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Fig. 1. Our framework provides a natural and intuitive work-flow for the exploration of global trends in feature-based statistics. By
efficiently encoding hierarchical meta-data in a pre-processing step, interactive data exploration of the equivalent of one terabyte of
simulation data is performed on a commodity desktop.

Abstract— We present a new framework for feature-based statistical analysis of large-scale scientific data and demonstrate its
effectiveness by analyzing features from Direct Numerical Simulations (DNS) of turbulent combustion. Turbulent flows are ubiquitous
and account for transport and mixing processes in combustion, astrophysics, fusion, and climate modeling among other disciplines.
They are also characterized by coherent structure or organized motion, i.e. nonlocal entities whose geometrical features can directly
impact molecular mixing and reactive processes. While traditional multi-point statistics provide correlative information, they lack
nonlocal structural information, and hence, fail to provide mechanistic causality information between organized fluid motion and
mixing and reactive processes. Hence, it is of great interest to capture and track flow features and their statistics together with their
correlation with relevant scalar quantities, e.g. temperature or species concentrations.
In our approach we encode the set of all possible flow features by pre-computing merge trees augmented with attributes, such as
statistical moments of various scalar fields, e.g. temperature, as well as length-scales computed via spectral analysis. The computation
is performed in an efficient streaming manner in a pre-processing step and results in a collection of meta-data that is orders of
magnitude smaller than the original simulation data. This meta-data is sufficient to support a fully flexible and interactive analysis
of the features, allowing for arbitrary thresholds, providing per-feature statistics, and creating various global diagnostics such as
Cumulative Density Functions (CDFs), histograms, or time-series. We combine the analysis with a rendering of the features in a
linked-view browser that enables scientists to interactively explore, visualize, and analyze the equivalent of one terabyte of simulation
data. We highlight the utility of this new framework for combustion science; however, it is applicable to many other science domains.

Index Terms—Topology, Statistics, Data analysis, Data exploration, Visualization in Physical Sciences and Engineering, Multi-variate
Data.

1 INTRODUCTION

Combustion provides the vast majority of the world’s energy needs and
in an effort to reduce our reliance on fossil fuels, there are significant
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programs underway in the combustion science community to predict
efficiency and pollutant emissions for potential new fuel sources cou-
pled with advanced combustor designs for propulsion and power. To
make these assessments scientists use Direct Numerical Simulations
(DNS) of turbulent flames [29], to study effects such as flame auto-
ignition [19] and extinction [30]. One of the primary drivers of these
phenomena is the rate of turbulent mixing, characterized locally by
the scalar dissipation rate, χ . Compressive strain in directions aligned
to scalar gradients, creates thin pancake-like regions in the simulation
whose thickness provides a direct measure of the local mixing length-
scale and its scaling with turbulence length scales. Furthermore, ex-
perimental evidence [32] suggests that thickness and mean tempera-
ture within these features are related. A more thorough understanding
of this relationship would allow scientists to better characterize the ef-
fects of mechanical strain from turbulence on chemical processes and
provide fundamental insights into the properties of turbulent flames.

However, this type of analysis poses several challenges: The scalar
dissipation structures are typically defined using contours at locally
varying isovalues [34]. Since a wide range of values produce plausible



structures, a large number of different segmentations must be explored
to determine the sensitivity of the results to changes in parameters or
to find stable thresholds. Furthermore, scientists are interested in con-
ditioning their analysis on additional parameters, such as temperature
variance, introducing additional free parameters to be explored. Fi-
nally, many of the hypotheses are initially derived from visualizations
of the temporal behavior of the flame. Thus, it is important to provide
visual feedback on the impact parameter choices have on the nature of
the χ structures. These challenges are exacerbated by the massive size
of the simulation, which in this case is roughly one terabyte.

Historically, scientists have relied on conditional statistics, applied
globally, to effectively reduce the data to manageable proportions.
However, even advanced indexing schemes [45, 31] are restricted to
queries based on either function ranges or pre-computed properties.
As will be discussed below, regions of high χ cannot be extracted
through range queries. Furthermore, while pre-computing a single
set of structures is feasible, the appropriate parameter choices are not
known a priori and extracting a large number of different sets for ex-
ploring the parameter space is infeasible given the data size. Finally,
traditional statistics typically provide only global averages rather than
per-feature information, making simple queries such as how many fea-
tures exist overall, difficult to answer.

We have developed a new integrated analysis and visualization
framework to support combustion research. Our system enables a free
choice of feature parameters and conditional sub-selections and inter-
actively produces a wide range of diagnostic plots equivalent to the
processing of the entire data set. Furthermore, the statistics viewer is
cross-linked to a visualization of the corresponding three dimensional
structures, enabling selection of (sets of) features on either end. The
feature visualization employs a specialized volume rendering tech-
nique optimized for sparse, dynamic, and binary segmented volumes.

Instead of extracting a single set of features, we compute a multi-
resolution hierarchy, capable of representing features for different pa-
rameters and at various scales. In a single pass over the original data
we pre-compute a large variety of statistics for the finest resolution
features. At run time the user selects parameters resulting in a set
of features whose properties are aggregated on-the-fly, allowing the
user to explore an entire family of feature definitions without access-
ing the original data. By pre-computing statistics for a base set of fea-
tures, and providing the user with several multi-resolution hierarchies
to explore, our system provides significantly greater flexibility in the
analysis process than the typical range queries of indexing schemes.
Additionally, the run-time aggregation avoids much of the cost of re-
computing statistics for each set of features. As a result, our approach
delivers the flexibility of extract-and-analyze techniques while allow-
ing for interactive exploration of large data on a commodity desktop
machine. Our system has been deployed at the Combustion Research
Facility at Sandia National Laboratories and is actively being used by
combustion scientists to glean insight from state of the art combustion
simulations. Our contributions in detail are:

• On-the-fly aggregation of feature-based spatial and temporal
statistics for large-scale simulations;

• An efficient encoding method for various multi-resolution hier-
archies and statistics using feature-based blocked storage;

• A system for interactive creation of spatial and temporal statisti-
cal summaries including conditional empirical Cumulative Dis-
tribution Functions (CDFs), histograms, time-series, and param-
eter studies;

• An interactive feature browser designed using a novel volume
rendering technique; and

• A linked view system of statistics and features with an intuitive
user interface for feature selection and highlighting.

To demonstrate the framework we use an analysis of the relation-
ship between length-scales and temperature of regions of high χ in
turbulent combustion simulations. However, the design and imple-
mentation of our tools are general and can be applied broadly in other
scientific domains where feature-based analysis is relevant.

2 TURBULENT COMBUSTION

Combustion currently provides 85% of our nation’s energy needs
and will continue to be a predominant source of energy as fuel
sources evolve away from traditional fossil fuels. Low emission, low-
temperature engine concepts of the future operate in regimes where
combustion is poorly understood. In an effort to reliably predict ef-
ficiency and pollutant emissions for new engines and fuels, computer
simulations are used to study fundamental turbulence-chemistry inter-
actions. Direct Numerical Simulations (DNS) are first principle, high-
fidelity computational fluid dynamics simulations in which the reac-
tive compressible Navier-Stokes equations are numerically solved on
a computational mesh in which all of the spatial and temporal scales of
the turbulence are resolved [15]. In many practical turbulent combus-
tion situations, turbulence strains the flame, causing molecular mixing
of reactant streams. With increased mixing, chemical reactions are en-
hanced and overall efficiency increases up to a point, at which the loss
of heat and radicals exceeds their rate of generation due to chemical
reaction and the flame extinguishes resulting in increased emissions.
Heat-release caused by the chemical reactions creates a complex feed-
back mechanism, affecting the intensity of the turbulence through den-
sity and viscosity changes across the flame.

Turbulent mixing is characterized locally by the scalar dissipation
rate, χ , the rate at which scalar fluctuations decay due to diffusive
processes. Compressive1 turbulent strains create thin pancake-like re-
gions of locally high dissipation rate. The morphology of these fea-
tures, characterized according to their first three length-scales: length,
width and thickness, is assumed to be correlated with length scales
of turbulence. The thickness is particularly relevant as it provides a
direct measure of the local mixing length-scale. Understanding the
relationship between the thickness and the mean temperature within
the features is of principal interest in order to study the relationship
between mechanical strain and chemical processes.

There is experimental evidence [32], that the χ-layer thickness dis-
tributions are self-similar as (T/T0)

n. In the measurements of Frank
and Kaiser [32], it was determined that n ≈ 0.75,T0 ≈ 400k provided
an optimal collapse of the thickness Probability Density Functions
(PDFs) conditional on various temperatures. In this paper, we use our
framework to extract the thickness PDFs and determine if the same
scaling is valid for the DNS data considered here.

3 RELATED WORK

Analysis of χ structures: Previous DNS and experimental re-
sults [25, 32, 42] have shown that turbulent strain in a non-reactive
jet or shear layer leads to regions of intense mixing rates, which are
oriented by the directions of principal strain rates, characterized by
relatively large dimensions in the tangent plane of the principal strain
rates, and a much smaller dimension in the direction normal to the
principal strain rate. Reactive flows have been studied more recently
[30, 34] by directly computing and tracking χ within the simulation.
However, measurements were limited to thickness only and did not
explore the relationship between regions of high χ and temperature.

Data warehouse technologies: At its core, our system relies on
fast and efficient statistical queries for scientific data. Assuming en-
tirely pre-computed information this problem reduces to finding and
aggregating data from a large collection of records. This is a common
challenge typically addressed by large Database Management Systems
(DBMSs) [16]. In such systems, each feature would be represented as
one record with its corresponding statistical information collected as
entries in the record. In addition to the raw data, DBMSs compute
multi-dimensional search structures such as B+-trees [18] that provide
efficient searches for sub-selection type queries. However, tradition-
ally DBMSs are designed to support constantly changing information,
e.g. bank transactions, and thus their index structures have to trade
query efficiency for the ability to change indices on-the-fly. On the

1By the term ’compressive’, we mean a strain rate tensor which is com-
pressive of scalar iso-surfaces when projected into the direction normal to the
iso-surface.



contrary, scientific data is typically computed once and updated rarely
if ever. This allows more efficient data management relying on static
indices. To distinguish such systems from DBMSs they are typically
referred to as data warehouses [23, 31, 14].

One particularly successful data warehouse technology is the Fast-
Bit system [45]. Instead of search trees, FastBit relies on compressed
bitmask indices [46, 47] to provide efficient subselections and can sig-
nificantly out-perform other approaches [37, 40]. However, this class
of data management techniques relies almost exclusively on extracting
and aggregating pre-computed information. As a result, data ware-
houses are well suited to access information computed for one partic-
ular set of features. In an exploratory setting, however, when the ex-
act feature definition is unknown, warehouses are often too inflexible.
While it is possible to pre-compute statistics for multiple sets of fea-
tures, this is computationally expensive and the system remains limited
to a small number of pre-defined feature sets. Instead, our framework
uses a general feature hierarchy that allows the user to interactively
change the parameters defining the features and thus explore an entire
family of feature sets. Considering the inherent flexibility of common
multi-resolution hierarchies, pre-computing statistics for all possible
combinations of features is infeasible.

Statistics: To avoid excessive pre-processing, we leverage recent
developments in parallel statistical algorithms [6, 35] to quickly ag-
gregate first through fourth order moments. With recent increases in
data sizes there have been a number of efforts to develop robust, paral-
lel and/or streaming statistics algorithms. Of particular interest are the
centered moments and co-moments which are the building blocks of
many algorithms. In [44] a single-pass algorithm for the computation
of variance was developed. A more general set of pairwise update for-
mulas for variance was introduced in [12, 13]. The formulas for third-
and fourth-order moments, which are needed to calculate skewness
and kurtosis of the data set, were derived by [41]. Numerically stable,
single-pass update formulas for arbitrary centered statistical moments
and co-moments are presented in [6, 35]. There also exist a number
of commercial packages such as MatLab [1] and SAS [3] that support
parallel statistics. By coupling, the pair-wise update formulas devel-
oped for parallel statistics computation with a general feature hierar-
chy, our framework provides interactive exploration of feature-based
statistics.

Feature hierarchies: As discussed in Section 4, our system im-
plements a general multi-resolution hierarchy of features [21] in which
a certain number of initial high-resolution features are combined ac-
cording to a scale parameter. Of particular interest in this context
are a number of topology-based hierarchies proposed in various set-
tings and using a diverse set of algorithms. Using a variety of met-
rics such as feature volume, hyper-volume, or persistence, Carr et
al. [11] use hierarchical contour trees [10] to define anatomical struc-
tures. Isovalue-dependent statistics are introduced in [5], where sur-
face area, volume, and gradient integral of contours are plotted to
provide the user quantitative measures for parameter selection. Us-
ing persistence based hierarchical Morse complexes, Laney et al. [33]
show how different “resolutions” of the Morse complex encode pro-
gressively coarser segmentations of bubbles in Rayleigh-Taylor insta-
bilities. Other examples include threshold-based hierarchies for non-
premixed [34] and premixed [7] combustion simultations and core
structures in porous media [26]. These topological techniques are
particularly attractive for feature-based statistics as their hierarchical
structure allows for features to be defined by, for example, varying
isosurface thresholds. In general, other types of feature-based tech-
niques that provide threshold-dependent feature definitions [39, 9] or
clustering methods [28] could be suitable as well.

4 FEATURE-BASED, STATISTICAL ANALYSIS

The framework described in this paper is based on two linked compo-
nents: Fast creation of feature-based statistics and an interactive dis-
play of the corresponding feature geometry. This section describes the
general structure of a feature-based hierarchy, the specific hierarchy

used in the case study, as well as the run-time system for the creation
of statistical summary plots.

4.1 Augmented Feature Families
One of the basic concepts of our framework is the notion of a feature
family. Given an algorithm to define and extract features of interest
corresponding to a parameter p, a feature family is a one-parameter
family that for every possible parameter p stores the corresponding
set of features. While any feature definition can be used to create a
feature family by exhaustively pre-computing all possible features for
all possible parameters, many popular algorithms naturally produce
nested sets of features for varying parameters. For example, cluster-
ing techniques progressively merge elements [38, 17] and a threshold-
based segmentation creates increasingly larger regions [8]. In these
examples all features can be described by a collection of base ele-
ments (e.g. clusters) or as a collection of differences between features
at different parameters ( e.g. regions above threshold a that are below
threshold b) respectively.

Feature families with a nested structure can be encoded and com-
puted in an efficient manner. In our system, we specify for each ele-
ment in the hierarchy its life span (in terms of the feature parameter),
an arbitrary number of children, and a single parent. As is common
with hierarchies, the set of features at a particular parameter p is then
defined as all elements that are alive at parameter p combined with all
their decendents. More formally we define:

Definition 1 (Element). An element e is defined by a unique id and
minimally contains a parameter range [pmin, pmax], a direction, a col-
lection of its children ids, and the id of its parent:

e = (id,direction, [pmin, pmax],{child0, . . . ,childn}, parent) ∈ E

Definition 2 (Feature). A feature f is the union of an element e and
all its descendents

f = {e∪ childrenn(e)|n ∈ {1,2, ...}}

The element id is simply a unique identifier that is typically stored
implicitly, e.g. based on the order in which elements are stored in a
file. The direction indicates whether the parent of an element is born
at p < pmin and consequently its children are born at p > pmax or the
opposite.

A feature family is a collection of features defined hierarchically as
described above:

Definition 3 (Feature Family). A feature family F is a set of features

F = { f0, . . . , fm} ⊂ F

Finally, in a time-dependent simulation or an ensemble of simulations
we have one feature family per time or ensemble member:

Definition 4 (Clan). A clan C is an ordered set of feature families

C = {F0, . . . ,Fn} ⊂F

We store feature families in a traditional multi-resolution graph that
is updated on-the-fly as the user changes parameter. At any time
we maintain a set of living elements that serve as the representatives
for their corresponding features. Using the parent and child informa-
tion this set is progressively updated as the feature parameter changes.
Specifically, when an element dies it is removed from the set and either
its children or its parent are born and added to the set. Furthermore,
we support the encoding of multiple hierarchies associated with a fea-
ture family by storing multiple parameter ranges and child/parent ids
in each feature, one for each hierarchy. In this particular case study
we define feature families using merge trees with either relevance- or
threshold-based segmentations.

Merge Tree Based Feature Families. As discussed above, the fea-
tures of interest are regions of locally high χ . As shown in [34, 8]
the merge tree is ideally suited to hierarchically encode such regions.



(a) (b)

Fig. 2. (a) Merge trees represent the merging of contours as a function
is lowered through its range. Each branch represents a portion of the
domain as indicated by the colors. (b) To increase the resolution in
parameter space we refine the merge tree by splitting long branches
and refining the segmentation accordingly.

Given a simply connected domain M and a function g : M→ R the
level set L(s) of g at isovalue s is defined as the collection of all points
on R with function value equal to s: L(s) = {p ∈M|g(p) = s}. A
connected component of a level set is called a contour. The merge tree
of g represents the merging of contours as the isovalue s is swept top-
to-bottom through the range of g, see Figure 2(a). Each branch of the
tree represents a family of contours that continuously evolve without
merging as s is lowered. These contours sweep out a subset of M and
thus the branches correspond to a segmentation of M, see Figure 2(a).
To increase the resolution in parameter space we refine the merge tree
by splitting long branches and refining the segmentation accordingly,
see Figure 2(b).

In a simple threshold-based segmentation, each branch of the tree is
an element with a lifetime given by the function values of the branch’s
top and bottom nodes. Given a particular threshold, each branch acts
as the representative of its subtree/feature and, by construction, each
subtree represents a simply connected region of high threshold, see
Figure 3(a). However, when g spans multiple orders of magnitude rel-
evance [34] is an alternate metric that scales g at each node by its local
maximum – the highest maximum in its corresponding subtree. The
relevance lifetime of a branch is thus given by the relevance interval
between its top and bottom node and ranges between 0 and 1, see Fig-
ure 3(b). We compute merge trees and their corresponding segmenta-
tion using the streaming algorithm proposed in [8]. The input is a col-
lection of vertices with function values, edges connecting them, and
finalization information indicating when a vertex is no longer used.
As the algorithm processes vertices, it maintains an active merge tree
using a simple update procedure. By aggressively removing portions
of the tree whose vertices have been finalized, the algorithm is fast
while keeping a low memory footprint. In particular, the algorithm
allows for the pre-screening of vertices with function values outside
of a range of interest (in this case study very low χ values) and for
the interleaving of file I/O with computation. However, apart from
memory and efficiency concerns any other merge tree or contour tree
algorithm could be used. For example, the publicly available libtourtre
library [24] provides the necessary functionality. The output required
by the downstream tools is a merge tree that for each branch contains
a list of domain vertices that belong to its corresponding contours.

(a) (b)

Fig. 3. (a) A threshold based segmentation of a merge tree at a thresh-
old slightly above 80% of the global maximum. (b) A relevance based
segmentation at relevance around slightly above 0.2 (slightly below 80%
of the local maximum per branch). All local maxima are included and
regions of higher function value (red) span a larger range.

Feature Attributes. In addition to the information necessary to en-
code a feature family we augment each feature with an arbitrary num-
ber, k, of additional attributes (att0, . . . ,attk). Our system currently
supports various descriptive statistics such as minima, maxima, first
through fourth order statistical moments and sums, as well as as shape
descriptors such as volumes and various length-scales. Descriptive
statistics are computed incrementally as the feature family is con-
structed, using the same update formulas [6, 35] employed for the
interactive aggregation during data exploration (Section 4.2). Specifi-
cally, as each vertex is labeld with its branch id, the vertex’s associated
attributes are added to the corresponding statistical aggregator. While
this incremental approach works well for descriptive statistics, certain
attributes such as shape descriptors cannot easily be computed in this
manner, and are thus computed in a post-processing step. As discussed
above, each element stores a list of corresponding vertices making it
straight forward to assemble all vertices of a feature. Given this set of
vertices we estimate the first three length-scales (length, width, and
thickness) using a spectral technique similar to the one introduced
by [36]. First, we compute a boundary surface of the vertex set as
an iso-surface of a binary segmented volume. We then parametrize
this shape according to its first non-trivial eigenvector to compute its
length (Figure 4(a)). Subsequently, we extract iso-contours of this
parametrization and apply the same technique recusively to compute
the width (Figure 4(b)) and once again for the thickness (Figure 4(c)).
While we typically compute descriptive statistics during merge tree
construction, they could also be computed as a post-process given the
list of vertices and their attributes. Doing so would allow the use of
traditional, multi-pass algorithms, but would require all attributes to
be accessible during the post-process, resulting in additional file I/O.

(a) (b)

(c) (d)

Fig. 4. The first three length-scales of a feature are estimated using
a spectral technique. Each shape is parametrized according to its first
non-trivial eigenvector to compute its length (a), and the same tech-
nique is performed recursively on iso-contours of the first eigenvector to
compute the width (b) and thickness (c).

4.2 Interactive Exploration of Feature-Based Statistics
One of the main advantages of our system is the ability to quickly
explore a wide variety of statistical information based on the given
feature definitions. To achieve this our framework supports four oper-
ators that map feature families, sets of features, and statistics into new
sets of features, or scalar quantities:

Definition 5 (Selection). A selection S : F ×R→P(F) is an op-
erator that, given a feature family and a parameter, returns a set of
features as well as (a subset) of their corresponding attributes.

Note that each feature stores attribute information regarding the por-
tion of the domain it covers, see Figure 2(a). A selection will, for
most attributes, aggregate all values in the associated subtree on-the-
fly as the hierarchy is navigated. This preserves the flexibility to base



Fig. 5. Computational pipeline for interactive feature exploration. Starting from a clan of feature families represented by a sequence of merge trees
(a) setting the feature parameter results in a sequence of sets of features each represented by a subtree of elements (b). Aggregating statistical
attributes for each feature produces a set of features with attributes for each time step (c). A subselection on an arbitrary attribute narrows this
collection to features of interest (d). Subsequently, either clan wide plots such as CDFs are created (e, bottom) or a reduction operator is applied to
each family to create a time series of aggregated attributes (e, top). Finally, the time series is plotted (f, bottom) or an additional reduction is used to
create a clan wide aggregated scalar property (f, top), which produces a single sample of a parameter study. A full study is created by repeatedly
executing the pipeline.

different feature families on the same set of initial attributes. Never-
theless, if only one type of family is needed, aggregation of attributes
can be performed once and stored to accelerate the exploration, see
Section 4.3.

Definition 6 (Aggregation). An aggregation A : P(F)×{0, ...,k} →
R is an operator that, given a set of features and an attribute index,
returns the combined attribute for the set of features.

Definition 7 (Subselection). A subselection U : P(F)×{0, ...,k}×
R2 →P(F) is an operator that, given a set of features, an attribute
index, and a corresponding attribute interval range, returns the subset
of features whose attribute value is contained in the interval.

The subselection operator facilitates the creation of conditional plots,
which are often an important part of the analysis pipeline.

Definition 8 (Reduction). A reduction R : P(R)→ R is an opera-
tor that given a set of scalar values returns a single scalar value, for
example by computing the mean.

Using the operators described above we create three different types
of plots as summarized by Figure 5: species distributions, parameter
studies, and time-series. To simplify the discussion below, we assume
that the input to each of the operators is all feature families in a clan,
even though in practice we support the restriction to subsets of the
data.

All plots take as input a feature clan C, a parameter p, subselections
Q={(att i0

min,att i0
max),. . .,(att il

min,att il
max)}, and an attribute index i. First,

the parameter p is used to select an initial set of features from the clan,
which are then further subselected using the subselections Q.

Species distributions plots include histograms and empirical CDFs,
and track the distribution of the attribute att i. For example, a major
focus of our case study is the distribution of the mean thickness of χ

structures conditioned on both the variance and mean of temperature
within each feature, see Figure 6(a).

A time-series, as the name suggests, shows the evolution of att i

over time, and requires an additional family-wide reduction operator,
R f , as input. For example, one might plot the maximum temperature
variance of features over time. In this example R f is the maximum of
att i, which is temperature variance, see Figure 6(b).

Parameter studies are an extension of time-series that show how
att i changes as the parameter p is varied. For these plots a clan-wide
reduction operator, Rc, is required in addition to R f . Extending our
previous example, one might plot the mean of the maximum temper-
ature variance of features as parameter p varies. In this example R f
is maximum of the temperature variance across time steps, and Rc is
the mean of these values. Note that parameter studies can be come ex-
pensive as the range and granularity of p increases, because attributes
must be aggregated for each p-value independently, see Figure 6(c).
While parameter plots are the most expensive to produce they are also
often very useful. In particular, a parameter plot shows how stable or
unstable a given analysis is to the parameter selection. This is cru-
cial in any exploratory setting to guarantee that the basis of important
conclusions is not an inherently unstable analysis.

We provide a convenient GUI that allows the user to specify which
attributes they would like to explore, loading only those to minimize
memory overhead. Subselection sliders are generated for each spec-
ified attribute automatically and, if multiple hierarchies are available,
the user can toggle between these and can update parameters interac-
tively. Optional log scaling is provided, and radio buttons are used for
selection of family- and clan-wide reduction operators.

The plot viewer is linked to the feature browser described in Sec-
tion 5 to provide context as statistics are explored. Only those features
that have been subselected using the GUI sliders are displayed by the
feature browser. Users can click on an individual feature in the fea-
ture browser to obtain details on its associated statistics. Furthermore,
when the user picks regions of histograms or CDFs, only those fea-
tures that are contained in the selected bins are displayed by the feature
browser, see Figure 1 for an example.

4.3 File Format
We store feature families and their corresponding attributes in a mod-
ular and easily extendable file format. Typically, we save one file per
feature family to easily allow the restriction to temporal subsets, for
example. At the end of each file we store an XML-footer followed
by the file offset to the start of the footer as the last eight bytes in
the file. The XML structure encodes which components are stored for
the feature family, and typically comprises a simplification sequence
storing the hierarchy information in addition to a number of attributes.



(a) (b) (c)

Fig. 6. Our system supports three types of plot generation: (a) species distribution, (b) time-series, and (c) parameter studies.

Any attributes stored indicate their type in addition to meta-data such
as the name of the source field, how many bytes are used for each
value, and whether data is stored in binary or ascii format. For the
statistical moments we store not only the final value, e.g. mean, but
enough information to further aggregate multiple values as needed by
the parallel statistics formulas of [6, 35]. This requires each n-th order
statistical moment to store all lower-order moments to support aggre-
gation. Most importantly the XML structure stores file offsets to each
corresponding block of data, allowing for the selective loading of sub-
sets of attributes for exploration. One immediate advantage of this file
structure is that it can be easily extended without re-writing entire files.
Given a new set of attributes, we read the XML footer, append the new
data at the end of the old data (overwriting the old footer), update the
footer, and append it to the file.

5 INTERACTIVE FEATURE BROWSER

The previous section discussed how to extend, and accelerate tradi-
tional statistical analysis using feature-based hierarchies. In this sec-
tion we introduce an interactive display of the segmentations corre-
sponding to feature families, enabling the exploration of large time-
series or ensembles in a feature driven manner. Once a feature defi-
nition has been identified and precomputed, the user can interactively
adapt the segmentation to any given parameter. While general statisti-
cal and visualization tools, such as R [2] and VTK [4], are available
our framework provides unique capabilities with respect to a given set
of feature definitions. For example, in our case study, χ structures
are extracted as local isosurfaces, see Figure 7. While isosurfacing is
a standard procedure, using localized thresholds is not. Furthermore,

Fig. 7. To support efficient volume rendering of dynamic feature hier-
achies, we combine a recent technique for octree-based GPU raytracing
with a segmented id filtering scheme and extend the resulting system to
dynamically changing volumes.

even when using a global threshold, separating an isosurface on-the-
fly into individual connected components for per-feature selection and
display is a non-standard capability.

At its core, the interactive display is based on the same hierarchy
used for the statistical analysis. However, in addition to the feature
family we also store the corresponding segmentations in the form of a
separate file containing for each feature a list of indices. These encode
vertex locations with respect to a regular grid. Typically, features are
sparse within a data set and, depending on the application, we have
experienced no more than 3-4% of the domain being part of features.
Additionally, given the sparse nature we can easily accommodate very
large regular grids as well as AMR grids. For the latter we simply
store samples relative to a virtual grid at the smallest scale present in
the file.
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Fig. 8. The diagram on the left demonstrates interpolation between fea-
tures in the GPU. Fragments are represented by rectangular blocks, and
blue blocks have interpolated values. The first row shows that direct in-
terpolation will reference incorrect feature ids. By instead mapping the
neighboring feature id to 0-1, correct per-fragment filtering and classi-
fication is achieved. The diagram on the right illustrates our transfer
function used to mitigate the cost of reloading element ids to the GPU.
Rectangular blocks represent stored element ids (colors indicate differ-
ent id numbers, while white represents empty space). The left column
shows the original element id volume, while the right column is the result
of applying the transfer function showed in the middle.

Similar to the statistics computation, the geometry of a living fea-
ture is defined as the collection of samples of its representative element
combined with those of its descendants. Storing only indices rather
than original data values (e.g. χ values) reduces the data overhead and
provides significant flexibility in the type of source data the system
can represent natively. However, as a result, a segmented feature fam-
ily represents a family of “binary” segmented data with integer indices
at each grid point. This presents a challenge for rendering since (a)
descendants must be drawn in the same color as their representatives
and (b) no simple interpolation to smooth and appropriately light the
boundary of features is available.

We combine recent techniques for octree based GPU raytracing [20]
with a two-level volume rendering approach [27] and extend the result-
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Fig. 9. (a) The unscaled histogram of thicknesses for χ structures with mean temperature between 829 and 1078. A large number of features
populate the first bin (virtually independently of the bin sizes). (b) Selecting only structures falling within the first bin contains predominantely
artifacts of the segmentation (top), while the remaining bins contain almost exclusively features of the expected characteristics (bottom).

ing system to dynamically changing volumes. Given the sparseness of
the input features, using an adaptive octree to store feature samples al-
lows us to significantly reduce the memory footprint compared to stor-
ing a regular grid. In our experience we use between 2% and 20% of
the memory that a regular grid would require depending on the feature
density. Furthermore, the octree structure facilitates highly effective
empty space skipping, enabling ray marching with shorter marching
length, thereby drastically reducing rendering time.

The second challenge is that neighboring elements often have
widely different ids making interpolation difficult. As shown on the
left of Figure 8, given two ids (3 and 8), a direct interpolation would
include multiple inapplicable element ids. We solve this problem by
using a 0-1 mapping approach, as described in [27], that was also
used successfully to identify path tube points of simplified topological
structures in [43]. Adjacent voxels with different ids are mapped to 0
(the smaller id) and 1 (the larger id), and then tri-linear interpolation
in the 0-1 range is preformed using a shader program. Subsequently,
we classify the areas with value greater than 0.5 as belonging to the
larger id and areas with value less than 0.5 as belonging to the smaller
id with per-fragment precision.

Finally, as discussed above, each feature is typically represented by
a set of ids consisting of the id of its representative feature as well as
the ids of all its descendants. Changing the feature parameter changes
the composition of these sets and thus the segmentation. From the ren-
dering engine’s perspective, the volume is constantly changing as the
hierarchy is explored. To mitigate the unnecessary cost of reloading
the feature id volume into the GPU, we introduce a special purpose
feature id transfer function generated directly from the feature family.
As shown on the right of Figure 8, the column on the left represents
the original element id volume, while the column on the right repre-
sents the mapped element ids. The transfer function maps the id of
a dead element to empty space, that of a living element to itself, and
that of a merged element to the id of its representative. To support a
large number of elements, we use a texture buffer object in OpenGL
to store the transfer function, capable of supporting a 1-dimensional
lookup table as big as 227 many entries.

By connecting the interactive segmentation display with on-demand
statistical analysis, our framework provides new capabilities which
have significantly accelerated the time to insight is our case study.
By concentrating on those aspects of statistical analysis and visualiza-
tion most useful to scientists, we have created an integrated framework
which combines the traditional exploration and analysis cycles into a
single interactive system. The user can simultaneously create plots to
accept or reject specific hypotheses while visually exploring the data.
Through the linked selection we provide the ability to quickly under-
stand which features are responsible for which aspects of, for example,
a CDF and conversely, picking interesting features provides informa-

tion on all their relevant attributes.

6 RESULTS

In the case study presented here the data describes a temporally-
evolving turbulent CO/H2 jet flame undergoing extinction and reig-
nition at different Reynolds numbers [30]. The simulations were per-
formed with up to 0.5 billion grid points and periodic boundary con-
ditions in the mean flow (x) direction. The periodicity causes mixing
rates to increase until approximately midway through the simulation,
after which they begin to decay. Figure 10 shows a volume rendering
of the χ field for one of the 230 timesteps saved for postprocessing
analyses. In particular, for the example presented here we process
three simulation variables, χ , mixture fraction, and temperature, rep-
resenting just under one terabyte of raw floating point data.

Fig. 10. The χ field from the temporally-developing CO/H2 jet flame.

The primary scientific insights are captured in the distributions of
Figure 11. In particular, Figure 11(a) shows the distribution of χ-
thicknesses, at a relevance of 0.85, computed for structures grouped
by the mean temperature in the segment for four bins, each 250 Kelvin
wide. To ensure that the results are not influenced by excessive in-
ternal temperature variations, only structures with a low temperature
variance (below 5% of the maximum variance) are considered. The
flexibility to easily and interactively add such restrictions is a key fea-
ture of our framework. Furthermore, we detect several extremely small
features which are likely artifacts of the segmentation. To mitigate the
impact of such artifacts, which get collected in the first bin of the his-
togram, the first bin in the PDFs is discarded. The remaining condi-
tional PDFs show a trend consistent with experimental observations:
the thickness distribution conditional on temperature is asymmetric,
with faster rise and shorter tail than lognormal, and shifts towards
larger thickness with a broader distribution with increasing temper-
ature. The restriction to segments of uniform temperature limits the
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Fig. 11. (a) The distribution of the χ-thicknesses are computed for segments grouped by the mean temperature in the segment. (b) In order
to compare our simulated results to previous experimental results, we apply the temperature scaling observed by Frank and Kaiser [32] to the
conditional PDFs, by rescaling the abscissa according to:t∗ = t (T/T0)

−n with n = 0.75 and T0 = 400 and normalizing the conditional PDFs by their
peak value.

sample size from which the distribution is drawn. Although each bin
contains more than 300-10000 samples (depending on the conditional
temperature band), the exact shape of the PDF is not easy to discern.

In Figure 11(b), we apply the temperature scaling observed by
Frank and Kaiser [32] to the conditional PDFs, by rescaling the ab-
scissa according to:

t∗ = t
(

T
T0

)−n
(1)

with n = 0.75 and T0 = 400 and normalizing the conditional PDFs
by their peak value. As with the experimentally measured conditions,
this value of n is effective in collapsing the PDFs, yet far smaller than
would be expected from the dependence of the Batchelor length scale
(a measure of the smallest scalar lengths expected in a non-reacting
turbulent flow) on temperature through the kinematic viscosity (dis-
cussed in [32]). From the viscosity model used in the DNS, Batchelor
scaling would suggest n = 1.42, almost twice the value found in both
experiments and simulations.

This analysis demonstrates the power of our framework to easily
and efficiently analyze and explore large-scale simulations on com-
modity hardware. Using the combined visual exploration and analysis
capabilities, scientists were able to quickly produce a number of in-
teresting statistics and immediately diagnose problems. For example,
including the first bin in the PDF creates a large spike distorting the
shape of the distribution, see Figure 9(a). However, examining the
shapes of structures in the first bin, see Figure 9(b,top), it is easy to
see that a large number are due to sampling and other artifacts. In a
traditional setting, creating the unrestricted PDFs would have required
another round of processing. The shape of the PDF would likely have
caused concern resulting in a round of visualization to determine likely
causes. Finally, at least one additional round of processing would be
necessary to achieve the desired result shown in Figure 9(b,bottom).
Given that each step involves one terabyte of data the file I/O alone
would require several hours or large-scale parallel resources. Instead
our framework provides this capability interactively on a commodity
desktop.

Computing the merge trees, including the segmentations and de-
scriptive statistics, took approximately five minute per time step de-
pending on the progression of the simulation. Adding the length scales
required an additional 90 minutes per feature family. All computations
were performed in parallel using Oak Ridge National Laboratory’s
Lens system, a 32 node Linux cluster whose nodes comprise four
quad-core 2.3 GHz AMD Opteron processors with 64 GB of memory,
and 2 NVIDIA 8800 GTX GPUs. While no exact analysis parame-
ters are known a priori and indeed parameter exploration is one of the
crucial aspects in any analysis, in general scientists can provide con-

servative bounds on parameter values. In this case study, features of
interest are regions of high χ , thus we ignore χ values below 20 since
these are far below any region of interest. Similarly, the expected rel-
evance values of interest lay around 0.8 and thus we pre-aggregated
features below 0.6 to reduce file sizes without impacting the analysis.
Finally, we also compute length scales only for a conservative range
of relevance values between 0.6 and 0.9. Storing two feature fami-
lies corresponding to the threshold and relevance, as well as mean and
maximum χ values, temperature mean and variance, mean mixture
fraction, and the first 3 length scales produces 945 MB of binary un-
compressed data. This represents a 1000 fold data reduction without
impacting the quality or flexibility of the analysis. The structure ge-
ometries require an additional 13 GB of binary, uncompressed index
information.

Data exploration was performed on a single desktop machine with
an Intel Core i7 2600k with 16 GB of DDR3 RAM, and Nvidia
GTX580 GPU. Our interactive feature browser achieves framerates of
12-25 frames per second (depending on the number of blocks in the
view frustum). Generating species distribution plots and time-series
took on the order of a second, while parameter studies took 35 sec-
onds to generate. The parameter studies were generated using a plot
resolution of 40, and since each sample in a parameter plot represents
a full analysis of the entire data set, this represents a 40-fold analysis
of one terabyte of data performed in 35 seconds.

Although in this paper we have focused primarily on DNS combus-
tion simulations, the framework applies equally well to other applica-
tions. For example, Figure 12(a) shows the weighted cummulative vol-
ume distribution of an idealized pre-mixed combustion simuation [22]
along side the corresponding segmentation. This essentially mirrors
Figure 9(d) of [7], however we use a fully volumetric analysis rather
than restricting it to a temperature iso-surface and the plots are cre-
ated interactively rather than in a batch process. Figure 12(b) shows
the average density variance for different density thresholds in a sim-
ulation of hydrogen under pressure. As the threshold is lowered the
variance increases up to a breaking point, after which it rapidly falls.
The corrresponding segmentation is generated using the approximate
threshold of the peak variance. Somewhat surprisingly, the peak vari-
ance does not correspond to the point at which the individual surfaces
begin to merge, rather there are still a large number of well separated
features.

7 USER EVALUATION

During the the design and implementation of our framework we have
continuously discussed desirable capabilities and potential use cases
with several groups of collaborators involved either in this case study
or similar ones [7, 8]. Unsurprisingly, we found that providing tradi-
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Fig. 12. (a) Weighted cumulative density function of feature volume in an idealized premixed hydrogen flame echoing Figure 9(d) in [7]. (b) The
average density variance for features defined by different density thresholds in a simulation of hydrogen under pressure.

tional statistical plots is key to any practical analysis since these are
the primary means by which scientific hypothesis are (dis-)proven and
they provide a mechanism for the validation of new results and com-
parison with existing research. Certainly, there are pre-existing tools
available to produce similar statistical summaries. However, we found
several key capabilites that distinguish our design: First, the linked
views and integrated selection capabilities provide immediate visual
feedback on the impact of parameter choices and enable a quick yet
highly detailed analysis, in particular of species distributions. Second,
the ability to change feature parameters on-the-fly and interactively,
provides a highly beneficial degree of flexibility. This relieves the user
from guessing reasonable values before a potentially expensive and
time consuming post-processing step and thus permits a much broader
exploration of the problem space. Furthermore, the comparatively low
investment in time and resources encourages the investigation of seem-
ingly unlikey conjectures which often precedes new insights. Third,
the fact that this exploration can be performed on common desktop
systems rather than, for example, dedicated visualization clusters sig-
nificantly lowers the barrier to entry. While parallel resources might
be available, they are often cumbersome to use, involve a wait or start-
up time, and rely on fast connection speeds. Instead, our framework
performs well even on laptops and uses only very moderate amounts
of disk space. This makes the analysis portable and convenient, an
often overlooked yet practically important advantage.

In summary, the framework provides an intuitive GUI that en-
ables traditional statistical distributions obtained from (un)conditional
feature sets to be easily related back to the sets of features con-
tributing to the statistic through feature-based visualization and linked
views. Augmenting traditional statistical point-wise information are
non-local geometrical statistics related to the size, shape, and prox-
imity of relevant features. Moreover, statistical sensitivity to feature
definitions - often conditional on multiple dependent variables whose
threshold values are arbitrary and not known a priori - can be readily
explored interactively within this framework irrespective of the overall
data size. These attributes are essential as the datasets become larger,
and more cumbersome to work with. Overall, the framework is a
powerful tool for interactive exploration of large, multi-scale, multi-
variate, time-varying data sets, providing insights into the causality
between turbulent flow structure and reactive processes.

In its current state, the framework takes simulation data as input and
constructs augmented feature families to enable fast and efficient data
exploration. However, a number of the attributes that are of interest
are not raw simulation input data, rather they are derived quantities
that must be post-processed by S3D. It would be advantageous if the
framework incorporated S3D computation modules directly, for ex-
ample the evaluation of chemistry, molecular diffusion, differentiation
stencils, or thermodynamics, so as to provide a much richer, more rel-
evant set of derived variables than is currently available. Furthermore,
it would be advantageous if the framework provided the capability to
compute the augmented feature families in situ, or in lock-step with

S3D itself. This would require the efficient parallelization of merge
trees in addition to coordination with native S3D data structures.

8 CONCLUSION AND FUTURE WORK

We have presented a novel framework that combines topological and
statistical analysis with visualization to perform feature-based statis-
tical analysis of large scientific data. Our framework represents a
novel technology that has converted the typically cumbersome post-
processing cycle of explore and analyze into an interactive process,
providing application scientists easy access to cutting edge visualiza-
tion and feature-based analysis techniques coupled to traditional sta-
tistical techniques. In particular, this framework provides an intuitive
GUI that enables traditional statistical distributions obtained from con-
ditional feature sets to be easily related back to the sets of features con-
tributing to the statistic through feature-based visualization and linked
views. In this case study, our tool was successfully deployed in the
Combustion Research Center at Sandia National Laboratories to gain
insight into fundamental turbulence-chemistry interactions, demon-
strating its practical application.

Going forward, we anticipate storing a much larger set of statistics
per feature and/or providing more complex reduction operators. For
example, given enough resources the length scale estimation could be
applied at run-time to intermediate results. However, such a system
would likely require small-scale parallel resources and a correspond-
ing distributed analysis. Furthermore, we are exploring the use of this
system for entirely different hierarchies based on for example, Morse-
Smale complexes. This will likely result in different usage patterns
and require additional capabilities. Finally, as we move towards exas-
cale computing where I/O is severely limited, in situ processing of tur-
bulence and combustion features, and partial parallel construction of
distributed merge trees efficiently poses enormous challenges, partic-
ularly when the feature extraction algorithms must utilize native data
structures from the distributed simulation.

ACKNOWLEDGMENTS

The authors wish to thank David Thompson, Philippe Pébay and Ajith
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