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ABSTRACT 

This report presents the results of a comparative evaluation of 

four statistical testing procedures for use in the control and accounting 
of special nuclear materials. Of primary interest is a bivariate procedure 

that simultaneously tests ID and CID. Descriptions of the four testing 

procedures are presented with the necessary formulas and special considera

tions for their implementation. Results of a simulation study indicate 
the conditions under which each of the tests would provide superior 
protection against "trickle" diversions. 
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EXECUTIVE SUMMARY 

This report presents a comparative evaluation of four statistical testing 

procedures for use in the control and accounting of special nuclear materials. 

Of primary interest is a bivariate procedure which, for a given material 

balance period, simultaneously tests whether the inventory difference (ID) 

and the cumulative inventory difference {CID) differ from zero. This 

procedure is thought to be more powerful for detecting small continual 

diversions (''trickle'' diversions) than the currently required test of ID 

only. Three other procedures are included in the study to provide an 

objective basis for evaluating the bivariate procedure. The four testing 

procedures are: 

l. the bivariate test of ID and CID 

2. the currently required test of ID only 

3. a test of CID only 

4. a simultaneous test of ID and CID using the Bonferroni inequality. 

Descriptions of the four methods are presented with the necessary formulas 

for their implementation and illustrative numerical examples. 

Special inventory record-keeping methods required to accommodate the 

calculation of the variance of CID are described. Other considerations 

relevant to the calculation of the variance of CID and the covariance of ID 

and CID are discussed. 

A large simulation study was conducted, where sequences of ID's were 
generated under a number of hypothetical operating conditions. These 

conditions included specific diversion strategies, correlations among 

successive ID's, and actions taken when a significant loss is detected. 
Each sequence of ID's was monitored by each of the four testing procedures, 

and summary statistics were accumulated. The method of simulation is 

described, and the rationale for choosing input parameters is discussed. 

Criteria for comparing the four testing procedures are defined, and the 

results of the simulation study are presented. 
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Based on the results of this simulation study, the following conclusions 
are drawn: 

1. When correlations among successive ID's are predominantly negative, 
the bivariate procedure (and, in fact, either of the other procedures 
involving CID) is considerably more powerful for detecting "trickle 11 

diversions than the currently required test of ID only. 

2. When correlations among successive ID's are predominantly positive, 

the currently required test is noticeably more powerful for detect
ing trickle diversions than the bivariate test. 

3. In all cases, the currently required test has a substantially higher 
false alarm rate than the bivariate test. 

The assumption of positive correlations among successive ID's is probably 
unrealistic in nuclear materials accounting. It is included here for the 
purpose of comparison and to illustrate conditions under which the current 
requirement is more sensitive to trickle losses than the bivariate procedure. 

It is assumed by many that successive ID's are always negatively correlated. 
If this is true, it would be advantageous to implement the bivariate 
procedure. However, since the power of the bivariate test for detecting 

"block" losses has not been established, the bivariate test would probably 
supplement the current requirement rather than replace it. Also, because a 
more sophisticated inventory record-keeping system is required, the bivariate 
procedure should only be implemented by facilities with access to a computer. 
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1.0 BACKGROUND AND OBJECTIVES 

Facilities licensed by the U. S. Nuclear Regulatory Commission (NRC) to 
handle special nuclear materials (SNM) are currently required to perform a 

statistical test at the end of each material balance period. The test results 

indicate whether differences between book and physical inventories of SNM are too 
large to have happened by chance due to variability in the physical inventory 

measurement system. Briefly speakinq, the statistical test compares 

the total inventory difference (ID) for a particular material balance period 
with its limit of error (LEID), which is an appropriate multiple of the 

standard deviation of 10. If the 10 quantity is outside the interval (-LEID, 

LEID), the conclusion is that the 10 differs from zero by a statistically 

significant amount. The intent of this requirement is to enable licensees to 

promptly detect missing quantities of SNM and take appropriate action to 

resolve the cause of such discrepancies. 

References (1) and (2) point out that although this required test 
of ID is satisfactory for detecting sudden large losses (block losses), it is 

not a powerful procedure for detecting small continual losses over a number 

of successive material balance periods (trickle losses). Statistically 

monitoring the cumulative inventory difference (CID) has been advocated 
by many, inc 1 udi ng reference ( 1 ) , as being a more powerfu 1 procedure for 

detecting trickle losses. However, since ID and CID are correlated, if they 

are individually tested each period it is not possible to exactly specify 

an overall sigroificance level for the tests. In fact, all that can be said 
witr. any certainty is that the overall significance level is less than or 

equal to the sum of the significance levels for the two individual tests. 
As a result, this procedure would generally be less powerful than desired. 

Reference (2) addresses this problem and proposes as a possible 
solution a single bivariate test of the hypothesis that, for a given 

material balance period, ID and CID are both zero. One obvious advantage 

of this procedure is that the significance le\el of the test can be exactly 

specified each material balance peric·d. Also, the results of several 
illustrative examples in reference (2) indicated an increased 



probability of detecting trickle losses when tr.e bi\1.:ric:te test was used, 
com~ared to the currently required test. However, a number of questions 

were raised about how the bivariate procedure should be implemented and how 
the detection probabilities might be influenced by, for example, changes in 

the covariance structure arr:ong successive l0 1 s, differing diversion 
strategies, and actions taken when a loss is indicated by the test. 

An inherent difficulty in applying such a statistical test to an actual 
process would be the identification and estimat·ion of sources of covariance 

among thE· successive l0 1 S. Although references (1) and (3) discuss 
assumptions about these covariances 1-1hich would considerably si1nplify 
their estimation, these assumptions were not empirically validated and the 
question remains as to whether they are generally applicable to all processes. 

It was recommended in reference (2) that actual inventory records 

from one or more operatinq plants should be analyzed to form an 
objective basis for evaluating the possible advantages and disadvantages 
of implementing the bivariate procedure. 

The purpose of this study is to evaluate the bivariate test of lD and 

ClD to determine whether: 

1. it could be feasibly implemented in an actual plant 

2. it would enhance the capability for detecting trickle losses 

3. the false alarm rate could be controlled. 

This evaluation is based on an analysis of inventory records from an actual 
plant and the results of a simulation study which compares the bivariate 
procedure with the current requirement and with two other testing pro
cedures. Detailed descriptions of the four testing procedures and formulas 
for their implementation are provided. 
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2.0 BASIC CONCEPTS AND DEFINITIONS 

2.1 DISCUSSION OF ID AND CID 

While there may be mechanisms of process control involving identifica

tion of process anomalies that provide indications of possible inventory 

discrepancies, the basic quantitative control methodology is to measure 

the material and establish a material balance. Records are maintained of 

the quantities arriving at a plant (A) and the quantities removed from a 

plant {R) during a specified material balance period. Letting "beginning 

inventory" (B) and "ending inventory" (E) denote, respectively, the amount 

of 1~aterial on hand at the beginning and at the end of the material balance 

period, the balance can be expressed as 

B + A - R " E. ( 2. l ) 

However, for a number of reasons, it is unlikely in practice that this 

equation will balance exactly. The result is an inventory difference (ID) 
which is given by 

ID = B + A - R - E. (2.2) 

If equation (2.1) balances, the ID in equation (2.2) is zero. ~~hen equation 

(2.1) does not balance, the ID in equation (2.2) represents some quantity 
of SNM. 

For clarity of the discussions to follow, a distinction must be made 
between the true ID and the observed 10. The true ID is the actual amount 

by which equation (2.1) is out of balance, excluding the effects of measure

ment errors (in the absence of measurement errors, the observed ID and the 
true ID would be identical). The true ID would be zero in an ideal situation. 

In practice, however, a non-zero true ID may occur, for example, because 

of process losses or holdups, or stolen or diverted material. The observed 

ID is an estimate of the true ID. Its value is affected by both the random 
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errors and the biases of the methods used to measure the components of the 
right-hand side of equation (2.2). For simplicity, these sources of vari

ation will be referred to as measurement variability. The observed IO would 
also be affected by any mistakes in the recording of measurement data or in 
calculating the IO quantity, any unrecorded inventory, or any gross measure

ment errors such as uncorrected measurement bias. For simplicity, these 

errors will be referred to as correctable mistakes. 

For the purpose of examining a sequence of material balance periods, 
the cumulative inventory difference (CID) will be of interest. The CID 
quantity is defined as the sum of the IO quantities from a specified sequence 

of material balance periods. If the k most recent material balance periods 

are included, CIOk is given by the equation 

k 
L !Di 

i=l 
(2.3) 

where IOi is the ID quantity for the ;th material balance period in the 
sequence. By definition, the beginning inventory for the ;th material 

balance period {Bi) is the ending inventory of the (i-l)st material balance 

period (E. 
1

). Thus, adding the appropriate subscripts to the right-hand 
1-

side of equation (2.2) and then substituting for ID; in equation (2.3), 

CIDk can be expressed as 

= 

or 

k 
L Ai 

i=l 

k 
L 

i=l 

(2.4) 

where CAk and CRk denote, respectively, the cumulative additions and 
cumulative removals over the k most recent material balance periods. It is 

evident from equation (2.4) that CIDk has the same four basic components as 
an ID quantity; namely, beginning inventory, additions, removals, and 
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ending inventory. This analogy is useful in developing recursive formulas 
for computing variances and covariances. 

As with individual I0 1 S, the distinction must be made between a true 

C!Dk and an observed C!Dk. The true C!Dk is the sum given by equation (2.3), 

where the IDi quantities represent true 10 quantities (i.e., 10 quantities 

with no measurement variability). The observed CIDk is an estimate of the 
true CIDk and is given by equation (2.3) where the ID; quantities represent 
observed ID quantities (i.e., 10 quantities susceptible to measurement 
variability). 

2.2 !•lATRIX NOTATION 

It is convenient to introduce vector and matrix notation, which will 

allow concise presentations of most of the concepts and computational formulas 
throughout the remainder of this report. The following definitions will be 
useful. 

Definition 1: Ik is the k-by-k identity matrix with ones for the diagonal 
elements and zeros for the off diagonal elements. Ik is given by 

l 0 0 0 

0 0 0 

Ik = 0 0 1 (2.5) 

0 0 

Definition 2: ~ is the k-element vector of ones given by 

1 

( 2. 6) 
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Definition 3: Lk is a k-by-2 matrix whose first column has zeros in the first 
k-1 rows and a one in the kth row, and whose second column is the vector .-4.· 
Lk is given by 

0 

0 l 
Lk = (2. 7) 

0 l 

l l 

Definition 4: The observed ID quantity for the ;th material balance period 
is given by 

10
1
• = ]J. + e 

1 i (2.8} 

where ]Ji is the value of the true ID for period i, and ei is assumed to be a 
random variable from the normal (or Gaussian) distribution with mean zero and 

variance a~. In the context of Section 2.1, e1 is the contribution of 
measurement variability to ID

1
.• It follows immediately that ID. is from the 

? 1 
normal distribution with mean ]Ji and variance o'j. 

Definition 5: A sequence of k successive observed ID quantities is represented 

by the k-element vector lQk' given by 

= (2.9} 

which from Definition 4 can be expressed as 

.!_g_k = 1't + ~ (2.10} 

where Qk is a k-element vector with elements ]J;' (i = 1, ... ,k) and~ is a 
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k-element vector with elements ei' (i = l, ... ,k). In addition to Definition 

4, it will be assumed that the vector~ is from the k-variate normal distri

bution with a k-element mean vector of zeros and a symmetric k-by-k variance-

(2.11) 

where o~ is the variance of ei' and oij is the covariance of ei and ej for 
i 1 j. It follows immediately that the vector~ is from the k-variate 

normal distribution with a k-element mean vector ~k and a k-by-k variance

covariance matrix Ik. 

Definition 6: The observed value of CIDk' given by equation {2.3), can be 

expressed as 

= j' ID = "1< -k 
(2.12) 

which by Definition 5 is from the normal distribution with mean given by 

k 
~ JJ.k = I ~i 

i=1 
(2.13) 

and variance given by 

k 2 k k 
~ Ik 

"' 
= I oi + 2 I I a .. 

i=1 i = 1 j>i lJ 
(2.14) 
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Definition 7: The proposed bivariate testing procedure will involve the 2-

element vector~· given by 

~- "[!Dk]" L' ID ·~ CID k ·=i< 
k 

(2, 15) 

which by Definition 5 is from the bivariate normal distribution with a 2-
element mean vector given by 

k 
L IJ; 

i" l 

and a 2-by-2 variance-covariance matrix given by 

(2,16) 

(2,17) 

Note that the quantities IDk and ~k are the observed value and true value, 
respectively, of the 10 for period k and should not be confused with the 

vectors~ and~-
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3.0 FOUR TESTING PROCEDURES 

This section introduces the four statistical testing procedures that 
are compared in this study: 

1. the proposed bivariate test of !Dk and C!Dk 

2. the currently required test of IDk only 

3. a test of C!Dk only 
4. a simultaneous test of IDk and CIOk using the Bonferroni 

inequality. 

These four procedures are not the on-ly availaole testing procedures ana tnere 

may be others that are powerful for detecting trickle losses. However, the 
rationale for considering only these particular procedures follows from the 
discussion in Section 1. 

Briefly, the currently required test of IDk is not a powerful procedure 

for detecting trickle losses. Thus, it is desirable to either replace or 

supplement the current requirement with a procedure which is sensitive to 

trickle losses. Monitoring CIDk has been advocated as a powerful procedure 

for detecting trickle losses. Thus, three possible options for enhancing 
the capability for detecting trickle losses are: 

1. require that 2!!}£ C!Dk (rather than !Dk) be statistically tested 
each period 

2. test both IDk and CIDk simultaneously using the Bonferroni 
inequality to specify an upper bound on the overall level of 
significance 

3. use the bivariate procedure to test both IDk and CIDk simultaneous
ly at an exact specified level of significance. 

Thus, detection probabilities and other characteristics of these three pro

cedures will be compared with those of the current requirement. Although 
testing only CIDk each period is not recommended, these comparisons will 

provide a basis for evaluating and comparing the two simultaneous procedures. 
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Collectively, the four testing procedures require the observed values 

of IDk and CIDk and estimates of the elements of the matrix Vk' given by 
equation (2. 17}. It will be assumed in this section that estimates of 

VAR(!Dk) and Var(C!Dk) are available at each material balance period. 
Tne estimation of these variances is discussed in Section 4. 

In practice, it is generally quite difficult to determine the degrees uf 

freedom for estimates of Var(IDk) and Var(CIDk). Thus, these estimates are 

usually treated as known parameters for the purpose of statistical testing. 
This problem was addressed in reference (2), where it was illustrated that 
the adverse consequences of treating these estimates as known parameters 

are negligible for most practical situations in SNM control and accounting. 
This philosophy is adopted here, and the four testing procedures assume the 

variance estimates are based on sufficiently large degrees of freedom to 
justify treating them as known parameters. 

3.1 THE BIVARIATE PROCEDURE 

When information is available from two or more successive material 

balance periods, the proposed bivariate procedure tests the validity of the 

"null hypothesiS 11 that the true values of both IDk and CIDk are zero. In 
the notation of Section 2.2, the null hypothesis states that both elements 

of the vector _§_k, given by equation (2.16), are zero. The "alternative 

hypothesis" is that at least one of the elements of !4_ is not zero. In 
standard statistical notation the hypotheses can be expressed as 

= 0 
vs ( 3. l ) 

0 

where~ is given by equation (2.16) and 0 is a two-element vector of zeros. 

The test statistic is computed using the formula 

( 3. 2) 
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where~ is given by equation (2.15) and v~ 1 is the inverse of the matrix Vk, 
which is given by equation (2.17). The statistic x2 is compared with the 
upper (1-a)lOOth percentile point of the chi-square distribution with two 

2 degrees of freedom, denoted x2,(l-a)' where a is the specified significance 
level of the test of H0 vs HA. The decision rule is to either 

l. Reject Ho in favor of HA if X 2 > 2 Ol" - x2,(l-")' 

2. Accept Ho if X 2 < 2 
x2,(l-n) · 

Table 3.1 gives the value of x~,(l-a) for a few selected values of a. 
More extensive tables of the chi-square distribution are available in most 
basic statistics texts. 

TABLE 3.1. Upper (1-a)lOOth Percentile Points 
of the Chi-Square Distribution With 
Two Degrees of Freedom 

2 
a x2,(l-a) 

.20 3.22 

. l 0 4.61 

.05 5.99 

.025 7.38 

. 01 9.21 

Although estimates of the variances of IDk and CIDk are assumed to be 
available, an estimate of the covariance of IDk and CIDk is required to 
complete the matrix Vk which is used in equation (3.2). A recursive method 
for computing this covariance estimate each period is easily developed as 
follows: 

From equations (2.3) and (2.12), C!Dk is simply the sum of the k most 
recent observed ID quantities. Thus, another way of expressing equation (2.3} 
is 

(3.3) 

ll 



from which it follows that 

( 3. 4) 

and that 

Now since estimates of the variances of IDk and CIDk are available for each 
period, including the (k-l)st period, an estimate of Cov(!Dk' C!Dk_

1
) is 

obtained by rearranging equation (3.5) as 

The expression on the right-hand side of equation (3.6) is then substituted 

for Cov(!Dk' C!Dk-l) in equation (3.4) to obtain an estimate of Cov(!Dk' C!Dk)' 
which is given by 

This estimate is used to complete the matrix Vk for use in equation (3.2). 

It is important to note that the recursive formula and indeed the 

bivariate procedure are only to be used for k ~ 2. For if k = l, CID1 = ID1 
and Var(CID1) = Var(ID1). Clearly, then Cov(ID 1, CID1) = Var(ID1), and the 
matrix v1 is singular (i.e., v1 cannot be inverted}. The practical inter
pretation is that ID1 and CID1 carry exactly the same information, so that 
a test of 101 only (the current requirement} is sufficient. 

One reason for emphasizing the special case k = 1 is that the cumulative 
calculations should be restarted whenever a significant loss (or gain) 

of SNM is discovered. Specifically, when the null hypothesis has been 

rejected and the cause has been determined and then corrected, the cumulative 

sum of ID quantities should be restarted the following material balance 
period. However, if the cause of the significant test result cannot be 

resolved, the cumulative sum of ID quantities should not be restarted unless 
otherwise stipulated by the management or the NRC. 
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To illustrate the bivariate procedure, consider the following example. 
Suppose that at the end of the fourth material balance period, the following 
information is available 

: 1.1 l 
4. 4 r 

Var(ID4) " 1. 0 

Var(CID4) " 2.8 

Var(CID
3

) " 2.2 

or !4 " [l. 1] 
4.4 

and we wish to test H0 vs HAas given by "equations" (3.1}. The significance 
level of the test has been specified to be a= .05. 

Using equation (3.7), the covariance estimate is 

1 " 2 (2.8 2.2 + 1.0) " 

and the matrix v
4 

of equation (2.17) is 

[~.o .8l 
v4 " L-8 2.8 

The inverse of V 
4 

is 

-1 [ 1. 2963 -. 3704] 
v4 " 

-. 3704 . 4630 

and the test statistic, computed using equation (3.2), is 

2 
X [1.1, 4.4] 11.2963 

I_-. 3704 

13 

-. 3704] 

. 4630 

.8 

6.95 . 



Entering Table 3.1 with a = .05, the value of 

6.95 > 5.99 

1 
Xz,. 95 is 5.99, and s1nce 

the null hypothesis is rejected in favor of the alternative hypothesis at the 
.05 level of significance. 

3.1 THE TEST OF !0 ONLY 

The currently required procedure is to test at each period the null 

hypothesis that the true value of IDk is zero. In the notation of Section 

2.2, Definition 4, the null and alternative hypotheses are 

= 0 

vs (3.8) 

The test statistic is computed using the formula 

z = ( 3. 9) 

Then for a specified level of significance, a, Z is compared with the lower 

(a/2)100th percentile point and the upper (l-a/2)100th percentile point of 

the standard normal distribution, denoted by Z(a/Z) and Z(l-a/Z)' respectively. 

Since the standard normal distribution is symmetric, Z(a/Z) = - Z(l-a/Z)' 
The decision rule is to either 

1. Reject H0 in favor of HA if Z _::-z(l-a/2) or Z:::. Z(l-a/ 2), or 

2. Accept Ho if -z(l-a/2) < Z < Z(l-a/2)' 

Table 3.2 gives the value of Z(l-a/2) for a few selected values of a. More 
extensive tables of the standard normal distribution can be found in most 

basic statistics texts. 
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TABLE 3.2. Upper (l-a/2)100th Percentile Points 
of the Standard Normal Distribution 

a Z(l-aL2) 

.2U 1. 282 

.1 0 1.645 

.05 1. 960 

. 025 2.240 

. 01 2.576 

To illustrate the use of this procedure, consider the example described 

in Section 3.1. The necessary information is 

and we wish to test 

vs 

1.1 

1. 0 

0 

at the ~ = .05 level of significance. The test statistic is 

z " 1.1 
rro " 1.1 

• 

and from Table 3.2, z(. 975 ) "1.96. Since -1.96 < 1.1 < 1.96, we accept 

H0. There is insufficient evidence to conclude that ~4 is not zero. 

3.3 THE TEST OF CID ONLY 

As mentioned previously, the test of CIDk' by itself, is not recommend
ed. However, it does help to provide a basis for objectively evaluating and 
comparing the other three procedures. 
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This procedure tests at each period the null hypothesis that the true 
value of CIDk is zero. In the notation of Section 2.2, Definition 6, the 
null and alternative hypotheses are 

k 
Ho: I "i = 0 

i = 1 

vs k (3.10) 

HA: I "i t 0 
i = 1 

The test statistic is computed using the fonnula 

z = (3.11) 

Then for a specified level of significance, a, the test proceeds exactly like 

the test described in Section 3.2. The decision rule is to either 

1. Reject H0 in favor of HA if Z ~-Z{l-a/2 ) or Z ~ Z(l-a/2)' or 

2. Accept H0 if -Z(l-a/2) < Z < Z(l-o/2)' 

where, as before, Z(l-o/2) is the upper (l-a/2)100th percentile point of the 
standard normal distribution. 

To illustrate the use of this procedure, consider again the example 
data of Section 3.1. The necessary information i·.:. 

and we wish to test 

vs 

CI04 = 4.4 

Var(CID
4

) = 2.8 

4 
' " = 0 !. i 

i = l 

4 

I "i t o 
i =1 
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at the a= .05 level of significance. The test statistic is 

z ~ r 4·4 ~ 2.63 
2.8 

and from Table 3.2, z(. 975 ) ~ 1.96. Since 2.63 > 1.96, we reject H0 in favor 

of HA' and conclude that the true value of cro4 is larger than zero. This 
would be interpreted as a cumulative loss of SNM. 

3.4 THE "BONFERRON!" PROCEDURE 

In the illustrative example of Section 3.1, the bivariate test resulted 

in rejection of the null hypothesis that both 

4 

I ~i 
i~l 

are zero. In Sections 3.2 and 3.3 the same example information was used to 
perform individual tests on 10

4 
and CID

4
. The result of the test of 104 in 

Section 3.2 was that there is insufficient evidence to conclude that ~4 
differs from zero. However, the test of cro4 in Section 3.3 indicated that 

4 
I ~i 

i ~ 1 

is larger than zero. In this example, if it could be assumed that no 

significant test results were observed during the first three periods, the 
results described above would tend to indicate that "small" losses of SNM 

have occurred over the four periods resulting in a significant cumulative 
1 ass. 

One obvious question that arises is: Why not just perform the 

individual tests of IDk and CIDk' but look at the test results simultaneously? 
This idea seems appealing because it avoids the covariance calculation and 

the matrix operations necessary for the bivariate test. One major disadvan

tage is that since IDk and CIDk are correlated, the exact level of 
significance of such a procedure cannot be determined. However, it is 
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possible to set an upper bound on the overall level of significance. 

The Bonferroni inequality applied to this situation states 

3. 2 and 

that if !Dk 

3.3 at and CIDk are individually tested as described in Section 
significance levels of a1 and a2, respectively, then the 

significance, a, for the two tests is bounded from above 

and a2. That is, 

overall level of 
by the sum of a1 

(3.12) 

A very simple approach is to specify the desired overall level of significance, 

say a*, and then let 

(3.13) 

so that the overall level of significance is bounded from above by a*. That 

; s. 

a ~ a*/2 + a*/2 = a* (3.14) 

The fourth procedure to be considered in this study uses the above con
cepts to simultaneously test the hypotheses stated in "equations" (3.8) and 
(3.10). Using slightly different notation, these hypotheses are restated here 

as 

and 

k 
L wi " 0 

; = 1 
vs 

k 
L wi 'I 0 . 

i"l 

(3.15) 

The desired overall significance level, a*, is specified, and the test proceeds 

as follows. 

Two test statistics are computed using formulas (3.9) and (3.11). Using 

subscripts, these are 
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zl = 
!Dk 

/Var(!Dk) 

and ( 3. 16) 

Zz = 
C!Dk 

.Nar( C!Dk) 

The decision rule is to 

1. Reject H1 in favor of H2 if zl <_ -z(l-a*/4) or zl ~ z(l-o*/4)' 

2. Reject H
3 

in favor of H4 if z2 <_ -z(l-a*/4) or z2 ~ z(l-a*/4), or 

3. Accept both H1 and H3 if both -Z(l-a*/4) < zl < z(l-a*/4) and 

-z(l-a*/4) < z2 < z(l-a*/4) 

That is, each of the individual tests has a significance level of a*/2, so that 

in accordance with equation (3. 14} the overall significance level is less than 

or equal to o;*. 

To illustrate the procedure, refer again to the example data given in 

Section 3. 1. Let the desired overall significance level be a*= .05. Then 

a 1 o a 2 o .025, and entering Table 3.1 at a o .025, the value z(_ 9875 ) o 2.24 

is obtained. The test statistics are 

zl 0 
1.1 = 1.1 
11~ 

and 

z2 = 4.4 2.63 0 

/2-:8 

Now 

-2.24 < z
1 

0 1.1 < 2.24 

and 

z2 0 2.63 > 2.24 
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Thus, at an overall significance level of a~ .05, we would accept H
1

, but 
reject H3 in favor of H4. In other words, there is not sufficient evidence 

to conclude that ~4 differs from zero, but there is strong evidence that 

is larger than zero. 

4 
I ~; 

; = 1 

Although the overall level of significance is "controlled" in the sense 

that it is bounded from above, the actual level of significance will be less 
than desired. The result is that this procedure will tend to be more 
conservative (i.e., less powerful) than the bivariate procedure. 

3. 5 FURTHER DISCUSSION OF THE BON FERRON! AND B !VARIATE PROCEDURES 

Reference (2) gives a detailed discussion of the differences 

between the Bonferroni and bivariate procedures. Primarily, the distinguishing 
factor is the shape of the "acceptance regions''. 

The acceptance region for the Bonferroni procedure is simply the interior 

of a rectangle drawn on the !Dk' C!Dk plane, centered at (!Dk = 0, C!Dk = 0), 

and defined by 

If the observed point (IDk' CIDk) were inside this rectangle, both null hypotheses 
H1 and H3, given by "equations" (3.15), would be accepted. Otherwise, in 
accordance with the decision rule for this procedure, either H1 or H3 (or both) 

would be rejected. If one or both of the null hypotheses were rejected, it 

would be clear from the values of the test statistics which variable (IDk or 

C!Dk) caused the rejection. 
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The acceptance region for the bivariate procedure is the interior of 

an ellipse, drawn on the !Dk' C!Dk plane, centered at (!Dk = 0, C!Dk = 0), 

elongated in the CIDk direction, and 11 tilted 11 according to the sign and size 

of Cov(!Dk, C!Dk). The boundary of this elliptical region is defined by 

2 ? 

x = xz,(l-al (3.17) 

where/ is the test statistic given by equation (3.2). If the observed point 

(!Dk, C!Dk) is inside this region, the null hypothesis given by "equation" 

(3.1) is accepted. Otherwise, the null hypothesis is rejected, but it is not 

clear from the value of the test statistic which of the variables (IDk or 
CIDk) has caused the rejection. In order to interpret a significant result, 
it may be necessary to perform the individual tests on IDk and CIDk. An 
advantage of using the bivariate procedure, however, is that the significance 
level can be exactly specified. That is, the probability that the point (IDk' 

C!Dk) would be inside the ellipse defined by equation (3.17), when~= Q, 
is exactly (1-a). 

Reference (2) and most texts on multivariate statistical methods 
illustrate that when the acceptance regions for the Bonferroni and bivariate 

procedures are overlayed (i.e., one is superimposed on the other), there are 

regions where a point (IDk, CIDk) could be~ the acceptance region of one 
procedure but outside the acceptance region of the other. These regions, 
of course, explain the difference between the two procedures. 
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4.0 ESTIMATION OF VARIANCES AND COVAR!ANCES 

The identification and modeling of sources of variance and covariance 
in SNM control and accounting is difficult to address in a general context. 

This is because each plant has its own unique characteristics, anomalies and 
procedures, so that it is impossible to specify a step-by-step method of 

estimation that would be applicable to all licensees. 

As part of this project, inventory records and variance calculations 

for five successive material balance periods from an operating plant were 
studied. Some of the estimation techniques used by this particular plant 
and some of the conclusions drawn from the study could be useful to licensees 

who attempt to implement either the bivariate or Bonferroni procedure. This 

section discusses some concepts which should be general considerations for 

computing Var(!Dk), Var(C!Dk), and Cov(!Dk' C!Dk). 

4.1 GENERAL STRATEGY FOR CO~IPUTING VAR(!Dk) 

Many licensed facilities have established their own individual procedures 

for computing Var(IDk). Most of these procedures are computerized and are 

routinely carried out as part of the materials accounting process. This is 
true of the plant which was studied for this project. Although the explicit 

details of the variance calculations are too voluminous to present in this 
report, a brief overview of the general strategy is given. 

The plant under study keeps inventory records for approximately thirty
seven types of material in connection with its "U02 process". These materials 
are grouped into eighteen strata based on such considerations as conversion 
factors, sampling, weighing and analytical methods used to evaluate the amount 
of uo 2 entering, leaving or being stored in the plant. That is, each of the 
thirty-seven material types is assigned to one of the eighteen strata. 

Within each stratum, the quantities 8, A, Rand E are determined and an 

10 is calculated using equation (2.2). These within stratum ID quantities 

are summed over the eighteen strata to give the value of the overall ID 
quantity for the uo2 process. 
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For the purpose of computing variances, the following quantities are 
defined within each stratum. 

XBE = Amount of material common to 

both 8 and E 

XBR = Amount of material common to 
both B and R 

XAE = Amount of material common to 
both A and E 

XAR = Amount of material common to 

both A and R 

The "gross quantities 11 B, A, Rand E are then adjusted by subtracting the 

appropriate "materials-in-common" quantities as illustrated in Table 4.1. 

TABLE 4.1. Computation of Net Inventory 
Quantities for Var·iance Calculations 

Gross Quantities: 8 I\ R 

-X8E 

Adjustments: -X8R -X8R 

-XAE 

-XAR -XAR 

Net Quantities: 8* A* R* 

E 

-XBE 

-XAE 

E* 

The net quantities B*, A*. R*, and E* are then used for the variance calcula

tions as follows. 
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Each material balance period, random and systematic ''error parameters'' 
(or variances) are determined for each of the various methods of sam~ling, 

weighing and analysis. The appropriate "error parameters", conversion factors, 
and net material quantities for a particular stratum are multiplied and 

algebraically manipulated to obtain estimates of the variances due to the 
random and systematic errors within each stratum. These within stratum 
variance estimates are then summed over the eighteen strata to obtain overall 

estimates of the random and systematic error variances. Finally, these 
overall variance estimates are sur.1med to obtain an estimate of the variance 

of !D for the U0 2 process. For the kth period, this is Var(!Dk). 

Using the net material quantities within a stratum tends to minimize 

correlations due to "materials-in-common" among B*, A*, R* and E*. These 
net quantities are practically treated as if they were uncorrelated when 

computing variances. However, the net quantities within a stratum could be 

correlated due to, for example, being measured by the same technician, 

weighed by the same scale, etc. Also, there are definite correlations among 
certain of the strata. For example, one stratum might be UF6 cylinders, 

showing large values of B* and A* but small values of R* and E*. Whereas, 

a complimentary stratum would be fuel rods, showing small values of B* and 
A* but larqe values of R* and E*. That is, uo 2 enters the plant in the form 
of a raw material and leaves the plant in the form of a finished product. Thus, 

the B* and A* quantities of the UF6 cylinders stratum are highly correlated 

with the R* and E* quantities cf the fuel r0ds stratum. 

It may not be appropriate to assume independence among the strata 
and among the quantities within a stratum when computing variances. Ignoring 
correlations, of course, can lead to either overestimating or underestimating 

Var{IDv.,). If Var(ID~) is overestimated, the currently required test of ID 
" k 

could be rendered useless. If Var(_ID,,) is underestimated, the test of IDv 
" ,, 

could be overly sensitive resulting in an excessive "false alarm" rate. 
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4.2 DIFFICULTIES I~!TH CALCULATING VAR(CIDk) PJID COV(IDk, CIDk) 

An attempt was made to compute Var(CIDk) for periods k = 2, 3, 4 and 5 
from the inventory records of the plant under study. This experience 

revealed that since licensees are not required to monitor CIDk' many of their 
current inventory record keeping methods do not provide sufficiently detailed 

information to accommodate calculating Var(CIDk). If licensees were to 

implement one of the test~ng procedures requiring Var(CIDk)' modifications 

of their current practices would be necessary in two major areas. 

Specifically, inventory record-keeping would have to be expanded to include 
the needed cumulative information, and methods for pooling the error parameter 

data over the k most recent periods would need to be developed. 

As with computing Var(IDk)' each plant is unique in some ways, so that 
is it not possible to spell out a generally applicable method of computing 

Var(CIDk). However, there are some basic conceJts, relevant to the two 
problem areas mentioned above, which should be •:onsidered before attempting 
to implement a testing procedure which involves estimating Var(CIDk). 

In Section 4.1 a general overview of the calculation of Var(IDk) was 
given. The "first steps 0 described there are tile stratification of the 

materials and the within stratum materials-in-common adjustments of the 
inventory quantities as illustrated in Table 4.~. Organizing the inventory 
records for the calculation of Var(CIDk) would utilize exactly the same 
stratification of materials as for the calculation of Var(IDk). However, 
within a stratum there would be inventory quantities for the k most recent 
periods. The materials-in-common adjustments of these quantities would be 

sliglltly more complicated than for the case of a single period, illustrated 
in Table 4.1. 

To see this, consider three consecutive periods. Within a stratum, 

the necessary gross quantities would be: 
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The reason for excluding E1 and E2, of course, is that E1 = 82 and E2 = 83. 
The materials-in-common adjustments are made in three "stages". First, 

both 81 and A1 could have materials in common with R1, 82, R2, 83, R3 and E3. 

The record keeping procedure would have to supply sufficient detail to 

identify these materials-in-common quantities and make the adjustments. 

Secondly, after making the above adjustments, both G2 and A2 could have 

additional materials in common with R2, 83, R3 and E3. These additional 

adjustments would be made. Finally, after the above two adjustments are 

made, both 83 and A3 could have additional materials in common with R3 
and E3, and these adjustments would be made. The resulting net quantities 

would then be used in the variance calculations. 

Clearly, as the number of periods in a sequence increases, the number 

of materials-in-common adjustments gets quite large. However, with the 

availability of computers this is hardly a deterrent. The major concern with 

the multistage adjusting process would be preventing the same materials from 

being adjusted out more than once. 

The next step given in Section 4.1 for computing Var(IDk) is to 

multiply the net quantities with appropriate conversion factors and error 

parameters. The analogous step in computing Var(CIDk) requires careful 

consideration. 

The actual plant records which were studied for this project included 

a different table of error parameter estimates for each of the five material 

balance periods. While some of the estimates were quite stable over the 
five periods, others fluctuated dramatically. The actual raw data from 

which these parameters were estimated were not included in the plant records, 

nor were the degrees of freedom of the estima'tes. Thus, statistical tests 

of equality of the parameters over the periods were not possible. However, 

this raises the question of how to best utilize the error parameter data in 

computing Var(C!Dk). 

A possible procedure is to use the raw data to statistically test 

whether a particular parameter changes over the k periods being considered. 

If it is found to be stable, then the estimates for the k periods should 

be "pooled". For example, if k variance estimates, S~ {i = l, 2, ... , k) 
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are available, where S~ has n; degrees of freedom, the pooled estimate 
would be 

k 
1 

i = l 

k 

k 
L ni 

i = l 

which has L n; degrees of freedom. 
i = l 

( 4. l ) 

If, however, a parameter is found to change over the periods then 

the estimates for the individual periods should not be pooled. 

Whether pooled or individual parameter estimates are used, the next 
step is to judiciously match error parameter estimates, conversion factors 

and net quantities and then carry out the appropriate algebraic manipulations 

to compute the within-stratum variance of CIDk. 

Finally, these within-stratum variance estimates are summed over the 

strata to obtain an estimate of the variance of the overall CIDk. This 

is Var(C!Dk). 

If carried out correctly, the calculations will result in an estimate 
of Var(C!Dk) that is "compatible" with the estimate of Var(!Dk) for computing 
Cov(!Dk, C!Dk) from equation (3.7). If the estimates of Var(!Dk), Var(C!Dk_ 1) 
and Var(C!Dk) are not compatible then Var(C!Dk) [and also Var(C!Dk_ 1)] has 
either been overestimated or underestimated. This will, of course, affect 
the estimate of Cov(IDk' CIDk). The consequences of incorrectly esti~ating 
these variances and covariances would be statistical tests that are either 

insensitive or overly sensitive. 
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5.0 THE SlilULAT!ON STUDY 

The discussions thus far have focused on statistically testing l[)k 

and/or CIDk at the end of a particular material balance :Jeriod using one of the 
four procedures presented in Section 3. In order to evaluate the four 

procedures, it is desirable to monitor several processes over a number of 

material balance periods, where different StH~ diversion strategies are in 

effect. However, as mentioned in Section 4, most operating plants do not 
keep sufficiently detailed inventory records to accommodate the calculation 

of Var(C!Dk) and Cov(!Dk' C!Dk). Thus, existing (historical) plant inventory 
records are of little use. Also, it v1ould be infeasible in terms of time and 

cost to enlist several 11 Volunteer" plants to implement the more sophisticated 

record-keeping methods for the next five to ten years, after which a comparative 
study of the four procedures might be attempted. A very feasible and economi
cal approach is to carry out a computer simulation study. 

A simulation study was conducted for this project. Briefly speaking, 

this involved modeling a process over ten successive material balance periods 
by specifying an "SNI1 diversion strategy vector" 1::.10 and a variance-covariance 
matrix L

10 
relating the ten successive ID's (see Definition b, Section 2.2). 

Then, in accordance with equation (2.9), two thousand .!Q10 vectors were 
randomly generated and each of the four procedures was used to monitor all 

two thousand simulated processes over the ten material balance periods. 
Various statistics were accumulated which were used to compute detection 
probabilities, averaoe undetected losses and false alarm rates for the four 
procedures. This is equivalent to monitoring two thousand identical operating 
plants where differences in inventory records are due only to random variability 
in the physical inventory measurement system. 

The process simulation scheme was carried out for nine different variance

covariance matrices and twenty-four diversion strategies. That is, two 

thousand .!Q10 vectors were generated for each of two hundred sixteen covariance/ 
diversion strategy combinations. 
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This section presents the method of simulation, the choice of input 

parameters, assumptions and decision rules used, and the results of the 

simulation study. 

5.1 r~ETHOD OF GENERATING A SEQUENCE OF !D'S 

For the simulation study, it was necessary to be able to generate a 

random sample of size two thousand from the ten-variate normal distribution 

with specified mean vector .1::
10 

and specified variance-covariance matrix j
10 

(see Definition 5, Section 2.2). A computer program was written which uses 

the following random variable generating technique. 

On most computer systems, a "random number generator" is available which 

will generate a random sample from the uniform :a, l) distribution (sometimes 

called the rectangular distribution on the unit interval). If a random 

sample of size two is generated, let u
1 

and u
2 

be the observed values. These 

can be transformed to a random sample of size b1o from the normal (0, 1) 

distribution using the formulas 

and (5.1) 

x2 = [-2 loge(u1)J 112 Sin(2nu2). 

That is, x
1 

and x
2 

represent the observed outcorr,e of a random sample of size 

t1..ro from the nor111al distribution 1..rith mean zero and variance one. 

It is recommended that this "sampling" be repeated several times and 

that the observed values be "averaged" to obtain one "random normal deviate". 

For this study, eight random samples of size two are generated, giving a 

total sample size of sixteen. Letting the sixteen observed values be denoted 

x
1

, x
2

, ... , x
16

, a single value is computed using the formula 
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16 
y = ' X; (5.2) L 

i "'1 
4 

where y represents the observed outcome of a random sample of size one from 

the normal (0, 1) distribution. The "averaging" is done in an attempt to 

eliminate the effect of non-randomness which is a problem with some computer 

systems. 

To generate a sample of size one from the ten-variate normal distribution 

with specified r,lean vector l:lo and specified variance-covariance matrix ( 10 , 

the following technique is used. First, the above described procedure is 

repeated ten times to generate ten y values, denoted y1 , y2, ... , y10 . These 

represent a random sample of size ten from the normal (0, 1) distribution. 

The Y; values are arranged in a ten-element vector, given by 

y_= (5.3) 

Then y_ is a random sample of size one from the ten-variate normal distribution 

with the ten-element mean vector 0 and the ten-by-ten variance-covariance matrix 

110 . This is denoted N10 (Q, 110 ), ><here 1
10 

is given by equation (2.5). 

Next, letT be the ten-by-ten upper triangular matrix resulting from a 

Cholesky square root factorization of the specified variance-covariance matrix 

j 10 . That is, 

110 = T 'T . (5.4) 
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Then, the vector IQ10 is computed from the for~ula 

.!Jl10 = -"10 + T'.l'. (5.5) 

This is consistent with equation (2.10), where ~10 = T'y. Now. since y 

is from N10 (Q, 110 ), it follows immediately that 1010 given by equation (5.5) 

is from N10 (-"lD' T'T), or N10 (-"lD' I10 l as desired. 

5.2 CHOICE OF INPUT PARAMETERS)J_
10

AND I10 

It was mentioned in Section l that the purpose of this project is to 

evaluate the bivariate testing procedure, which involves comparing it with 

the other three procedures. The criteria for these comparisons are: 

probability of detection (i.e. , power), expected undetected 1 asses, and 

false alarm rates. It is of interest to determine how these criteria are 

influenced by differing diversion strategies. changes in the covariance 

structure among successive ID's, and actions taken when a loss is indicated 

by a test. This section discusses the choice of diversion strategies and 

variance-covariance matrices which were included in the simulation study. 

5.2.1 Discussion of Diversion Strategies 

From Definition 5, Section 2.2, a sequence of successive observed ID 

quantities can be expressed as the sum of a vector of true ID quantities and 

a vector of random "measurement errors". In order to evaluate the four 

testing procedures on the basis of their ability to detect different diversion 

strategies. it is necessary to make the following simplifying assumptions: 

l. The vector ~10 • defined by equation (2.10). represents only the 

amounts of SNf•l diverted from each of ten successive material 

ba 1 ance peri ads. 

2. There are no "correctable mistakes" in the inventory records. 

The vector l!.lo will henceforth be referred to as the "diversion strategy 

vector". 
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Suppose a goal quantity Q of SN!-1 is to be diverted from a process over 
ten successive material balance periods. Then according to the above assumptions, 
fl· is the amount of SN\1 diverted from the ith period, and 

1 

10 
Q = ' ~ l i 

i = 1 

which, from equation (2.13), is the true value of Cio10 . 

Define the quantity q; to be 

qi = Wi 

~ 

( 5. 6) 

( 5. 7) 

That is, q. is the fraction of the goal quantity diverted during the ith 
1 

material balance period. The computer program used for the simulation 

(see Appendix A) reads as input a "diversion pattern vector" g_, given by 

s.= ( 5. 8) 

and multiple values of Q. Then for a given value of Q, the diversion strategy 

vector ~lO is computed from the formula 

JJ.1o = 0 9. · ( 5. 9) 

This allows one diversion pattern to be used for multiple goal quantities. 

In this study, Q ranged in value from 0 to 30 units of SNt~. No specific units 
of measure were used. Thus, for example, if a constant loss diversion 

strategy is of interest, qi = .10 for all i, and for a specific value of Q, 
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-"10 = Q 

. 1 0 

. 10 

. 1 0 

If the goal quantity is Q = 15 units of SN:·l, then the strategy would be to 

divert ',..I· = 1.5 units of SNH frol<i each of the ten periods. 
1 

For this study, only constant loss diversion strategies were considered. 

However, tile variance-covariance structures were selected such that for the 

preliminary sh1ulation runs, two diversion patterns were studied. These 

arose as follows: 

l. When /Var(ID.) is constant over the ten periods, then the constant 
1 

loss diversion pattern is equivalent to having qi proportional to 

/Var(ID;} This has been recognized by many as an "optimal" 

diversion pattern. 

2. ~~hen IVar(ID.) is not constant over the ten periods, then the constant 
1 ---

diversion pattern is less than optimal, but probably a more realistic 

situation. That is, the diverter is unable to predict /Var{ID;), 

and simply diverts equal amounts from ecch period. 
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5.2.2 Selection of Variance-Covariance i'latrices 

Deciding which variance-covariance matrices to include in the simulation 

study was a multistage procedure. The results of the analysis of actual 

plant inventory records were considered, as were assumptions made in references 

(1) and (3). Finally, preliminary small scale simulation runs were made and 

the results helped narrow the scope of the study. 

It was mentioned in Section 4 that most licensees do not keep sufficiently 

detailed records to accOliJmodate calculation of Var(CIDk). This is definitely 

not a shortcoming of these facilities, since they are not required to monitor 

CIDk. However, an atte1-:1pt to crudely estimate Var(ClDk) from actual plant 

inventory records was unsuccessful. Since individual item identifications 

were not available, the materials-in-common adjustments, described in Section 4.2, 

could not be made. 

The approach taken was to assume a first-in-first-out (FIFO) inventory 

activity for the five material balance periods and then recompile the inventory 

records accordingly. Still, without individual item identifications, all of 

the necessary materials-in-common adjustments were not possible. The result 

was that Var(CIDk) was overestimated by unavoidably including covariances due 

to the materials-in-common quantities that were not adjusted out. Thus, when 

equation (3.7) was used to compute Cov(IDk' CIDk), the resulting estimate was 

inflated by the materials-in-common covariance terms. 

Realizing the poor quality of these estimates of Var(C!Dk) and Cov(Iok' C!Ok), 

an attempt vJas r:lade to estimate the vuriance-covariance matrix I5• 
see equation (2.11). Here again the covariances were overestimated. Even so, 

a correlation matrix was computed using the following rule: 

The correlation between any two I0 1 s in a sequence, say IOi and IDj' 
is given by 

where from 

o~ are the 
J 

equation (2.11) a .. 
1J 

variances, Var(ID1) 

oi. 
piJ. " ,-;:,~, = ra. o. 

1 J 

is the covariance of 10. and 10., 
1 J 

and Var(IO.), respectively. \'hen 
J 
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and o~ and 
1 

i = j, then 



a;; = ai and P;i = 1. If this transformation is performed on all elements of 
the matriX fk of equation (2.11), the resulting k-by-k symmetric matrix is 
called the correlation matrix and is given by 

Rk = 

where -1 < p .. < 1. 
~ lJ -

021 

p3l 032 

pkl 0kZ 

p 23 ... 0zk ( 5. ll ) 

l 

j 

The correlation matrix R5 which was estimated from the actual plant data 

had the peculiar pattern 

.7 

.6 

.6 

.7 

The concept of two successive I0 1 s having a weaker correlation than two I0 1 S 

which are separated Dy two or more periods is coullter intuitive, and is quite 

unrealistic in this SNH inventory context. It is conjectured that this 
peculiar correlation pattern is evidence that the overestir.1ation of Var(CIDk) 

and Cov(IDk' CIDk) gets worse as k increases. 
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Although attempts to estimate Var(CIDk) quantities and covariances 
from the actual plant data were unsuccessful, the results of this•analysis 
did in fact influence the final choice of variance-covariance matrices. This 

will be further discussed after other considerations have been presented. 

Since good covariance estimates from the actual plant data were not 

possible, a popular assumption about the form of Lk was considered. Both 
references (1) and (3) advocate the assumption that two successive ID's are 

correlated only because the ending inventory of the earlier period is the 
beginning inventory of the later period. Then assuming all other inventory 
quantities within a rna teri a 1 type stratum are "independent", they proceed to 
show that 

Cov(ID;, 1Di+1) = -Var(E;) . (5.13) 

The independence assumption together with equation (5.13) implies a variance
covariance matrix of the form 

Var(ID
1

) -Var(E
1

) 0 0 0 

-Var(E
1

) Var(ID2) -Var(E2) 0 0 

0 -Var(E
2

) Var( !0
3

) -Var(E3 ) 0 (5.14) 

Ik = 

0 0 -Var(E
3

) 

·Var(E, 1) 
K-

0 0 -'lar(Ek_1) Var( !Dk) 
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Under these assumptions, the actual plant data were used to estimate 

the elements of the variance-covariance matrix L5. Then using equation (5. 10), 

the correlations were computed. The values of the estimated correlation 

between any two successive !D's ranged from -.4 to -.2. 

One undesirable aspect of this assumption is that it implies that the 

covariance of two successive ID's is due only to materials in common with the 

two successive periods. This ignores the possibility of "intraclass" type 

correlations due to, for example, using the same personnel, instruments, 

tecJ1niques, etc. over several material balance periods, Thus, a more realistic 

correlation structure might have nonzero values of 

(regardless of sign) as i and j get farther apar·t. 

p .. that get "weaker" 
1J 

The next step in selecting variance-covariance matrices involved a 

large nun1ber of small scale simulation runs, where literally dozens of 

variance-covariance matrices were included. The results of this "preliminary" 

study combined with the considerations discussed above helped to narrow the 

scope of the variance-covariance matrix selection. The following conclusions 

were drawn: 

l. When the off diagonal elements of the matrix Rk' given by 

equation (5. 11), are predominantly negative (or positive), the 

resulting criteria for 

practically unaffected 

comparing the fJur procedures seem to be 

when the p .. values are replaced with an "average" 
1 J 

constant quantity 1,.rith the sar.1e s1gn. lhlS simp-lifies the stucly by the 

use of correlation structures Hith constant oft diagonal elements. 

2. The criteria for comparing the four testing procedures are drasti

cally different when the p .. are predoninantly negative than when 
1 J 

they are predominantly positive. 

3. The overall criteria for comparing the four testing procedures did 

not change noticeably when the values of /Var(IDk) , estimated fror., 

the plant data, were replaced by an "avera(Je constant"value. This 

is probably due to the stability of thE· IVar{IDk) quantities over 

the five material-balance periods in the plant record: .. 
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Based on these considerations, tt1e followlna corre·lation structures 

were included in the simulation study. 

Correlation i·:iatrix 1: 

p 0 0 0 

1 0 1 p 0 0 ,, 
1'1 o= n 0 p I 5. 15 l " ,, 

0 0 p 

0 p I 

Correlation i·,;atrix 2: 

Both structures were used in the simulation study with values of p ranging 

from -. 5 to . ~. 

For a specified number (say il) of material balance periods, the co:nputer 

program used for the simulation (see Appendix A) will read the lower triangle 

of a correlation matrix Rr,1 and then read the values of Var(IDi),i = 1 , •.. ,i'i. 

Elements of the variance-covariance matrix Zr.; are then computed by rearranging 
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terms in equation (5.10) to obtain 

a .. " p .. la4 a~ 
1J 1 J 1 J 

or (5.17) 
a .. 

1 J " pij /Var(!Di) Var(!Dj) 

The program also reads a specified diversion pattern vector~· as given 

by equation (5.8), and a specified number of goal quantities Q. Then for a 

particular value of Q, the diversion strategy vector .J:l.fii is cor.~puted using 

equation (5.9). 

At this point in the program, the distribution of the vector _!_!4..~ is 

defined as N~ll:!.rv:·L;,1 ) and the procedure described in Section 5.1 is used to 

randomly generate i!!.t
1 

vectors from this distribution. Although n is a user 

option of the program, 1,: = 10 was used in the simulation study for this 

project. 

The specific parameters used in the simulation study were: 

l. Correlation matrices l and 2, ~iven 'Y equations (5.15) and (5.16), 
respectively, with p taking the valu2s -.5, -.3, 0, .3, .5. Since 

matrices l and 2 are both the identity matrix 110 when p = 0, 

a total of nine distinct correlation matrices resulted. 

2. IVar(ID;J = l, for all i. This implies that the unit of measure 

for this study is IVar(!Di)' which i·~ assumed constant for all 

periods. 

3. The diversion pattern is~~= [.l, .1, .l, .1, .1, .1, .1, .1, .1, .1] 

and values of Q are 0, 5, 6, 7, ... , 23, 24, 25, 30, 35. That is, 

twenty-four goal quantities are included. 

It may seem that a very restrictive set of input parameters has been chosen 

for the simulation study. However, the results of the preliminary study 

showed that the desired comparisons a100ng the ,:our testing procedures can 

be made when only these parameters are used, and tne results of these 

comparisons can be interpreted quite generally. 
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5.3 DECISION RULES AND CRITERIA FOR COMPARISONS 

Since each simulated process will be monitored over ten material balance 

periods, the results will depend on the action taken \'>'hen a statistical test 

indicates a significant loss. The output from the computer program used in 
this study allows the user to evaluate the results under either of two 

decision rules. 

Decision Rule 1: Given a diversion strategy vector _ElO' if a statistically 

significant outcorr.e is observed at any period, it is assumed that the diversion 

strategy has been detected and corrected. Thus, under this decision rule, 
only first-ti111e detection statistics are accumulated for the four testing 

procedures over the 2000 simulations. 

Decision Rule 2: Given a diversion strategy vector ~10 , if a statistically 

significant outcome is observed at period i, the calculation of CID is 

restarted with period i + 1, but the diversion strategy is assumed not to have 

been corrected. Tabulation of the results under this assumption requires 

a ten-by-ten contingency table, where columns represent periods and rows 

represent restarts of the process. Any row or set of rows can be examined. 

This allows the flexibility of investigating different options for responding 

to statistically significant outcomes. This also allows examination of columns 

when it is of interest to investigate the results at a particular period. 

Due to the voluminous nature of the computer output under decision rule 2, 

it is not possible to present such detailed results in this report. However, 

under decision rule 1, it is very convenient to compute and display summary 

statistics which require very little space but give sufficient detail to 

accommodate meaningful comparisons among the four testing procedures. The 

following criteria are used to make the comparisons. 

First-Time Detection Probability: For a given diversion strategy vector 

~lO' this is the probability of detecting the diversions for the first time 

at or before the tenth period. This is a ~easure of the power of a testing 

procedure. Thus, high probabilities are desirable. 
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False Alarm Rate: This is simply the 11 first-time detection probability" 

when the goal quantity is zero (i.e., when no material is being diverted). 
It is desirable to control the false alarm raV'! at an acceptable low level. 

Expected Undetected Losses: This is another measure of the power of a 

testing procedure. To see this, suppose an amount 11· is diverted from each 
th 1 

period. If detected at the k period, the diverter would have successfully 

diverted material from the previous k-1 periods. That is, a cumulative ar.1ount 

I 5. 18) 

was diverted and was not detected. 

Thus, if a particular testina procedure is more powerful than the others 

for detecting constant ("trickle") diversions, it should (on the average) 

detect the losses sooner than the other methods. In other words, the 

cumulative undetected loss should be smaller (on the average) when the most 

powerful testing procedure is used than when any of the other procedures are 

used. 

5.4 RESULTS OF THE S!~IULATION 

This section presents the results of the simulation study. This is 

simply a series of graphs showing the results from 2000 simulations of each 
of the 216 processes defined by the nine correlation matrices in combination 

with the twenty-four goal quantities. For each of the nine correlation 
matrices there are two graphs. One graph shows first-tir.1e detection probabili

ties for the four testing procedures, plotted against the goal quantities. 

The second graph shows expected undetected losses for the four testing 

procedures plotted against the goal quantities. 

For convenience in plotting and discussing the results, the four testing 

procedures will be labeled as follows: 

Procedure 1 : the bivariate procedure 

Procedure 2: the test of IDk only 

Procedure 3: the test of C!Dk only 

Procedure 4: the Bonferroni procedure 
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As a starting and reference point, the case p = 0 is considered first. 

In this case the correlation matrices given by equations (5.15) and (5.16) 

are both the identity ~atrix 110 , given by equation (2.5). That is, there 

are no correlations ar,;ong the ten IO's. Fi<]ure ~.1 shm-..rs the first-tir~1e 

detection probabilities for the four procedures on the vertical axis with \J., 
-1 

the amount diverted from each period, on the horizontal axis. Recall that 

IJ. is constant over the ten periods, so that p. = Q/10 (i.e., ',1· is 1m~ of the 
1 1 1 

goal quantity). Examining Figure 5.1, Procedure 2 has the highest false 

alarm rate but is slightly less powerful than the other procedures when 

.7<lJ.<l.5. 
- 1 -

Looking now at Figure 5.2, the expected undetected losses are noticeably 

smaller for Procedure 3 when .7 < \l· < 2.5. Procedures 1 and 4 are 
- 1 -

indistinguishable and have expected losses that are just slightly lower than 

Procedure 2. 

Thus, if there were no correlations among the successive ID's, monitorin~ 

CIDk only offers the best protection against trickle losses. 

Consider next t-1atrix 1, given by equation (5.15), with p = -.3. Figures 

5.3 and 5.4 reveal that Procedure 2 has the highest false alarm rate, but is 

considerably less powerful than the other procedures when .5 < 1-l· < 1.8. 
- 1 -

Procedures 1 and 4 are practically indistinguishable and are only slightly 

less powerful than Procedure 3 which is most powerful. Figures 5.5 and 5.6 

are the results when ~latrix 2, given by equation (5.16), is used with p = 

The results are practically identical with those in Figures 5. 3 and 5.4. 

Figures 5.7 and 5.8 show the results for r-tatrix 1 when c = 
>~ -.5. 

Clearly, Procedures 1, 3 and 4 are significantly more powerful than Procedure 

2 when p. < 2. i~ote also that Procedure 2 has a higher false alarm rate 
1 -

than the other procedures. Figures 5.9 and 5.10 shOI"I the results for 

l~atrix 2 when p = -.5. There are some differences between these and 

Figures 5.7 and 5.8 due to the positive elements p 2 , p\ etc. in 1\latrix 2. 

These positive elements tencl to slightly decrease ti1e power of Procedures 1, 

3 and 4. 
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Figures 5.11 and 5.12 show the results for t1atrix 1 when p = .3. 
Figures 5.13 and 5.14 show the results for r~atrix 2 when p = .3. There 

are really no noticeable differences between results for the two matrices. 
In both cases, Procedure 2 has a much higher false alarm rate than the 
others but is slightly more powerful than the others when~· < 1.0. 

1 -

Figures 5.15 and 5.16 show the results for i1atrix 1 when p = .5. 

Actually there is very little change from the results when p = .3. However, 
there has been a slight upward shift in the expected undetected losses for 

a 11 procedures. 

Figures 5.17 and 5.18 show the results for Matrix 2 when p = .5. Here, 

the nonzero (positive) off diagonal elements have caused Procedures 1, 3 and 
4 to be noticeably less powerful than in the previous examples. This is 

especially evident in Figure 5.18 showing a general upward shift in expected 
undetected losses. In this case, Procedure 2 is more powerful than any of 

the others when ~· < 2. When ).J. > 2, Procedures 2 and 3 are slightly more 
1 1 

powerful than Procedures 1 and 4. 
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6.0 CONCLUSIONS 

The results of the simulation study, presented in Section 5.4, illustrate 

that VJhen the correlations among successive ID's are predominantly less than 

or equal to zero, the bivariate and Bonferroni procedures are considerably 

more powerful for detecting trickle losses than the currently required test 

of ID only. Hm~ever, 1-;hen correlations amon() the successive ID's are 

predominantly greater than zero, all tests which use Var(ClDk) are generally 

less powerful than the test of ID only. 

This is because, from en,uation (2.14), Var(CIDk) includes the sum of the 

covariances among the k ID's. ~~hen the covariances are predominantly negative, 

Var(CIDk) is reduced givinc,: a more powerful test, and 11hen the covariances are 

predominantly positive, Var(CIDk) is increased giving a less powerful test. 

In all cases considered, the currently re(]uired test of ID only had the highest 

false alarm rate. 

Thus, if the assumptions made in references (1) and (3) are at all realistic, 

the correlation structure for successive ID's should be similar to either t~atrix 1 

or ~atrix 2, equations (5.15) and (5.16), respectively, with p < 0. In this 

case, tnere is a definite advantage in implementing the bivariate procedure. 

From a practical point of view, h011ever, only licensees who have access 

to computerized recordkeeping systems should attempt to implement the bivariate 

procedure. This is because of the more sophisticated inventory recordkeeping 

which is required to accommodate the calculation of Var(CIDk). 

The simulation results for the bivariate and 8onferroni procedures are 

practically indistinguishable. Thus, it may seern that the Bonferroni procedure 

would be preferable, since it avoids the estimation of Cov(IDk' CIDk) and the 

matrix calculations ltJhich are necessary for implementation of the bivariate 

procedure. However, both procedures require the more sophisticated record

kee;:>ing and the calculation of Var(CIDk). Thus, using equation (3.7), the 

estimation of Cov(IDk' CIDk) is trivial and should not be a consideration in 

selecting one method over the other. Also, calculations involvinq two-element 

vectors and two-by-two matrices are quite simple, even if done by hand. There

fore, since the significance level can be exactly specified for the bivariate 

procedure but not for the Bonferroni procedure, the bivariate procedure is 

preferred. 
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APPEND! X A 

SIHULATION COMPUTER CODE filTH USER INFORi'IAT!ON 

This Appendix presents the FORTRAN computer program ~/nich was used for 

the simulation study discussed in Section 5. User instructions are provided 

which specify the necessary input data. A worked example illustrates use of 

the program and interpretation of the output. Finally, a complete listin~ 

of the computer code is given. 

The program is 11 Self-contained 11 except that the sub-function RNOR calls 

a uniform random deviate generator RANF which is system-supplied. r.r1ost 

computer systems have a system-supplied random deviate generator, but the names 

tend to vary. Thus, the user should check into this, and possibly alter 

sub-function RNOR before attemptin~ to run this program. 

This program is dimensioned to handle up to ten material balance periods. 

If it is desirable to consider larger problems, the arrays and matrices could 

be redimensioned, but the various input and output formats would have to be 
cautiously altered to allow for the wider input and output fields. 

Descriptions of and format specifications for the necessary input Uata 

cards are now given. If a data file is to be used rather than cards, each 

card would correspond to one line of the data file. All integers are assu~ed 

to be right-justified, and all real numbers must either include a decimal point 

or be right-justified. 

Card 1: Format is (13) 

Col. l-3, NDAT = number of variance-covariance/diversion pattern 
combinations to be studied. 

Note: for each of the NDAT problems to be studied, a sequence of input data 

cards is necessary as follows. 

Card 2: Forr.1at is (414, 4F10,0) 

Col. 1-4, N = number of material balance periods. 

Col. 5-8, Nf-1U = number of goal quantities to be specified. 

Col. 9-12, NIT= number of iterations (or simulated processes) 
desired. 



Col. 13-16, IVAR = 0 if correlation matrix will be used as variance

covariance matrix 

= 1 if Var(IDi) quantities are to be randomly 

generated, or 

= 2 if Var(IDi) quantities are to be input. 

Col. 17-26, OF =degrees of freedom for chi-square distribution 

used to generate Var( ID;) quantities v,hen IVAR = 1 option is 

specified. Can be left blank if IVi\R = 0 or 2. 

Col. 27-36, ZSCORE = upper 1-a/2 percE·ntile of the standard normal 

distribution (used as critical value for testing procedures 2 and 3). 

Col. 37-46, CHI2 =upper 1-a percentile of the chi-square distribution 

with 2 degrees of freedom (used as critical value for bivariate 

procedure). 

Col. 47-56, ZSC02 = upper l-o/4 percentile of the standard normal 

distribution (used as critical value for Bonferroni procedure). 

The next sequence of N cards gives the rows 

correlation matrix RN' see equation (5.11). 
RN' The fomat for each card is (NFlO.O). 

of the lower triangle of the 

Let .~ ij be the ij th element of 

Card 3: First row of lower triangle of RN 

Col. 1- l 0, o11 

Card 4: Second row of lower triangle of RN 

Col. 1-10, p21 

}

Col. ll-20, p
22 

: additional cards as needed 

Card ~~ + 2 Nth rOI'I of lower triangle of RN 

Col. l-10, pNl 

Col. ll-20, oN 2 

Col. [l + lO(N-1)]-lON, oNN 

A.2 



Next, the Var{ID;) f]Uantities are input if the IVAR = 2 option was specified 

on Card 2. 

Card N + 3: Fomzt is (NFlO.O) 

Col. l-10, Var(ID1 ) 

Col. ll-20, Var(Io
2

) 

Col. [l + lO(N-1 )] -lON, Var(IDN) 

Note: If IVAR = 0 or IVAR = l, omit card N + 3. 

Card N + 4: Diversion pattern vector, defined in equation (5.7), 

format is (NFlO.O). 

Col. l-10, q1 
Col. ll-20, q

2 

Next, there are NHU (specified on card 2) cards, each havinq one goal quantity. 

The format for each card is FlO.O. 

Card N + 5: 

Col. l . l 0, Q
1 

Card N + 4 + N1·1U 

Col. l-10, QNi1U 

The sequence of cards, beginning with Card 2, is then repeated for each 

covariance/diversion pattern combination. That is, there are NDAT (specified 

on Card 1) such sequences of cards. 

A.3 



Example 

It is of interest to compare the four testing procedures for monitorinf! 

500 identical processes over five ,,,aterial balance periods under the follow

ing operating conditions. 

First, it is assumed that the correlation structure among the five 

successive ID 1 s is given by 

-.4 0 0 0 

-.4 1 -.4 0 0 

R5 = 0 -.4 -.4 0 (A. 1 ) 
0 0 -.4 1 -.4 

0 0 0 -.4 

The Var(!Di) quantities to be input are 

Var( 10
1

) = . 53 

Var( Io
2

) = . 56 (A.2) 
Var(ID

3
) = 1. 75 

Var(IC
4

) = 1.02 

Var(ID
5

) = 1.42 

Two diversion patterns are of interest. A constant loss pattern, 

given by 

q I = r 
-, . 2 .2 .2 .2 . 2], (A.3) 

and a pattern 1-1here the amount diverted from thE· ith period is proportional 

to /Var( ID;), or in this case, 

g!< = [.15 .15 .26 .20 .24], (A.4) 

For each diversion pattern, three goal quantities are of interest. 

-~.4 



They are 

Ql = 0 , 

02 = 8 (A. 5) , 

03 = 12. 

The Ct = .05 significance 1 eve 1 will be used for all testing procedures. 

The above problem has bm covariance/diversion pattern combinations. 

That is, the variance-covariance matrix constructed from the information in 

equations (A.l) and (A.2) will be used v,rith eacil of the t\-10 diversion pattern 
vectors given by equations (A.3) and (A.4). Thus, card 1 input is Nt.iAT = 2. 

Card 2: Quantities are 

N = 5 material balance periods 
rJflU = ~ goal quantities 

NIT= 500 simulated processes 
IVAR = 2 indicates variances will be input 
OF = 0 or blank, since IVAR = 2 

ZSCORE = 1.96 

CHI2 = 5.99 

ZSC02 = 2.24 

Cards 3-7: Lower triangle of R
5

, equation (A.l). 

l.D 

-.4 l.O 

0 -.4 l.O 

0 0 -.4 l.O 

0 0 0 -.4 l.O 

Card 8: Var(!Di) quantities, equations (A. 2) 

.53 .56 l. 75 1.02 1.42 

A.5 



Card 9: Diversion pattern 'l1 , 
equation 1} .. 3) 

.2 .2 .2 .2 .2 

Cards 10-12: Goal fJuantities, equation I A. 5) 

0.0 

3.0 

12.0 

Cards 13-23: These are a repeat of cards 2-12, except that Card 20 

is the diversion pattern .9.z• given by equation (A.4). 

The actual input data are displayed in TJ\BLE A.l. 

TABLE A.1. Input Data for Examp1 e 

002 
0005000305000002 0.0 1. 96 '. 9 9 2.24 
1.0 
-.4 1.0 
0.0 -.4 1.0 
0.0 0.0 -.4 1.0 
0.0 0.0 0.0 -.4 1.0 
.53 .56 1. 75 1.02 1.42 
• 2 .2 .2 . 2 • 2 
0.0 
8.0 
12.0 
0005000305000002 0.0 1. 96 5.99 2.24 
1.0 
-.4 1.0 
0.0 -.4 1.0 
~.0 0.0 -.4 1.0 
0.0 0.0 0.0 -.4 1.0 
.53 .56 1. 75 1.02 1. 42 
.15 .15 .26 • 2 .24 
0.0 
8.0 
12.0 

A.6 



The actua 1 output from the program begins on page A. 9 with the 1 ower 

triangle of the correlation matrix and the Var(llJi) quantities which were 

input. The variance-covariance matrix is printed, followed by the transpose 

of the Cholesky matrix which is given as T' in equations (5.4) and (5.5). 

Page A.lO begins with the diversion strategy vector~· ~ Q ~· where Q is 
a goal quantity and~· is the diversion pattern in~ut by the user. This 

particular example vector corresponds to the goal quantity Q ~ 0, and the results 

will be used to assess "false alarm" frequencies and rates. This is followed 

by a table, which is labeled "RESULTS FOR METHOD l". The interpretation of 

this table is as follows: 

1. The first row gives a frequency distribution for first-time 

detections. The first five elements give the number of times 

a first-time detection occurred at each of the five periods. 

The sixth element is the total number of first-time detections 

wnich occurred during the five periods. 

Tf1e seven-:h element is the probability of a first-time detection 

occurring at some time during the five periods. 

2. The second row gives the first-time detection probabilities for 

each of the five periods. Specifically, in this example, 25 of 

the 500 simulated processes (or 5%) were rejected for the first 

time during periods 1. Of the remaining ~75 crocesses, 15 (or 

3. 16%} were rejected for the first time during periods 2. And so on. 

3. The third rm~ gives a "frequency distribution"for second-time 

detections. In this example, of the 25 processes which were 
rejected for the first time during period 1 , 2 \-Jere rejected 

for the second time at period 2, and so on. That is, if a 
process is restarted after a first time rejection, but the 

cause of the rejection has not been resolved, it could be 

rejected for a second time during a later period. 

A. 7 



4. The fourth, fifth, and sixth rows give "frequence distributions" 

for third-time, fourth-time, and fifth-time detections, 

respectively. 

5. Note that the sixth column {i.e. sixth elements of rows 

1, 3, 4, 5, 6 and 7) gives rovJ totals. 

6. The seventh and eighth rows give column totals and probabilities 

respectively. In this example, a total of 16 of the 500 

processes {or 3.2%) \-Jere rejected during the third period. 

The sixth element of the seventh r·ow gives the overall total 

number of rejections, but this may include multiple 

rejections of some processes and n1ust be interpreted cautiously. 

The table on page A.ll is labeled "t·1ETHOD l FREQUENCY DISTRIBUTION 

OF UNDETECTED LOSSES". Undetecteu losses are defined by equation (5.18), 

and the table is self explanatory. 

For each of the four testing procedut·es, two tables, similar to 

those discussed above are constructed for each goal quantity. To conserve 

space, only the results for the first diversion pattern and the goal C]uantities 

Q = 0 and Q = 3 are presented. 

A.S 



THE LOWER TRIANGLE OF THE CORRELATION HATRIX 

l. 0000 
-0.4000 1.0000 

0.0000 -0.4000 1.0000 
0.0000 0.0000 -0.4000 l. 0000 
0.0000 0.0000 0.0000 -0.4000 l. 0000 

THE VAR(ID) QUANTITIES FOR THE N PERIODS 

0.5300 0.5600 l. 7 500 l. 0200 1.4200 

THE VARIANCE-COVARIANCE NATRIX FOR 'tHE 5 SUCCESSIVE ID QUANTITIES 
p 

~ 

0. 53 00 -0.2179 0.0000 0.0000 0.0000 
-0.2179 0.5600 -0.3960 0.0000 0.0000 

0.0000 -0.3960 l. 7 500 -0.5344 0.0000 
0.0000 0.0000 -0.5344 l. 0200 -0.4814 
0.0000 0.0000 0.0000 -0.4814 1.4200 

'l'HE TRANSPOSE OF THE CHOLESKY MATRIX 
0.7280 

-0.2993 0.6859 
0.0000 -0.5774 1.1902 
0.0000 0.0000 -0.4490 0.9047 
0.0000 0.0000 0.0000 -0.5321 1.0662 
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ME1'HOD 1 

FREQUENCY DISTRIBUTION OF UNDE'l'ECTED LOSSES 

SIZE OF FREQUENCY 
UNDE1'ECTED OF 

LOSS OCCURRENCE 

0.0 25.0 

0.0 15.0 

"" 0.0 13.0 

0.0 12.0 

0.0 10.0 

0.0 425.0 

AVERAGE UNDE'l'EC1'ED LOSS = 0. 0000 

VARIANCE OF UNDETECTED LOSSES= 0.0000 

S'l'ANDARD DEVIATION OF UNDE'l'ECTED LOSSES = 0. 0000 



RESULTS FOR METHOD 2: ROWS REPRESENT RESTARTS 
COLUMNS REPRESENT PERIODS WHERE HO WAS REJECTED 

25.0000 27.0000 19.0000 22.0000 17.0000 110.0000 0.2200 

0.0500 0.0568 0.0424 0 0 0513 0.0418 

0.0000 2.0000 6.0000 6.0000 5.0000 19.0000 

"' 0.0000 0.0000 0.0000 0.0000 3.0000 3.0000 
~ 

N 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

COLUMN 'l'O'l'ALti AND PJ:.;.H.CEN'l'AGES 

25.0000 29.0000 25.0000 28.0000 25.0000 132.0000 

0.0500 0.0580 0.0500 0.0560 0.0500 



J> 
~ 

w 

METHOD 2 

cREQUENCY DISTRIBUTION OF UNDETECTED LOSSES 

SIZE OF 
UNDE'l'EC'fED 

LOSS 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

AVERAGE UNDE1'ECTED LOSS = 

FREQUENCY 
OF 

OCCURRENCE 

25.0 

27.0 

19.0 

22.0 

17.0 

390.0 

0.0000 

VARIANCE OF UNDETECTED LOSSES= 0.0000 

S1'ANDARD DEVIATION OF UNDETECTED LOSSES = 0. 0000 
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ME'l'HOD 3 

FREQUENCY DISTRIBUUON OF UNDET'ECTED LOSSES 

SIZE OF 
UNDETECTED 

LOSS 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

AVERAGE UNDETECTED LOSS = 

FREQUENCY 
OF 

OCCURRENCE 

25.0 

15.0 

25.0 

18.0 

9.0 

408.0 

0.0000 

VARIANCE OF UNDET'ECTED LOSSES = 0.0000 

S'J'ANDARD DEVIAT'ION OF UNDETECTED LOSSES = 0. 0000 



RESUWS FOR METHOD 4: ROWS REPRESENT RESTARTS 
COLUMNS REPRESENT PERIODS WHERE HO WAS REJECTED 

16.0000 22.0000 18.0000 16.0000 14.0000 86.0000 0.1720 

0.0320 0.0455 0.0390 0.0360 0.0327 

0.0000 0.0000 4.0000 5.0000 5.0000 14.0000 

"' 
0.0000 0.0000 0.0000 0.0000 2.0000 2.0000 

~ 

m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

COLUMN 'T'0'1'AT.S AND PERCEN'l'AGES 

16.0000 22.0000 22.0000 21.0000 21.0000 102.0000 

0.0320 0.0440 0.0440 0.0420 0.0420 



, 
-· 
~ 

~IETHOD 4 

FREQUENCY DISTRIBU1'ION OF UNDETEC1'ED LOSSES 

SIZE OF 
UNDETECTED 

LOSS 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

AVERAGE UNDE1'EC1'ED LOSS = 

FREQUENCY 
OF 

OCCURRENCE 

16.0 

22.0 

18.0 

16.0 

14.0 

414.0 

0.0000 

VARIANCE OF UNDETECTED LOSSES = 0.0000 

S1'ANDARD DEVIATION OF UNDETECTED LOSSES = 0. 0000 



THE RESULTS FROM 500 ITERATIONS FOR THE DIVERSION STRATEGY 
1.6000 1.6000 1.6000 1.6000 1.6000 

RESULTS FOR ME1'HOD 1: ROWS REPRESENT RESTAR1'S 
COLUMNS REPRESEN1' PERIODS WHERE HO WAS REJECTED 

309.0000 166.0000 24.0000 0.0000 0.0000 499.0000 0.9980 

p 0.6180 0.8691 0.9600 0.0000 0.0000 
~ 

00 0.0000 147.0000 130.0000 136.0000 54.0000 467.0000 

0.0000 0.0000 22.0000 79.0000 113.0000 214.0000 

0.0000 0.0000 0.0000 2.0000 16.0000 18.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

COLUMN TOTALS AND PERCENTAGES 

309.0000 313.0000 176.0000 217.0000 183.0000 1198.0000 

0.6180 0.6260 0.3520 0. 4340 0.3660 
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METHOD 1 

FREQUENCY DISC!'RIBUTION OF UNDE1'ECTED LOSSES 

SIZE OF 
UNDETECTED 

LOSS 

0.0 

1.6 

3.2 

4.8 

6.4 

8.0 

AVERAGE UNDETECTED LOSS = 

FREQUENCY 
OF 

OCCURRENCE 

309.0 

166.0 

24.0 

0.0 

0.0 

1.0 

0.7008 

VARIANCE OF UNDETECTED LOSSES= 0.9803 

STANDARD DEVIATION OF UNDETEC1'ED LOSSES = 0. 9 901 



RESULTS FOR ME1'HOD 2: ROWS REPRESENT RESTARTS 
COLUMNS REPRESENT PERIODS WHERE HO WAS REJECTED 

309.0000 133.0000 28.0000 11.0000 6.0000 487.0000 0.9740 

0.6180 0.6963 0.4828 0.3667 0.3158 

0.0000 147.0000 81.0000 93.0000 41.0000 362.0000 

» 0.0000 0.0000 22.0000 61.0000 68.0000 151.0000 
N 
0 0.0000 0.0000 0.0000 2.0000 14.0000 16.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

COLUMN TOTALS AND PERCEN'l'AGES 

309.0000 280.0000 131.0000 167.0000 129.0000 1016.0000 

0.6180 0.5600 0.2620 0.3340 0.2580 
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METHOD 2 

fREQUENCY DISTRIBUTION OF UNDETECTED LOSSES 

SIZE OF 
UNDETECTED 

LOSS 

0o0 

1.6 

3o2 

4o8 

6o4 

8o0 

AVERAGE UNDETECTED LOSS = 

FREQUENCY 
OF 

OCCURRENCE 

309o0 

133 0 0 

28o0 

11.0 

6o0 

13o0 

0o9952 

VARIANCE OF UNDETECTED LOSSES = 2o9322 

STANDARD DEVIA1'ION OF UNDETECTED LOSSES = 1 o 7124 



RESULTS FOR METHOD 3: ROWS REPRESENT RESTARTS 
COLUMNS REPRESENT PERIODS WHERE HO WAS REJECTED 

309.0000 184.0000 7.0000 0.0000 0.0000 500.0000 1.0000 

0.6180 0.9634 l. 0000 0.0000 0.0000 

0.0000 147.0000 157.0000 127.0000 50.0000 481.0000 

p 0.0000 0.0000 22.0000 91.0000 137..0000 250.0000 
N 
N 0.0000 0.0000 0.0000 2.0000 28.0000 30.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

COLUMN TOTALS AND PERCENTAGES 

309.0000 331.0000 186.0000 220.0000 215.0000 1261.0000 

0.6180 0.6620 0.3720 0.4400 0.4300 



ME'rHOD 3 

fREQUENCY DIS'l'RIBU'l'ION OF UNDETECTED LOSSES 

SIZE OF FREQUENCY 
UNDETECTED OF 

LOSS OCCURRENCE 

0o0 309o0 

1.6 184o0 

)> 3o2 7o0 
N 
w 

4o8 0o0 

6o4 0o0 

8o0 0o0 

AVERAGE UNDE'l'EC'l'ED LOSS = 0 o 6336 

VARIANCE OF UNDETECTED LOSSES = 0 o6854 

S'l'ANDARD DEVIATION OF UNDETECTED LOSSES = 0 o 827 9 



RESULTS FOR METHOD 4: ROWS REPRESENT RESTARTS 
COLUMNS REPRESENT PERIODS WHERE HO WAS REJECTED 

253.0000 231.0000 14.0000 2.0000 0.0000 500.0000 l. 0000 

0.5060 0.9352 0.8750 l. 0000 0.0000 

0.0000 85.0000 130.0000 180.0000 71.0000 466.0000 

)> 
0.0000 0.0000 6.0000 49.0000 115.0000 170.0000 

N 

"'" 0.0000 0.0000 0.0000 0.0000 3.0000 3.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

COLUMN TOTALS AND PERCENTAGES 

253.0000 316.0000 150.0000 231.0000 189.0000 1139.0000 

0.5060 0.6320 0.3000 0.4620 0.3780 



, 
0 
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ME1'HOD 4 

FREQUENCY DIS1'RIBUTION OF UNDE1'ECTED LOSSES 

SIZE OF 
UNDE1'ECTED 

LOSS 

0o0 

1.6 

3o2 

4o8 

6o4 

8o0 

AVERAGE UNDE'rECTED LOSS = 

FREQUENCY 
OF 

OCCURRENCE 

253o0 

231.0 

14o0 

2o0 

0o0 

0o0 

0o8480 

VARIANCE Of' UNDE1'EC1'ED LOSSES = 0 o 8442 

STANDARD DEVIA1'ION OF UNDETEC1'ED LOSSES = 0 o 9188 



The set of summary statistics given in TablE A.2 is taken from the 

more extensive output presented above. This summary information is output 

by the program, but is directed to a different printing unit (or output file) 

than the more extensive output. 

These summary statistics can be plotted, as in Figures 5.1-5.18, and 

used to compare false alarm rates, first-time detection probabilities, and 

expected undetected losses from the four testing procedures. 

In this example, the same variance-covariance matrix was studied under 

two diversion patterns. These covariance/diversion pattern combinations are 

identified in column 1 of Table A.2. The content of the other columns is 

self explanatory. 

Looking at the first-time detection probabilities in Column 6, when the 

goal quantity is 0, procedure 2 has the highest "false alarm rate" under the 

first diversion pattern. However, under the second diversion pattern, both 

procedures 2 and 3 show hiqher false alarm rates than the others. When the 

goal quantities are 8 or 12, the first-time detection probabilities are near 

l under both divel~sion patterns, and a better comparison of the procedures can 

be made by looking at the average undetected losses in Column 4. 

\~hen the goal quantity is 8, under either diversion pattern, procedure 

2 is clearly the least powerful (i.e., results in considerably larger average 

undetected losses than the other procedures). It is also evident that under 

diversion pattern 2, larger undetected losses could be expected than under 

diversion pattern l. This is consistent with the idea that diverting an 

amount proportional to IVar(ID) each period is an optimal diversion pattern. 

In general, the results in Table A.2 are consistent with the :results 

presented in Section 5. 

A completE listing of the computer sin;Jlation code follows, starting on 

page A.28. 
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T.4BLE A.2. Summary Statistics for First-Time Detections 

COVAR GOAL TESTING AVERAGE S'i'D. DEV. OF FIRS'l'-THlE 
MATRIX QUANTITY PROCEDURE UNDETECTED UNDETECTED DE'l'EC'l'ION 

LOSS LOSSES PROBABI1'L'l'Y 

1 0.00000 1 0.00000 0.00000 0.15000 
1 0.00000 2 0.00000 0.00000 0.22000 
1 0.00000 3 0.00000 0.00000 0.18400 
1 0.00000 4 0.00000 0.00000 0.17200 
1 8.00000 1 0.70080 0.99009 0.99800 
1 8.00000 2 0.99520 1.71238 0.97400 
1 8.00000 3 0.63360 0.82787 1. 00000 
1 8.00000 4 0.84800 0.91880 1.00000 

J> 1 12.00000 1 0.23520 0.71427 1.00000 
N 1 12.00000 2 0.23520 0.71427 1.00000 
~ 1 12.00000 3 0.23520 0.71427 1. 00000 

1 12.00000 4 0.37920 0.87626 1. 00000 
2 0.00000 1 0.00000 0.00000 0.14800 
2 0.00000 2 0.00000 0.00000 0.19600 
2 0.00000 3 0.00000 0.00000 0.20000 
2 0.00000 4 0.00000 0.00000 0.15200 
2 8.00000 1 1.09232 1.05500 1.00000 
2 8.00000 2 1.68848 2.07078 0.95600 
2 8.00000 3 0.96112 0.91725 1. 00000 
2 8.00000 4 1.19840 1.01091 1.00000 
2 12.00000 1 0.58680 0.89679 1.00000 
2 12.00000 2 0.66864 1. 08391 1.00000 
2 12.00000 3 0.56880 0.85304 1. 00000 
2 12.00000 4 0.76680 0.92670 1.00000 



c 
c 

c 

PROGRAM IDSIM 

REAL~S V\Hl,Hl) ,CHtHl1Hl) 1ID(l!l) ICID,X(Hl) 1VC(Z, 2) 152 (10) ,1'N 
R£f,L ~ 8 MU ( Hl) , RHO ( Hl 1 10) , DF 1 ZSCORE, CHI2, T, Dl'I.BS 1 DSQRT, TMP, TCR 
REAL"8 fl.R(4 ,10 ,12) ,'1'1 ,T2 ,RNOR,DET, ZSC02 ,C'rOT ( 4 1 2 1 11) ,FR (4, 12) 
REAL"8 ULOS(ll) 1 NULOS(4 1 11) ,AVULOS(4) ,V,\RLOS(4) ,SDLOS(4) 
RE.\1"8 SLOS(4) ,SQLOS(4) ,CLOS,STRA'l'(Hl) 

C FI:..E SIM.DAT CONTAINS IN?U'l' OAT.\ 
c 

OPEN ( UNI'l'=1 1 NAHE= 'SIM. DA'l'' 1 TYPf> 'OLD' ) 
c 
C ?RCGRAM \'/RITES EXTE:lSIVE SH!ULATION OU'fPL:T TO ~IM.FP'!.' 

c 
OPE:-l ( UNIT=2 ,KANE:' SHl. RP1'' , TYPE=' ~EW') 

c 
C PROGRAM WRITES SU~1MARY STf..TISTICS TO LOSS. RPT 
C HICLUDING EXPSC'l'ED UNDETECTED LOSSES AND 
C FI.'\S'.l'-'l'I/1£ ;JE'l'EC~ION PROBABILITIES 
c 

OPEN\ :.::<nT=3, NAHf.= 'LOSS. RP'f' , T':'PE= 'N::W' ) 
Ilool3333 
12=2.":'579 

C R£!•,0 NDAT = CF DATA SETS '1'0 BE. ::::PC1' 
c 

?.EAD(l,lll.o.l NDAT 
llll FOREA'l'I.IJ) • 

00 9999 IJAT=l 1 ~DAT 
c 
C READ N = # 0<' :·\A'£ERIAL Si'::..ANC:E Pi::RICDS 
C 1-<MU "' # OF DIVERSION S'l'RATEG"f 'JEC'IOR.! TO 3E SPECIFIED 
'- :H:' = # OF I'l'ERA':':'ImlS fOR EACH STRATEGY 
C IVAR = l IF VARIAc'iCi::S ARE TO OE GE:-lERATED 
C 2 r:· V,).RIANC!::S ARE TO 3E READ I~. r,DJI'l'ION 70 CORf;EL;.';;'IO:<S 
C J !F ONLY CORRELATIOllS ARE 70 OE. CSED AS :<El\:J 
0..: DF = Dt:GREES CF FREEDOM COR CHI SQUARE DISTRIBI..i'riON 
C USED '1'0 GENE:V..'l'E VARl ID(I) ) "'Rl"CII,I) ~ CHISQ(DF)/DF 
C NOTE: \~HEN IVAR = l1 OR 2, DF C.I\N EE il 
C ZSCORE=UPFER 1-AL?H.\/2 PERCE~lTILE; POIN'l' fROi'~ 'l'HE N(ll,l) U:.:Sl' 
C CHI2 = UPPEE :!.-ALPHA 1-ERCENTILE Of Tl-IE CHI SQ:JARE 
C DI3TRBUTION iil'l'H 2 DEGREES OF fREEDOM 
C ZSC02 = lTPPER 1-ALPHA/4 PERCENTILE OF THE N(~ 1 ll DIS'i' 
C USED FOR "tWL'l'IPLE COHPARISO:JS" TYPE TESTS 
c 

REAU (l, 1) N 1 t-i~!U 1 N:i:1' 1 IVAR 1 OF 1 ZSCO?£ 1 CH~2, 'ZSC02 
1 FOR~AT(414,4F10.0) 

c 
C READ 'I':JE ~.01~1:::8. TRJ A;>.GLS OF THE COR<:.::.LA'~l::JN ~lATRIX 

c 
DO ~aa J=L;.; 

1811 READ(l 1 2) (RHO(J,I) ,I='l,Jl 
2 F0RMAT(10Fl0.0) 
c 
C PR:N'l' THE LOWER '::"RIANGLE OF 'THE CORRELA'£10N 1·1A1'F.IX 
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3 

181 
c 
c 
c 

I'<'RIT£(2,3) 
fOR.'lA'£('l','T:JE LO\•IER TRIANGLE OF THE CORRELATION MATRIX'//) 
DO 181 J:l,N 
WRIJ.'£(2,22) (RHO(J,II,I"'l,J) 

READ THE VAR(ID) QUANTIT~ES IF IVAR 2 

IF (IVAR.NE.2) GO TO 6 
REAn(l,2) (S.;:(I) ,I,l,N) 
WR1'l'E(2,4) (52(!) ,I:l,Ci") 

4 FORHAT('l','THE VAR(ID) QUAKTil'IES FOR '~'HE K PERIODS'//' ',l~Fl3.4) 
E CON'l'I!.'UE 
c 
C C.JNSTRUCT UPPER THI.''IKGLE OF VARIAl1CE-CCVi\RIANCE ~!A'IRIX fOR 
c 

ll 

7 

l 'J 

l3 
c 
c 
c 

.2iiE c.; SUCCESS IV:: ~D'S 

DO HJ l=l,N 
DO ll J:l ,ti 
CH(I,J).:0.DO 
~?',1\/AR.EQ.l: GO ·rc 5 
If(IVAR.EQ.2;GQ TO 7 
CHII,I)=RHOII,II 
GC TO lj 
-..:;J{I,!)•<32',:) 
GC TO lJ 
K=Df 
DO 12 J=~,K 
CP: {I I:::) =Cii; I I! I ~_'<.HO (I I l: w (RtiOR \ll I :2: *~2) /Df 
CGC-<'J.'INUE 
CO 13 I=l ,:1 
C·O 13 J=I,N 
C:~ t I ,J) =250?'.2 1r:r: { l, ll ~cH ':J ,J)) "'REC :J,:) 

JO lS :=1,~ 
JG :':.5 .;'=I,.:< 
'o(~,Jl=C-l'I,J) 

1:5 ·;{:;,I)=C;,•r,J,l 
c 

c 
WR:1'E\2,2:) ;; 

21 0'0R~'AT( '1', 'THE '.'I'.FIA:1C2-COVAil.If._NCS e!A'l'R~X FOR THE.' ,I3, 
succo:ssrv:: rw Qr.;ACI'!'I':'I1::3';/' 

LO 20 I=l,c: 
2~ 'cjRI'J.'E~2,22) (\'(~,JI 1 J=l,CJ) 
22 FOR~~A'l{' ',Hf13.-!) 
c 
C 2Sh:''G"-M T~S Cl:IOL"'-El<':' L".CTORIZA'f!Ot< )f T!-IE '1.1\f.IJ\l;CJ->COVARIAl\CE. •'1A'l'kiX 

c 
c 

C.-'I.LL CHL::iK'iiCrl,:J,Cd 
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C PRINT 'l'-TR..I\l"SPOSE i<A'I2.IX 
c 

i~RITE ( 2, 2.6) 
26 FORNA'l' { '1', 'Tl-iE 'l'RANSPOSIO, OF ::'E2 CHOL.,S!:Y HA'l'RIX') 

DO 25 I=l ,S 
25 I'R:::TE(2,22) ;CH(2,I: ,J=l,I) 
c 
C BEGIN SI~U~A1ION 
c 
C READ P.. U:'lERSIQt; FAl'':.'ERc.i S"!'RATEG~· VECTOR 
c 

c 

RL:;AD(l,23) (STRA':.'{J) ,J=l,Nl 
DO Hl0 I~IU=l ,:-.IHU 

._ READ A DIVERSION ST:<.ATEG':' CONSTAl\T t.[UL'l'l?LJER 

R::::i\0{:,23~ CLJS 
23 20RHAT f HJFl0. J) 
c 
C CC:tPUTS AMO:.;ll~ DIVc;;-<'l'O:D :CR·:Jt·\ :=:P..CH PERISD, ~.~., DIV:::RSIOt< S'::RA'~'EG'i VECTOR 
c 

122\l ~'..i{I)=CC.CS~S':.'s.AT:I) 

C COEP'JTE JeiDSTECT:.:D L0.5S 'i"C:CTOil 
c 

CLOSil:=\J.::)IJ 
DO ld'H 1=1,:-.; 

ldlll ~!L\:iS\~+:..)=ULOS(!)·Hlli(II 

c 
C I);I'l'L\LIZE COL•;;-::ERS RR A~D CTO'l' 

80 2-l ""'1,.:1 
DO 24 I=l ,Ci 
C'~''J~ ( K, l, l) :0. D0 
CTIJ1,,K,l,II~0.:Jll 

DC 24 J"'l,~+2 
24 "R(K,I,J)=-0.00 
c 
C CA.S.;<Y OUT 3PECIFIED OF lTERA'l'lONS 
c 

DO 99 I:T.,.~,lol['C' 

c 
C GEt<t;:<.A'l':: ID(Ij, ~ "' 1, ... ,N 
c 

DO 30 1:1,~1 

30 X(I)=RNOR(ll,I2i 
DO 31 I=l ,N 
ID(l)=t·\U(Il 
DO 31 J=l,I 

31 ID{I)'=ID(:)+X\J)~CH(J,l) 
( 

c 
C :·1E1'H(;D l 3IVARH-.TE TEST GF iC AhD CIU 
c 
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c 
C 'l'HIS SECTION \'/ILL PERFORM THE TESTS 8Y RESTAR'Ill<G THE 
C CD1!JLP..'l:IVE C!.LGJLl>.TIONS THE PERIOD AFTER HO IS REJ8CTED. 
c 
C INI'l'IA.LIZE COUNTERS NRSTRT Of RESTAR:'S 
C AND NFIRST "' PERIOD AT I'JHICC! R8STAR'l' S~GINS 
c 

NRSTR'l'=fl 
t'<FIRS'l'=l 

45 NRS'lR'l'=NRSTRTtl 
c 
C PEPFQRM Z-TEST FOR STAR'.!'I:~G PERIOD r,I.t:., ,!l.'l' S1'A7C.~l>iG I'ES.:OD ::ID=ID., 
c 

If (:JABS ( ID ( 1\FihST I /DSQRT (V (NFIRST, :-JF IRST] \ ) . L'l'. ZSCO::u;) GO 'IO 50 
2R ( 1, NRSTRT, NF IRST) =RR ( l, :-JRS'l'RT, :-lf~RS'.L'J +l. 0 
NFIRST=NFI;;:ST.,.l 
E(~FlRST.G:'.t<) SO TO 70 
GO l'Q 45 

5Ll Ifp;FIRST.EQ.N)GO TO H 
c 
C ?ERfORI-1 5IVARIA'I'E Tt.s'~'S :OR ID AND CID ;..'OlEN ::L::J HICSliDES 'i~dO OR ;JCRE I:::'3 
c 
C CO~lSTRUCT 'JArl 1 ~D,CID) 

DO 6() I=t.;FIRS'!.'·d,>l 
VC(l,l):v:.:,I) 
·vc;2.,21=0.o<l 
DO 'il ;:-=NFikST,I 

61 VC(l,2l=VC(l,:::) t·v:J,l) 
YC!.2,2\=0.DI'l 
:JO '.i2 J_,Nlo'l?.S''.:,I 
~C 62 f':Nr"L~,':,r •. ,I 

62. vcr.2,2.),VC(2,21H(.::r,J<:. 
c 

c 

::E'l'=\/C (1 ,1\ ~vc (2 ,2) -'iC (2., 2: ~ •2 
-~·~IP:VC: i, 1 i / C·E'C-
'/C ( 1,1) "''~C (2,21 /DC':.' 
'vC ( 2,2) =';:~1P 
VC ( 1, 2 ~ =-VC ( L,:) /Dt:'l' 

C COL·IPCTS CI~ 

CID=0.D\:i 
DO 63 J=~:FIRS'L,I 

53 C:D=CIG..-IC (J) ,. 
C C():·l.!"L•T2 C;JI SQ:.;td-..E 'l'SST S"1A'.i"IS'L:C 
c 

'l'l=Ir' (:) •",'( d, i) ..-CID"·,-c ( l, 2) 
~2:1D'l)•VC~~.2)+CID•VC(2.,~) 
r=!S(IJ·~l+CID•T2 
IF(l.LI.C<JI2) GC -:'') i:i·J 
R2 ( l, C!RS'i'O'."~ 1 l) =R?.il, :-.<RST~:l',:) +1. DO 
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" " c 
c 
c 
c 
c 

1\FIL<S'l'"'I+l 
IF(NFIRS'l',GT.~) GO 'l'O 7il 
GO TO 45 
CONTINUE 
CONTINUE 

NETHOD 2 ':i'EST Of ID ONLY (I.E., THE CURRE:JT REQU!RE:-tENT) 

:lRJ"'~ 
DO 4~\1 I=l 1 N 
If{DABS(ID,I)/D8QRT(V(I,I)) I .LT.ZSCORE)GO iO n0 
tiRJ=NRJ+l 
Rrt( 2 ,;..JRJ ,I) =RR(2 ,~RJ, I) -d ,D\1 

400 CON'l'I~UE 

c 
c 
C ~lETECD 3 TEST OF CID ONLY 

c 

NfiRS'l'"'1 
45(l NRS'l'R'l':NRSTRT-1 

'/CI2,2)=<'.::J0 
CIW=IJ,D:J 
CO 460 I"'NE'I:'Sl',:,; 
CIDooCID+I~(~l 

vc ( 2,2) =VC (2 '2) +V (I I I) 
IF((I-t~FI?.S'l'}.!::Q.\1) GC TO --151 
DO 461 J=~tFI?S'l',I-l 

.',01 VC(2 1 2):VC(2 1 2]-t-2"V\~,J) 
4:1 IF',DABS(CID/::)SQ.?..T(VC:2,21 I: .. G:'. ZSCO:KE}GO ~0 460 

RP. ( 3 ,~iRSTR'l' 1 I) -'"RR ( 3 1 NRSTRT, I) .,.1, D\1 
i.JFIRST=I+l 
i:F 1 NFIRST.G'l'.'IIGO J:O 470 
GO TO EV 

·16 J COTTI ~VE 
47'<1 co:rnt-:uE 
c 
c 
C METHOD 4 '~H.JL'l'IPLE COMPJI.RIS0NS" t:Slt<G ID ·Ji:_, LEID Mm CID VS L2C:D 
C 'l'ES'l'It;G EAC!-l A1' '!'HE AL?HA/2 LEVEL \!.S., IJSI;;G 30'-lfERRC!o.I'S INEQUALI7.Y) 
c 

NRSTRT"'rl 
t->Fl"ST"'1 

650 ::RS'l'RT=:-lRS'l'H"..'-.-1_ 
-vC(2,2)"'0.Drl 
CD"'0.::J0 
DO 66tl I"'I-JFIRo;~:,N 
CIC-=CID+I:J(I) 
VC ( 2; 2) =VC \2 I 2) tV (I, I) 
E( \I-~Fit{ST) ,::;Q.tl)GO TG 6J1 
DO 661 J"'~fiRS~,I-1 

661 VC(2,2)=VC(2,2;+2•V(I 1 J) 
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6 51 IF (DABS ( ID (I) /DSQR'l' (V (I, I) ) ) • L'r. ZSC02 .AND. DABS ( CID/DSQRT (VC ( 2 ,2) ) ) . 
1 LT.ZSC02) GO TO 660 

RR( 4 ,NRSTRT, I) ~RR(4, NRS1'RT, I) +1.00 
:-lfiRST=I+l 
IF(NFIRS'l',GT,l')GO TO 67U 
GO '1'0 650 

660 CONTINUE 
6 7 0 CONTIMJE 
c 
99 CONTINUE 
c 
C PRINT ~lG,NI'l',RR, AND R 
c 
C COMi?iJTE RO\~ TOTALS AND CCJl-iUITIONAL PRGBABILI'l'IES 
c 

T!'JIT=NIT 
r::o 177 I=l,4 
IN~NI'l' 

TCR=Il.D~ 

CO i!e !<~l.N 
FR(I,«)=0.0 
RR•, I ,l ,)l+l) =?..R( I, l, N-,-1) -,-RR (I ,1 ,K) 
I?;TN.EQ.~.~)GO TJ 178 
FR(l,K]=RR(I,1,K)/TN 
'I'CR=TCR+':N 

l7d Tt:~T~-f1R(!,1,K) 

~77 RR(I,1,::.i+2):2.R(I,l,C;+llNNIT 
DO 179 I:1 ,4 
:JO 179 J=2,CJ 
DO 179 :\=l,N 

:79 RR\ I ,J ,N.,.1)=RR(~ ,.:; ,1'+1) -,-RR(l,J ,K'-
C 
C CmlPlJTS f?..EQU.O:NC'i D!STRIBUr,.'ION, ~\EA:-i, VAiHANC:O:,S':.'AC:DARD Jt:VIA'nOt-< 
C FOR UND'OTEC':'SD LOSSES 
c 

'l'~I:<'=;_H'l' 

SO :..302 I=l, 4 
SLOS (I) =iJ. 00 
SQLOS(I)=O.D~ 

JO lBJ3 J"'1,N 
~CLOS(I,J)"'~2(:,1,0) 
SLOS(l)=SLOS(!)+~ULOSii,J)•CLOS(Jl 

l8D3 SQLOS(l)•SQL03(I)TNULOS(!,J)•ULOS[J)••2 
~ULOS (I, N+1 l ='1'!·\P-PR( I, 1 .~1-'1) 
SI,OS (I) •SLOS (I) -r~ULOS \I ,CJ+l) •ULOS IN+l) 
SQLOS (I) •SQLOS (!} +NULOS (I ,N+l) •(.;LOS (N.,.1) ••:. 
A"JULC•S (I) =SLOS (!: /T!lP 
VARLOS (I) • ( SQLOS \I)- (Sl.OS (I) • •2) /HlP)/ :.TMP-l.N) 
SDLOS ( l \ •DSQ?'l" (VARLOS \I)) 

ld02 CON'l'T~UC: 
c 
C CO!~.?U'IS CCLUiotN "_'G':'.'I.T~S A~D PERCENTS 
c 

HlP•NI'l' 
!)(I 199 1•1,4 
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DO 199 J=1,r.< 
DO 198 K=1,N 

198 C'L'OT (I, 1 ,J) :CTO'l'( I, l ,J) +RR (I ,K,J) 
199 CTO'l'\1,2,J):(TOT(I,l,J)/TNP 
c 
C CONFUTE OVERALL ":'O'l'AL AND PERCENT 
c 

".'~!P.o NI'I 
DO 293 I=l,4 
C'l'OT (I, 1 ,N+1) "0 .D~ 
DO 299 J:l,S 

299 C'i'CT (I ,1 ,N+1) :CTO'l' (I, l,N-..-1) +CTOT (I ,l,J 
298 C'l'JT (I ,2 1 N+1) :CTO'l' (:, l,ih1) /THP 

ii'R:'l'E(2,97) ~I'l',(~IU(~) ,1:1,:--l) 
97 l-"OR~1AT{ '1', ''l':!E RESUL·~'S FROM ' 1 I4 1 ' I'l.'lmATIONS FOR THE D:VERSION 

1 STRATEGY'/' ' 1 Hin2.4/) 
DC. 9fl I:l 1 4 
h'RI?£(2 1 96) I 

96 FOR:·lA"~' ( 'l' 1 '3-ESUL~S FOR .11£'l'P.OC ' 1 11 1 '; "0\<iS REP!'! ESE:<':' RES':!.'A.'l.TS' / 
1' ',2::X 1 'COLUJ.!NS REPRESENT PERIODS lil:i!:RE HO I•AS RE.:JECTED'/! 

DOg::_ J=l,N 
/iRI': .. 'E (2,95) (RR(I 1 J,K} 1 K=1,1-l+2) 
IF(J.N2.1)GO TO 91 
o'IRI'l'E(2 1 95) (l'R{l,i\, ,K=l,~) 

9l CONTii'ilJE 
c 
C (,'RI'l'E COLUMN l'O'£AL3 Al\D PERC::~'I'AGES 

·,VRil'£(2,195) 
~95 fOR~!AT( 'll', 'C'JL;JI•1N TO'i'!,LS AND PERC~>i'l'A~;E3' I) 

~0 191 ,]=1,:2 
191 Y..'RI'l'Ei2,95) (CT::,'T(~,.::;,K) ,K=l 1 N+l) 
95 FGR~1AT(' ',/12Fl0.4) 
c 
C '.iRITE FR::QUENCY CJI!::TRIBlJT:ON 5'0R U!->DETECT<::v LOSSES 
c 

',·;R;'l'E(2,1807)I 
ld~l'i '0R~\A1'( '1', ''·1E.':.'HOD' 112//'FREQGE:-iCY Dl.5TR~3U'l'IO~ OF UCJD!::TEC':"-0 

lLCSSES' ,I I I //llX 1 'SIZE OF' , 12X 1 'FREQoJI'.~lC£' 1 / UX, 'UNDETECTED' , 
1 1.JX, '0F'/13A, 'LOSS' ,13X, 'CCGJRRENCE'/;) 

DO 1804 J=1,:i·d 
l8fl4 WRITE(2,1SC5J ViOS(J) ,NULOS(l,J) 
18~5 FORNAT ( 'f1' ,HlX,F"I, 1,13X, f'7 .1/J 

\•,'RITE(2 1 lSU6: t>I.'ULOS(~) 1 \IARLOS(l) ,SOLOS( I) 
1806 5'•JRNAT('fl',//IISX,'XII'ERI'.GE l'NDS1'ECTW ~.053 =',216.4, 

l /;5X,'VARIANCE OF GlolDETECTED LOSSES :',FL6.4// 
1 5X, '3TA!lDARD Dl::VIATIOt-. 00' UJ\UETECTED LC.SSES =' ,F16.4] 

c 
C ·,~Rl'l'F. OU'1' EXPECTED UNDETECTED LOSS, fiRST 'l'l!·lE PROBABILITY Of :JE'i'ECTIO:-l, 
C OVE~II_LL PRCB. Of Dt:'.l'. CVEN ?..<:STAR-:'3 aCT L~CCIRRC:CTED :liVERSn, S'l'RAlEGY. 
r: '!.'HES£ C:t:AmiTIES AXE ·,I'RI:L'l'EN OU'l' TO 'l':'E "~·LC•T':·:;::~G fiLE." CJN u:;:T :J. 
c 

\I'RI'l'E(3, 181~) IDAT,CLOS, I ,P..VULOS( I) ,30[,(3( I), RR( :::, l ,;:.:.,.2.) ,C'l'QT (I ,2 ,Coi+l) 
lBliJ 0'0?.!-lAT(' •,:3,f'l6.5,I3,4Fl6.5) 
:JJ CON'CINUE 
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Hl0 CONTINUE 
S1999 CONTINUE 

c 
c 

c 

S'l'OP 
END 

t'L'NC'l'ION RNOR(Il,I2) 

C GE:«ERA'rES A RA/'iDOM DEVIATE FRON 'l'iiE N(fl,l) :JISTP.IBU'l'ION 
c 

REAL x 5 DSQRT, ;:J(OS, DLJG, PI, R:JOR, Jl, U2, Xl, X2, SUH 
Plo=3 .14.:.592'554 
5U~,fi.DO 

DC Hl I=~ ,8 
CALL RANF:Il,:2,:.Jli 
CALL Rt\Nr:U,I2,U::J 
Xl=DSQRT(-2.J•DLGG(Cl) )•DCCS(2,J•PI•U2) 
X2=DSQR':' (-2.J XC) LOG ( Cl)) ·DSI:l (2 .0'PPU2: 

:._g SlJ/',o=SIJ~!+Xl"-X2 

c 
c 
c 

c 

::l.E'l'URH 
E.ND 

SUBRCL'TI:<E CHLSK-~(A,Cf,/'1) 

C P£FfJhl1S C:-lOL8S:<Y O"ACTCki3A'I'ION r.;r" SY~WETR~C ''!ATPIX A 
C A IS :llP[;'l' AS A~ UPPER "..'R:i:A.:.JG0LAR ~;A':'RIX A)JD l.':i RE':!.'USl'LED 
C '>'~I'l'H ':!'IE CHCLES:<Y i''ATR:X T IN THE :.!P9ER TRIANGLE A:-1D ·~·E~ 

C GEtLi::RALIZED r;nER:iE G5' -~- ~:.1 T:-!E :.Oii'ER I'R~,\;.Gi.:O, ,,.,.fiERE -~'bE 

C JIAG O:LE:<lE'N~S CF 'I-~~;\,O::O<.SE .C.RE TfiE XECI?RGGI.LS Of THE 
C DU,G C:C.ENEliTS OE' ~-

C 
?E:AL"5 A{l\l,lO) ,r;,(, ERO,DSQR"L',Jf,bS 
:Z.El<-'J:'~. E-l! 
~-ACeoDSQ-i'"l(A\1,1)' 

L') _30 I~l,:< 

iJ~ A:l,Il~A(l,I)/~A~ 

1)0 81lll :=2,:·! 
I>I-1 
DO 530 C'o=l ,;1 
'·AC=~.J0 
DO 31(]\J K-=l.II 
IE'(K.L'l'.J.MiG.J.L':'.:) GO rc 3>i'J 
If(A(i<,i'C.LE:.ZERO; GO :'0 30J 
IF'K,SQ.J) ~A(•~AC+A{~,I'/A(K,Kl-A(~,I)"A(K,Kl 

~AC=2AC+A:f:,I)"A(i<,J) 

330 COC~'rl:.JUE 

A(I,JJ•A(I.Ji-2AC 
lf(Dl'.BS,A(I,J) 1 .LT.L-EKO) A(I,J)aJ.0\J 
If!:.~S.I) GO TO 50fl 
IF(DA3S(A{I,~)) .. -:;"::.lSR0) GO ''CO Sl!C 
DO 4lHJ K"'I, 1': 

4U0 l'.(I,K)~0.Dl} 
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GO TO 800 
5kl0 CONTINUE 

fAC:OSQRT(A(I,I)) 
DO 760 K:l,~ 

700 A(I,K):A(I,K)/FAC 
81Hl CONTINUE 

RETURN 
Sl"D 
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