Experimental challenges of the N* program

PDF Version Also Available for Download.

Description

The first challenge faced in investigating the strong interaction from partially explored, where meson-cloud degrees of freedom dominate, to still unexplored distance scales, where the dressed-quark contributions are the dominating degrees of freedom, is to find an experiment that allows to measure observables that are probing this evolving nonperturbative QCD regime over the full range. Baryon spectroscopy can establish more sensitively, and in an almost model-independent way, nucleon excitation and non-resonant reaction amplitudes by complete measurements of pseudo-scalar meson photoproduction off nucleons. Elastic and transition form factors can then trace this evolution by measurements of elastic electron scattering and exclusive ... continued below

Physical Description

26-32

Creation Information

Gothe, Ralf April 1, 2012.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The first challenge faced in investigating the strong interaction from partially explored, where meson-cloud degrees of freedom dominate, to still unexplored distance scales, where the dressed-quark contributions are the dominating degrees of freedom, is to find an experiment that allows to measure observables that are probing this evolving nonperturbative QCD regime over the full range. Baryon spectroscopy can establish more sensitively, and in an almost model-independent way, nucleon excitation and non-resonant reaction amplitudes by complete measurements of pseudo-scalar meson photoproduction off nucleons. Elastic and transition form factors can then trace this evolution by measurements of elastic electron scattering and exclusive single-meson and double-pion electroproduction cross sections off the nucleon that will be extended to higher momentum transfers with the energy-upgraded CEBAF beam at JLab to study the dressed quark degrees of freedom, where their strong interaction is responsible for the ground and excited nucleon state formations. After establishing unprecedented high-precision data, the immanent next challenge is a high-quality analysis to extract these relevant electrocoupling parameters for various resonances that then can be compared to state of the art models and QCD-based calculations. Recent results demonstrate the status of the analysis and pinpoint further challenges, including those to establish QCD-based results directly from the experimental data.

Physical Description

26-32

Source

  • Journal Name: AIP Conf. Proc.; Journal Volume: 1432; Conference: NSTAR 11, 17-20 May 2011, Newport News, VA

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: JLAB-PHY-11-1487
  • Report No.: DOE/OR/23177-2054
  • Report No.: arXiv:1108.4703
  • Grant Number: AC05-06OR23177
  • DOI: 10.1063/1.3701184 | External Link
  • Office of Scientific & Technical Information Report Number: 1038672
  • Archival Resource Key: ark:/67531/metadc837541

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 2012

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 3, 2016, 6:26 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gothe, Ralf. Experimental challenges of the N* program, article, April 1, 2012; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc837541/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.