D^* production in deep-inelastic scattering at low Q^2

PDF Version Also Available for Download.

Description

Inclusive production of D* mesons in deep-inelastic scattering at HERA is studied in the range 5 < Q{sup 2} < 100 GeV{sup 2} of the photon virtuality and 0.02 < y < 0.70 of the inelasticity of the scattering process. The visible range for the D* meson is p{sub T} (D*) > 1.25 GeV and |{eta}(D*)| < 1.8. The data were taken with the H1 detector in the years 2004 to 2007 and correspond to an integrated luminosity of 347 pb{sup -1}. Single and double differential cross sections are measured. The results are compared to QCD predictions.

Physical Description

5 pages

Creation Information

Jung, Andreas W. July 1, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Inclusive production of D* mesons in deep-inelastic scattering at HERA is studied in the range 5 < Q{sup 2} < 100 GeV{sup 2} of the photon virtuality and 0.02 < y < 0.70 of the inelasticity of the scattering process. The visible range for the D* meson is p{sub T} (D*) > 1.25 GeV and |{eta}(D*)| < 1.8. The data were taken with the H1 detector in the years 2004 to 2007 and correspond to an integrated luminosity of 347 pb{sup -1}. Single and double differential cross sections are measured. The results are compared to QCD predictions.

Physical Description

5 pages

Source

  • Presented at 18th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2010), Florence, Italy, 19-23 Apr 2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-CONF-11-344-E
  • Grant Number: AC02-07CH11359
  • Office of Scientific & Technical Information Report Number: 1022780
  • Archival Resource Key: ark:/67531/metadc837087

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 30, 2016, 6:22 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Jung, Andreas W. D^* production in deep-inelastic scattering at low Q^2, article, July 1, 2011; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc837087/: accessed January 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.