Near-ideal emittance exchange at the Fermilab Photoinjector

PDF Version Also Available for Download.

Description

The A0 Photoinjector at Fermilab is presently home to an emittance exchange (EEX) experiment. The emittance exchange beamline consists of a 3.9 GHz normal conducting deflecting mode cavity flanked by two doglegs. Electron bunches with charges of 250 pC and energy of 14.3 MeV are routinely sent through the exchanger. Here we present results of a 1:1 transverse and longitudinal emittance exchange. The advent of synchrotron radiation light sources and free electron lasers (FEL) has been a boon to a wide range of disciplines, resulting in a constantly increasing demand for brighter sources and better resolution. This demand translates to ... continued below

Physical Description

3 pages

Creation Information

Johnson, A.S.; Ruan, J.; Edwards, H.; Lumpkin, A.H.; Santucci, J.; Thurman-Keup, R. et al. March 1, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The A0 Photoinjector at Fermilab is presently home to an emittance exchange (EEX) experiment. The emittance exchange beamline consists of a 3.9 GHz normal conducting deflecting mode cavity flanked by two doglegs. Electron bunches with charges of 250 pC and energy of 14.3 MeV are routinely sent through the exchanger. Here we present results of a 1:1 transverse and longitudinal emittance exchange. The advent of synchrotron radiation light sources and free electron lasers (FEL) has been a boon to a wide range of disciplines, resulting in a constantly increasing demand for brighter sources and better resolution. This demand translates to requirements on the properties of the underlying electron beams which produce the light. In particular, one is driven to find ways to precisely manipulate the phase space volume of the beam to optimize it for the desired application. Motivated by the FEL requirement for a small transverse emittance, Cornacchia and Emma developed a transverse/longitudinal emittance exchange concept using a deflecting mode rf cavity located in the dispersive section of a magnetic chicane. This method however, contained residual couplings between the two dimensions, leading Kim to propose a modified version which removed that coupling and resulted in a complete exchange. In this configuration, the deflecting mode cavity is placed between two magnetic doglegs thereby removing the afore-mentioned coupling term. We have used this beamline with upgraded diagnostics to measure a near-ideal 1:1 emittance exchange.

Physical Description

3 pages

Source

  • Presented at 2011 Particle Accelerator Conference (PAC'11), New York, NY, 28 Mar - 1 Apr 2011

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-CONF-11-109-AD
  • Grant Number: AC02-07CH11359
  • Office of Scientific & Technical Information Report Number: 1013743
  • Archival Resource Key: ark:/67531/metadc836613

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 29, 2016, 2:24 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Johnson, A.S.; Ruan, J.; Edwards, H.; Lumpkin, A.H.; Santucci, J.; Thurman-Keup, R. et al. Near-ideal emittance exchange at the Fermilab Photoinjector, article, March 1, 2011; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc836613/: accessed October 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.