AGR-1 Fuel Compact 6-3-2 Post-Irradiation Examination Results

PDF Version Also Available for Download.

Description

Destructive post-irradiation examination was performed on fuel Compact 6-3-2, which was irradiated in the AGR-1 experiment to a final compact average burnup of 11.3% FIMA and a time-average, volume-average temperature of 1070°C. The analysis of this compact was focused on characterizing the extent of fission product release from the particles and examining particles to determine the condition of the kernels and coating layers. The work included deconsolidation of the compact and leach-burn-leach analysis, visual inspection and gamma counting of individual particles, measurement of fuel burnup by several methods, metallurgical preparation of selected particles, and examination of particle cross-sections with optical ... continued below

Creation Information

demkowicz, Paul; Harp, jason & Ploger, Scott December 1, 2012.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Destructive post-irradiation examination was performed on fuel Compact 6-3-2, which was irradiated in the AGR-1 experiment to a final compact average burnup of 11.3% FIMA and a time-average, volume-average temperature of 1070°C. The analysis of this compact was focused on characterizing the extent of fission product release from the particles and examining particles to determine the condition of the kernels and coating layers. The work included deconsolidation of the compact and leach-burn-leach analysis, visual inspection and gamma counting of individual particles, measurement of fuel burnup by several methods, metallurgical preparation of selected particles, and examination of particle cross-sections with optical microscopy. A single particle with a defective SiC layer was identified during deconsolidation-leach-burn-leach analysis, which is in agreement with previous measurements showing elevated cesium in the Capsule 6 graphite fuel holder associated with this fuel compact. The fraction of the compact europium inventory released from the particles and retained in the matrix was relatively high (approximately 6E-3), indicating release from intact particle coatings. The Ag-110m inventory in individual particles exhibited a very broad distribution, with some particles retaining =80% of the predicted inventory and others retaining less than 25%. The average degree of Ag-110m retention in 60 gamma counted particles was approximately 50%. This elevated silver release is in agreement with analysis of silver on the Capsule 6 components, which indicated an average release of 38% of the Capsule 6 inventory from the fuel compacts. In spite of the relatively high degree of silver release from the particles, virtually none of the Ag-110m released was found in the compact matrix, and presumably migrated out of the compact and was deposited on the irradiation capsule components. Release of all other fission products from the particles appears to be less than a single particle equivalent inventory. Burnup measurements based on gamma spectrometry of individual particles and mass spectrometry of dissolved fuel kernels were in very good agreement (11.0% and 10.9% FIMA, respectively), and were also in good agreement with measurements based on previous gamma spectrometry measurements of the whole compact (11.0% FIMA) and the predicted burnup based on physics simulations of the AGR-1 irradiation (11.3% FIMA).

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: INL/EXT-12-27123
  • Grant Number: DE-AC07-05ID14517
  • DOI: 10.2172/1058094 | External Link
  • Office of Scientific & Technical Information Report Number: 1058094
  • Archival Resource Key: ark:/67531/metadc837526

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 1, 2012

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • June 20, 2016, 1:40 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

demkowicz, Paul; Harp, jason & Ploger, Scott. AGR-1 Fuel Compact 6-3-2 Post-Irradiation Examination Results, report, December 1, 2012; Idaho Falls, Idaho. (digital.library.unt.edu/ark:/67531/metadc837526/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.