
Petascale Parallelization of the
Gyrokinetic Toroidal Code

Stéphane Ethier1, Mark Adams2, Jonathan Carter3, Leonid Oliker3

1 Princeton Plasma Physics Laboratory, Princeton University, Princeton NJ 08453
2 APAM Department, Columbia University, New York NY 10027

3 NERSC/CRD Lawrence Berkeley National Laboratory, Berkeley CA, 94720
ethier@pppl.gov, mark.adams@columbia.edu, jtcarter@lbl.gov, loliker@lbl.gov

Abstract. The Gyrokinetic Toroidal Code (GTC) is a global, three-
dimensional particle-in-cell application developed to study microturbu-
lence in tokamak fusion devices. The global capability of GTC is unique,
allowing researchers to systematically analyze important dynamics such
as turbulence spreading. In this work we examine a new radial domain
decomposition approach to allow scalability onto the latest generation
of petascale systems. Extensive performance evaluation is conducted on
three high performance computing systems: the IBM BG/P, the Cray
XT4, and an Intel Xeon Cluster. Overall results show that the radial
decomposition approach dramatically increases scalability, while reduc-
ing the memory footprint — allowing for fusion device simulations at an
unprecedented scale.
Research Topics: Large scale simulations in CS&E, parallel and dis-
tributed computing, performance analysis

1 Introduction

After a decade where high-end computing (HEC) was dominated by the rapid
pace of improvements to processor frequencies, the performance of next-generation
supercomputers is increasingly differentiated by varying interconnect designs and
levels of integration. Understanding the tradeoffs of these system designs is a key
step towards making effective petascale computing a reality. In this work, we ex-
amine a new parallelization scheme for the Gyrokinetic Toroidal Code (GTC) [?]
micro-turbulence fusion application. Extensive scalability results and analysis
are presented on three HEC systems: the IBM BlueGene/P (BG/P) at Argonne
National Laboratory, the Cray XT4 at Lawrence Berkeley National Laboratory,
and an Intel Xeon cluster at Lawrence Livermore National Laboratory. Overall
results indicate that the new radial decomposition approach successfully attains
unprecedented scalability to 131,072 BG/P cores by overcoming the memory
limitations of the previous approach. The new version is well suited to utilize
emerging petascale resources to access new regimes of physical phenomena.

2 Architectural Testbed

We have chosen three architectures which are often deployed at high-performance
computing installations, the Cray XT, IBM BG/P, and an Intel/Infiniband clus-

jawolslegel
Typewritten Text
1



Core AMD Intel IBM
Architecture Budapest Core2 PowerPC 450

superscalar superscalar dual issue
Type

out-of-order out-of-order in-order
Clock (GHz) 2.30 2.66 0.85
DP Peak (GFlop/s) 9.20 10.66 3.40
Private L1 Data Cache 64 KB 32 KB 32 KB
Private L2 Data Cache 512 KB — —

Socket/Node Opteron 1356 Xeon E5430 BG/P
Architecture Budapest Harpertown Chip

Cores per Socket 4 4 (MCM) 4
Shared Cache 2 MB L3 2×6 MB L2 8 MB L2
Sockets per SMP 1 2 1
Node DP Peak (GFlop/s) 36.8 85.33 13.60

21.33(read)
DRAM Bandwidth (GB/s) 12.80

10.66(write)
13.60

Node DP Flop:Byte Ratio 2.88 2.66 1.00

Cray XT4 Intel Cluster IBM BG/P
System Architecture Franklin Hyperion Intrepid

Seastar2+/ Infiniband 3D Torus/
Interconnect

3D Torus 4xDDR Fat Tree
Total Nodes 9660 576 40960
MPI Bandwidth (GB/s) 1.67 0.37 1.27

Table 1. Highlights of CPU and node architectures for examined platforms. MPI band-
width is measured using unidirection MPI benchmarks to exercise the fabric between
nodes with 0.5MB messages.

ter. In selecting the systems to be benchmarked, we have attempted to cover a
wide range of systems having different interconnects. The Cray XT is designed
with tightly integrated node and interconnect fabric. Cray has opted to design
a custom network ASIC and messaging protocol and couple this with a com-
modity AMD processor. In contrast, the Intel/IB cluster is assembled from off
the shelf high-performance networking components and Intel server processors.
The final system, BG/P, is custom designed for processor, node and intercon-
nect with power efficiency as one of the primary goals. Together these represent
the most common design tradeoffs in the high performance computing arena.
Table 1 shows the CPU and node architectures, as well as the size and topology
of the three system interconnects.

Franklin Cray XT4: Franklin, a 9660 node Cray XT4 supercomputer, is
located at Lawrence Berkeley National Laboratory (LBNL). Each XT4 node con-
tains a quad-core 2.3 GHz AMD Opteron processor, which is tightly integrated
to the XT4 interconnect via a Cray SeaStar2+ ASIC through a HyperTransport
2 interface capable of capable of 6.4 GB/s. All the SeaStar routing chips are in-
terconnected in a 3D torus topology with each link is capable of 7.6 GB/s peak
bidirectional bandwidth, where each node has a direct link to its six nearest
neighbors. Typical MPI latencies will range from 4-8µs, depending on the size
of the system and the job placement.

jawolslegel
Typewritten Text
2



Intrepid IBM BG/P: Intrepid is a BG/P system located at Argonne
National Laboratory (ANL) with 40 racks of 1024 nodes each. Each BG/P node
has 4 PowerPC 450 CPUs (0.85 GHz) and 2GB of memory. BG/P implements
three high-performance networks: a 3D torus with a peak bandwidth of 0.4 GB/s
per link (6 links per node) for point to point messaging; a collectives network
for broadcast and reductions with 0.85 GB/s per link (3 links per node); and a
network for a low-latency global barrier. Typical MPI latencies will range from
3-10µs, depending on the size of the system and the job placement.

Hyperion Intel Xeon Cluster: The Hyperion cluster, located at Lawrence
Livermore National Laboratory (LLNL), is composed of four scalable units, each
consisting of 134 dual-socket nodes utilizing 2.5 GHz quad-core Intel Harpertown
processors. The nodes within a scalable unit are fully connected via a 4× IB DDR
network with an peak bidirectional bandwidth of 2.0 GB/s. The scalable units
are connected together via spine switches providing full bisection bandwidth
between scalable units. Typical MPI latencies will range from 2-5µs, depending
on the size of the system and the job placement.

3 GTC: Turbulent Transport in Magnetic Fusion

GTC is a 3D particle-in-cell (PIC) code developed to study the turbulent trans-
port properties of tokamak fusion devices (see Figure 1) from first principles [?,?].
The current production version of GTC scales well with the number of particles
on the largest systems available. It achieves this by using multiple levels of par-
allelism: a 1D domain decomposition in the toroidal dimension (long way around
the torus geometry), a multi-process particle distribution within each toroidal
domain, and shared memory multitasking at the loop level via OpenMP direc-
tives. The 1D domain decomposition and particle distribution are implemented
with MPI using 2 different communicators: a toroidal communicator to move
particles from one domain to another, and an intra-domain communicator to
gather the contribution of all the particles located in the same domain. Commu-
nication involving all the processes is kept to a minimum.

In the PIC method, a grid-based field is used to calculate the interaction be-
tween the charged particles instead of evaluating the N2 direct binary Coulomb
interactions. This field is evaluated by solving the gyrokinetic Poisson equa-
tion [?] using the particles’ charge density accumulated on the grid. The basic
steps of the PIC method are: (i) Accumulate the charge density on the grid from
each particle to its nearest grid points. (ii) Solve the Poisson equation to eval-
uate the field. (iii) Gather the field values at the position of the particles. (iv)
Advance particles one time step using equations of motion (“push” step). The
most expensive steps are the charge accumulation and particle “push”, which
account for about 80% to 85% of the time for most realistic experiments. The
memory usage depends strongly on the problem size, essentially the number of
grid points and particles. In a typical simulation there are anywhere between
2 to 20 particles per grid point per MPI process, and the same factor roughly
applies to the amount of memory used by each.

jawolslegel
Typewritten Text
3



Fig. 1. Volume rendering of the electrostatic potential field created by the plasma
particles in a GTC simulation; (left) shows the whole volume, and (right) a cross-
section through a poloidal plane where elongated eddies of the turbulence can be seen.
(Visualization by K.-L. Ma, UC Davis)

3.1 Radial Decomposition Implementation

In the described GTC version, the local grid within a toroidal domain is repli-
cated on each MPI process within that domain and the particles are randomly
distributed to cover that whole domain. The grid work, which comprises of the
field solve and field smoothing [?], is performed redundantly on each MPI pro-
cess in the domain. Only the particle-related work is fully divided between the
processes. This has not been an issue until recently, since the grid work is small
when using a large number of particles per cell. However, when simulating large
fusion devices, such as the international experiment ITER [?], which will be 8
times larger in volume than the largest fusion device currently in existence, a
much larger mesh must be used to fully resolve the microturbulence physics. All
the replicated copies of the local grid on the processes within a toroidal domain
make for a proportionally large memory footprint. With only a small amount
of memory left on the system’s nodes, only a relatively small number of parti-
cles per cell per process can fit. This problem is particularly severe on the IBM
BG/P system where the amount of memory per core is relatively small. Eventu-
ally, the grid work starts dominating the calculation even if a very large number
of processor cores is used.

The solution to our non-scalable grid work problem was to add another level
of domain decomposition to the existing toroidal decomposition. Although one
might think that a fully 3D domain decomposition is the ideal choice, the dynam-
ics of magnetically confined charged particles in tokamaks tells us otherwise. The
particle motion is very fast in both the toroidal and poloidal (short way around
the torus) directions, but is fairly slow in the radial direction. In the toroidal
direction, the domains are large enough that only 10% of the particles, on aver-
age, leave their domain per time step in spite of their high velocities. With about
one thousand processes per toroidal domain dividing the local grid, the poloidal
domains end up being much smaller, leading to a high level of communication
due to a larger percentage of particles moving in and out of the domains at each
step. Furthermore, the poloidal grid points are not aligned with each other in the
radial direction, which precludes the use of a simple algebraic equation to locate
the particles when they move between domains. The cross-sectional grid consists

jawolslegel
Typewritten Text
3



of concentric circles with constant arc length between the grid point. The radial
grid has the advantage of being regularly spaced and easy to split into several
domains. The slow average velocity of the particles in that direction ensures that
only a small percentage of them will move in and out of the domains, which is
what we observe.

One disadvantage, however, is that the radial width of the domains needs
to decrease with the radius in order to keep a uniform number of particles in
each domain since the particles are uniformly distributed across the whole vol-
ume. This essentially means that each domain will have the same volume but
a different number of grid points. For a small grid having a large number of
radial domains, it is possible that a domain will fall between two radial grid
points. Another disadvantage is that the domains require a fairly large number
of ghost cells, from 3 to 8 on each side, depending on the maximum velocity of
the particles. This is due to the fact that our particles are not point particles but
rather charged “rings”, where the radius of the ring corresponds to the Larmor
radius of the particle in the magnetic field. We actually follow the guiding center
of that ring as it moves about the plasma, and the radius of the ring changes
according to the local value of the magnetic field. A particle with a guiding cen-
ter sitting close to the boundary of its radial domain can have its ring extend
several grid points outside of that boundary. We need to take that into account
for the charge deposition step since we pick four points on that ring and split
the charge between them [?]. As for the field solve for the grid quantities, it is
now fully parallel and implemented with the Portable, Extensible Toolkit for
Scientific Computation (PETSc) [?]. We refer to the new radial decomposition
version of GTC as GTC-P below.

Overall, the implementation of the radial decomposition in GTC resulted in
a dramatic increase in scalability for the grid work and decrease in the memory
footprint of each MPI process. We are now capable of carrying out an ITER-size
simulation of 130 million grid points and 13 billion particles using 32,768 cores
on the BG/P system, with as little as 512 Mbytes per core. This would not have
been possible with the old algorithm due to the replication of the local poloidal
grid (2 million points).

4 GTC-P Performance

Figure 2 shows a weak scaling study of GTC-P on Franklin, Intrepid, and Hyper-
ion. In contrast with previous scaling studies that were carried out with the pro-
duction version of GTC and where the computational grid was kept fixed [?,?],
the new radial domain decomposition in GTC-P allows us to perform a true
weak scaling study where both the grid resolution and the particle number are
increased proportionally to the number of processor cores. In this study, the
128-core benchmark uses 0.52 million grid points and 52 million particles while
the 131,072-core case uses 525 million grid points and 52 billion particles. This
spans 3 orders of magnitude in computational problem size and a range of fusion
toroidal devices from a small laboratory experiment of 0.17 m in minor radius to

jawolslegel
Typewritten Text
5



0 

50 

100 

150 

200 

250 

128  512  2K  8K  32K 

M
in
im

um
 R
un

/
m
e 
(s
ec
on

ds
) 

Processors 

GTC: Franklin MIN Other  Smooth  Solve 

Field  ShiH  Charge 

Push 

0 

50 

100 

150 

200 

250 

128  512  2K  8K  32K 

M
ax
im

um
 R
un

1
m
e 
(s
ec
on

ds
) 

Processors 

GTC: Franklin MAX  Other  Smooth  Solve 

Field  ShiI  Charge 

Push 

0 

100 

200 

300 

400 

500 

600 

700 

128  512  2K  8K  32K  128K 

M
in
im

um
 R
un

2
m
e 
(s
ec
on

ds
) 

Processors 

GTC: BG/P MIN  Other  Smooth  Solve 
Field  ShiK  Charge 
Push 

0 

100 

200 

300 

400 

500 

600 

700 

128  512  2K  8K  32K  128K 
M
ax
im

um
 R
un

4
m
e 
(s
ec
on

ds
) 

Processors 

GTC: BG/P MAX  Other  Smooth  Solve 
Field  ShiM  Charge 
Push 

0 

50 

100 

150 

200 

128  512  2K 

M
in
im

um
 R
un

.
m
e 
(s
ec
on

ds
) 

Processors 

GTC: Hyperion MIN Other  Smooth  Solve 
Field  ShiH  Charge 
Push 

0 

50 

100 

150 

200 

128  512  2K 

M
ax
im

um
 R
un

0
m
e 
(s
ec
on

ds
) 

Processors 

GTC: Hyperion MAX  Other  Smooth  Solve 
Field  ShiJ  Charge 
Push 

Fig. 2. GTC-P weak scaling, showing minimum and maximum times, on the (top)
Franklin XT4, (middle) Intrepid BG/P, and (bottom) Hyperion Xeon systems. The
total number of particles and grid points are increased proportionally to the number
of cores, describing a fusion device the size of ITER at 32,768 cores.

an ITER-size device of 2.7 m, and to even twice that number for the 131,072-core
test parameters. A doubling of the minor radius of the torus increases its volume
by 8 if the aspect ratio is kept fixed. The Franklin Cray XT4 numbers stop at
the ITER-size case on 32,768 cores due to the number of processors available
on the system although the same number of cores can easily handle the largest
case since the amount of memory per core is much larger than on BG/P. The
concurrency on Hyperion stops at 2048, again due to the limited number of cores
on this system. It is worth mentioning that we did not use the shared-memory
OpenMP parallelism in this study although it is available in GTC-P.

The results of the weak scaling study are presented as area plots of the wall
clock times for the main steps in the time-advanced loop as the number of cores
increases from 128 to 32,768 in the case of the XT4, from 128 to 131,072 for the
BG/P, and from 128 to 2048 for Hyperion. The main steps of the time loop are:

jawolslegel
Typewritten Text
6



accumulating the particles’ charge density on the grid (“charge” step, memory
scatter), solving the Poisson equation on the grid (“solve” step), smoothing the
potential (“smooth” step), evaluating the electric field on the grid (“field” step),
advancing the particles by one time step (“push” phase including field gather),
and finally, moving the particles between processes (“shift”). Notice that the XT4
is faster than the other two systems for the same number of cores, approximately
30% faster than Hyperion up to the maximum of 2048 cores available on that
system. Compared to BG/P, Franklin is 4 times faster at low core count but
that gap decreases to 2.4 times faster at 32,768 cores. This clearly indicates that
GTC-P scales better on BG/P than Franklin, a conclusion that can be readily
inferred visually from the area plots.

The scaling on BG/P is impressive and shows the good balance between the
processor speed and the network speed. Both the “charge” and “push” steps have
excellent scaling on all three systems as can be seen from the nearly constant
width of their respective areas on the plots although the “charge” step starts
to increase at large processor count. The “shift” step also has very good scaling
but the “smooth” and “field” steps account for the largest degradation in the
scaling at high processor counts. They also account for the largest differences
between the minimum and maximum times spent by the MPI tasks in the main
loop as can be seen by comparing the left (minimum times) and right (maximum
times) plots for each system. These two steps hardly show up on the plots for
the minimum times while they grow steadily on the plots for the maximum
times. They make up for most of the unaccounted time on the minimum time
plots, which shows up as “Other”. This indicates a growing load imbalance as
the number of processor-cores increases. We note that the “push”, “charge”, and
“shift” steps involve almost exclusively particle-related work while “smooth” and
“field” involve only grid-related work.

One might conclude that heavy communication is responsible for most of the
load imbalance but we think otherwise due to the fact that grid work seems to
be the most affected. We believe that the imbalance is due to a large disparity in
the number of grid points handled by the different processes at high core count.
It is virtually impossible to have the same number of particles and grid points
on each core due to the toroidal geometry of the computational volume and the
radially decomposed domains. Since we require a uniform density of grid points
on the cross-sectional planes, this translates to a constant arc length (and also
radial length) separating adjacent grid points, resulting in less points on the
radial surfaces near the center of the circular plane compared to the ones near
the outer boundary. Furthermore, the four-point average method used for the
charge accumulation requires 6 to 8 radial ghost surfaces on each side of the
radial zones to accommodate particles with large Larmor radii. For large device
sizes, this leads to large differences in the total number of grid points that the
processes near the outer boundary have to handle compared to the processes near
the center. Since the particle work accounts for 80%–90% of the computational
work, as shown by the sum of the “push” “charge” and “shift” steps in the area
plots, it is more important to have the same number of particles in each radial

jawolslegel
Typewritten Text
7



domain rather than the same number of grid points. The domain decomposition
in its current implementation thus targets a constant average number of particles
during the simulation rather than a constant number of grid points since both
cannot be achieved simultaneously. This also implies that the amount of memory
per MPI process slowly increases with the number of cores in our weak scaling
study. This increase is negligible compared to the old GTC algorithm with the
replicated local grids for which the 2048-core case does not fit in memory. It
should be said, however, that this decomposition has allowed GTC to simulate
dramatically larger fusion devices on BG/P and that the scaling still remains
impressive.

The most communication intensive routine in GTC-P is the “shift” step,
which moves the particles between the processes according to their new locations
after the time advance step. By looking at the plots of wall clock times for
the 3 studied architectures, we clearly see that BG/P has the smallest ratio of
time spent in “shift” compared to the total loop time. This translates to the
best compute to communication ratio, which is to be expected since BG/P has
the slowest processor of the three evaluated platforms. Hyperion, on the other
hand, delivered the highest ratio of time spent in “shift”, indicating a network
performance not as well balanced to its processor speed than the other two
systems. In terms of raw communication performance, the time spent in “shift”
on the XT4 is about half of that on the BG/P at low core count. At high processor
count, the times are about the same. It is worth noting that on 131,072 cores on
BG/P, process placement was used to optimize the communications while this
was not yet attempted on Franklin at 32,768 cores.

5 Summary

Computational science is at the dawn of petascale computing capability, with the
potential to achieve simulation scale and numerical fidelity at hitherto unattain-
able levels. However, harnessing such extreme computing power will require an
unprecedented degree of parallelism both within the scientific applications and
at all levels of the underlying architectural platforms. In this study, we exam-
ined extending the scalability properties of GTC, a key application for studying
micro-turbulence in fusion devices. Performance results and analysis were pre-
sented on three leading HPC platforms: Franklin Cray XT4, Hyperion Intel Xeon
cluster, and Intrepid IBM BG/P, representing some of the most common design
tradeoffs in the high performance computing arena. To allow for GTC simula-
tions of unprecedented size, we incorporated a new radial decomposition into the
algorithm. This additional level of parallelization resulted in a dramatic increase
in scalability for the grid work and decrease in the memory footprint of each
MPI process. We are now capable of carrying out an ITER-size simulation of
130 million grid points and 13 billion particles using 32,768 cores on the BG/P
system, with as little as 512 MB per core. This would not have been possible with
the original algorithm due to the replication of the local poloidal grid. Future
work will focus on reducing the impact of load imbalance at high concurrencies,

jawolslegel
Typewritten Text
8



while continue exploring additional optimization strategies and performance on
emerging high-end architectures.

Acknowledgments

Dr. Ethier is supported by the U. S. Department of Energy Office of Fusion Energy
Sciences under contract number DE-ACO2-76CH03073. Dr. Oliker and Dr. Carter are
supported by the Office of Advanced Scientific Computing Research in the Depart-
ment of Energy Office of Science under contract number DE-AC02-05CH11231. This
research used resources of the Argonne Leadership Computing Facility at Argonne Na-
tional Laboratory, which is supported by the Office of Science of the U.S. Department of
Energy under contract DE-AC02-06CH11357. This research used resources of the Na-
tional Energy Research Scientific Computing Center, which is supported by the Office
of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
This research used resources of the Hyperion Project at Lawrence Livermore National
Laboratory http://www.hyperionproject.llnl.gov.

References

1. C.K. Birdsall and A.B. Langdon. Plasma Physics via Computer Simulation, pages
437–441, Appendix C: Digital Filtering in One and Two Dimensions. Institute of
Physics Publishing, 1991.

2. S. Ethier, W. M. Tang, R. Walkup, and L. Oliker. Large-scale gyrokinetic particle
simulation of microturbulence in magnetically confined fusion plasmas. IBM J. Res.
and Dev., 52:105–115, 2008.

3. ITER: International thermonuclear experimental reactor. URL http://www.iter.

org/.
4. W. W. Lee. Gyrokinetic particle simulation model. J. Comp. Phys., 72:243–269,

1987.
5. Z. Lin, T. S. Hahm, W. W. Lee, et al. Turbulent transport reduction by zonal flows:

Massively parallel simulations. Science, 281:1835–1837, 1998.
6. L. Oliker, A. Canning, J. Carter, et al. Scientific Application Performance on Can-

didate PetaScale Platforms. In IPDPS:International Conference on Parallel and
Distributed Computing Systems, Long Beach, CA, 2007.

7. L. Oliker, A. Canning, J. Carter, and J. Shalf. Scientific computations on modern
parallel vector systems. In Proc. SC2004, Pittsburgh, PA, 2004.

8. PETSc: Portable, extensible toolkit for scientific computation. URL http://www.

mcs.anl.gov/petsc/.

jawolslegel
Typewritten Text
9



jawolslegel
Typewritten Text
10




