rule, and 3 to the cohesion
rule. The document feature vector linear distance threshold was
2.50. This value was selected as it was small enough to clearly
differentiate groups in the fl ock while not being so small that it
prevented fl ocking altogether.

Documents

We compiled the documents used for clustering in our
experiments from RSS news feeds and press releases from February
20–28, 2006 in no particular order. We initially processed the
documents by stripping out HTML tags, stop words, numbers,
and punctuation. We then stemmed the document content using
a Porter Stemming algorithm [16]. Finally, we generated a term
frequency list using TF-ICF [7] and normalized these frequencies
for direct document comparison.

Timing

In the CUDA implementation, we used the timer in the cutil
library to measure the execution time of each test. Similarly, the
CPU implementation uses the Windows XP high precision timer
in the windows library.

Figure 3. Snapshots of Document Flocking running on the GPU with
2,000 documents at generations 2(a), 55(b), and 200(c).

136 U.S. Department of Energy Journal of Undergraduate Research

http://www.scied.science.doe.gov

RESULTS

Through our experiments we observed that document fl ocking
on the GPU is many times faster than its CPU counterpart (see Fig.
5). We observed that with 200 documents the GPU implementation
is roughly three times faster than the CPU version. As we increased
the number of documents in our test set, the improvement increased.
For 1,000 documents, we saw an improvement of four times over the
CPU. From 1,400 to 3,000 documents the improvement levels off
and remains constant at approximately 4.6 times improvement of the
GPU over the CPU. Figure 4 uses a logarithmic scale to illustrate
that while the performance has drastically improved the complexity
of each implementation remains equivalent. The runtime of each
grows at the same rate, though at different magnitudes.

DISCUSSION AND CONCLUSION

The results that we have presented here add to the already
substantial body of work that supports the GPU as a powerful,
general computational device. This power is especially evident when
applied to highly parallel algorithms. Other biologically inspired
algorithms should benefi t when implemented on the GPU. We

believe that with continued development, document fl ocking on the
GPU would be an extremely versatile data clustering solution. The
low cost and portability of the GPU could allow analysts to cluster
large data sets anywhere they are needed. The low cost could also
encourage small businesses to use document clustering techniques
in new ways. In future work, performance could be increased
further if a faster document-to-document comparison technique
was implemented. This was our most substantial bottleneck to
additional performance gains. Distributing the document fl ocking
algorithm across many GPU’s could also substantially improve the
number of documents that can be handled during a simulation,
possibly allowing millions of documents to be clustered quickly.
We did not conduct our tests on the fastest graphics card available
from NVIDIA®. The currently unreleased Tesla architecture has
52 additional multiprocessors with over twice the amount of device
memory. These additional capabilities would greatly enhance the
already high performance we saw in our tests.

ACKNOWLEDGMENTS

Special thanks to Brian Klump, Whitney St. Charles, Ryan
Kerekes, and the entire ASER staff. Also, thanks to the Department
of Energy and the Offi ce of Science for supporting me through the
SULI program.

RESEARCH

Oak Ridge National laboratory is managed by UT-Battelle,
LLC, for DOE under contract DE-AC05-00OR22725.

Copyright Notice:

This manuscript has been authored by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the U.S. Department of
Energy. The United States Government retains, and the publisher, by
accepting the article for publication, acknowledges, a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, and allows others to do so for
United States Government purposes.

Figure 6. Document Flocking in CUDA.

Figure 4. Document Flocking runtime, CPU vs. GPU, logarithmic.

Figure 5. Document Flocking runtime, CPU vs. GPU, bar graph.

U.S. Department of Energy Journal of Undergraduate Research 137

http://www.scied.science.doe.gov

REFERENCES

[1] Anderberg, M.R., Cluster Analysis for Applications,
Academic Press, Inc., New York, 1973.

[2] Jain, A.K., Murty, M.N., and Flynn, P.J., Data clustering: a
review. ACM Computing Surveys, 31 (1999), pp. 264–323.

[3] Owens, J.D., et al., “A Survey of General Purpose
Computation on Graphics Hardware,” 2007 Computer
Graphics Forum Volume (26), pp. 80–113.

[4] Cui, X., and Potok, T., “A Distributed Flocking Approach
for Information Stream Clustering Analysis,” snpd-sawn,
Seventh ACIS International Conference on Software
Engineering, Artifi cial Intelligence, Networking, and Parallel/
Distributed Computing (SNPD’06), 2006, pp. 97–102.

[5] Reynolds, C.W., “Flocks, Herds, and Schools: A Distributed
Behavioral Model,” Computer Graphics (ACM), Volume 21,
(1987), pp. 25–34.

[6] NVIDIA®, “NVIDIA® CUDA: Compute Unifi ed Device
Architecture” NVIDIA®, http://developer.NIVIDA®.com/cuda,
Version 1.0, 2007. Accessed July 2007

[7] Reed, J., et al., “TF-ICF: A New Term Weighting Scheme
for Clustering Dynamic Data Streams,” in Proc. Machine
Learning and Applications, 2006, ICMLA ‘06, pp. 258–263.

[8] Fang, R., et al., “GPUQP: query co-processing using
graphics processors,” in Proceedings of the 2007 ACM
SIGMOD international conference on Management of data,
2007, pp. 1061–1063.

[9] Xu, Z., and Bagrodia, R., “GPU-accelerated Evaluation
Platform for High Fidelity Network Modeling,” in 2007
Proceedings of the 21st International Workshop on
Principles of Advanced and Distributed Simulation, pp.
131–140 .

[10] Steinbach, M., Karypis, G., and Kumar, V., “A comparison
of document clustering techniques,” KDD Workshop on
Text Mining, 2000

[11] Selim, S.Z., and Ismail, M.A., “K-Means-Type Algorithms: A
Generalized Convergence Theorem and Characterization
of Local Optimality,” IEEE Transactions on Pattern Analysis
and Machine Intelligence PAMI-6 (1984), pp. 81–87.

[12] Chitty, D., “A Data Parallel Approach to Genetic
Programming Using Programmable Graphics Hardware,”
Proceedings of the 9th annual conference on Genetic and
evolutionary computation, 2007, pp. 1566–1573.

[13] Rick, T., and Mathar, R., “Fast Edge-Diffraction-Based
Radio Wave Propagation Model for Graphics Hardware,”
Proceedings of ITG INICA, 2007.

[14] Rodríguez-Ramos, J., et al., ”Modal Fourier wavefront
reconstruction on graphics processing units,” Proceedings
of the SPIE, Volume 6272, 2006, pp. 627215.

[15] Yamagiwa, S., et al., “Data Buffering Optimization Methods
toward a Uniform Programming Interface for GPU-
based Applications,” Proceedings of the 4th international
conference on Computing frontiers, 2007, pp. 205–212.

[16] Porter, M.F., “An algorithm for suffi x stripping,” Program, 14
no. 3, July 1980, pp. 130–137

