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ABSTRACT

Results are reported on the reaction yp — ppp with beam energy in the
range 4.8-5.5 GeV. The data were collected at the Thomas Jefferson National
Accelerator Facility in CLAS experiment E01-017(G6C). The focus of this study is
an understanding of the mechanisms of photoproduction of proton-antiproton pairs,
and to search for intermediate resonances, both narrow and broad, which decay to
pp. The total measured cross section in the photon energy range 4.8-5.5 GeV is
o = 33+ 2 nb. Measurement of the cross section as a function of energy is provided.
An upper limit on the production of a narrow resonance state previously observed
with a mass of 2.02 GeV/c? is placed at 0.35 nb. No intermediate resonance states
were observed. Meson exchange production appears to dominate the production of

the proton-antiproton pairs.
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CHAPTER 1

INTRODUCTION

In the Standard Model of elementary particle interactions, particles interact
through three forces; the weak, strong, and electromagnetic interactions (Fig. 1.1)[1].
Gravity is excluded because it is not described by the Standard Model, however it is
also a fundamental interaction. The electromagnetic force is mediated by photons,
the weak force is mediated through Z and W bosons, and the strong force is mediated
through gluons. Each elementary particle has a complementary antiparticle.

The Standard Model describes how elementary particles interact to make up
matter. Quantum Chromodynamics (QCD) is the theory which describes the strong
interaction. However, at the energies of quark confinement, the perturbation methods
of QCD break down for calculating strong force interactions. Just how these processes
actually occur remains one of the major questions to date which physicists are trying
to understand.

We know that the hydrogen atom is made of a proton orbited by an electron,
and that the proton is made up of quarks and gluons. The simplest description
of the proton is that it is made of three quarks,(Fig. 1.2), and while this “Quark
Model” [2] picture has been very useful in understanding the nature of sub-nuclear
matter, the proton is actually much more complicated. The quarks interact through
the strong force via force carriers called gluons. Quarks and gluons interact to form
various types of sub-nuclear matter called hadrons. Protons and neutrons are a form
of hadrons called baryons, and we also know of other baryons and other forms of

hadrons called mesons.



Table 1.1. The usual Quark Model hadrons and other hadrons allowed by QCD.

Hadron Configurations
Usual Quark Model Hadrons
Bosons Fermions
qq 499
Unusual Hadrons
Bosons Fermions
99/999 9999
qq9 49999
q949q

499999
plus other configurations

Yet the Standard Model suggests many more new forms of matter which are
recently discovered or have yet to be explored [3]. QCD allows the existence of
multiquark mesons, such as a particle containing two quarks and two antiquarks
(¢qqq). Hybrid mesons are predicted as well. These contain gluons as well as quarks,
qqg for example. There are also predictions for purely gluonic states (gg or ggg).
In hadronic nuclear physics one studies how quarks and gluons form the observable
hadrons to better understand the origin of matter and the nature of confinement.

Hadron spectroscopy is the study of the interactions and states of mesons,
baryons, and other particles which are composed of quarks and gluons. During
the last half century, many new hadrons have been identified expanding our under-
standing of nature. A main goal of nuclear physics is the discovery and the study
of forms of hadronic matter. This includes identifying new mesons and baryons,
pure quarkless objects called glueballs, and other forms of exotic matter like gluonic
hybrids, pentaquarks, and other multiquark states.

New hadrons can be produced through the use of energetic particle beams that
interact with targets or other particle beams[l]. Examples of particle beams are
photons, pions, protons, and antiprotons. These beams are used to produce many

hadronic interactions, of which the byproducts are observed by particle detectors.
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Figure 1.1. The Standard Model table of elementary particles. Nuclear physicists
study how the quarks and gluons form hadrons.
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Figure 1.2. The decomposition of matter into smaller substructures and elementary

particles.[4]



The focus of this work is the analysis of experimental data collected at Thomas
Jefferson National Accelerator Facility (Jefferson Lab). Jefferson Lab is a U.S.
Department of Energy facility which is utilized by scientists worldwide. At Jefferson
Lab, electrons are accelerated using the Continuous Electron Beam Accelerating
Facility (CEBAF), and pass into three experimental halls (Hall A, B, and C). Hall B
is the location of the CEBAF Large Acceptance Spectrometer (CLAS) that is used
to detect the byproducts of the high energy collision reactions. In this experiment,
protons at rest interact with photons of energy up to 5.5 GeV. When the photon
interacts with a proton, the products are projected forward into the CLAS detector,
and the properties of those products are measured. In this study, events are observed
in which the proton and photon interact to produce an additional proton and
antiproton (yp — ppp).

Proton-antiproton studies have a rich history spanning more than thirty years.
Proton-antiproton pair production has been studied in proton-antiproton scattering,
pion-production, and photoproduction experiments. While there has been a history
of much excitement over the prospects of the observation of new forms of exotic
matter decaying to proton-antiproton, these earlier experiments suffered from limited
statistics. Only the J/1) meson has been clearly observed to decay to pp [5].

The experiment E99-005[6] at Jefferson Lab was optimized for acquiring data
of the reaction vp — ¢p,¢ — KTK~ . In E99-005, approximately 2000 events
identified as yp — ppp were observed|[8]. This relatively large yield was unexpected
because the reaction requires complicated mechanisms to produce the three quarks
and three antiquarks. This yield has led to the search for the same decay in Jefferson
Laboratory experiment E01-017 data [7]. Experiment E01-017 had a higher beam
current and was configured for a larger acceptance of this type of event. E01-017
has provided an order of magnitude larger number of vp — ppp events, and it is this

data set that is the main focus of this work.
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Figure 1.3. Differing pp pair production mechanisms. Left: The pp pair are
produced directly without an intermediate resonance. Right: Production of a
resonance which decays to a pp pair.

Initially, the pp system had much interest due to theories that predicted nucleon-
antinucleon states that are loosely bound in a molecule-like structure called bary-
onium. Bubble chamber experiments that searched for these states used proton-
antiproton elastic scattering suffered very little data and complications arising from
antiproton annihilations. A problem with bubble chamber experiments is that after
the antiproton scatters off a proton, it may annihilate before traveling a detectable
distance [9]. Another problem is that events in which the antiproton annihilates
in flight may be indistinguishable from those in which it decays at rest[10]. In
photoproduction the pp pair is produced in the interaction, which suggests that the
pp pair may be produced in the decay of a produced state. It is also possible though
that the pp pair could be produced directly without an intermediate resonance. The
difference of these interactions is illustrated in Figure 1.3. The intermediate particle
could be a baryonium, a hybrid four-quark meson, or even a normal ¢g meson.

One difficulty in studying the reaction yp — ppp is in properly handling the
identical particles. In this final state, there are two protons, one of which may be
associated with a pp resonance and the other possibly not. In order to characterize
the type of production, one would like to be able to distinguish the protons. Under
some kinematic conditions this can be done. In diffractive production, the photon

essentially “skims” off the proton and produces the proton-antiproton pair (Fig. 1.4).
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Figure 1.4. The diffraction/meson exchange diagram. In diffractive production,
the photon essentially “skims” off the proton and produces the pp pair. The recoil
proton is expected to receive very little momentum from a meson which decays to a
proton-antiproton pair.

In baryon exchange, a photon interacts with an exchange baryon, converting it to
a fast forward-going proton, leaving a slow-going resonance (Fig. 1.5). Antibaryon
exchange is similar, except that the fast forward-going particle is an antiproton.
This dissertation is outlined as follows. In Chapter 2, a brief history of proton-
antiproton resonance searches is covered, followed by theoretical predictions for
quasi-nuclear and multiquark baryonia. Chapter 2 ends with definitions of kinematic
variables used throughout the dissertation. In Chapter 3, the experimental apparatus
and the experimental run conditions are described. The event reconstruction is
described in Chapter 4, and Chapter 5 describes the procedures used to select and
identify the reaction yp — ppp. Chapter 6 describes the general features of the data.
Chapter 7 describes the models and methods used for generating Monte Carlo events,
and also describes CLAS resolutions studies. In chapter 7, a description of how the
Monte Carlo simulations were fit to the data is given. Chapter 7 also explains how
the production mechanisms for proton-antiproton pair production were determined.
In Chapter 8, upper limits on the production of a previously observed resonance

is calculated, and also cross section measurements are shown. In Chapter 9, an
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Figure 1.5. The baryon exchange diagram. In baryon exchange, a photon interacts
with an exchange baryon, converting it to a fast forward-going proton. The produced
proton is expected to have high momentum compared to the other decay products.

angular moments analysis is shown as part of the search for resonances decaying to

proton-antiproton pairs. The results of the analysis are summarized in Chapter 10.



CHAPTER 2

BACKGROUND HISTORY AND
THEORETICAL PREDICTIONS

2.1 History of Proton-Antiproton Studies

The proton-antiproton system has had a rich history spanning more than thirty
years. In the late 1960s, there were claims of a meson resonance with a mass of 1.93
GeV/c? seen using a missing mass spectrometer at the European Center for Nuclear
Research (CERN)[11]. In 1968, it was hypothesized that this narrow resonance
was a baryonium particle when it was observed in a pp elastic scattering bubble
chamber experiment at Brookhaven National Laboratory(BNL)[9]. This implies that
it should be possible to produce the state in pp interactions and also observe it in
pp decays. There were then claims that other experiments found the resonance in
proton-antiproton scattering experiments [12][13][10]. Beginning in the late 1970s
there were additional claims of higher mass resonances at 2.02 and 2.20 GeV/c? in
the proton-antiproton system[14][15] [16]. However, subsequent experiments refuted
these claims [17][18], and until recently the debate had diminished.

The resonances claimed by Benkheiri et. al. in 1977 [14] were significant because
they were the first claims of a resonance decaying to a proton-antiproton pair. This
experiment was performed using CERN’s Omega spectrometer. In the reaction
T p — T pppp, where pp is a high momentum proton compared to the other
particles, it was assumed that a resonance was produced through baryon exchange.

They claimed observation of two narrow peaks (Fig.2.1), one at 2.020 and the other
8



at 2.200 GeV/c?. The 2.020 GeV/c? resonance had a significance of more than 6
standard deviations. The 2.020 GeV/c? resonance was reported to have a width of
24412 MeV/c?. The width of the 2.200 GeV/c? resonance was 16770 MeV/c?. The
cross section of the 2.02 GeV/c? resonance was measured to be 30 £ 12nb.

Other experiments with lower statistics supported the 2.020 GeV/c? resonance[15]
[16], but an experiment at BNL [18] refuted these claims. The BNL experiment
observed approximately 7000 events of the 