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ABSTRACT

The quantification of the discretization error associated with the spatial discretization of the
Discrete Ordinate(DO) equations in multidimensional Cartesian geometries is the central
problem in error estimation of spatial discretization schemes for transport theory as well
as computer code verification. Traditionally fine mesh solutions are employed as reference,
because analytical solutions only exist in the absence of scattering. This approach, however,
is inadequate when the discretization error associated with the reference solution is not small
compared to the discretization error associated with the mesh under scrutiny. Typically this
situation occurs if the mesh of interest is only a couple of refinement levels away from the
reference solution or if the order of accuracy of the numerical method (and hence the ref-
erence as well) is lower than expected. In this work we present a Method of Manufactured
Solutions (MMS) benchmark suite with variable order of smoothness of the underlying exact
solution for two-dimensional Cartesian geometries which provides analytical solutions aver-
aged over arbitrary orthogonal meshes for scattering and non-scattering media. It should be
emphasized that the developed MMS benchmark suite first eliminates the aforementioned
limitation of fine mesh reference solutions since it secures knowledge of the underlying true
solution and second that it allows for an arbitrary order of smoothness of the underlying ex-
act solution. The latter is of importance because even for smooth parameters and boundary
conditions the DO equations can feature exact solution with limited smoothness. Moreover,
the degree of smoothness is crucial for both the order of accuracy and the magnitude of the
discretization error for any spatial discretization scheme.

Key Words: MMS, Larsen’s Benchmark, Error Estimation, Code Verification.

1. INTRODUCTION

The accuracy of spatial discretization schemes of the Discrete Ordinate(DO) equations has been
subject to extensive research both purely analytical and via numerical experiments. It is im-
portant to distinguish here between the work done in one-dimensional slab geometry on the one
hand and in multi-dimensional Cartesian geometries on the other hand, because neither meth-
ods nor results can easily be extended from slab-geometry to multi-dimensional geometries.
The reason for this distinction arises from two facts: First, the exact solution of the DO equa-
tions in slab geometry is infinitely often differentiable [1], while in multi-dimensional geometries
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the solution exhibits limited smoothness [2]. Second, in slab geometry analytical solutions for
the DO equations exist in the presence of scattering (cf. [3]) as opposed to multi-dimensional
geometries, where solutions can only be obtained for purely absorbing media. The most im-
portant ramification of the first fact is that the global asymptotic rate of convergence of any
spatial discretization scheme in slab geometry is an integer that solely depends on the spatial
discretization scheme. This fact, along with the simplicity with which the discretized solution
in any cell can be expressed in terms of the upstream cells, facilitated the determination of the
global rate of convergence for a wide variety of spatial discretization schemes in slab geometry
as e.g. in [4] and [5]. In multi-dimensional geometries the rate of convergence crucially depends
on the smoothness of the underlying exact solution, which implies that the rate of convergence
depends on the problem configuration and the specific norm applied. In general the rates of
convergence is limited either by the order of the discretization scheme or the smoothness of the
underlying true solution, whichever is smaller [6]. As the exact underlying solution and hence
its smoothness is unknown, error estimation in multi-dimensions often resorted to numerical
experiments, but this again poses the question of how to evaluate the error without knowledge
of the underlying true solution. The general practice in most research done in the field is to
obtain a highly accurate reference solution such that its discretization error is small compared
to the discretization errors on the sequence of meshes that are used for the convergence study,
cf. e.g. [6]. However, without further precaution such as an a-posteriori error estimation, the
discretization error in such a ”reference solution” may either be larger than assumed due to a
small rate of convergence of the numerical method or the discretization error may be small but
not negligible when compared with the discretization error committed on the finest meshes used
in the framework of the convergence study.
Another application that demands an accurate quantification of the discretization error is com-
puter code verification. Similar to error estimation verification usually requires the code of
interest to converge to the exact solution within the framework of a mesh refinement study in
order to assert correctness of the code. The general approach is to determine the theoretical
rate of convergence of the spatial discretization scheme and then see whether the actual code
can attain this rate of convergence. Since lack of smoothness of the underlying exact solution
deteriorates the rate of convergence computer code verification usually employs test cases which
possess bounded spatial derivatives up to arbitrary order. However, depending on the spatial
order of the scheme bounded derivatives only up to a certain order are required; the notion of
having all partial derivatives bounded just ensures this fact in the general case [7]. In this work
we present a two-dimensional MMS benchmark suite for arbitrary Cartesian meshes featuring
a variable degree of smoothness that addresses two of the issues mentioned above: First, it
provides exact cell-averages and spatial moments of the manufactured solution thus eliminating
any source of inaccuracy (within the prevailing arithmetic precision) from the reference solution.
Furthermore, the variable degree of smoothness allows for a determination of the degradation of
the rate of convergence in the presence of discontinuities of the exact flux or its partial deriva-
tives. The described benchmark suite is the logical continuation of the MMS benchmark cases
presented in [8] extended to arbitrary material properties, domain sizes, Cartesian grids and
degrees of smoothness of the manufactured solution. In particular, [8] only treats manufactured
solutions either featuring non-smooth angular fluxes or non-smooth first partial derivatives,
while we develop a framework that allows an arbitrary degree to smoothness.
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2. THE MMS REFERENCE SOLUTION

The monoenergetic DO transport equation with isotropic scattering in two-dimensional Carte-
sian geometry is given by:

μn
∂ψn

∂x
+ ηn

∂ψn

∂y
+ σtψn(x, y) = σsφ(x, y) + q(x, y) if x, y ∈ D = (0, X) × (0, Y ) (1)

for n ∈ 1, .., N along with appropriate boundary conditions:

ψn(x, y) = ψBC,n(x, y) if x, y ∈ ∂D− = {x, y ∈ ∂D, (μn, ηn)T · n̂ < 0} (2)

and a quadrature rule to close the system of equations:

φ(x, y) =
N∑

n=1

wnψn(x, y) with {(μn, ηn), wn}n=1,...,N . (3)

In Eq. 1 σt and σs are the macroscopic total and scattering cross sections that we set independent
of space. We denote by ψn, φ and q the angular flux along direction n, the scalar flux and the
isotropic source, respectively. Further, the rectangular spatial domain D is circumscribed by the
boundary ∂D with the outward normal vector n̂ which can be divided into the inflow boundary
∂D− and the outflow boundary ∂D+. Boundary conditions along direction n are given on the
inflow boundary by ψBC,n. We will refer to this problem setup as the model problem. In the
case of a non-scattering material, constant and equal boundary fluxes on both incoming edges
and a vanishing distributed source the model problem is known as Larsen’s benchmark [9]. The
presented benchmark suite draws from the early work done in [9], but it allows for more freedom
in the choice of the input parameters especially the boundary conditions.

The MMS formalism proceeds by choosing a solution ψn(x, y) for n = 1, .., N and then deter-
mining the source q(x, y) and boundary conditions ψBC,n such that the system of equations 1
through 3 is satisfied. To this end we solve Eq. 1 for q(x, y):

q(x, y) = μn
∂ψn

∂x
+ ηn

∂ψn

∂y
+ σtψn(x, y) − σsφ(x, y). (4)

Now, for our purpose we choose the manufactured solution ψn to be the solution of the auxiliary
problem

μn
∂ψn

∂x
+ ηn

∂ψn

∂y
+ σtψn(x, y) = Q if x, y ∈ D = (0, X) × (0, Y ), (5)

where Q is a space independent auxiliary source to be determined later and boundary conditions
for the auxiliary problem are prescribed to be the same as for the model problem. For any
reasonable choice of boundary conditions the auxiliary problem can be solved analytically, but we
have to consider that the angular flux solution and/or its partial derivatives can be discontinuous
across the singular characteristic (SC). The SC is given by all points for which ȳ =

∣∣∣ ηn

μn

∣∣∣ x̄ holds
true where x̄ and ȳ are defined as

x̄ =
1 − sign(μn)

2
X + sign(μn)x

ȳ =
1 − sign(ηn)

2
Y + sign(ηn)y. (6)
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It is the line of demarkation between regions illuminated by the left(L) for μn > 0 or right
edge(R) for μn < 0 and the bottom(B) for ηn > 0 or top(T) edge for ηn < 0, see Fig. 1. Using
the above definitions the solution of the auxiliary problem can be written as:

ψn(x, y) =

⎧⎨
⎩

ψ<B,T>,n

(
x − sign(μn)

∣∣∣μn

ηn

∣∣∣ ȳ) e
− σt

|ηn| ȳ + Q
σt

(
1 − e

− σt
|ηn| ȳ
)

if ȳ <
∣∣∣ ηn

μn

∣∣∣ x̄
ψ<L,R>,n

(
y − sign(ηn)

∣∣∣ ηn

μn

∣∣∣ x̄) e
− σt

|μn| x̄ + Q
σt

(
1 − e

− σt
|μn| x̄
)

if ȳ >
∣∣∣ ηn

μn

∣∣∣ x̄ . (7)

The first term in each solution stencil represents the flux contribution from the boundary con-
ditions, while the second term corresponds to the flux contribution from the distributed source.
In the above equation we denote by ψ<B,T>,n(x) and ψ<L,R>,n(y) the boundary condition along
the bottom or top edge and the left or right edge, respectively. Finally, we need to determine the
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Figure 1: Illustration of the singular characteristic and the resulting two solution
stencils above and below the singular characteristic for all combinations of signs of
μn and ηn.

source q(x, y) such that Eq. 7 is a manufactured solution for the model problem given by Eqs.
1 through 3. To this end we first note that since the model and auxiliary problem feature the
same boundary conditions, the manufactured solution automatically satisfies Eq. 2. Further, we
note that the manufactured solution satisfies Eq. 5, which upon substitution into Eq. 4 gives:

q(x, y) = Q − σsφ(x, y). (8)

In summary, Eq. 7 is a solution of the model problem given by Eqs. 1 and 2 if the distributed
source is chosen according to Eq. 8 and the scalar flux is computed by substituting the manu-
factured solution Eq. 7 into Eq. 3. The whole procedure amounts to computing the uncollided
flux given an auxiliary source Q and then adjusting the source term to account for scattering.
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Table I: Example of parameters satisfying smoothness and positivity restrictions.

Smoothness Smoothness Condition Boundary Condition Positivity Constraint

C0 [[ψn]]SC �= 0 ψ<L,R>,n = aL �= 0 Q
σt

≤ aL ≤ Q

σs

(
N max

n
wn

)
ψ<B,T>,n = 0

C1 [[ψn]]SC = 0 ψ<L,R>,n = 0 σs
σt

(
N max

n
wn

)
≤ 1[[

∂ψn

∂x

]]
SC

�= 0 ψ<B,T>,n = 0

Cp p ≥ 2 [[Hp−1]]SC = 0 ψ<L,R>,n = Q
σt

+ apȳ
p

ap ≤
Q

(
1−σs

σt

(
N max

n
wn

))
σs max(Xp,Y p)

(
N max

n
wn

)[[
∂pψn

∂xp

]]
SC

�= 0 ψ<B,T>,n = Q
σt

+ apx̄
p

2.1 Order of Smoothness of the MMS

As mentioned above one of the key aspects of the described MMS benchmark suite is to allow
for an arbitrary smoothness of the manufactured solution across the singular characteristic. It
is possible to attain any desired smoothness by appropriately choosing the auxiliary source Q
and polynomial boundary conditions, i.e. the boundary conditions have the general functional
form

ψBC,n(z) =
I∑

i=0

aiz
i (9)

along an incoming edge. For a formal treatment of the discontinuities it is useful to introduce the
jump operator across the singular characteristic for a tensor of order d of functions fk1,...,kd

(x, y)
indexed by k1, ..., kd defined on D featuring two separate solution stencils above, f

(a)
k1,...,kd

, and

below, f
(b)
k1,...,kd

, the SC:

[[fk1,...,kd
(x, y)]]SC =

(
f

(a)
k1,...,kd

(
x̄,

∣∣∣∣ ηn

μn

∣∣∣∣ x̄
)
− f

(b)
k1,...,kd

(
x̄,

∣∣∣∣ ηn

μn

∣∣∣∣ x̄
))

. (10)

Let the order of any partial derivative, denoted by αn, be the sum of the orders of derivatives
with respect to x and y, i.e. αn = αn,x +αn,y. Further, we refer to the order of smoothness Cp of
the DO solution ψn for n = 1, .., N as the lowest order partial derivative that is not continuous
across the SC, i.e.:

p = min
n∈[1,N ]

αn s.t.
[[

∂αn,x∂αn,yψn

∂xαn,x∂yαn,y

]]
SC

�= 0 (11)

Conditions on the boundary conditions and Q can be derived for any desired order of smoothness
by requiring that partial derivatives up to a certain order are continuous but at least one higher
order partial derivative is not, e.g. for C2 continuity we require the gradient to be continuous
while one second order derivative must be discontinuous. The imposed conditions and resulting
non-unique set of boundary conditions are given in Table I, where Hp is the pth order tensor
that collects all partial derivatives up to order p (gradient, Hessian and so forth).
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2.2 Positivity of the Distributed Source

The distributed source of the model problem q(x, y) is calculated as the difference between
the auxiliary source and the scattering source. For a sufficiently large scattering source this
expression can become negative for some x, y ∈ D which is undesireable for two reasons. First,
the physical meaning of the source does not allow for negative values1 and second negative
source values can pose a problem for subsequent usage in codes some of which might not allow
negative sources. Hence, it is desireable to restrict the choice of the free parameters, i.e. Q and
the boundary conditions, to values that ensure a positive source q. It should be stressed here
that the data that the MMS benchmark suite provides for subsequent usage are spatial moments
of the flux and source within each mesh cells and hence, in practice, positivity contraints only
extend to spatial averages of the source. The constraints we impose are a sufficient but not a
necessary condition for the mesh cell averaged source to be positive. Note, however, if we allowed
the model source to be negative for some x and y, then for a sufficiently fine mesh some cell
averaged source will be negative since mesh refinement localizes the occuring negative patches.
In order to facilitate refinement studies on fine spatial meshes, we opt to impose the constraint
that the source q(x, y) is greater or equal to zero pointwise which leads to:

q(x, y) = Q − σs

N∑
n=1

wnψn(x, y) ≥ Q − σs

(
N max

n
wn

)
max
n,x,y

ψn(x, y) ≥ 0. (12)

The quadrature and thus the weights wn must be identical to the ones used in the code of
interest and are hence predetermined; hence it only remains to determine the maximum of the
angular flux max

n,x,y
ψn(x, y) from Eq. 7. The restrictions arising from this analysis are presented

in Table I for the set of boundary conditions that were chosen to attain the desired levels of
smoothness.

3. IMPLEMENTATION OF THE MMS BENCHMARK SUITE IN MSBS-2D

The MMS benchmark suite implemented in the computer code MSBS-2D (Manufactured So-
lution Benchmark Suite in 2D) is aimed at providing reference solutions for any variation of
Larsen’s benchmark featuring polynomial boundary conditions independent of the angular vari-
able. The domain size, the Cartesian mesh, cross sections, auxiliary source and boundary
conditions are set by the user; the aforementioned constraints are not enforced by MSBS-2D al-
though a warning is issued if a negative source cell-average occurs. The preceding section might
be used as guidance by the user for finding a suitable choice of input parameters. The output of
MSBS-2D comprises spatial Legendre Polynomial moments up to arbitrary order of the model
source, boundary condition, the angular flux and the scalar flux. To summarize the function
of MSBS-2D: It first tracks which mesh cells are intersected by the SC and divides these cells
into two stencils each of which is further subdivided into triangles. Subsequently, the angular
flux Eq. 7 is integrated analytically over the rectangular mesh cells and triangular subdivisions
of mesh cells providing the angular flux moments and scalar flux moments are incremented on
the fly using Eq. 3. Finally Eq. 8 is used to compute the source q. A brief description of the
employed algorithms for the tracking and analytical integration follows.

1For verification purposes this is not a concern since verification is a purely mathematical exercise.
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Algorithm 1 SC Tracking

1: Set i = 1−sign(μn)
2 I and j = 1−sign(ηn)

2 J and �xout = (xi, yj)
2: while 1 ≤ i ≤ I and 1 ≤ j ≤ J do
3: �xin = �xout

4: if |xi+Δiκn + cn − yj+Δj | < 3 |κn|max (X,Y ) εmach then
5: Intersection with corner.
6: i := i + Δi, j := j + Δj, �xout := (xi, yj)T .
7: else
8: if ηn (xi+Δiκn + cn) < ηnyj+Δj then
9: Intersection with left or right edge.

10: i := i + Δi, �xout := (xi, κnxi + cn)T .
11: else if μn

yj+Δj−cn

κn
< μnxi+Δi then

12: Intersection with bottom or top edge.
13: j := j + Δj, �xout := (yj−cn

κn
, yj)T .

14: else
15: STOP. Print Error.
16: end if
17: end if
18: Add cell intersection to linked list.
19: end while

3.1 Tracking Algorithm

Let the SC for DO n be given by all points that satisfy y = κnx + cn with:

κn =
ηn

μn

cn =
1 − sign(ηn)

2
Y − κn

1 − sign(μn)
2

X. (13)

Further, let Δi = sign(μn) and Δj = sign(ηn) be increments of the x and y cell indices and xi

and yj be cell boundaries where i = 0, .., I and j = 0, .., I. Further the vector �x is composed of
the two components �x = (x, y)T . The tracking algorithm Alg. 1 is based on the idea of following
the SC along its path from the corner it originates from to the point where it leaves the domain.
Within each mesh cell, the edge (or corner) through which the SC leaves is determined and i
and j are incremented accordingly. It should be stressed that testing the intersection of the
SC with a mesh cell corner has to explicitly take into account the finite precision arithmetic.
In the framework of the tracking algorithm a tolerance is defined as the product of εmach, the
smallest normalized double precision number, and the maximum value that the left hand side
of the intersection condition can possibly attain. Instead of requiring the intersection condition
to be exactly zero, it is required to be smaller than the tolerance for a corner intersection to
occur. The cells that are intersected by the SC are finally stored in a linked list since their total
number is unknown prior to sweeping the full distance along the SC and hence a preallocated
array cannot be used. Although the moderate number of spatial cells in two-dimensional meshes
would allow for a brute force calculation of the intersection of the SC with the edges of all cells,
the ultimate goal of this research is to implement a three-dimensional MMS benchmark suite,
where such an approach is likely to be prohibitively expensive.
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3.2 Analytical Integration Algorithm

One of the extraordinary features of the presented MMS benchmark suite is the fact that inte-
grations are carried out anlytically as opposed to common practice in the field as e.g. in [10] to
evaluate integrations using quadrature rules. Although employing a quadrature rule simplifies
the implementation of the benchmark suite, it introduces the truncation error of the numerical
integration as another source of error into the computation of the reference solution. For the
sake of quality assurance of the manufactured solution it is then necessary to provide a reliable
upper bound of the truncation error which relativizes the advantages gained by employing a
quadrature rule. In contrast, an analytical evaluation can potentially only suffer from finite pre-
cision arithmetic errors. In general the output for subsequent use are spatial Legendre moments
of the angular and scalar flux and the source q. As the source and scalar flux moments can be
easily computed from the angular flux moments, it is sufficient to discuss the computation of
the angular flux moment of order l, m given by:

ψ(l,m)
n =

1
ΔxΔy

∫
Δx

∫
Δy

dxdy Pl

(
2
x − xc

Δx

)
Pm

(
2
y − yc

Δy

)
ψn(x, y), (14)

where (xc, yc)T is the cell midpoint, Δx and Δy is the extent of the cell in x and y direction
and Pk(z) is the Legendre Polynomial of order k normlized as in [11].

3.2.1 Integration over Rectangular Cells

For the demonstration of the analytical integration over rectangular mesh cells assume that the
considered DO is in the first angular quadrant and the cell is illuminated by the bottom edge,
then we substitute Eqs. 7 and 9 into Eq. 14 to obtain:

ψ(l,m)
n =

1
ΔxΔy

∫
Δx

∫
Δy

dxdyPl

(
2
x − xc

Δx

)
Pm

(
2
y − yc

Δy

){[ I∑
i=0

ai

(
x − μn

ηn
y

)i
]

e
− σt

ηn
y +

Q

σt

(
1 − e

− σt
ηn

y
)}

.

(15)
The Legendre Polynomials are then expressed as sums of monomials:

ψ(l,m)
n =

1
ΔxΔy

∫
Δx

∫
Δy

dxdy

{
l∑

i=0

pi

(
2
x − xc

Δx

)i
}{

m∑
i=0

pi

(
2
y − yc

Δy

)i
}

×
{[

I∑
i=0

ai

(
x − μn

ηn
y

)i
]

e
− σt

ηn
y +

Q

σt

(
1 − e

− σt
ηn

y
)}

. (16)

Then the three polynomials are multiplied out and the resulting sum is ordered by powers of x
and y:

ψ(l,m)
n =

1
ΔxΔy

⎧⎪⎨
⎪⎩

l+I∑
i=0

m+I∑
j=0

ci,j

⎡
⎣∫
Δx

dxxi

⎤
⎦
⎡
⎢⎣∫
Δy

dyyje
− σt

ηn
y

⎤
⎥⎦
⎫⎪⎬
⎪⎭ , (17)

where the coefficient of the double summation ci,j follows directly from multiplying out the
various sums. We have implemented a framework of polynomial arithmetic routines that perform
all necessary computations in Eq. 17 without approximation. The above equation is now
amenable to standard integration formulas.
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3.2.2 Integration over Triangular Subcells

The computation of the spatial flux moments for cells that are intersected by the SC proceeds in
two steps. First, the total contributions δψ

(l,m)
n,r of all the subdomains r = 1, .., R to the integral

in Eq. 14 are computed and added up, then the sum is normalized by the area of the mesh cell:

ψ(l,m)
n =

R∑
r=1

δψ
(l,m)
n,r

ΔxΔy
. (18)

Conveniently, a transformation of variables �x = (x, y)T → �u = (u, v)T is applied mapping the
original triangle onto the unit triangle u + v ≤ 1, u, v ≥ 0:

x = J1,1u + J1,2v + b1

y = J2,1u + J2,2v + b2, (19)

where Ji,j is an entry of the transformation Jacobian J . Then for an arbitrary triangular
subregion illuminated by the bottom boundary and DO in the first angular quadrant δψ

(l,m)
n,r

can be expressed as:

δψ(n,m)
n,r = |J |

1∫
0

du

1−u∫
0

dv

{
l∑

i=0

pi

(
2
J1,1u + J1,2v + b1 − xc

Δx

)i
}{

m∑
i=0

pi

(
2
J2,1u + J2,2v + b2 − yc

Δy

)i
}

×
{[

I∑
i=0

ai

((
J1,1 − μn

ηn
J2,1

)
u +
(

J1,2 − μn

ηn
J2,2

)
v + b1 + b2

)i
]

e
− σt

ηn
(J2,1u+J2,2v+b2)

+
Q

σt

(
1 − e

− σt
ηn

(J2,1u+J2,2v+b2)
)}

. (20)

Analogous to the integration over the rectangular mesh cells, the various sums are multiplied
out and a double summation over powers of u and v can be obtained:

δψ(n,m)
n,r = |J | eγ

n+m+I∑
i=0

n+m+I∑
i=0

ci,j

1∫
0

duuieαu

1−u∫
0

dvvjeβv, (21)

where ci,j , α, β and γ are generic constants that follow directly from known data. The integral
in the double summation can in general be evaluated using standard formulas from integration
tables, but we opted to expand the exponential into a truncated Taylor series of order 19
whenever |α|, |β| < 2, because numerical experiments showed a superior precision of the Taylor
series expansion within that range. The presented approach to analytically integrating the
angular flux moments across mesh cells suffers from two problems both related to separating the
Legendre Polynomials into its summands. First, the numerical precision deteriorates for higher
order spatial moments, which has not been shown but is very likely to be caused by not treating
the Legendre polynomials as unseparable functions [12]. In order to address this problem, all
analytical integrations and the polynomial arithmetic are carried out in quadruple (128-bit)
precision. Second, as the desired spatial order is increased nested loops several levels deep have
to be evaluated causing the execution time to grow very quickly for higher spatial moments.
In conjunction with the execution time penalty originating from the increased precision the
MMS benchmark suite is bound to execute very slowly in certain cases. We believe that an
implementation based on recursion, if found to be numerically stable, would alleviate both of
these problems.
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Table II: Parameters for test cases I-III used for the error estimation examples.

Test Case Cp σt c = σs
σt

X Y ψ<B,T>,n ψ<L,R>,n Q

Test Case I C0 1.0 0.2 1.0 1.0 0 5 1
C1 1.0 0.2 1.0 1.0 0 0 1

Test Case II C0 10.0 0.2 1.0 1.0 0 5 10
C1 10.0 0.2 1.0 1.0 0 0 10

Test Case III C0 1.0 0.2 1.3 0.9 0 5 1
C1 1.0 0.2 1.3 0.9 0 0 1

4. NUMERICAL EXAMPLES

The numerical examples reported below illustrate the two areas of application targeted in this
work, error estimation and computer code verification. In both cases test problems generated
with the MMS benchmark suite are solved on a series of meshes featuring 2k × 2k mesh cells
with k = 0, 1, .., 12 and the accuracy of each solution is measured using a discrete version of an
L2 norm given by:

‖ε‖2 =

√√√√√ N∑
n=1

wn

k∑
i=1

k∑
j=1

Ai,j

(
ψ̄n,i,j − ψ̄ref

n,i,j

)2
. (22)

In Eq. 22 i and j are the cell indices in x and y directions, respectively, Ai,j is the area of cell
i, j and ψ̄n,i,j = ψ

(0,0)
n,i,j . All examples employ the S4 level symmetric quadrature.

4.1 Error Estimation

We used MSBS-2D to generate 3 test cases with specifications given in Table II. The example
presented here only employs test cases with a differentiability of C0 and C1, since problems found
in reality never exceed a smoothness of C1. Then C0 is most akin to a shielding application
with shadowing and C1 represents e.g. a reactor physics application. In the framework of
the example two spatial discretization schemes are compared: The arbitrarily high order nodal
method (AHOTN) described e.g. in [11] and the higher-order Diamond Difference method
(HODD) as introduced in [13]. The L2 error for spatial orders Λ = 0, 1, 2 for test cases I and II
and spatial orders Λ = 0, 1 for test case III are plotted vs. the number of degrees of freedom(DoF)
in Figs. 2 through 4. We thereby denote by AHOTNΛ and HODDΛ the respective scheme of
spatial expansion order Λ. For all three test cases we observe that HODD is asymptotically
equivalent to AHOTN, i.e. in the limit of infinitely fine cells the two schemes are equivalent.
This has been widely known for AHOTN0 and HODD0 (Diamond Difference) [8], but has to
our knowledges not been asserted for higher spatial expansion orders. Further, AHOTN yields
a better accuracy outside of the asymptotic regime which is most pronounced for optically thick
domains, a smoothness of C0 and a spatial order of Λ = 0 (see Fig. 3). It should be mentioned
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Figure 2: L2 errors vs. degrees of freedom (DoF) for AHOTN and HODD for test
case I.

that some of the error curves in Figs. 2 through 4 exhibit a maximum. The occurence of a
maximum can be attributed to cancellation of errors across coarse mesh cells due to a lack of
resolution close to the boundary and is a direct consequence of using the discrete error norm
Eq. 22. For optically thin domains as e.g. in Fig. 2 and especially for the C1 cases, AHOTN is
only marginally more accurate than HODD. To what extent the gain in accuracy outweighs the
potential increase in execution time due to the evaluation of the spatial weights [11], has not
been investigated in the presented research yet, but is subject to current research. Finally, the
domain’s shape (square in Fig. 2 and rectangular in Fig. 4) does not seem to have any influence
on the performance of the two schemes, as the results are not altered by changing the domain
shape and size.

4.2 Computer Code Verification

In contrast to error estimation, computer code verification employs test cases that are smooth
enough such that the discretization scheme of interest can achieve its maximum rate of conver-
gence r defined as:

r =
log
( ‖ε‖2,k

‖ε‖2,k−1

)
log(2)

(23)
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Figure 3: L2 errors vs. degrees of freedom (DoF) for AHOTN and HODD for test
case II.

For demonstrating how the MMS benchmark suite can be used for computer code verification
we set up test cases with smoothness C0, C2, C4 and C6 and perform grid refinement studies
employing AHOTN0 and AHOTN1 implementations. We use the cross sections and geometrical
specifications of test case I and boundary conditions and auxiliary source given in Table III for the
various degrees of smoothness. The maximum rate of convergence of AHOTNΛ is rmax = 2Λ+2
if the exact solution possesses a sufficient number of bounded partial derivatives such that for
Λ = 0 we expect rmax = 2 and for Λ = 1 we expect rmax = 4 [5]. The L2 error vs. degrees of
freedom is plotted in Fig. 5 and the asymptotic rates of convergence r are presented in Table IV.
For C0 and C2 the smoothness of the underlying exact solution controls the rate of convergence
since AHOTN0 and AHOTN1 converge almost at the same rate, in Fig. 5 the line indicating the
first order scheme is just shifted to smaller errors but features the same slope. For C4 the slopes
differ which is a consequence of the fact that AHOTN0 has already assumed its maximum rate
of convergence(see Table IV), further increasing the smoothness of the underlying true solution
will not affect the rate of convergence of AHOTN0. At this point we have verified the AHOTN0
implementation, but for AHOTN1 we do not obtain a 4th order rate of convergence. The first
conclusion from this example is that the higher the spatial expansion order of the scheme of
interest, the more bounded partial derivatives must exist in order to facilitate a convergence
with the maximum possible order. Finally, for C6 the rate of convergence of both AHOTN0 and
AHOTN1 has reached its maximum value rmax. Thus, both implementations are verified.
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Figure 4: L2 errors vs. degrees of freedom (DoF) for AHOTN and HODD for test
case III.

Table III: Choice of Boundary Conditions used in the verification study.

Boundary Conditions Q

C0 ψ<B,T> = 0 1
ψ<R,L> = 5

C2 ψ<B,T> = 1 + 4x̄2
1

ψ<R,L> = 1 + 4ȳ2

C4 ψ<B,T> = 1 + 4x̄4
1

ψ<R,L> = 1 + 4ȳ4

C6 ψ<B,T> = 1 + 4x̄6
1

ψ<R,L> = 1 + 4ȳ6
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Figure 5: L2 errors vs. degrees of freedom (DoF) for AHOTN0 and AHOTN1 for
various orders of smoothness.

Table IV: Rates of convergence of AHOTN0 and AHOTN1 for different orders of
smoothness of the exact solution.

Scheme C0 C2 C4 C6

AHOTN0 0.30 1.69 2.00 2.00

AHOTN1 0.31 1.96 3.64 4.00

5. CONCLUSIONS

We presented a two-dimensional MMS benchmark suite for the DO equations on arbitrary Carte-
sian meshes based on Larsen’s benchmark. The benchmark suite allows for an arbitrary degree of
smoothness across the SC controlled by choices of the boundary conditions and auxiliary source,
arbitrary material properties and Cartesian meshes. The code MSBS-2D that implements the
MMS analytically computes spatial Legendre moments of the angular and scalar flux and the
distributed source and writes them to file for subsequent use. Via the MMS benchmark suite
we established that the AHOTN spatial discretization scheme performs better than the HODD
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scheme if optically thick cells are used while both methods are asymptotically equivalent. Fur-
ther, we verified the AHOTN implementations of order zero and one via test problems featuring
an escalating order of smoothness by numerically reproducing the theoretically determined error
orders. Both results illustrate the utility of the described MMS benchmark suite.
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