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        The main purpose of this paper is to introduce a 
newly developed reactor physics toolkit named PHISICS 
(Parallel and Highly Innovative Simulation for INL Code 
System). This package is intended to provide a modern 
analysis tool for reactor physics investigation. It is 
designed with the mindset to maximize accuracy for a 
given availability of computational resources. This is 
obtained by implementing several different algorithms 
and meshing approaches among which the user will be 
able to choose in order to optimize his computational 
resources and accuracy needs.  

I. INTRODUCTION 

In the last year INL has internally pursued the 
development of a new reactor analysis tool: PHISICS. 
The software is built in a modular approach in order to 
simplify the independent development of modules by 
different teams and future maintenance. Most of the 
modules at the time of this summary are still under 
development (time dependent transport driver, depletion, 
cross section I/O and interpolation, generalized 
perturbation theory, uncertainty and sensitivity analysis), 
while the transport solver INSTANT (Intelligent Nodal 
and Semi-structured Treatment for Advanced Neutron 
Transport) has already been widely used1, 2, 3, 4. For this 
reason we will focus mainly on the presentation of the 
transport solver INSTANT. 

II. INSTANT 

As already mentioned INSTANT is the neutron 
transport solver for PHISICS. The code is based on two 
different discretizations of the transport equation. The 
first one implemented is the Variational Nodal Method5

and correspond, as shown in reference 1, to hybrid finite 
element in space and spherical harmonics in angle. The 
discretized equations are formulated in three different 
form and solved respectively using: iterative multi-color 
scheme, CG (Conjugate Gradient), or the GMRES 

(Generalized Minimum Residuals). The three different 
solution schemes provide the user with three different 
trade off options depending on high speed/high memory 
(multi-color) and low speed/low memory (GMRES) 
available machines. These three solution algorithm are 
implemented on Cartesian 2/3D, hexagonal, Z-hexagonal, 
2D triangular (structured/unstructured) and Z-triangular. 
The Variational Nodal method, based on the PN  second 
order formulation is ill suited to deal with fine 
unstructured mesh while very effective for node size 
typical of one assembly3. However, the implementation of 
an unstructured mesh will be useful in conjunction of the 
soon available new discretization method based on the 
self adjoint form of the second order SN equation6. This 
form of discretization should be well suited to deal with 
the flux discontinuities arising when using a detailed 
description of the core (e. g.. pin by pin). The variational 
nodal method has been implemented also in a parallel2

computing environment with good results. We expect the 
implementation of self adjoint SN equation to achieve a 
good level of scalability. 

Table 1 shows the results for the Takeda 4 
benchmark7 that are well in agreement with the results 
previously obtained with this methodology. Figure 1 and 
2 show respectively a detail of the triangular mesh for the 
C5G7 2D benchmark and its solution using the hybrid 
FEM approach3. 

TABLE I. Takeda Benchmark*: control rod in 
Space 
polynomial 
order 

Surface 
polynomial 
order 

Angular 
order 

Keff 

5 0 1 0.85866 

6 1 3 0.87846 

6 1 5 0.88176 

7 2 7 0.87963 

7 2 9 0.87983 

*Reference value: 0.88001 ± 0.00038 (GVMP, Monte 
Carlo) 
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Fig. 1. C5G7 mesh detail (total 89426 elements). 

Fig. 2. Thermal flux C5G7 (P5 solution). 

II. MODULES UNDER DEVELOPMENT 

II. A. Time Dependent Driver 
As part of the PHISICS toolkit a time dependent 

driver for INSTANT is ongoing. The practical realization 
of the driver follows closely the algorithm and the 
implementation shown in reference 8. This will allow a 
quick verification of results by comparison with already 
existing codes. 

II. B. Depletion Module 
In order to provide the depletion capability we are in 

the process to adapt the MRTAU code9. MRTAU is a 
depletion code that has been used insofar for fuel cycle 
analysis and developed at INL. 

II. C. Perturbation Module 
One of the major tasks that PHISIC should be 

capable to perform is the sensitivity and uncertainty 
quantification connected to the uncertainty in the input 

parameter. Fundamental step of this task is the 
implementation of the Generalized Perturbation Theory10

(GPT). This effort is also already ongoing and the 
implementation of the adjoint solution is already present 
in INSTANT. 

II. D. Medium and Long Term Future Developments 
In the medium term a thermal hydraulics capability 

(at the beginning based on a subchannel approximation) 
will be added to PHISICS. This will allow coupled 
calculations with sensitivity/uncertainty capability. For 
the long term the addition of a cell code capable of 
treating all type of reactor spectra is foreseen.  

III. CONCLUSION 
PHISICS capabilities are quickly increasing; its 

modular approach allows parallel development and we 
foreseen this toolset to become soon available to the 
reactor physics community in order to provide a modern 
analysis tool. The embedded adjoint capability in 
conjunction with its scalability between different accuracy 
levels of the simulation will be the strength of this new 
toolset. 
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