Ion acceleration and cooling in gasless self-sputtering

PDF Version Also Available for Download.

Description

Copper plasma with hyperthermal directed velocity (8.8 eV) but very low temperature (0.6 eV) has been obtained using self-sputtering far above the runaway threshold. Ion energy distribution functions (IEDFs) were simultaneously measured at 34 locations. The IEDFs show the tail of the Thompson distribution near the magnetron target. They transform to shifted Maxwellians with the ions being accelerated and cooled. We deduce the existence of a highly asymmetric, pressure-driven potential hump which acts as a controlling"watershed" between the ion return flux and the expanding plasma.

Physical Description

8

Creation Information

Horwat, David & Anders, Andre October 31, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Copper plasma with hyperthermal directed velocity (8.8 eV) but very low temperature (0.6 eV) has been obtained using self-sputtering far above the runaway threshold. Ion energy distribution functions (IEDFs) were simultaneously measured at 34 locations. The IEDFs show the tail of the Thompson distribution near the magnetron target. They transform to shifted Maxwellians with the ions being accelerated and cooled. We deduce the existence of a highly asymmetric, pressure-driven potential hump which acts as a controlling"watershed" between the ion return flux and the expanding plasma.

Physical Description

8

Source

  • Journal Name: Applied Physics Letters; Journal Volume: 97; Journal Issue: 22

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-4110E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 1001044
  • Archival Resource Key: ark:/67531/metadc836695

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 31, 2010

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • June 16, 2016, 12:42 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Horwat, David & Anders, Andre. Ion acceleration and cooling in gasless self-sputtering, article, October 31, 2010; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc836695/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.