Final Technical Report: Results of Phase 1

PDF Version Also Available for Download.

Description

Arizona Public Service Company (APS) expects that by 2027, renewable energy will account for 6,590 GWh in energy consumption by its customers. While much of this future energy will come from large centrally-located power plants, distributed renewable energy, sited at the point of end-use will also play an important role in meeting the needs of APS customers and is expected to provide 1,734 GWh. With increasing penetration of residential and commercial photovoltaic (PV) systems at the point of end-use, PV power generation not only offsets the load, but could also cause significant shifts in power flow patterns through the distribution ... continued below

Physical Description

53MB

Creation Information

Narang, David, J.; Hambrick, Joshua; Srinivasan, Devarajan; Ayyannar, Raja; O'Brien, Kathleen; Bebic, Jovan et al. September 28, 2011.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 23 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Arizona Public Service Company (APS) expects that by 2027, renewable energy will account for 6,590 GWh in energy consumption by its customers. While much of this future energy will come from large centrally-located power plants, distributed renewable energy, sited at the point of end-use will also play an important role in meeting the needs of APS customers and is expected to provide 1,734 GWh. With increasing penetration of residential and commercial photovoltaic (PV) systems at the point of end-use, PV power generation not only offsets the load, but could also cause significant shifts in power flow patterns through the distribution system, and could possibly cause reversal of flow through some branches of a distribution circuit. Significant changes to power flow introduced into existing distribution systems due to the increased amount of PV systems may cause operational issues, including over-voltage on the distribution feeder (loss of voltage regulation) and incorrect operation of control equipment, which may lead to an increase in the number of operations and related equipment wear that could affect equipment reliability and customer power quality. Additionally, connecting generation resources to a distribution feeder can introduce additional sources of short-circuit current to the distribution system. This could potentially result in increased short-circuit currents, potentially reaching damaging levels, causing protection desensitization and a potential loss of protection coordination. These effects may be further compounded by variability of PV production due to shading by clouds. The effects of these phenomena in distributed PV applications are not well understood, and there is a great need to characterize this variability. This project will contribute to understanding the effects of high-penetration solar electricity on the design and operation of distribution systems by demonstrating how a high penetration of PV systems affects grid operations of a working, utility distribution feeder. To address the technical challenges related to the integration of distributed PV when PV penetration levels reach or exceed 30% of the total load, technologies and methods to ensure the stable and safe operation of the feeder will be evaluated. Lessons learned will enable APS to improve the framework for future PV integration on its system and may also aid other utilities across the United States energy sector in accelerating the adoption of distributed photovoltaic generation.

Physical Description

53MB

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/EE0002060-1
  • Grant Number: EE0002060
  • DOI: 10.2172/1036532 | External Link
  • Office of Scientific & Technical Information Report Number: 1036532
  • Archival Resource Key: ark:/67531/metadc837382

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 28, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • July 22, 2016, 7:35 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 23

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Narang, David, J.; Hambrick, Joshua; Srinivasan, Devarajan; Ayyannar, Raja; O'Brien, Kathleen; Bebic, Jovan et al. Final Technical Report: Results of Phase 1, report, September 28, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc837382/: accessed November 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.