RCO-2011-002

Title: Neutron Operational and Protection Quantity Conversion Coefficients Under ICRP-26, ICRP-60, and ICRP-103

Authors: K.G. Veinot, N.E. Hertel

Date: Feb. 6-9, 2011

Prepared by Babcock & Wilcox Technical Services Y-12, LLC Management & Operating Contractor for the Y-12 National Security Complex under Contract No. DE-AC05-00OR22800 with the U.S. Department of Energy National Nuclear Security Administration

Unclassified
Legal Stuff

- **DISCLAIMER**
 - This work of authorship and those incorporated herein were prepared by Contractor as accounts of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, use made, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency or Contractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency or Contractor thereof.

- **COPYRIGHT NOTICE**
 - This document has been authored by a contractor/subcontractor of the U.S. Government under contract DE-AC05-00OR-22800. Accordingly, the U.S. Government retains a paid-up, nonexclusive, irrevocable, worldwide license to publish or reproduce the published form of this contribution, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, or allow others to do so, for U. S. Government purposes.
Neutron Operational and Protection Quantity Conversion Coefficients Under ICRP-26, ICRP-60, and ICRP-103

K.G. Veinot
Y-12 National Security Complex
Evolution of Recommendations

- Three major revisions to ICRP recommendations
 - 1977 – ICRP-26
 - 1991 – ICRP-60
 - 2007 – ICRP-103
- All are risk-based approaches
- All use organ/tissue risk factors
System of Radiation Protection

Physical Quantities
- Fluence, Kerma, Absorbed Dose

Operational Quantities
- Ambient Dose Equivalent
- Personal Dose Equivalent

Calculated using $Q(L)-L$ and simple phantom. Validated by measurements and calculation.

Calibration

Instrument Response

Protection Quantities
- Effective Dose Equivalent
 - Equivalent Dose
 - Effective Dose

Conservative Approximation

Calculated using W_R, W_T and anthropomorphic phantoms.
ICRP-26

- “Dose Equivalent” – organs/tissues
- Organ/Tissue weighting factors (w_T)
- Effective Dose Equivalent (H_E)
- Dose modifier = quality factor (Q)
- Q based on LET in water (keV/μm)
- Q based on spectrum in organ/tissue
- Mathematical phantom
- Remainder organs
- Non-additive
ICRP-60

- “Equivalent Dose” – organs/tissues
- Organ/Tissue weighting factors (w_T)
- Effective Dose (E)
- Dose modifier = radiation weighting factor (w_R)
- w_R based on spectrum incident on phantom
- Mathematical phantom
- Remainder organs
- Non-additive
ICRP-26 and ICRP-60 Protection Quantity Calculations

- ICRP-26 Effective Dose Equivalent, H_E
 \[
 H_T = \frac{\int \int Q(L) D_L dL dm}{m} \\
 H_E = \sum T \omega_T H_T
 \]

- ICRP-60 Effective Dose, E
 \[
 E = \omega_R \sum T D_T \omega_T
 \]

(ω_R based on spectrum incident on phantom. Single value for all organs)
ICRP-103

- “Equivalent Dose” – organs/tissues
- Organ/Tissue weighting factors (w_T)
- Effective Dose (E)
- Dose modifier = radiation weighting factor (w_R)
- w_R based on spectrum incident on phantom
- Voxel phantom (male and female) (ICRP-110)
- Remainder organs, but specified
- Sex averaging
ICRP-103 Protection Quantity Calculations

Radionuclide Intake & External Exposure

Male phantom
Absorbed doses, D_T^M

w_R

Female phantom
Absorbed doses, D_T^F

Equivalent doses, H_T^M

Equivalent doses, H_T^F

Sex-averaged equivalent doses, H_T

Effective dose, E

Reference Male

Reference Female

Reference Person
Calculations

• Monte Carlo
• Various geometries (AP, PA, LLAT, RLAT, ISO, ROT)
• Absorbed dose in organs
• Modifier (QF or w_R)
• Remainder organs
• Weighted sum
Phantom Models

• Through ICRP-60 mathematical models used. ICRP-103 uses volumized pixel (voxel) phantoms developed from high-res scans.
Protection Quantity DCFs

Neutron Energy (MeV) vs. Conversion Coefficient (pSv cm2)

- ICRP-26 H_E
- ICRP-60 E (ICRP-74)
- ICRP-60 E (Pelliccioni 2000)
- ICRP-103 E
- Hp(10) (ICRP-60 QF)
Operational Quantities

• Defined by ICRU
• Intended to be measurable (and calculable)
• Based on simple phantom designs
• Based on standard (but unattainable conditions)
• Should conservatively approximate protection quantities
Personal Dose Equivalent

- Monitoring for individuals
- Defined in the body – multi-valued quantity
- Usually the trunk = 30 cm X 30 cm X 15 cm ICRU Slab

![Diagram showing a unidirectional field and dosimeter on a slab.](attachment:diagram.png)
Ambient Dose Equivalent

- Area monitoring
- Defined in the ICRU sphere (15 cm radius)
- Instrument calibrations

Aligned and expanded field
ICRP/ICRU DCFs

• ICRP-74
• ICRP revising ICRP-74 now (to include ICRP-103)
• Includes ICRP-103 DCFs
• ICRU to update operational quantities
• No changes to Q(L)-L, so QF same
• Higher energies
Quality and Radiation Weighting Factors

![Graph showing neutron energy vs. QF or wR for different ICRP publications: ICRP-26 QF, ICRP-60 QF, ICRP-60 wR, ICRP-103 wR. The graph indicates a peak in weighting factors at neutron energies around 1 to 10 MeV, with a gradual decrease at higher energies.](image-url)
ICRP-26 and ICRP-60 $H^*(10)$
Protection/Operational Quantity DCFs

Conversion Coefficient (pSv cm2) vs Neutron Energy (MeV)

- ICRP-26 H_E
- ICRP-60 E (ICRP-74)
- ICRP-60 E (Pelliccioni 2000)
- ICRP-103 E
- $H_p(10)$ (ICRP-60 QF)
Conservative Approximation?

![Graph showing neutron energy distribution](image-url)

- **Conservative**
 - H*(10) ICRP-26: EDE
 - Hp(10):E (ICRP-60)
 - Hp(10):E (ICRP-103)
 - Unity

- **Non-Conservative**

The graph illustrates the ratio of prot. qty. vs. op. qty. across different neutron energy levels (MeV).
How Different are the New Dose Conversion Coefficients?

• Photons
 – The differences of effective dose conversion coefficients are lower than 10%.

• Neutrons
 – Generally lower (up to a factor of 2) than ICRU 57 / ICRP 74 due to the reduced w_R differences

• Protons
 – Generally lower than ICRU 57 / ICRP 74 due to the reduced w_R

• For some geometries greater differences are observed due to increased value of w_T for the breast

• More data available at higher energies
ICRP-26 Vs. ICRP-60 Source DCFs

<table>
<thead>
<tr>
<th></th>
<th>^{252}Cf</th>
<th>$D_2\text{O}$</th>
<th>Am-Be</th>
<th>Am-B</th>
<th>Poly. Mod. ^{252}Cf</th>
<th>Pu-F</th>
<th>Pu-Be</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICRP-26 $H^*(10)$</td>
<td>333</td>
<td>93</td>
<td>373</td>
<td>378</td>
<td>218</td>
<td>333</td>
<td>291</td>
</tr>
<tr>
<td>(pSv-cm2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICRP-60 $H^*(10)$</td>
<td>380</td>
<td>107</td>
<td>394</td>
<td>410</td>
<td>242</td>
<td>384</td>
<td>317</td>
</tr>
<tr>
<td>(pSv-cm2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rem Ball Response</td>
<td>333</td>
<td>133</td>
<td>334</td>
<td>384</td>
<td>220</td>
<td>311</td>
<td>272</td>
</tr>
<tr>
<td>ICRP-26 Cal. (counts)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rem Ball Response</td>
<td>380</td>
<td>152</td>
<td>381</td>
<td>438</td>
<td>251</td>
<td>355</td>
<td>310</td>
</tr>
<tr>
<td>ICRP-60 Cal. (counts)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data from HPJ Vol. 95, suppl. 2 August 2008
Conclusions

• Quality factors same in ICRP-60 and ICRP-103 (operational quantities don’t change)
• Q(L)-L differs from ICRP-26 to ICRP-60 (DOE impact)
• Protection quantities are generally lower
• Data to higher energies