

Annual Report of Groundwater Monitoring at Centralia, Kansas, in 2009

Environmental Science Division

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report

reports@adonis.osti.gov

This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC.

Annual Report of Groundwater Monitoring at Centralia, Kansas, in 2009

by

Applied Geosciences and Environmental Management Section Environmental Science Division, Argonne National Laboratory

October 2010

Contents

No	otation	v
1	Introduction and Background	1-1
2	Sampling and Analysis Activities	2-1
	2.1 Measurement of Groundwater Levels	2-1
	2.2 Monitoring Well and Piezometer Sampling and Analyses	2-1
	2.3 Handling and Disposal of Investigation-Derived Waste	2-2
	2.4 Quality Control for Sample Collection, Handling, and Analysis	2-2
3	Results and Discussion	3-1
	3.1 Groundwater Level Data	3-1
	3.2 Groundwater Analysis Results	3-2
	3.2.1 Sitewide Monitoring Results	3-2
	3.2.2 Monitoring Results for the IM Pilot Test Area	3-3
4	Conclusions and Recommendations	4-1
	4.1 Conclusions4.2 Recommendations	4-1 4-2
	4.2 Recommendations	4-2
5	References	5-1
Aŗ	opendix A: Sequence of Sampling Activities in 2009	A-1
Aŗ	opendix B: Waste Characterization and Disposal Documentation	B-1
Ap	opendix C: Data Summaries for Verification VOCs Analyses by TestAmerica Laboratories, Inc.	C-1
Aŗ	ppendix D: Time Series Diagrams for Selected Parameters at IM Monitoring Points	D-1

Tables

3.1	Hand-measured water levels at Centralia in January, April, August, and October 2009	3-6
3.2	Analytical results from the AGEM laboratory for volatile organic compounds in groundwater samples collected from the sitewide monitoring points at Centralia, August 2004 to October 2009	3-7

3.3	Field measurements for groundwater samples collected from the sitewide monitoring points at Centralia, August 2004 to October 2009	3-11
3.4	Analytical results from the AGEM laboratory for volatile organic compounds in groundwater samples collected from the IM pilot test monitoring points at Centralia, September 2008 to October 2009	3-15
3.5	Field measurements for groundwater samples collected from the IM pilot test monitoring points at Centralia, September 2008 to October 2009	3-16
A.1	Sequence of sampling activities at Centralia, April 2009 and October 2009	A-2

Figures

1.1	Approved sitewide monitoring network at Centralia, 2004 to 2008	1-3
1.2	Locations of IM pilot test injection points and post-injection groundwater monitoring points PMP1-PMP9	1-4
1.3	Previously established (before the IM pilot test) sitewide monitoring points selected for continued annual sampling under the KDHE-approved interim monitoring plan	1-5
1.4	Pilot test monitoring points selected for continued annual or twice-yearly sampling under the KDHE-approved interim monitoring plan	1-6
3.1	Hydrographs summarizing results of long-term water level monitoring at Centralia, January 2008 to December 2009	3-17
3.2	Potentiometric surface at Centralia, based on water levels measured manually on August 27, 2009	3-18
3.3	Carbon tetrachloride levels in groundwater in the KDHE-approved network of sitewide monitoring wells sampled at Centralia in October 2009, with the interpreted lateral extent of the contaminant at intervals during the period August 2004 to October 2009	3-19
3.4	Carbon tetrachloride in groundwater samples collected during the pre-injection baseline sampling, September and November 2007	3-20
3.5	Field-measured results for DO in groundwater samples collected during the pre-injection baseline sampling, September and November 2007	3-21

3.6 3.7	Field-measured results for ORP in groundwater samples collected during the pre-injection baseline sampling, September and November 2007 Analytical results for carbon tetrachloride in groundwater samples collected	3-22
5.7	in October 2009 and September 2008 at the IM pilot test monitoring points	3-23
3.8	Field-measured results for DO in groundwater samples collected in October 2009 and September 2008 at the IM pilot test monitoring points	3-24
3.9	Field-measured results for ORP in groundwater samples collected in October 2009 and September 2008 at the IM pilot test monitoring points	3-25
D.1	Analytical results for VOCs, DO, and ORP in groundwater samples collected at location MW02, November 2007 to October 2009	D-2
D.2	Analytical results for VOCs, DO, and ORP in groundwater samples collected at location PMP1, January 2008 to October 2009	D-3
D.3	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB2 and PMP2, November 2007 to October 2009	D-4
D.4	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB3 and PMP3, November 2007 to October 2009	D-5
D.5	Analytical results for VOCs, DO, and ORP in groundwater samples collected at location PMP4, January 2008 to October 2009	D-6
D.6	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB5 and PMP5, November 2007 to October 2009	D-7
D.7	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB6 and PMP6, November 2007 to October 2009	D-8
D.8	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB7 and PMP7, November 2007 to October 2009	D-9
D.9	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB8 and PMP8, November 2007 to October 2009	D-10
D.10	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB9 and PMP9, November 2007 to October 2009	D-11

Notation

AGEM	Applied Geosciences and Environmental Management
AMSL	above mean sea level
BGL	below ground level
°C	degree(s) Celsius
CAS	Corrective Action Study
CCC	Commodity Credit Corporation
COC	chain of custody
DO	dissolved oxygen
EPA	U.S. Environmental Protection Agency
ft	foot (feet)
IM	interim measure
in.	inch(es)
ISCR	in situ chemical reduction
KDHE	Kansas Department of Health and Environment
L	liter(s)
µg/L	microgram(s) per liter
µS/cm	microsiemen(s) per centimeter
mg/L	milligram(s) per liter
mi	mile(s)
mV	millivolt(s)
ORP	oxidation-reduction potential
RBSL	risk-based screening level
TOC	top of casing
USDA	U.S. Department of Agriculture
VOC	volatile organic compound

Annual Report of Groundwater Monitoring at Centralia, Kansas, in 2009

1 Introduction and Background

In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a).

Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater was sampled twice yearly from September 2005 until September 2007 for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The results from the two-year sampling program demonstrated the presence of carbon tetrachloride contamination at levels exceeding the KDHE Tier 2 risk-based screening level (RBSL) of 5 μ g/L for this compound in a localized groundwater plume that has shown little movement. The relative concentrations of chloroform, the primary degradation product of carbon tetrachloride, suggested that some degree of reductive dechlorination or natural biodegradation was talking place *in situ* at the former CCC/USDA facility on a localized scale.

The CCC/USDA subsequently developed an *Interim Measure Conceptual Design* (Argonne 2007b), proposing a pilot test of the Adventus EHC technology for *in situ* chemical reduction (ISCR). The proposed interim measure (IM) was approved by the KDHE in November 2007 (KDHE 2007). Implementation of the pilot test occurred in November-December 2007. The objective was to create highly reducing conditions that would enhance both chemical and biological reductive dechlorination in the injection test area (Argonne 2009a).

The KDHE (2008a) has requested that sitewide monitoring continue at Centralia until a final remedy has been selected (as part of a Corrective Action Study [CAS] evaluation) and implemented for this site. In response to this request, twice-yearly sampling of 10 monitoring wells and 6 piezometers (Figure 1.1) previously approved by the KDHE for monitoring of the

groundwater at Centralia (KDHE 2005a,b) was continued in 2008. The sampling events under this extension of the two-year (2005-2007) monitoring program occurred in March and September 2008 (Argonne 2008b, 2009b). Additional piezometers specifically installed to evaluate the progress of the IM pilot test (PMP1-PMP9; Figure 1.2) were also sampled in 2008; the results of these analyses were reported and discussed separately (Argonne 2009a).

On the basis of results of the 2005-2008 sitewide monitoring and the 2008 IM pilot test monitoring, the CCC/USDA recommended a revised sampling program to address both of the continuing monitoring objectives until a CAS for Centralia is developed (Section 4.2 in Argonne 2009b). The elements of this *interim monitoring plan* are as follows:

- Annual sampling of
 - Twelve previously established (before the pilot test) monitoring points (locations identified in Figure 1.3) and
 - The five outlying pilot test monitoring points (PMP4, PMP5, PMP6, PMP7, PMP9; Figure 1.4).
- Sampling twice yearly at the five pilot test monitoring points inside the injection area (PMP1-PMP3, PMP8, MW02; Figure 1.4).

With the approval of the KDHE (2009), groundwater sampling for analyses of VOCs and selected other geochemical parameters was conducted at Centralia under the interim monitoring program outlined above in April and October 2009. This report documents the findings of the 2009 monitoring events.

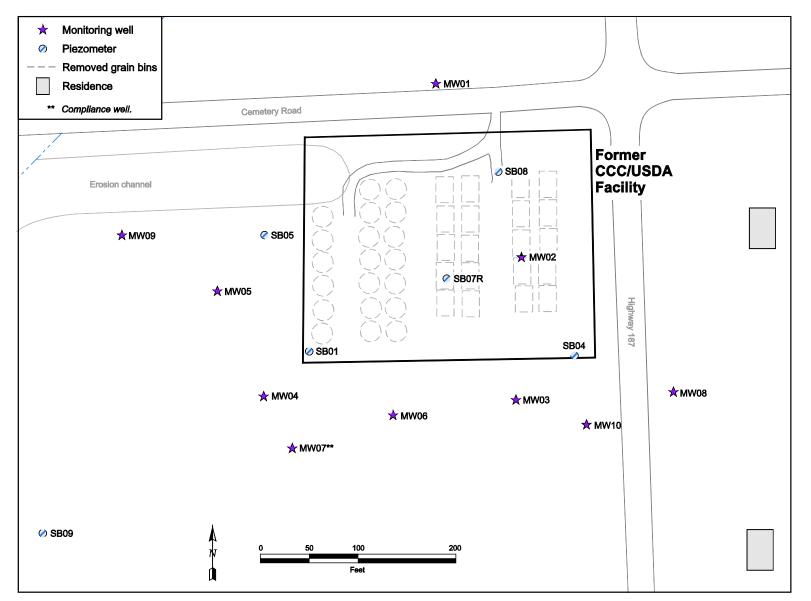


FIGURE 1.1 Approved sitewide monitoring network at Centralia, 2004 to 2008.

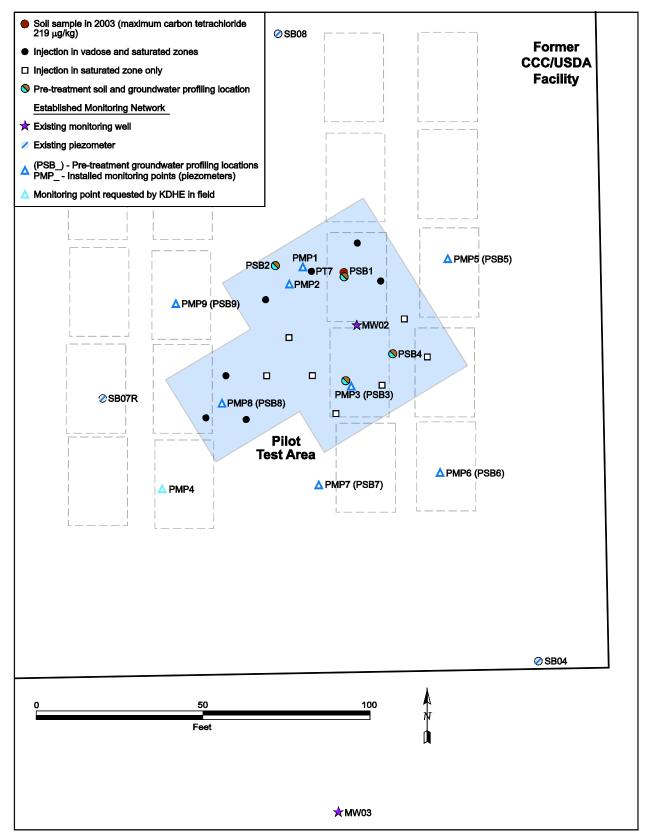


FIGURE 1.2 Locations of IM pilot test injection points and post-injection groundwater monitoring points PMP1-PMP9.

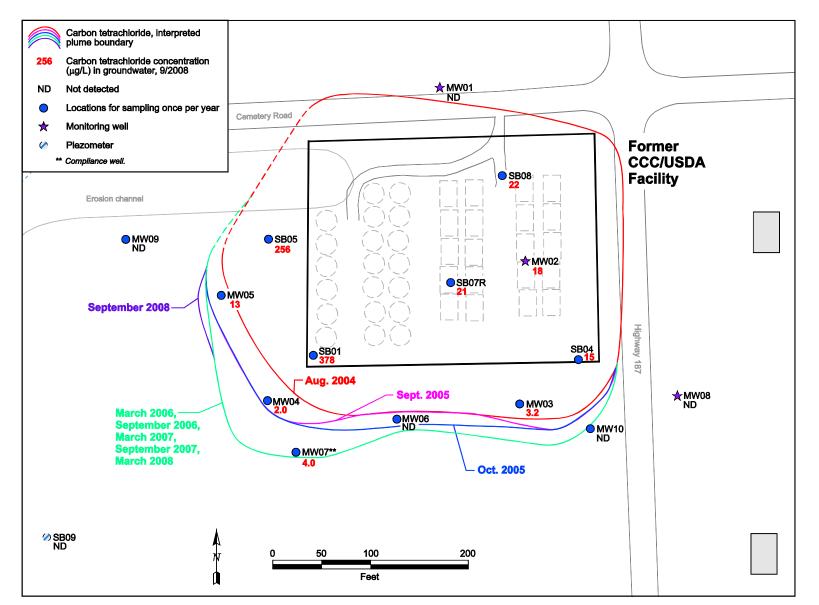


FIGURE 1.3 Previously established (before the IM pilot test) sitewide monitoring points selected for continued annual sampling under the KDHE-approved interim monitoring plan (Section 4.2 in Argonne 2009b).

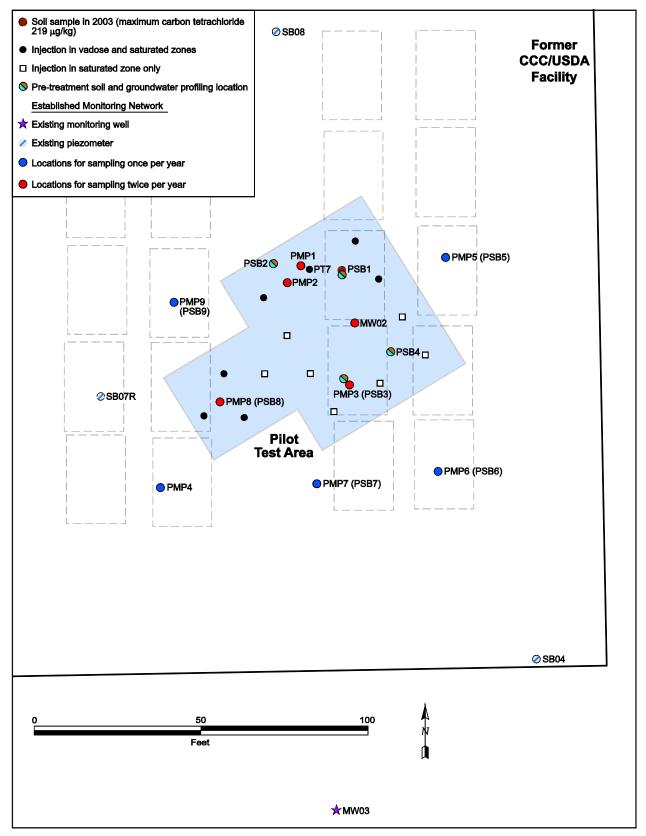


FIGURE 1.4 Pilot test monitoring points selected for continued annual or twice-yearly sampling under the KDHE-approved interim monitoring plan (Section 4.2 in Argonne 2009b).

2 Sampling and Analysis Activities

2.1 Measurement of Groundwater Levels

Pilot test monitoring points PMP1-PMP3, PMP8, and MW02 (Figure 1.4) were sampled on April 22, 2009. Pilot test monitoring points PMP1-PMP9 and MW02 (Figure 1.4) and sitewide monitoring points MW03-MW07, MW09, MW10, SB01, SB04, SB05, SB07R, and SB08 (Figure 1.3) were sampled on October 6-8, 2009. Before each well or piezometer was sampled, a water level indicator was used to measure the depth to groundwater and the total depth of each well from the top of the well casing.

Downhole pressure sensors equipped with automatic data loggers are currently installed in wells MW01 and MW03-MW06 to gather long-term data on the groundwater elevation and gradient at Centralia. The recorded water level data for the 2009 observation period were retrieved from the loggers on January 21 and August 27, 2009, and on April 28, 2010. Water levels were measured manually during the current (2009) review period in selected wells in conjunction with the data downloads on January 21 and August 27, 2009.

The groundwater level data are presented and discussed in Section 3.1.

2.2 Monitoring Well and Piezometer Sampling and Analyses

After measurement of water levels, each monitoring point was purged of a small volume by using a bladder pump or a Waterra pump. With the approval of the KDHE (2008b), the purging was performed by using low-flow techniques in accord with U.S. Environmental Protection Agency (EPA) procedure EPA/540/S-95/504 (Puls and Barcelona 1996) and the equipment manufacturers' instructions. Field measurements of temperature, pH, conductivity, dissolved oxygen (DO), and oxidation reduction potential (ORP) were taken during purging until the measurements stabilized. Field measurements of iron(II) and carbon dioxide were made as outlined in the (2005-2007) monitoring plan (Argonne 2005b), in accord with procedures in the *Master Work Plan* (Argonne 2002). The sequence of activities during each of the 2009 sampling events (in April and October) is summarized in Appendix A.

Groundwater samples designated for VOCs analyses were collected in appropriate laboratory containers, labeled, packaged, and chilled to 4°C by placement in ice-filled coolers.

The samples were shipped by an overnight delivery service to the Applied Geosciences and Environmental Management (AGEM) Laboratory at Argonne for VOCs analyses by EPA Method 524.2 (EPA 1995). Aliquots of selected samples (chosen in the field) were also shipped to TestAmerica Laboratories, Inc., South Burlington, Vermont, for verification VOCs analyses.

The analytical results for groundwater samples are discussed in Section 3.2.

2.3 Handling and Disposal of Investigation-Derived Waste

The small volumes of purge water generated during each of the 2009 sampling events (April and October) were containerized on-site. Samples of the combined waters were analyzed by a KDHE-certified laboratory (Pace Analytical Services, Inc., Lenexa, Kansas) and found to be free of carbon tetrachloride, chloroform, 1,2 dibromoethane, and nitrate at levels exceeding the KDHE Tier 2 RBSL values for these compounds. With the approval of the KDHE, the accumulated purge water was taken to the Sabetha, Kansas, publicly owned treatment works on November 18, 2009, for disposal. Documentation of the purge water analyses and disposal is in Appendix B.

2.4 Quality Control for Sample Collection, Handling, and Analysis

Quality assurance/quality control procedures followed during the April and October 2009 monitoring events are described in detail in the *Master Work Plan* (Argonne 2002). The results are summarized as follows:

- Sample collection and handling activities were monitored by the documentation of samples as they were collected and the use of chain-of-custody forms and custody seals to ensure sample integrity during handling and shipment.
- Samples designated for VOCs analyses were received with custody seals intact and at the appropriate preservation temperature. All samples were analyzed within the required holding times.
- Quality control samples collected to monitor sample collection and handling activities included equipment rinsates and trip blanks. In addition, method blanks

were analyzed with the samples to monitor analytical methodologies. All quality control samples analyzed at the AGEM Laboratory were free of carbon tetrachloride and chloroform contamination.

- Groundwater samples were analyzed for VOCs at the AGEM Laboratory with the purge-and-trap method on a gas chromatograph-mass spectrometer system. Calibration checks with each sample delivery group were required to be within ±20% of the standard. Surrogate standard determinations performed on samples and blanks were within the specified range of 80-120% for all samples, in either the initial analysis or a successful reanalysis.
- In accordance with the quality control procedures defined in the *Master Work Plan* (Argonne 2002), the analyses of water samples at the AGEM Laboratory were verified by a second laboratory. Two groundwater samples collected during the April 2009 monitoring event (from MW02 and PMP8) and three samples from the October 2009 event (from MW05, MW10, and PMP8) were submitted for verification organic analysis according to EPA Contract Laboratory Program methodology by TestAmerica. Results showed good agreement over the range of contaminant concentrations detected, with average relative percent difference values of 24% for carbon tetrachloride and 11% for chloroform. The detection of methylene chloride, a secondary dechlorination by-product of carbon tetrachloride, was confirmed in the verification analyses. Summary pages for the verification organic analyses by TestAmerica for the samples collected on April 22 and October 6-8, 2009 are in Appendix C.

3 Results and Discussion

3.1 Groundwater Level Data

Depths to groundwater were measured manually in each of the wells sampled during the monitoring events on April 22 and October 6-8, 2009. Water levels were also measured manually in conjunction with the data logger downloads performed during the current (2009) review period on January 21 and August 27, 2009. The hand-measured water level data are in Table 3.1.

Hydrographs depicting the variations in water levels in monitored wells MW01 and MW03-MW06 during the current (2009) and previous (2008) review periods are in Figure 3.1. The data logger that was formerly in well MW02 was removed in January 2008 because of corrosion, and its trace appears only briefly in Figure 3.1. The water level traces are shown in conjunction with daily precipitation data obtained from the Kansas State University recording weather station in Powhattan, Kansas, approximately 26 mi east of Centralia (http://wdl.agron.ksu.edu/). Figure 3.1 indicates that the groundwater levels at Centralia have fluctuated by approximately 2-4 ft in response to both seasonal and shorter-term rainfall events but showed little net change in 2008-2009. The pronounced, transient water level "spikes" indicated in the hydrograph for monitoring well MW06 are believed to reflect localized flooding at the location of this (flush-mounted) monitoring well that occurs during heavy rainfall events, particularly in the spring and early summer.

The potentiometric surface at Centralia, interpreted from manual measurements on August 27, 2009, is depicted in Figure 3.2. The recent results are consistent with previous measurements (Argonne 2006, 2007a, 2008a,b, 2009b), indicating an apparent groundwater flow direction toward the southwest across much of the former CCC/USDA facility. Like previous depictions of the potentiometric surface, Figure 3.2 indicates that groundwater flow appears focused toward a localized low in the potentiometric surface, defined by the water level measurements at SB01, MW04, MW06, and MW07. Argonne's earlier investigations (Argonne 2003, 2004) suggested that the increased hydraulic gradients observed near these wells are a reflection of relatively low-permeability silts and clays that compose the aquifer unit in this portion of the study area, in comparison to the coarser-grained deposits identified in the northern and eastern portions of the site. The results of the sitewide groundwater analyses discussed in Section 3.2.1 support an interpretation of slow groundwater flow (and carbon tetrachloride migration) to the south-southwest, in keeping with the observed water level patterns.

3.2 Groundwater Analysis Results

As outlined in Section 1, groundwater sampling and VOCs analyses were conducted from 2005 to 2008 in a network of 16 monitoring points (Figures 1.1) distributed across the investigation area at Centralia. The data from these locations were used to track the natural changes in the concentrations and areal extent of the carbon tetrachloride contamination in groundwater. In October 2009, groundwater sampling was performed, with the approval of the KDHE (2009), in a more limited suite of 12 monitoring points (Figure 1.3) to continue sitewide monitoring of the carbon tetrachloride distribution at Centralia.

In January 2008, 9 additional piezometers (PMP1-PMP9; Figure 1.2) were installed to facilitate more detailed monitoring of the effects of the ISCR treatment technology on the groundwater geochemistry and contaminant distribution in the immediate vicinity of the IM pilot test injection area (Argonne 2009a). Sampling for further assessment of the impacts of the ISCR pilot treatment was conducted in April and October 2009, in accord with the interim monitoring plan (Section 4.2 in Argonne 2009b).

The results of these monitoring efforts are summarized, respectively, in Section 3.2.1 and Section 3.2.2.

3.2.1 Sitewide Monitoring Results

The analytical data for VOCs in the groundwater samples collected in the network of sitewide monitoring wells in October 2009 are in Table 3.2, together with data for the previous sampling events at Centralia since sampling of the monitoring wells began in 2004. The October 2009 data for carbon tetrachloride are illustrated in Figure 3.3, along with the lateral margins of the contaminant distribution, as interpreted on the basis of each of the sitewide groundwater sampling events summarized in Table 3.2.

Carbon tetrachloride was detected in October 2009 at 9 of the 12 approved sitewide monitoring locations (KDHE 2009) on and downgradient from the former CCC/USDA facility (Figure 3.3), at concentrations ranging from 2.9 μ g/L (at MW04) to a maximum of 396 μ g/L (at SB01). Chloroform concentrations ranging from < 1 μ g/L to 19 μ g/L were detected at 7 of the 12 sampled locations (Table 3.2).

The carbon tetrachloride concentrations identified in the sitewide monitoring wells in October 2009 were generally consistent with previous measurements; however, the concentrations at all of the sampled points having detectable carbon tetrachloride showed a slight increase relative to the most recent previous (September 2008) monitoring results. The data in Table 3.2 and Figure 3.3 continue to indicate the longer-term trends (observed previously) of slightly increasing carbon tetrachloride levels at monitoring points SB05, MW03, MW04, and MW07, along the western and southern margins of the groundwater plume and in the apparent direction of groundwater flow.

The results of field measurements on the groundwater samples from wells in the sitewide monitoring network are summarized in Table 3.3. The detection of trace to relatively low levels of chloroform in association with the carbon tetrachloride identified at monitoring points MW05, MW07, SB01, SB04, SB05, SB07R, and SB08 (Table 3.2) suggests that some degradation of carbon tetrachloride is occurring at these locations. With only one possible exception (at MW06), however, the relatively high DO concentrations (1.42-9.66 mg/L) and positive ORP levels (53 mV to 238 mV) identified at the sitewide monitoring points (Table 3.3) do not support the widespread occurrence of anaerobic reducing conditions within the Centralia aquifer.

3.2.2 Monitoring Results for the IM Pilot Test Area

Baseline groundwater sampling was conducted within and adjacent to the IM pilot test area (Figure 1.2) in September and November 2007, prior to the injection of the ISCR materials, to provide a basis for assessment of the ISCR treatment technology over time. The pre-treatment concentrations of carbon tetrachloride and the values of DO and ORP identified during this sampling (Argonne 2009a) are illustrated in Figures 3.4-3.6, respectively.

Injection of the ISCR materials (in December 2007) initially generated extremely reducing, oxygen-depleted groundwater conditions (conducive to the reductive dechlorination of carbon tetrachloride) within the injection field, while less dramatic reductions in DO and ORP were observed at monitoring points outside the treatment area. The extremely low DO and ORP levels were, however, maintained for only approximately 5-7 weeks after injection. Subsequent monitoring in 2008 (Argonne 2009a,b) demonstrated that the DO and ORP levels within the injection field remained consistently lower than those at monitoring points outside the injection area, but the results showed no clear indication of further geochemical effects beyond the limits of the injection field.

Reductions of 96-99% in the concentrations of carbon tetrachloride in groundwater within the injection field and of 20-70% at most monitoring points near the injection area were observed in the first 5-7 weeks after injection. Continued monitoring in 2008 showed that carbon tetrachloride concentrations in the injection field generally remained near the initial post-injection levels or decreased slightly more, while the concentrations at points bordering or outside the injection area showed little consistency and variably decreased, increased, or remained relatively unchanged (Argonne 2009a) after the initial 5-7 weeks following the injection.

The analytical data for VOCs in the groundwater samples collected from the IM pilot test monitoring points (PMP1-PMP9 and MW02; Figure 1.4) in April and October 2009 are in Table 3.4, together with data for the most recent previous sampling event (September 2008) at these locations. The corresponding field measurements for these locations and sampling events are in Table 3.5. Time series diagrams summarizing the complete sequence of analysis results for selected parameters (carbon tetrachloride, chloroform, methylene chloride, DO, ORP) at each IM monitoring point since the ISCR pilot test was implemented in November 2007 are in Appendix D, Figures D.1-D.10.

Carbon tetrachloride was detected at each of the points sampled in the pilot test area during the April and October 2009 monitoring events, except for monitoring well MW02 (Table 3.4). In April 2009, carbon tetrachloride concentrations ranging from $3.2 \,\mu$ g/L to 1,398 μ g/L were identified at PMP1-PMP3 and PMP8. In October 2009, concentrations ranging from < 1 μ g/L (at PMP3) to 1,384 μ g/L (at PMP2) were detected at piezometers PMP1-PMP9.

The results of the September 2008 and October 2009 analyses for carbon tetrachloride are illustrated in Figure 3.7. The data indicate that, except for location PMP1, the carbon tetrachloride concentrations in groundwater in the pilot test injection field (shaded area in Figure 3.8) continued to decrease during the 2009 review period. This observation is qualitatively consistent with the DO concentrations and ORP levels identified in the pilot test area in 2009 (Table 3.5 and Figures 3.8 and 3.9, respectively), which indicate that oxygen-depleted, chemically reducing conditions were maintained in the injection field throughout the present review period.

Relatively high and persistent levels of chloroform (relative to carbon tetrachloride; Table 3.4 and Appendix D) were also observed at PMP1-PMP9 during the current review period,

and low levels of methylene chloride were detected at four of the pilot test monitoring locations

(PMP2, PMP5, PMP7, PMP8) in the October 2009 sampling event. Together, these findings confirm that geochemical conditions favorable to the degradation of carbon tetrachloride, via reductive dechlorination, persist in the pilot test area as a result of the November 2007 ISCR injections.

Figures 3.8 and 3.9 indicate that DO and ORP values decreased from September 2008 to October 2009 at monitoring points PMP4, PMP7, and PMP9 to the southwest and downgradient of the pilot test injection field, and also at nearby point PMP6 (to the southeast). Slightly lower concentrations of carbon tetrachloride were also identified at the PMP4 and PMP7 locations in October 2009 (Figure 3.7). These relationships are empirically consistent with possible slow expansion of the range of influence of the ISCR treatment technology with time. Additional monitoring in the pilot test area will be necessary, however, to substantiate these observations, as increased carbon tetrachloride concentrations were observed in the apparent direction of groundwater flow at PMP9 and nearby monitoring point SB07R (see Section 3.2.1 and Table 3.2) during the current review period, as well as at PMP6 and more upgradient monitoring points PMP1 and PMP5.

	Top of Casing Elevation ^b (ft AMSL)	January	21, 2009	April 22	April 22, 2009 ^ª		27, 2009	October 6-8, 2009	
Well		Depth to Groundwater ^c (ft TOC)	Groundwater Elevation (ft AMSL)	Depth to Groundwater (ft TOC)	Groundwater Elevation (ft AMSL)	Depth to Groundwater (ft TOC)	Groundwater Elevation (ft AMSL)	Depth to Groundwater (ft TOC)	Groundwate Elevation (ft AMSL)
AW01	1329.17	13.19	1315.98			11.35	1317.82	10.31	1318.86
/W02	1334.67			20.8	1313.87	20.07	1314.60	20.98	1313.69
VM03	1334.51	21.37	1313.14			19.93	1314.58	20.43	1314.08
/W04	1322.57	24.53	1298.04			22.92	1299.65	23.75	1298.82
AW05	1317.97	10.44	1307.53			8.15	1309.82	11.98	1305.99
AW06	1329.63	36.80	1292.83			35.15	1294.48	36.23	1293.40
/W07	1324.76					26.48	1298.28	27.97	1296.79
/W08	1332.34					17.77	1314.57	18.85	1313.49
/W09	1310.41					0.47	1309.94	3.92	1306.49
/W10	1334.39					19.75	1314.64	20.59	1313.80
SB01	1325.15					17.76	1307.39	17.42	1307.73
SB04	1335.67					21.02	1314.65	21.73	1313.94
SB05	1321.28					9.11	1312.17	11.12	1310.16
SB07R	1331.57					16.91	1314.66	18.43	1313.14
SB08	1332.48					17.83	1314.65	18.51	1313.97
SB09	1311.07					4.82	1306.25	7.32	1303.75
PMP1	1333.70			20.0	1313.70			21.08	1312.62
PMP2	1333.67			20.0	1313.67			19.84	1313.83
PMP3	1334.57			22.4	1312.17			21.15	1313.42
PMP4	1331.99							18.59	1313.40
PMP5	1335.07							21.73	1313.34
PMP6	1335.19							21.53	1313.66
PMP7	1334.06							20.54	1313.52
PMP8	1332.94			19.4	1313.54			19.87	1313.07
PMP9	1331.83			-				15.83	1316.00

TABLE 3.1 Hand-measured water levels at Centralia in January, April, August, and October 200
--

^a Measurements made during sampling.

^b 2009 surveyed elevations.

^c Depths measured from the top of the casing (TOC).

TABLE 3.2 Analytical results from the AGEM Laboratory for volatile organic compounds in groundwater samples collected at the sitewide monitoring points at Centralia, August 2004 to October 2009.

	_			Concentration ^a (µg/L)		
Well	Screen Interval (ft BGL)	Sample	Sample Date	Carbon Tetrachloride	Chloroform	Methylene Chloride
MW01	54.5-64.5	CNMW01-W-16158 CNMW01-W-19276 CNMW01-W-16308 CNMW01-W-19890 CNMW01-W-22501 CNMW01-W-16326 CNMW01-W-16228 CNMW01-W-26023	8/24/04 9/10/05 10/11/05 3/15/06 9/25/06 3/29/07 9/26/07 3/19/08	ND ^b ND ND ND ND 1.0 R ^c ND	ND ND ND ND ND ND	ND ND ND ND ND ND
MW02 ^d	49.5-59.5	CNMW01-W-26673 CNMW02-W-16159 CNMW02-W-19282 CNMW02-W-16309 CNMW02-W-19908 CNMW02-W-22508 CNMW02-W-15489 CNMW02-W-16227	9/9/08 8/26/04 9/11/05 10/12/05 3/16/06 9/26/06 3/26/07 9/26/07	ND 215 776 528 847 1233 829 1138	ND 6.2 33 21 21 25 14 18	ND ND ND ND ND ND ND ND
MW03	50.5-60.5	CNMW03-W-16178 CNMW03-W-19277 CNMW03-W-16310 CNMW03-W-19909 CNMW03-W-22513 CNMW03-W-15494 CNMW03-W-16223 CNMW03-W-26001 CNMW03-W-26675 CNMW03-W-27151	8/24/04 9/10/05 10/11/05 3/17/06 9/26/06 3/27/07 9/25/07 3/12/08 9/9/08 10/6/09	1.2 1.6 1.8 2.6 2.7 2.5 3.5 2.3 3.2 6.2	ND ND 0.2 J ^e ND ND ND ND 0.3 J ND	ND ND ND ND ND ND ND ND ND
MW04	37.5-47.5	CNMW04-W-16180 CNMW04-W-19280 CNMW04-W-16311 CNMW04-W-19891 CNMW04-W-22506 CNMW04-W-16210 CNMW04-W-16220 CNMW04-W-26024 CNMW04-W-26076 CNMW04-W-27152	8/24/04 9/11/05 10/11/05 3/15/06 9/25/06 3/28/07 9/24/07 3/19/08 9/9/08 10/7/09	ND 0.9 J 0.8 J 1.3 1.4 2.1 2.0 1.3 2.0 2.9	ND ND ND 0.1 J ND ND ND ND	ND ND ND ND ND ND ND ND ND
MW05	34.5-44.5	CNMW05-W-16183 CNMW05-W-19279 CNMW05-W-16312 CNMW05-W-19976 CNMW05-W-22505 CNMW05-W-16213 CNMW05-W-16218 CNMW05-W-26025 CNMW05-W-26677 CNMW05-W-27153	8/25/04 9/10/05 10/11/05 3/15/06 9/25/06 3/28/07 9/24/07 3/19/08 9/10/08 10/7/09	ND 1.9 1.5 1.3 0.5 J 1.2 1.9 13 18	ND ND ND ND ND ND 0.7 J 1.1	ND ND ND ND ND ND ND ND ND

TABLE 3.2 (Cont.)

				Concentration (µg/L)			
Well	Screen Interval (ft BGL)	Sample	Sample Date	Carbon Tetrachloride	Chloroform	Methylene Chloride	
MW06	46.5-56.5	CNMW06-W-16184 CNMW06-W-19278 CNMW06-W-16313 CNMW06-W-19889 CNMW06-W-22511 CNMW06-W-16228 CNMW06-W-16222 CNMW06-W-26026 CNMW06-W-26678 CNMW06-W-27154	8/25/04 9/10/05 10/11/05 3/15/06 9/27/06 3/27/07 9/24/07 3/19/08 9/9/08 10/6/09	ND ND 0.3 J 0.2 J ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	
MW07	45-55	CNMW07-W-19887 CNMW07-W-22512 CNMW07-W-15492 CNMW07-W-16221 CNMW07-W-26027 CNMW07-W-26679 CNMW07-W-27155	3/14/06 9/26/06 3/26/07 9/24/07 3/19/08 9/9/08 10/6/09	0.4 J 1.1 1.8 2.4 3.0 4.0 5.1	0.6 J ND ND ND 0.2 J 0.6 J	ND ND ND ND ND ND	
MW08	38-53	CNMW08-W-19284 CNMW08-W-22507 CNMW08-W-15493 CNMW08-W-16226 CNMW08-W-26028 CNMW08-W-26680	3/14/06 9/26/06 3/27/07 9/25/07 3/20/08 9/10/08	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	
MW09	25-35	CNMW09-W-19285 CNMW09-W-22504 CNMW09-W-16209 CNMW09-W-16219 CNMW09-W-26029 CNMW09-W-26681 CNMW09-W-27157	3/15/06 9/25/06 3/27/07 9/24/07 3/20/08 9/10/08 10/6/09	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	
MW10	30-45	CNMW10-W-19886 CNMW10-W-22510 CNMW10-W-16215 CNMW10-W-16224 CNMW10-W-26030 CNMW10-W-26682 CNMW10-W-27158	3/14/06 9/26/06 3/28/07 9/25/07 3/20/08 9/9/08 10/6/09	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	
SB01	40-50	CNSB01-W-16188 CNSB01-W-19274 CNSB01-W-16314 CNSB01-W-19979 CNSB01-W-22516 CNSB01-W-15491 CNSB01-W-16232 CNSB01-W-26031 CNSB01-W-26683 CNSB01-W-27159	8/26/04 9/9/05 10/12/05 3/17/06 9/27/06 3/27/07 9/27/07 3/20/08 9/10/08 10/7/09	186 269 288 320 267 222 283 325 378 396	6.5 6.8 6.6 5.7 6.3 4.9 4.6 4.8 4.1 5.0	ND ND ND ND ND ND ND ND ND	

TABLE 3.2 (Cont.)

				Concentration (µg/L)			
Well	Screen Interval (ft BGL)	Sample	Sample Date	Carbon Tetrachloride	Chloroform	Methylene Chloride	
SB04	51-61	CNSB04-W-16189 CNSB04-W-19273 CNSB04-W-16315 CNSB04-W-19906 CNSB04-W-22503 CNSB04-W-16216 CNSB04-W-16230 CNSB04-W-26002 CNSB04-W-26684 CNSB04-W-27160	8/26/04 9/9/05 10/12/05 3/16/06 9/25/06 3/28/07 9/26/07 3/12/08 9/9/08 10/8/09	30 47 44 51 54 44 36 30 15 17	ND 0.6 J 0.5 J 0.5 J 0.7 J 0.5 J 0.4 J 0.3 J 0.3 J 0.3 J	ND ND 0.4 J B ^f ND ND ND ND ND ND	
SB05	32-42	CNSB05-W-16190 CNSB05-W-19275 CNSB05-W-16323 CNSB05-W-19904 CNSB05-W-16212 CNSB05-W-16233 CNSB05-W-26032 CNSB05-W-26685 CNSB05-W-27161	8/26/04 9/9/05 10/12/05 3/17/06 9/27/06 3/28/07 9/26/07 3/20/08 9/9/08 10/8/09	59 77 54 104 139 138 221 224 256 289	5.5 7.2 5.5 7.2 12 12 16 17 20 19	ND ND ND ND ND ND ND ND ND ND	
SB07R	45-60	CNSB07R-W-19978 CNSB07R-W-19924 CNSB07R-W-15490 CNSB07R-W-16225 CNSB07R-W-26003 CNSB07R-W-26686 CNSB07R-W-27162	3/15/06 9/26/06 3/26/07 9/25/07 3/12/08 9/9/08 10/7/09	41 30 30 50 13 21 38	2.7 1.7 2.4 0.9 J 1.4 1.7	ND ND ND ND ND ND	
SB08	52-62	CNSB08-W-16192 CNSB08-W-19272 CNSB08-W-16317 CNSB08-W-19903 CNSB08-W-22500 CNSB08-W-16214 CNSB08-W-16229 CNSB08-W-26004 CNSB08-W-26687 CBSB08-W-27163	8/26/04 9/8/05 10/12/05 3/17/06 9/21/06 3/28/07 9/26/07 3/12/08 9/8/08 10/8/09	79 80 77 91 53 64 68 28 22 29	3.1 2.6 2.8 2.7 1.6 2.0 1.8 1.1 1.2 1.2	ND ND ND ND ND ND ND ND ND ND	
SB09	32-42	CNSB09-W-16193 CNSB09-W-19281 CNSB09-W-16318 CNSB09-W-19902 CNSB09-W-22502 CNSB09-W-16211 CNSB09-W-16231 CNSB09-W-26033 CNSB09-W-26688	8/26/04 9/11/05 10/11/05 3/17/06 9/25/06 3/28/07 9/26/07 3/20/08 9/10/08	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	

TABLE 3.2 (Cont.)

				Concentration (μg/L)			
Well	Screen Interval (ft BGL)	Sample	Sample Date	Carbon Tetrachloride	Chloroform	Methylene Chloride	

^a Regulatory levels (KDHE Tier 2 RSBL values):

<u>Compound</u>	Concentration (µg/L)
Carbon tetrachloride	5.0
Chloroform	80
Methylene chloride	5.0

^b ND, not detected at an instrument detection limit of 0.1 µg/L.

^c Qualifier R indicates that the contaminant was present in the associated equipment rinsate.

- ^d Data are for samples collected prior to implementation of the IM ISCR pilot test in November 2007. More recent results are in Table 3.4.
- e Qualifier J indicates an estimated concentration below the method quantitation limit of 1.0 μg/L.
- ^f Qualifier B indicates that the contaminant was present in the associated method blank.

TABLE 3.3 Field measurements for groundwater samples collected from the sitewide monitoring points at
Centralia, August 2004 to October 2009.

	_														Conce	entration (m	g/L)	-
Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	pН	Conductivity (µS/cm)	Dissolved Oxygen	Carbon Dioxide	Iron(II)	ORP (mV)									
MW01	54.5-64.5	8/24/04	16.3	7.39	652	0.06	25	0.00	230									
		9/10/05	16.3	7.26	599	6.31	_a	0.00	104									
		10/11/05	16.4	6.45	634	_	_	_	_									
		3/15/06	14.3	7.56	621	9.33	30	0.04	297									
		9/25/06	13.3	7.01	782	6.82	50	0.31	92									
		3/29/07	16.5	6.54	629	4.39	_	0.00	174									
		9/26/07	17.8	7.06	630	0.89	35	0.09	146									
		3/19/08	9.5	7.31	613	3.34	_	_	122									
		9/9/08	13.9	7.28	595	5.18	20	0.03	28									
MW02 ^b	49.5-59.5	8/26/04	14.4	7.31	729	0.16	20	0.12	235									
		9/11/05	15.3	7.02	739	1.28	_	_	_									
		10/12/05	14.8	6.60	766	_	_	_	_									
		3/16/06	14.2	6.78	759	1.24	_	0.00	295									
		9/26/06	13.2	6.98	957	3.05	40	0.06	67									
		3/26/07	15.7	6.39	739	2.29	50	_	67									
		9/26/07	15.4	7.04	763	3.39	25	0.00	156									
MW03	50.5-60.5	8/24/04	13.1	7.28	783	0.10	55	0.21	230									
		9/10/05	15.1	7.05	715	10.42	65	0.00	142									
		10/11/05	16.3	6.46	765	-	-	-	-									
		3/17/06	13.8	6.75	753	9.39	77	0.00	290									
		9/26/06	13.2	6.92	960	11.57	45	0.08	251									
		3/27/07	15.3	6.40	774	7.73	25	-	268									
		9/25/07	14.3	6.97	738	8.44	30	0.00	162									
		3/12/08	14.6	7.12	777	7.90	_	3.13	88									
		9/9/08	14.9	7.13	763	9.60	110	0.12	66									
		10/6/09	13.8	7.08	770	9.66	95	0.03	216									
MW04	37.5-47.5	8/24/04	16.2	7.39	717	0.11	40	0.04	210									
		9/11/05	15.4	7.18	665	8.43	60	0.00	226									
		10/11/05	14.4	7.14	811	-	-	-	_									
		3/15/06	13.5	7.78	675	6.82	55	0.06	283									
		9/25/06	_	7.02	613	9.13	40	0.19	46									
		3/28/07	15.4	6.47	678	5.46	-	0.00	197									
		9/24/07	17.4	7.10	667	6.94 7.55	35	0.24	261									
		3/19/08	11.2	7.32	636	7.55	-	-	164									
		9/9/08 10/7/09	14.2 13.9	7.14 7.17	648 671	8.68 8.64	100 100	0.00 0.02	72 183									
MW05	34.5-44.5	8/25/04 9/10/05	14.3 14.2	7.14 6.80	613 620	0.08 1.40	25 110	0.06 0.00	215 160									
		10/11/05	14.8	6.35	610	-	-	-	-									
		3/15/06	14.3	6.90	701	0.90	30	0.06	156									
		9/25/06	13.6	6.90 6.95	768	0.90	50 50	0.00	55									
		3/28/07	14.4	6.44	573	4.53	35	0.02	295									
		9/24/07	15.8	7.06	368	3.09	45	0.00	182									
		3/19/08	12.9	7.42	642	5.42	-	_	177									
		0, 10,00																
		9/10/08	13.9	7.11	663	7.14	95	0.00	130									

TABLE 3.3 (Cont.)

	Saraan											Conce	entration (m	ig/L)	-
Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	pН	Conductivity (µS/cm)	Dissolved Oxygen	Carbon Dioxide	Iron(II)	ORP (mV)						
MW06	46.5-56.5	8/25/04	15.9	7.50	637	0.05	15	0.00	215						
		9/10/05 10/11/05	14.6 15.8	7.23 6.99	659 638	0.04	60 _	0.00	41 _						
		3/15/06	14.1	7.38	630	9.87	35	0.02	263						
		9/27/06	13.1	6.16	652	0.05	45	1.12	63						
		3/27/07	19.0	6.42	466	0.11	20	0.00	13						
		9/24/07 3/19/08	16.8 14.1	7.11 7.01	463 552	8.00 7.00	25	0.41	191 172						
		9/9/08	14.4	7.20	437	0.36	105	0.07	-96						
		10/6/09	13.5	6.69	255	0.61	110	0.06	-72						
MW07	45-55	3/14/06	14.7	6.61	709	0.34	_	0.03	143						
		9/26/06 3/26/07	13.1 15.8	7.23 6.50	642 642	2.91 1.87	50 30	0.00 0.00	_ 261						
		3/20/07 9/24/07	19.0	7.18	609	9.05	30 60	0.00	190						
		3/19/08	12.5	7.29	647	2.70	_	-	215						
		9/9/08	15.6	7.10	629	1.41	68	0.00	16						
		10/6/09	13.9	7.19	618	1.42	70	0.00	53						
MW08	38-53	3/14/06	13.5	6.35	854	5.32	_	0.00	145						
		9/26/06	13.3	6.75	1095	0.16	50	0.18	37						
		3/27/07 9/25/07	15.8 15.8	6.31 6.92	874 627	1.49 1.42	30 45	0.21 0.14	237 219						
		9/23/07 3/20/08	13.5	0.92 7.19	869	2.11	40	0.14 —	185						
		9/10/08	16.3	7.03	864	1.17	100	0.03	117						
MW09	25-35	3/15/06	17.7	7.33	664	0.95	55	0.09	214						
		9/25/06	12.8	6.87	859	1.59	45	0.18	90						
		3/27/07 9/24/07	14.9 16.6	6.35 6.94	689 1999	4.10 3.86	30 55	0.69 0.14	152 186						
		3/20/08	13.5	7.17	720	4.70	-	-	173						
		9/10/08	14.7	7.02	706	3.68	110	0.07	120						
		10/6/09	13.2	7.00	715	3.73	110	0.08	148						
MW10	30-45	3/14/06	14.8	6.60	834	6.42	65	0.00	166						
		9/26/06 3/28/07	13.6 17.0	6.87 6.36	1058 834	6.94 5.09	50 35	0.50 0.00	51 270						
		9/25/07	15.8	6.94	827	6.64	35	0.00	199						
		3/20/08	10.9	7.18	898	6.12	_	_	187						
		9/9/08	14.8	7.05	879	7.18	100	0.06	94						
		10/6/09	13.7	7.04	883	6.67	95	0.08	201						
SB01	40-50	8/26/04	26.0	7.46	699 674	5.21	30	0.00	210						
		9/9/05 10/12/05	25.0 13.8	7.11 7.23	674 686	6.25 -	95 	0.00	140 _						
		3/17/06	12.4	7.30	692	_ 5.98	55	0.00	 185						
		9/27/06	14.4	7.03	832	6.54	40	0.52	198						
		3/27/07	18.0	6.37	659	3.81	25	0.23	173						
		9/27/07	13.5	7.24	720	6.55	45	1.04	143						
		3/20/08 9/10/08	15.6 16.5	7.29 7.10	783 676	8.02 2.89	_ 100	_ 0.17	182 100						
		10/7/09	14.8	7.11	761	7.69	105	0.07	215						

TABLE 3.3 (Cont.)

	0					Conce	entration (m	g/L)	-
Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	pН	Conductivity (µS/cm)	Dissolved Oxygen	Carbon Dioxide	Iron(II)	ORP (mV)
SB04	51-61	8/26/04	17.9	7.14	765	3.78	55	0.37	230
		9/9/05	16.0	7.09	708	8.67	100	_	206
		10/12/05	13.9	7.17	813	-	-	-	-
		3/16/06	13.0	7.57	799	5.96	30	-	276
		9/25/06	14.9	7.16	791	9.32	70	1.18	64
		3/28/07	16.2	6.45	850	6.18	-	0.23	266
		9/26/07	19.8	7.03	760	6.61	30	0.00	202
		3/12/08 9/9/08	15.5 16.5	7.04 7.11	819 802	6.16 6.48	100	0.09 0.02	154 70
		10/8/09	12.2	7.11	797	7.43	95	0.02	238
		10/0/03	12.2	1.11	151	7.40	00	0.00	200
SB05	32-42	8/26/04	15.7	7.25	761	_	25	0.06	220
		9/9/05	16.9	6.98	687	7.58	100	_	_
		10/12/05	14.0	7.00	728	-	-	-	-
		3/17/06	13.3	7.67	718	4.80	40	0.18	253
		9/27/06	13.7	6.58	763	4.70	50	0.25	78
		3/28/07	16.7	4.03	1100	2.58	35	0.07	296
		9/26/07	15.1	6.98	810	4.10	30	0.50	221
		3/20/08 9/9/08	14.5 13.7	7.11 6.79	870 890	5.56 7.60	_ 90	_ 0.09	206 56
		9/9/08 10/8/09	12.7	7.09	874	6.63	90 100	0.09	209
		10/0/03	12.1	1.05	0/4	0.00	100	0.00	203
SB07R	45-60	3/15/06	16.8	7.24	685	7.41	60	0.08	83
		9/26/06	13.2	6.89	842	6.17	55	0.26	67
		3/26/07	19.0	6.38	668	5.08	40	0.07	237
		9/25/07	17.4	7.06	642	6.30	35	0.11	170
		3/12/08	17.3	7.18	639	5.33	_	0.00	108
		9/9/08	14.1	7.06	631	5.08	100	0.07	55
		10/7/09	13.3	7.11	629	6.67	110	0.10	224
SB08	52-62	8/26/04	19.5	7.31	635	0.16	20	0.53	235
OBOO	02 02	9/8/05	21.2	7.27	598	3.21	75	0.00	111
		10/12/05	13.9	7.15	630	_	_	_	_
		3/17/06	12.9	7.14	645	3.40	40	0.00	246
		9/21/06	14.1	6.96	809	4.53	40	0.00	37
		3/28/07	15.8	6.53	645	3.57	35	0.24	208
		9/26/07	17.4	7.11	617	4.56	40	0.77	156
		3/12/08	17.1	7.17	642	3.63	_	0.14	102
		9/8/08	13.6	7.14	626	2.70	90 05	0.00	230
		10/8/09	12.3	7.22	617	4.43	95	0.00	221
SB09	32-42	8/26/04	30.9	7.09	910	0.26	75	0.00	185
0200		9/11/05	14.6	6.71	877	0.13	225	0.00	-
		10/11/05	13.9	6.85	910	_		_	_
		3/17/06	11.7	7.03	969	1.53	99	0.00	206
		9/25/06	14.2	7.00	976	0.29	70	0.38	86
		3/28/07	14.3	6.32	957	0.89	40	0.09	236
		9/26/07	15.2	6.77	969	1.53	45	0.12	199
		3/20/08	10.1	6.94	1000	1.57	-	-	221
		9/10/08	18.4	6.87	977	0.56	160	0.11	109
		9/10/08	18.4	6.87	977	0.56	160	0.11	109

	0					Conce	ntration (m	g/L)	
Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	pН	Conductivity (µS/cm)	Dissolved Oxygen	Carbon Dioxide	Iron(II)	ORP (mV)

^a No measurement obtained.

^b Data are for samples collected prior to implementation of the IM ISCR pilot test in November 2007.

TABLE 3.4 Analytical results from the AGEM Laboratory for volatile organic compounds in groundwater samples collected from the IM pilot test monitoring points at Centralia, September 2008 to October 2009.

				Co	ncentration (µg/l	_)
Well	Screen Interval (ft BGL)	Sample	Sample Date	Carbon Tetrachloride	Chloroform	Methylene Chloride
MW02 ^a	49.5-59.5	CNMW02-W-26674 CNMW02-W-27140 CNMW02-W-27150	9/8/08 4/22/09 10/8/09	18 ND ^b ND	57 ND ND	11 1.8 ND
PMP1	50-60	CNPMP1-W-26689 CNPMP1-W-27141 CNPMP1-W-27165	9/9/08 4/22/09 10/7/09	136 102 167	30 21 20	ND ND ND
PMP2	50-60	CNPMP2-W-26690 CNPMP2-W-27142 CNPMP2-W-27166	9/9/08 4/22/09 10/7/09	1,854 1,398 1,384	318 299 272	5.6 NA ^c 6.6
PMP3	50-60	CNPMP3-W-26691 CNPMP3-W-27143 CNPMP3-W-27167	9/9/08 4/22/09 10/7/09	21 3.2 0.5 J ^d	57 5.8 3.9	6.2 ND ND
PMP4	48.75-58.75	CNPMP4-W-26692 CNPMP4-W-27168	9/9/08 10/6/09	49 39	4.2 2.9	ND ND
PMP5	50-60	CNPMP5-W-26693 CNPMP5-W-27169	9/10/08 10/8/09	418 728	46 43	1.6 1.2
PMP6	50-60	CNPMP6-W-26694 CNPMP6-W-27170	9/8/08 10/6/09	110 199	7.8 12	ND ND
PMP7	50-60	CNPMP7-W-26695 CNPMP7-W-27171	9/9/08 10/6/09	119 84	13 23	ND 1.8
PMP8	50-60	CNPMP8-W-26696 CNPMP8-W-27144 CNPMP8-W-27172	9/9/08 4/22/09 10/7/09	72 3.2 16	125 5.6 21	3.4 1.9 1.8
PMP9	50-60	CNPMP9-W-26697 CNPMP9-W-27173	9/9/08 10/7/09	7.6 29	0.4 J 0.5 J	ND ND

^a Data are for samples collected after implementation of the IM ISCR pilot test in November 2007.

 $^{\rm b}\,$ ND, not detected at an instrument detection limit of 0.1 µg/L.

^c NA, no analysis.

^d Qualifier J indicates an estimated concentration below the method quantitation limit of 1.0 µg/L.

TABLE 3.5 Field measurements for groundwater samples collected from the IM pilot test monitoring points at Centralia, September 2008 to October 2009.

	0					Conce	-		
Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	pН	Conductivity (µS/cm)	Dissolved Oxygen	Carbon Dioxide	Iron(II)	ORP (mV)
MW02 ^a	49.5-59.5	9/8/08 4/22/09 10/8/09	13.1 14.8 12.7	6.12 6.71 6.98	6,821 2,943 1,829	0.40 0.60 0.44	50 110 50	3.30 ^b 2.70 3.06	-74 -131 -138
PMP1	50-60	9/9/08 4/22/09 10/7/09	14.4 15.1 13.8	5.54 6.97 7.30	700 667 623	1.37 3.62 0.56	115 115 110	0.23 0.60 0.33	-138 40 -79 -34
PMP2	50-60	9/9/08 4/22/09 10/7/09	14.4 15.0 13.9	7.09 6.91 7.65	997 829 775	0.05 3.57 0.19	180 150 160	1.68 1.36 1.53	-41 -101 -89
PMP3	50-60	9/9/08 4/22/09 10/7/09	14.5 14.3 14.0	6.98 7.13 8.06	1301 506 472	0.03 2.64 0.17	150 130 140	3.30 ^b 2.51 0.37	-150 -114 -129
PMP4	48.75-58.75	9/9/08 10/6/09	14.3 13.2	4.97 6.46	738 705	4.87 2.20	100 110	0.49 0.08	134 43
PMP5	50-60	9/10/08 10/8/09	16.9 10.7	7.20 7.10	875 839	2.51 3.18	105 100	0.18 0.00	117 43
PMP6	50-60	9/8/08 10/6/09	13.2 13.5	6.87 6.80	787 692	3.32 2.30	75 80	0.09 0.07	173 159
PMP7	50-60	9/9/08 10/6/09	14.2 13.4	6.30 6.74	807 655	2.18 0.46	70 70	0.18 0.12	15 -13
PMP8	50-60	9/9/08 4/22/09 10/7/09	14.4 15.2 13.9	7.05 7.30 7.69	1388 776 688	0.03 1.74 0.81	60 150 120	2.72 2.03 0.27	-129 -139 -155
PMP9	50-60	9/9/08 10/7/09	14.0 13.7	6.36 7.50	606 568	7.78 5.82	120 125	0.10 0.06	45 -1

^a Data are for samples collected after implementation of the IM ISCR pilot test in November 2007.

^b Maximum reading from instrument.

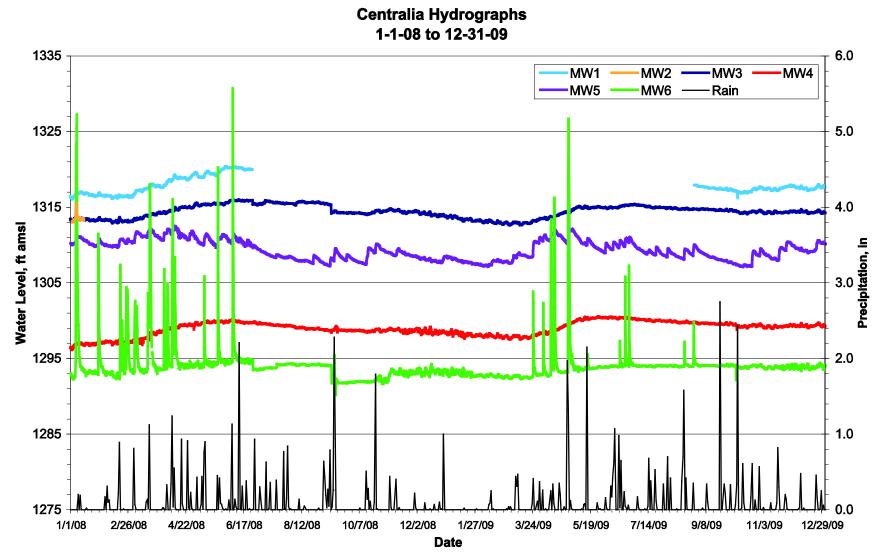


FIGURE 3.1 Hydrographs summarizing results of long-term water level monitoring at Centralia, January 2008 to December 2009.

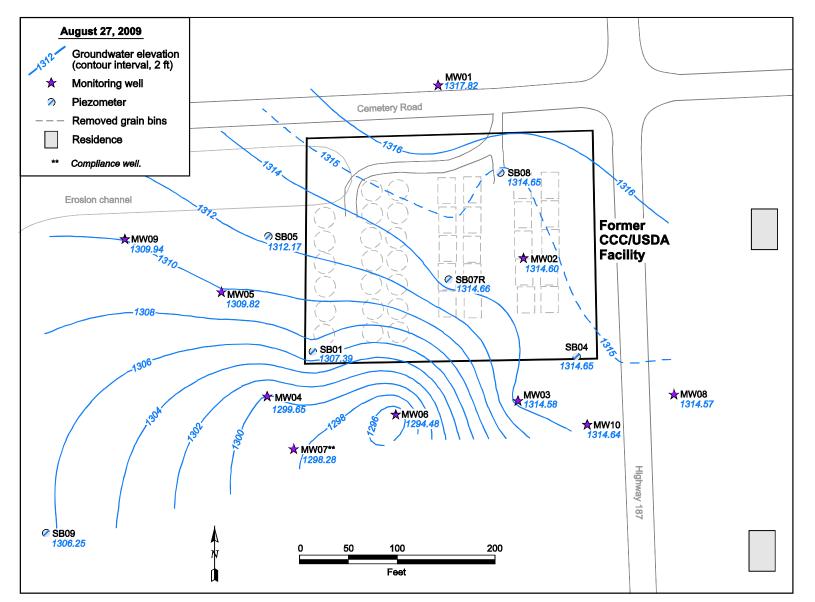


FIGURE 3.2 Potentiometric surface at Centralia, based on water levels measured manually on August 27, 2009.

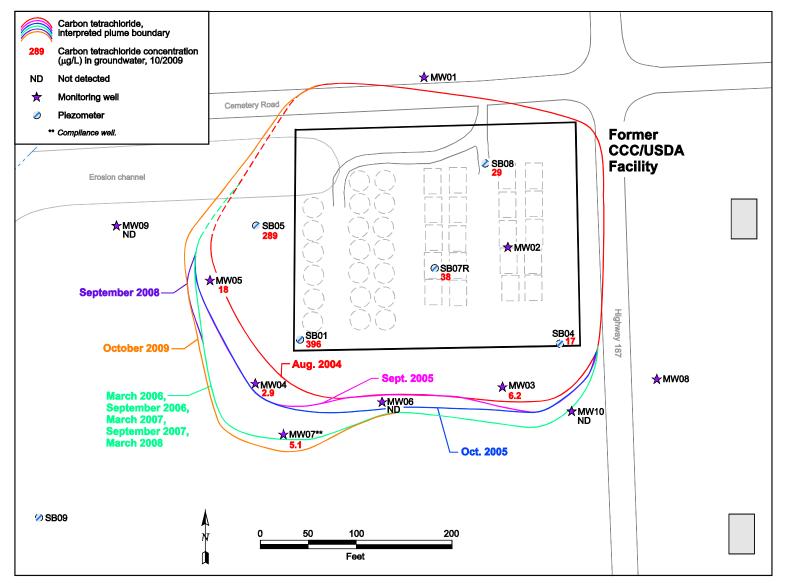


FIGURE 3.3 Carbon tetrachloride levels in groundwater in the KDHE-approved network of sitewide monitoring wells sampled at Centralia in October 2009, with the interpreted lateral extent of the contaminant at intervals during the period August 2004 to October 2009.

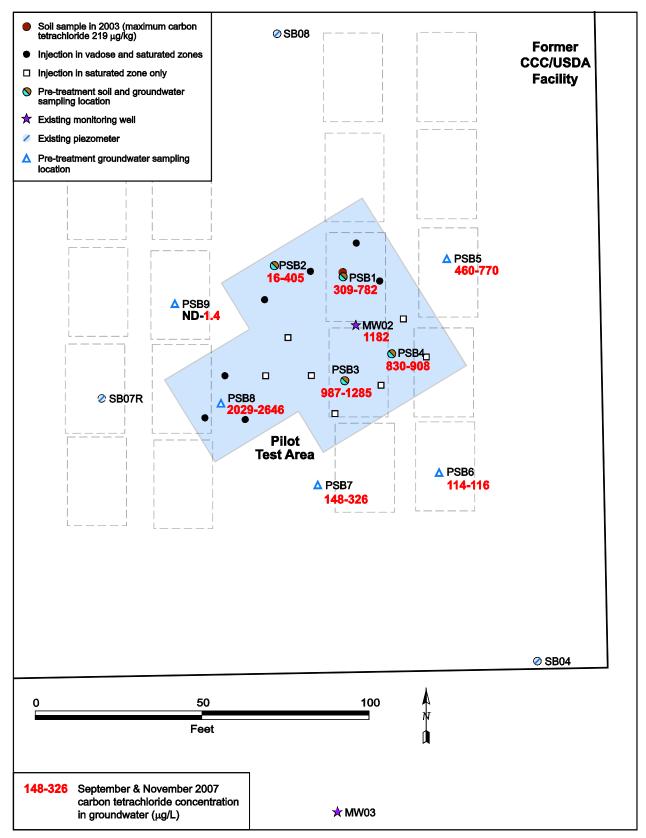


FIGURE 3.4 Carbon tetrachloride in groundwater samples collected during the pre-injection baseline sampling, September and November 2007

FIGURE 3.5 Field-measured results for DO in groundwater samples collected during the pre-injection baseline sampling, September and November 2007

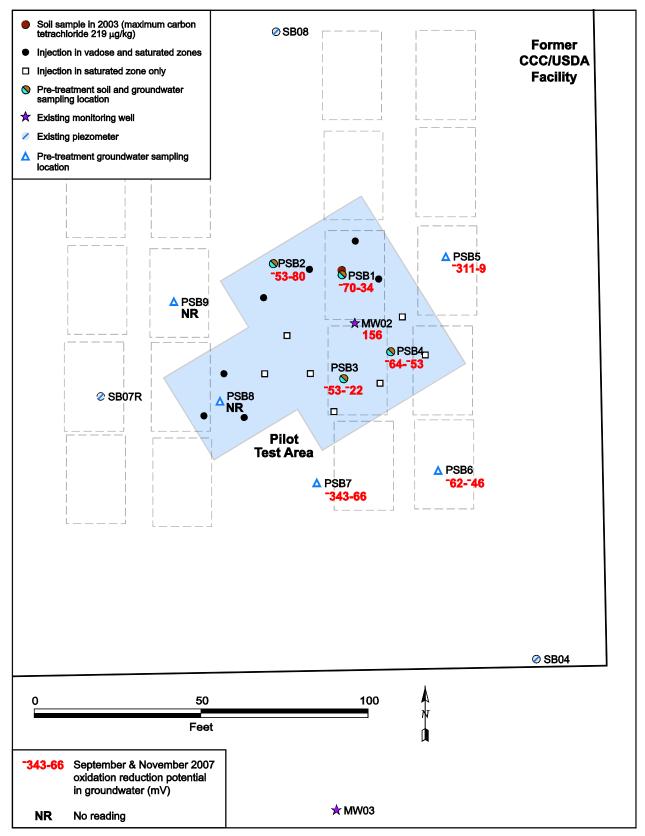


FIGURE 3.6 Field-measured results for ORP in groundwater samples collected during the pre-injection baseline sampling, September and November 2007

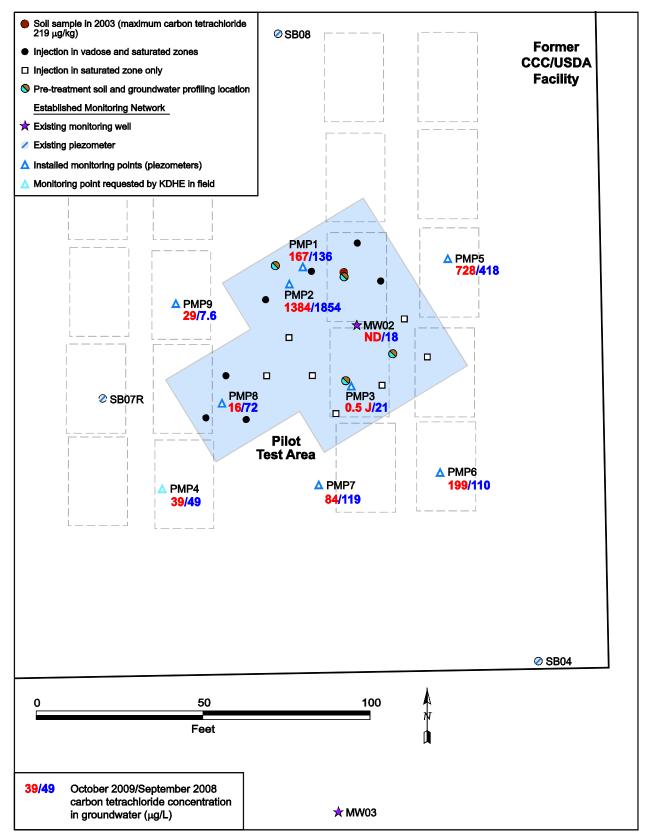


FIGURE 3.7 Analytical results for carbon tetrachloride in groundwater samples collected in October 2009 and September 2008 at the IM pilot test monitoring points.

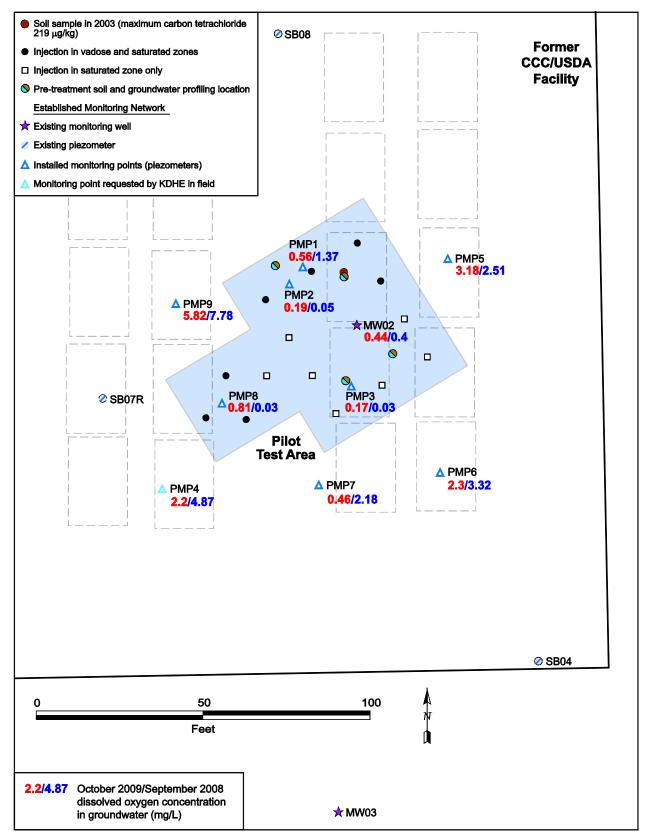


FIGURE 3.8 Field-measured results for DO in groundwater samples collected in October 2009 and September 2008 at the IM pilot test monitoring points.

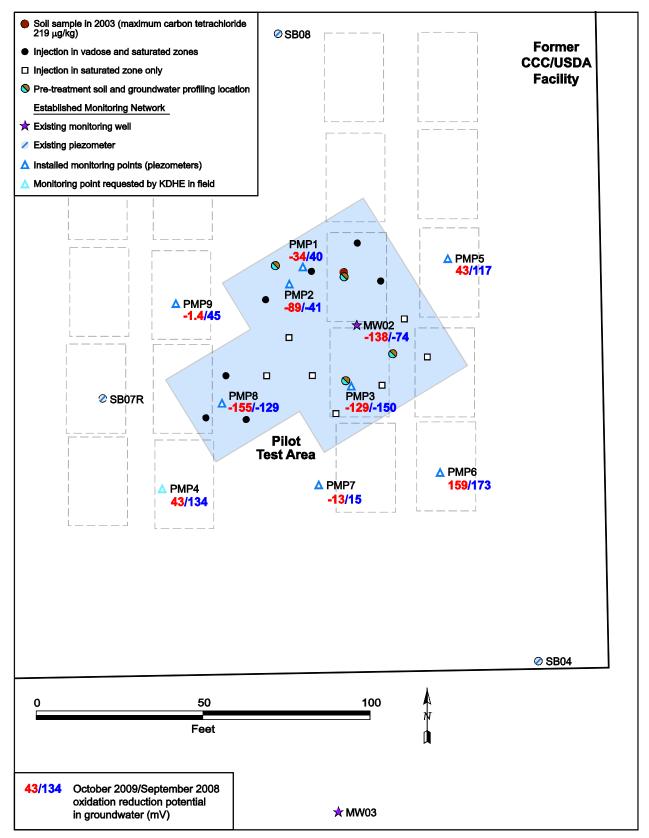


FIGURE 3.9 Field-measured results for ORP in groundwater samples collected in October 2009 and September 2008 at the IM pilot test monitoring points.

4 Conclusions and Recommendations

4.1 Conclusions

The findings of the April 2009 and October 2009 monitoring events at Centralia support the following conclusions:

- Measurements of groundwater levels obtained manually and through the use of automatic recorders have consistently indicated an apparent direction of groundwater flow to the south-southwest across the former CCC/USDA facility.
- The October 2009 carbon tetrachloride data for monitoring points in the approved sitewide network were generally consistent with previous results, although a slight increase relative to the concentrations identified in September 2008 was observed at most locations. Longer-term trends of slightly increasing carbon tetrachloride concentrations continue to be observed at monitoring points SB05, MW03, MW04, and MW07, along the western and southern margins of the contaminant distribution in groundwater. These trends suggest very slow expansion of the plume at the downgradient locations.
- Trace to low levels of chloroform identified at sitewide monitoring points MW05, MW07, SB01, SB04, SB05, SB07R, and SB08 suggest that limited natural degradation of carbon tetrachloride is occurring at these locations. The relatively high DO concentrations and positive ORP levels identified at these and most of the other sitewide monitoring points indicate, however, that anaerobic reducing conditions conducive to the reductive dechlorination of carbon tetrachloride are not widely developed, sitewide, within the Centralia aquifer.
- The results of sampling in April and October 2009 indicate that (with one exception, at PMP1) the concentrations of carbon tetrachloride identified in groundwater within the IM pilot test injection field continued to decrease during the present review period. The results also confirmed that oxygen-

depleted, chemically reducing conditions persist in the injection field as a result of the ISCR injections in November-December 2007.

• From September 2008 to October 2009, DO and ORP values decreased at pilot test monitoring points PMP4, PMP6, PMP7, and PMP9. Carbon tetrachloride concentrations also decreased at PMP4 and PMP7. Monitoring points PMP4, PMP7, and PMP9 lie immediately to the southwest and downgradient of the pilot test injection field, and PMP6 lies near the southern margin of the injection field. These relationships qualitatively suggest that the range of influence of the injected ISCR treatment technology might be increasing slowly with time, as a consequence of natural groundwater flow. Additional monitoring in the pilot test area will be required, however, to confirm these observations.

4.2 Recommendations

The groundwater sampling conducted at Centralia in April and October 2009 represented the first monitoring events performed under the interim site monitoring plan (Section 4.2 in Argonne 2009b) approved by the KDHE (2009). The results of these sampling activities continue to support the interpretation that the movement of groundwater and contaminant migration at Centralia are occurring very slowly, in a predictable manner. These findings demonstrate that the KDHE-approved frequency for monitoring of the groundwater at Centralia is sufficient to remain protective of human health and the environment.

In keeping with the approved interim monitoring program, the following sampling events at Centralia are scheduled for 2010:

- *April 2010* Sampling at IM pilot test monitoring points PMP1-PMP3, PMP8, and MW02 (Figure 1.4) inside the injection area.
- *September 2010* Sampling at sitewide monitoring points MW03-MW07, MW09, MW10, SB01, SB04, SB05, SB07R, and SB08 (Figure 1.3), as well as at IM pilot test monitoring points PMP1-PMP9 and MW02 (Figure 1.4).

5 References

Argonne, 2002, *Final Master Work Plan: Environmental Investigations at Former CCC/USDA Facilities in Kansas, 2002 Revision*, ANL/ER/TR-02/004, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, December.

Argonne, 2003, *Final Phase I Report and Phase II Work Plan: QuickSite® Investigation, Centralia, Kansas*, ANL/ER/TR-02/009, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, March.

Argonne, 2004, *Final Phase II Report: QuickSite® Investigation, Centralia, Kansas,* ANL/ER/TR-03/006, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, March.

Argonne, 2005a, *Final Report: 2004 Monitoring Well Installation and Sampling at Centralia, Kansas*, ANL/ER/TR-04/011, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, October.

Argonne, 2005b, *Final Work Plan: Groundwater Monitoring at Centralia, Kansas,* ANL/ER/TR-05/004, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, August.

Argonne, 2006, *Final Report: Groundwater Monitoring at Centralia, Kansas, in September-October 2005 and March 2006, with Expansion of the Monitoring Network in January 2006,* ANL/EVS/AGEM/TR-06-06, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, October.

Argonne, 2007a, *March 2007 Monitoring Results for Centralia, Kansas*, ANL/EVS/AGEM/TR-07-08, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, June.

Argonne, 2007b, Interim Measure Conceptual Design for Remediation at the Former CCC/USDA Grain Storage Facility at Centralia, Kansas: Pilot Test and Remedy

Implementation, ANL/EVS/AGEM/TR-07-11, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, October.

Argonne, 2008a, *September 2007 Monitoring Results for Centralia, Kansas*, ANL/EVS/AGEM/TR-08-01, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, January.

Argonne, 2008b, *March 2008 Monitoring Results for Centralia, Kansas*, ANL/EVS/AGEM/TR-08-08, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, May.

Argonne, 2009a, *Progress Report and Technical Evaluation of the ISCR Pilot Test Conducted at the Former CCC/USDA Grain Storage Facility in Centralia, Kansas*, ANL/EVS/AGEM/TR-08-18, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, January.

Argonne, 2009b, *September 2008 Monitoring Results for Centralia, Kansas,* ANL/EVS/AGEM/TR-09-01, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, February.

EPA, 1995, Method 524.2: Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry, Revision 4.1, edited by J.W. Munch, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

EPA, 1998, *Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water*, EPA/600/R-98/128, Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C., September (http://www.epa.gov/superfund/resources/gwdocs/protocol.htm).

KDHE, 2001, *Monitored Natural Attenuation*, Policy BER-RS-042, Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas, March 30 (revised December 18, 2005; http://www.kdheks.gov/ber/policies/BER_RS_042.pdf).

KDHE, 2005a, letter from C. Carey (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.), regarding *Draft Report: 2004 Monitoring Well Installation and Sampling, Centralia, Kansas*, October 13.

KDHE, 2005b, letter from C. Carey (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.), regarding *Final Work Plan: Groundwater Monitoring at Centralia, Kansas*, October 13.

KDHE, 2007, letter from C. Carey (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.), regarding review of *Interim Measure Conceptual Design* for Centralia, Kansas, November 9.

KDHE, 2008a, letter from C. Carey (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.), regarding *September 2007 Monitoring Results for Centralia, Kansas*, March 12.

KDHE, 2008b, electronic mail message from C. Carey (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to L. LaFreniere (Argonne National Laboratory, Argonne, Illinois), regarding use of the low-flow sampling technique at Centralia, February 11.

KDHE, 2009, letter from E. Finzer (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.), regarding Centralia monitoring reports for 2008 and the progress report for the ISCR pilot test, April 6.

Puls, R.W., and M.J. Barcelona, 1996, "Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures," EPA/540/S-95/504, in *Ground Water Issue*, Superfund Technology Support Center for Ground Water, National Risk Management Research Laboratory, Ada, Oklahoma, April (www.epa.gov/tio/tsp/download/lwflw2a.pdf).

Appendix A:

Sequence of Sampling Activities in 2009

Date	Time	Sample	Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
April 2009 s	sampling	event						
4/22/09	11:18	CNMW02-W-27140	MW	MW02	49.5-59.5	2820	4/22/09	Depth to water = 20.8 ft. Depth of 4-in. well = 59.5 ft. Sample collected by using low-flow bladder pump positioned at 54.5 ft after purgin of 7 L.
4/22/09	11:30	CNQCIR-W-27147b	RI	QC		2820	4/22/09	Rinsate of decontaminated pump purge line after collection of sample CNMW02-W-27140.
4/22/09	12:20	CNPMP2-W-27142	MW	PMP2	50-60	2820	4/22/09	Depth to water = 20 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using low-flow bladder pump positioned at 55 ft after purging of 5.5 L.
4/22/09 4/22/09		CNPMP2DUP-W-27145 ^b CNPMP1-W-27141	MW MW	PMP2 PMP1	50-60 50-60	2820 2820	4/22/09 4/22/09	Replicate of sample CNPMP2-W-27142. Depth to water = 20 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using low-flow bladder pump positioned at 55 ft after purging
4/22/09	13:15	CNPMP3-W-27143	MW	PMP3	50-60	2820	4/22/09	of 5.8 L. Depth to water = 22.4 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using low-flow bladder pump positioned at 55 ft after purging of 5.2 L.
4/22/09 4/22/09		CNPMP3DUP-W-27146 ^b CNPMP8-W-27144	MW MW	PMP3 PMP8	50-60 50-60	2820 2820	4/22/09 4/22/09	Replicate of sample CNPMP3-W-27143. Depth to water = 19.4 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using low-flow bladder pump positioned at 55 ft after purging of 5.3 L.
4/22/09	14:14	CNQCTB-W-27148 ^b	ТВ	QC		2820	4/22/09	Trip blank sent to the AGEM Laboratory for organic analysis with water samples listed on chain-of-custody form (COC) 2820 and to TestAmerica for verification organic analysis with samples listed on COC 2819.
October 20	09 sampli	ing event						
10/6/09	11:22	CNMW10-W-27158	MW	MW10	30-45	2610	10/7/09	Depth to water = 20.59 ft. Depth of 2-in. well = 45 ft. Sample collected by using low-flow bladder pump positioned at 37.5 ft after purgin of 10.25 L.

TABLE A.1 Sequence of sampling activities at Centralia, April 2009 and October 2009.

TABLE A.1 (Cont.)

Date	Time	Sample	Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
October 200)9 sampl	ling event (cont.)						
10/6/09	13:01	CNMW03-W-27151	MW	MW03	50.5-60.5	2610	10/7/09	Depth to water = 20.43 ft. Depth of 4-in. well = 60.5 ft. Sample collected by using low-flow bladder pump positioned at 55.5 ft after purging of 6.5 L.
10/6/09 10/6/09		CNMW03DUP-W-27174 ^b CNMW06-W-27154	MW MW	MW03 MW06	50.5-60.5 46.5-56.5	2610 2610	10/7/09 10/7/09	Replicate of sample CNMW3-W-27151. Depth to water = 36.23 ft. Depth of 4-in. well = 56.5 ft. Sample collected by using low-flow bladder pump positioned at 51.5 ft after purging of 11 L. Goldish-yellow tint.
10/6/09	16:16	CNMW07-W-27155	MW	MW07	45-55	2610	10/7/09	Depth to water = 27.97 ft. Depth of 2-in. well = 55 ft. Sample collected by using low-flow bladder pump positioned at 50 ft after purging of 9 L.
10/6/09	16:38	CNPMP6-W-27170	MW	PMP6	50-60	2610	10/7/09	Depth to water = 21.53 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using Waterra pump positioned at 55 ft after purging of 7 L. Light brown and silty.
10/6/09	17:28	CNPMP7-W-27171	MW	PMP7	50-60	2610	10/7/09	Depth to water = 20.54 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using Waterra pump positioned at 55 ft after purging of 6 L. Cloudy to clear.
10/6/09	18:16	CNPMP4-W-27168	MW	PMP4	48.75-58.75	2610	10/7/09	Depth to water = 18.59 ft. Depth of 0.5-in. well = 58.75 ft. Sample collected by using Waterra pump positioned at 53.75 ft after purging of 6.5 L. Tannish brown in color.
10/6/09	18:20	CNMW09-W-27157	MW	MW09	25-35	2610	10/7/09	Depth to water = 3.92 ft. Depth of 2-in. well = 35 ft. Sample collected by using low-flow bladder pump positioned at 30 ft after purging of 12.25 L.
10/6/09	18:40	CNQCIR-W-27176b	RI	QC	_	2611	10/7/09	Rinsate of decontaminated sampling line after collection of sample CNMW09-W-27157.
10/7/09	11:13	CNSB07R-W-27162	CPT/P	SB07R	45-60	2611	10/7/09	Depth to water = 18.43 ft. Depth of 2-in. well = 60 ft. Sample collected by using low-flow bladder pump positioned at 52.5 ft after purging of 6.75 L.

TABLE A.1 (Cont.)

Date	Time	Sample	Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
October 200)9 sampl	ling event (cont.)						
10/7/09	12:50	CNSB01-W-27159	CPT/P	SB01	40-50	2611	10/7/09	Depth to water = 17.42 ft. Depth of 1-in. well = 50 ft. Sample collected by using low-flow bladder pump positioned at 45 ft after purging of 3 L.
10/7/09	12:51	CNSB01DUP-W-27175	CPT/P	SB01	40-50	2611	10/7/09	Replicate of sample CNSB01-W-27159.
10/7/09	13:02	CNPMP8-W-27172	MW	PMP8	50-60	2611	10/7/09	Depth to water = 19.87 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using Waterra pump positioned at 55 ft after purging of 7 L.
10/7/09	13:54	CNMW05-W-27153	MW	MW05	34.5-44.5	2611	10/7/09	Depth to water = 11.98 ft. Depth of 4-in. well = 44.5 ft. Sample collected by using low-flow bladder pump positioned at 39.5 ft after purging of 7 L.
10/7/09	14:18	CNPMP3-W-27167	MW	PMP3	50-60	2611	10/7/09	Depth to water = 21.15 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using Waterra pump positioned at 55 ft after purging of 7 L. Grayish in color.
10/7/09	14:48	CNMW04-W-27152	MW	MW04	37.5-47.5	2611	10/7/09	Depth to water = 23.75 ft. Depth of 4-in. well = 47.5 ft. Sample collected by using low-flow bladder pump positioned at 42.5 ft after purging of 6.5 L.
10/7/09	15:22	CNPMP9-W-27173	MW	PMP9	50-60	2611	10/7/09	Depth to water = 15.83 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using Waterra pump positioned at 55 ft after purging of 7 L.
10/7/09	16:04	CNPMP2-W-27166	MW	PMP2	50-60	2611	10/7/09	Depth to water = 19.84 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using Waterra pump positioned at 55 ft after purging of 7 L. Grayish tint with odor.
10/7/09	16:19	CNSB09-W-27164	CPT/P	SB09	32-42	2611	10/7/09	Depth to water = 7.32 ft. Depth of 1-in. well = 42 ft. Sample collected by using low-flow bladder pump positioned at 37 ft after purging of 3.25 L.
10/7/09	16:36	CNPMP1-W-27165	MW	PMP1	50-60	2611	10/7/09	Depth to water = 21.08 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using Waterra pump positioned at 55 ft after purging of 7 L. Light brown with odor; silty.

Date	Time	Sample	Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
October 200)9 sampl	ling event (cont.)						
10/7/09	17:22	CNMW08-W-27156	MW	MW08	38-53	2611	10/7/09	Depth to water = 18.85 ft. Depth of 2-in. well = 53 ft. Sample collected by using low-flow bladder pump positioned at 45.5 ft after purging of 8 L.
10/7/09	18:17	CNQCIR-W-27177b	RI	QC	-	2611	10/7/09	Rinsate of decontaminated sampling line after collection of sample CNMW08-W-27156.
10/7/09	18:30	CNQCTB-W-27178 ^b	ТВ	QC	-	2611	10/7/09	Trip blank sent to the AGEM Laboratory for organic analysis with water samples listed on COCs 2610 and 2611 and to TestAmerica for verification organic analysis with samples listed on COC 2613.
10/7/09	18:31	CNQCTB-W-27178A ^b	ТВ	QC	-	2615	10/8/09	Trip blank sent to the AGEM Laboratory for organic analysis with water samples listed on COC 2615.
10/8/09	9:48	CNSB05-W-27161	CPT/P	SB05	32-42	2615	10/8/09	Depth to water = 11.12 ft. Depth of 1-in. well = 42 ft. Sample collected by using low-flow bladder pump positioned at 37 ft after purging of 16 L.
10/8/09	11:10	CNMW01-W-27149	MW	MW01	54.5-64.5	2615	10/8/09	Depth to water = 10.31 ft. Depth of 4-in. well = 64.5 ft. Sample collected by using low-flow bladder pump positioned at 59.5 ft after purging of 6 L.
10/8/09	12:20	CNMW02-W-27150	MW	MW02	49.5-59.5	2615	10/8/09	Depth to water = 20.98 ft. Depth of 4-in. well = 59.5 ft. Sample collected by using low-flow bladder pump positioned at 54.5 ft after purging of 8 L. Light gray; offensive odor.
10/8/09	12:34	CNSB08-W-27163	CPT/P	SB08	52-62	2615	10/8/09	Depth to water = 18.51 ft. Depth of 1-in. well = 62 ft. Sample collected by using low-flow bladder pump positioned at 57 ft after purging of 3 L.
10/8/09	13:41	CNSB04-W-27160	CPT/P	SB04	51-61	2615	10/8/09	Depth to water = 21.73 ft. Depth of 1-in. well = 61 ft. Sample collected by using low-flow bladder pump positioned at 56 ft after purging of 2 L.

Date	Time	Sample	Туре ^а	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
October 200	9 sampling	event (cont.)						
10/8/09	13:42 CI	NPMP5-W-27169	MW	PMP5	50-60	2615	10/8/09	Depth to water = 21.73 ft. Depth of 1-in. well = 60 ft. Sample collected by using low-flow bladder pump positioned at 55 ft after purging of 2.4 L. Light brown in color.

^a Sample types: CPT/P, piezometer; MW, monitoring well; RI, rinsate; TB, trip blank.

^b Quality control sample.

Appendix B:

Waste Characterization and Disposal Documentation

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Client Information:	Section B Required Project Information:		Section C	Pa	age: <u>]</u> of <u>]</u>
Company: TCW Construction	Report To: +Komler P	tewconstruction . con	Invoice Information: Attention: Travis Kamler		1272137
Address: 141 M Street	Copy To: Suranier (2 prodigy.net		REGULATORY AGENC	· · · · · · · · · · · · · · · · · · ·
Lincoln NE 68508	<u></u>	<u> </u>	Address M Street Lincoln NE	🗆 NPDES 🔀 GRO	OUND WATER TO DRINKING WATER
Email To: + Kamler@+cw construction	Purchase Order No.:		Pace Quote CSSOF	UST RCR	
Phone: (402) 4/6 7255		Waste Water	Pace Project Frudy Gipson Manager: Trudy Gipson	Site Location	C
Requested Due Date/TAT:	Project Number:		Pace Profile #:	STATE: K	
F				Analysis Filtered (Y/N)	
Section D Matrix Reguired Client Information MATRIX	Codes	COLLECTED	Preservatives		
Drinking Wa	ter DW 🖁 🖁				
Water Waste Water Deadwick	WT 00 0 COM	MPOSITE COMPOSITE LINGT			
Product Soil/Solid SAMDIEID Oil	P L See valid P L See valid C C C See valid C C C See valid	COLL	d d Test L DOC DOC		Colece Pog
(A-Z, 0-9 / ,-) Oil Wipe	WP U	AT 0	containers served 4 4 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Jurine
Sample IDs MUST BE UNIQUE Tissue Other	AR TS OT	Ш Ш Ш			
	PLE 1		PF CON Preservice COA SO4 DH DH DOH CA S2O3 S2O3 CA CA CA CA CA CA CA CA CA CA CA CA CA		lina
# E L	DATE		# OF CONTAIN Unpreserved H2SO4 HNO3 HCI NaOH NaOH Na2S203 Methanol Other J Amh		비미 Pisso 외 Pace Project No./ Lab I.D.
1 AGPURGE-W-9240			52 2 221		2(0640) 2(0697) 6830 (J)
2 BAPURGE - W - 9240	92 WWC 3/09				Avero autio 6830 (33)
3 CNP4RGE - W - 92404	73 WWC4/09		53 2 221		Q3
4 EVPURGE -W-9240	94 WWC4/0	9 9/09 133371	53 2 221		L Curr
5 MR PURGE-W-92400	i 5 WWC 4/00	9 9/09 142271	53 2 221		4 4 05
6 QCTB - W- 9240	96 MTG	9/04 1640 75			V (V4
7					
8					
9					
10					
11	$\searrow \downarrow $				
12					
ADDITIONAL COMMENTS	RELINQUISHED BY		TIME ACCEPTED BY / AFFILIATION	DATE TIME	SAMPLE CONDITIONS
	=	/TCW 9-24-09	17:00	9/25 850	4.9 4 4 4
			-		
					· · · · · · · · · · · · · · · · · · ·
	1	SAMPLER NAME AND SIGNATUR	······································	11	n °C ad on °C N) (N) ody Dooler L) Initact
	ORIGINAL	PRINT Name of SAMPLER:	Travis Kamler		Temp in °C Received on Ice (Y/N) Custody Sealed Cooler (Y/N)
		SIGNATURE of SAMPLER:	DATE Signed (MM/DD/YY):	1-24-2009	Temp in "C Received on Ice (Y/N) Custody Sealed Cooler (Y/N) Samples Intact (Y/N)
*Important Note: By signing this form you are accept	ting Pace's NET 30 day payment terms	s and agreeing to late charges of 1.5% per month			F-ALL-Q-020rev.07, 15-May-2007

0 7 9 1 1

AME: Client Commercial Jyes no Seals i ubble Bags None Type of Ice: Wet Biological Tissue is Biological Tissue is Ves No N/A Ves No N/A	act: ves no Other Blue None Samples on Frozen: Yes No Comments:	# Coduct Toog
Jyes no Seals i ubble Bags None I Type of Ice: Wet Biological Tissue is Biological Tissue is I I ØYes No N/A	act: ves no Other Blue None Samples on Frozen: Yes No Comments:	ice, cooling process has begun
ubble Bags None Type of Ice: Wet Biological Tissue is Ves No N/A Ves No N/A	act: ves no other Other Blue None Samples on Frozen: Yes No Date an conte comments:	ice, cooling process has begun d Initial©of person examining
ubble Bags None Type of Ice: Wet Biological Tissue is Ves No N/A Ves No N/A	Other Blue None Samples on Frozen: Yes No Date an conte	d Initials of person examining
Type of Ice: Wet Biological Tissue is ØYes No	Blue None Samples on Frozen: Yes No Date an conte comments:	d Initials of person examining
Biological Tissue is Pres No N/A Yes No N/A	Frozen: Yes No Date an conte	d Initials of person examining
Image: Second state Image: Second state<	conte	
ØYes No N/A		
ØYes No N/A		
ÝYes No N/A ÝYes No N/A ඒYes No N/A ඒYes No N/A ඒYes No N/A ඒYes No N/A ØYes No N/A ØYes No N/A ØYes No N/A ØYes No N/A ØYes No N/A		
Image: Second state Image: Second st		
Image: Yes No N/A	Νύζ	
ØYes □No □N/A □Yes ØNo □N/A ØYes □No □N/A ØYes □No □N/A	Νύζ	
Yes No N/A Yes No N/A Yes No N/A Yes No N/A		
ØYes □No □N/A ØYes □No □N/A ₩	· · · · · · · · · · · · · · · · · · ·	
ØYes □No □N/A §		
Run .		
ØYes □No □N/A	······································	
□Yes ØNo □N/A	· · · · · · · · · · · · · · · · · · ·	
ZYes No N/A		······································
x: NT	ALL SAMIPLES COLLECTED	any According to
d. □Yes □No ØN/A	LABELS	
e in □Yes □No ØN/A		
Kamler Date/T	ne: <u>9-25-09</u>	Required? Y / N ON 9-24-09.1
	Image:	d Yes No dN/A 13. $ABBELS$ a in Yes No dN/A Initial when completed Lot # of add preservative $ZYes$ No dN/A 14. Lot # of add preservative Yes No dN/A 14. Yes No dN/A 15. $ZYes$ No N/A 16. $ZYes$ No N/A 16. $ZYes$ No N/A $Preservative$ $ZYes$ No $Preservative$ $Preservative$ $ZYes$ No $Preservative$ $Preservative$ $ZYes$ $Preservative$ $Preservative$ $Preservative$

Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

F-KS-C-003-Rev.04, 04February2009

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

SAMPLE ACKNOWLEDGMENT

Samples Submitted By: Client Project ID:	TCW Construction Inc Kansas Waste Water	Pace Project Manager:	Trudy Gipson Phone 1(913)563-1405 trudy.gipson@pacelabs.com
Client PO#:	Credit Card	Pace Analytical Project ID:	6066709
		Samples Received:	September 25, 2009
		Estimated Completion:	October 07, 2009

Customer Sample ID	Pace Analytical Lab ID	Matrix	Date/Time Collected	Method
AGPURGE-W-924091	6066709001	Water	09/24/09 08:00	300.0 IC Anions
				504 GCS EDB and DBCP
				8260 MSV
BAPURGE-W-924092	6066709002	Water	09/24/09 11:15	300.0 IC Anions
				504 GCS EDB and DBCP
				8260 MSV
CNPURGE-W-924093	6066709003	Water	09/24/09 12:40	300.0 IC Anions
				504 GCS EDB and DBCP
				8260 MSV
EUPURGE-W-924094	6066709004	Water	09/24/09 13:33	300.0 IC Anions
				504 GCS EDB and DBCP
				8260 MSV
MRPURGE-W-924095	6066709005	Water	09/24/09 14:22	300.0 IC Anions
				504 GCS EDB and DBCP
				8260 MSV
QCTB-W-924096	6066709006	Water	09/24/09 16:40	8260 MSV

Please contact your project manager if you recognize any discrepancy in this form or have any questions about your project.

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

October 13, 2009

Mr. Travis Kamler TCW Construction Inc 141 M Street Lincoln, NE 68508

RE: Project: Kansas Waste Water Pace Project No.: 6066709

Dear Mr. Kamler:

Enclosed are the analytical results for sample(s) received by the laboratory on September 25, 2009. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Judy Sipson

Trudy Gipson

trudy.gipson@pacelabs.com Project Manager

Enclosures

cc: Mr. David Surgnier

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 1 of 23

CERTIFICATIONS

Project: Kansas Waste Water

Pace Project No.: 6066709

Kansas Certification IDs

Washington Certification #: C2069 Utah Certification #: 9135995665 Texas Certification #: T104704407-08-TX Oregon Certification #: KS20001 Oklahoma Certification #: 9205/9935 Nevada Certification #: KS000212008A Louisiana Certification #: 03055 Kansas/NELAP Certification #: E-10116 Iowa Certification #: 118 Illinois Certification #: 001191 Arkansas Certification #: 05-008-0 A2LA Certification #: 2456.01

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: Kansas Waste Water Pace Project No.: 6066709

Lab ID	Sample ID	Matrix	Date Collected	Date Received
6066709001	AGPURGE-W-924091	Water	09/24/09 08:00	09/25/09 08:50
6066709002	BAPURGE-W-924092	Water	09/24/09 11:15	09/25/09 08:50
6066709003	CNPURGE-W-924093	Water	09/24/09 12:40	09/25/09 08:50
6066709004	EUPURGE-W-924094	Water	09/24/09 13:33	09/25/09 08:50
6066709005	MRPURGE-W-924095	Water	09/24/09 14:22	09/25/09 08:50
6066709006	QCTB-W-924096	Water	09/24/09 16:40	09/25/09 08:50

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project:Kansas Waste WaterPace Project No.:6066709

Lab ID	Sample ID	Method	Analysts	Analytes Reported
6066709001	 AGPURGE-W-924091	EPA 300.0	RAB	1
		EPA 5030B/8260	NPM	70
		EPA 504.1	WAW	1
6066709002	BAPURGE-W-924092	EPA 300.0	RAB	1
		EPA 5030B/8260	NPM	70
		EPA 504.1	WAW	1
6066709003	CNPURGE-W-924093	EPA 300.0	RAB	1
		EPA 5030B/8260	NPM	1 70
		EPA 504.1	WAW	1
6066709004		EPA 300.0	RAB	1
		EPA 5030B/8260	NPM	70
		EPA 504.1	WAW	1
6066709005	MRPURGE-W-924095	EPA 300.0	RAB	1
		EPA 5030B/8260	NPM	70
		EPA 504.1	WAW	1
6066709006	QCTB-W-924096	EPA 5030B/8260	NPM	70

REPORT OF LABORATORY ANALYSIS

Project: Kansas Waste Water

Pace Project No.: 6066709

Sample: CNPURGE-W-924093	Lab ID: 6060	6709003	Collected:	09/24/0	9 12:40	Received: 09	/25/09 08:50	Matrix: Water	
Parameters	Results	Units	Repor	rt Limit	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical Meth	nod: EPA 5	04.1 Prepara	ation Met	hod: EP/	A 504.1			
1,2-Dibromoethane (EDB)	ND ug	/L		0.046	1	10/08/09 00:00	10/10/09 04:04	106-93-4	
8260 MSV	Analytical Meth	nod: EPA 5	030B/8260						
Acetone	ND ug			10.0	1		09/28/09 21:37	67-64-1	
Benzene	ND ug			1.0	1		09/28/09 21:37		
Bromobenzene	ND ug	/L		1.0	1		09/28/09 21:37	7 108-86-1	
Bromochloromethane	ND ug	/L		1.0	1		09/28/09 21:37	74-97-5	
Bromodichloromethane	ND ug	/L		1.0	1		09/28/09 21:37	75-27-4	
Bromoform	ND ug	/L		1.0	1		09/28/09 21:37	75-25-2	
Bromomethane	ND ug	/L		1.0	1		09/28/09 21:37	74-83-9	
2-Butanone (MEK)	ND ug			10.0	1		09/28/09 21:37	78-93-3	
n-Butylbenzene	ND ug			1.0	1		09/28/09 21:37	7 104-51-8	
sec-Butylbenzene	ND ug			1.0	1		09/28/09 21:37		
tert-Butylbenzene	ND ug			1.0	1		09/28/09 21:37		
Carbon disulfide	ND ug			5.0	1		09/28/09 21:37		
Carbon tetrachloride	ND ug			1.0	1		09/28/09 21:37		
Chlorobenzene	ND ug			1.0	1		09/28/09 21:37		
Chloroethane	ND ug			1.0	1		09/28/09 21:37		
Chloroform	ND ug			1.0	1		09/28/09 21:37		
Chloromethane	-			1.0	1		09/28/09 21:37		
2-Chlorotoluene	ND ug, ND ug,			1.0	1		09/28/09 21:37		
	-								
4-Chlorotoluene	ND ug			1.0	1		09/28/09 21:37		
1,2-Dibromo-3-chloropropane	ND ug			2.5	1		09/28/09 21:37		
Dibromochloromethane	ND ug			1.0	1		09/28/09 21:37		
1,2-Dibromoethane (EDB)	ND ug			1.0	1		09/28/09 21:37		
Dibromomethane	ND ug			1.0	1		09/28/09 21:37		
1,2-Dichlorobenzene	ND ug			1.0	1		09/28/09 21:37		
1,3-Dichlorobenzene	ND ug			1.0	1		09/28/09 21:37		
1,4-Dichlorobenzene	ND ug			1.0	1		09/28/09 21:37		
Dichlorodifluoromethane	ND ug			1.0	1		09/28/09 21:37		
1,1-Dichloroethane	ND ug	/L		1.0	1		09/28/09 21:37	75-34-3	
1,2-Dichloroethane	ND ug	/L		1.0	1		09/28/09 21:37	107-06-2	
1,2-Dichloroethene (Total)	ND ug	/L		1.0	1		09/28/09 21:37	540-59-0	
1,1-Dichloroethene	ND ug	/L		1.0	1		09/28/09 21:37	75-35-4	
cis-1,2-Dichloroethene	ND ug	/L		1.0	1		09/28/09 21:37	156-59-2	
trans-1,2-Dichloroethene	ND ug	/L		1.0	1		09/28/09 21:37	156-60-5	
1,2-Dichloropropane	ND ug	/L		1.0	1		09/28/09 21:37	78-87-5	
1,3-Dichloropropane	ND ug	/L		1.0	1		09/28/09 21:37	142-28-9	
2,2-Dichloropropane	ND ug			1.0	1		09/28/09 21:37	594-20-7	
1,1-Dichloropropene	ND ug	/L		1.0	1		09/28/09 21:37	7 563-58-6	
cis-1,3-Dichloropropene	ND ug			1.0	1		09/28/09 21:37		
trans-1,3-Dichloropropene	ND ug			1.0	1		09/28/09 21:37		
Ethylbenzene	ND ug			1.0	1		09/28/09 21:37		
Hexachloro-1,3-butadiene	ND ug			1.0	1		09/28/09 21:37		
2-Hexanone	ND ug			10.0	1		09/28/09 21:37		
Isopropylbenzene (Cumene)	ND ug			1.0	1		09/28/09 21:37		

Date: 10/13/2009 03:25 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Page 9 of 23

Project: Kansas Waste Water

Pace Project No.: 6066709

Sample: CNPURGE-W-924093	Lab ID: 6066709003	Collected: 09/24/09 1	2:40	Received: 09/25/0)9 08:50 I	Matrix: Water	
Parameters	Results Units	Report Limit D	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 50	030B/8260					
Methylene chloride	ND ug/L	1.0	1	09/2	28/09 21:37	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1	09/2	28/09 21:37	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1	09/2	28/09 21:37	1634-04-4	
Naphthalene	ND ug/L	10.0	1	09/2	28/09 21:37	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1	09/2	28/09 21:37	103-65-1	
Styrene	ND ug/L	1.0	1	09/2	28/09 21:37	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1	09/2	28/09 21:37	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	09/2	28/09 21:37	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1	09/2	28/09 21:37	127-18-4	
Toluene	ND ug/L	1.0	1	09/2	28/09 21:37	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1	09/2	28/09 21:37	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1	09/2	28/09 21:37	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1	09/2	28/09 21:37	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1	09/2	28/09 21:37	79-00-5	
Trichloroethene	ND ug/L	1.0	1	09/2	28/09 21:37	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1	09/2	28/09 21:37	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1	09/2	28/09 21:37	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1	09/2	28/09 21:37	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1	09/2	28/09 21:37	108-67-8	
Vinyl chloride	ND ug/L	1.0	1	09/2	28/09 21:37	75-01-4	
Xylene (Total)	ND ug/L	3.0	1	09/2	28/09 21:37	1330-20-7	
4-Bromofluorobenzene (S)	103 %	87-115	1	09/2	28/09 21:37	460-00-4	
Dibromofluoromethane (S)	107 %	87-113	1	09/2	28/09 21:37	1868-53-7	
1,2-Dichloroethane-d4 (S)	109 %	81-121	1	09/2	28/09 21:37	17060-07-0	
Toluene-d8 (S)	107 %	89-111	1	09/2	28/09 21:37	2037-26-5	
Preservation pH	7.0	0.10	1	09/2	28/09 21:37	,	
300.0 IC Anions	Analytical Method: EPA 30	0.0					
Nitrate as N	0.15 mg/L	0.10	1	09/2	26/09 04:47	14797-55-8	

Date: 10/13/2009 03:25 PM

REPORT OF LABORATORY ANALYSIS

Page 10 of 23

Project: Kansas Waste Water

Pace Project No.: 6066709

Sample: QCTB-W-924096	Lab ID: 6066709006	Collected: 09/24/09	16:40	Received: 09/25/09 08:50 Matrix: Water				
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No.	Qual			
8260 MSV	Analytical Method: EPA 5	030B/8260						
Acetone	15.4 ug/L	10.0	1	09/28/09 22:23 67-64-1				
Benzene	ND ug/L	1.0	1	09/28/09 22:23 71-43-2				
Bromobenzene	ND ug/L	1.0	1	09/28/09 22:23 108-86-1				
Bromochloromethane	ND ug/L	1.0	1	09/28/09 22:23 74-97-5				
Bromodichloromethane	ND ug/L	1.0	1	09/28/09 22:23 75-27-4				
Bromoform	ND ug/L	1.0	1	09/28/09 22:23 75-25-2				
Bromomethane	ND ug/L	1.0	1	09/28/09 22:23 74-83-9				
2-Butanone (MEK)	ND ug/L	10.0	1	09/28/09 22:23 78-93-3				
n-Butylbenzene	ND ug/L	1.0	1	09/28/09 22:23 104-51-8				
sec-Butylbenzene	ND ug/L	1.0	1	09/28/09 22:23 135-98-8				
tert-Butylbenzene	ND ug/L	1.0	1	09/28/09 22:23 98-06-6				
Carbon disulfide	ND ug/L	5.0	1	09/28/09 22:23 75-15-0				
Carbon tetrachloride	ND ug/L	1.0	1	09/28/09 22:23 56-23-5				
Chlorobenzene	ND ug/L	1.0	1	09/28/09 22:23 108-90-7				
Chloroethane	ND ug/L	1.0	1	09/28/09 22:23 75-00-3				
Chloroform	ND ug/L	1.0	1	09/28/09 22:23 67-66-3				
Chloromethane	ND ug/L	1.0	1	09/28/09 22:23 74-87-3				
2-Chlorotoluene	ND ug/L	1.0	1	09/28/09 22:23 95-49-8				
4-Chlorotoluene	ND ug/L	1.0	1	09/28/09 22:23 106-43-4				
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1	09/28/09 22:23 96-12-8				
Dibromochloromethane	ND ug/L	1.0	1	09/28/09 22:23 124-48-1				
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1	09/28/09 22:23 106-93-4				
Dibromomethane	ND ug/L	1.0	1	09/28/09 22:23 74-95-3				
1,2-Dichlorobenzene	ND ug/L	1.0	1	09/28/09 22:23 95-50-1				
1,3-Dichlorobenzene	ND ug/L	1.0	1	09/28/09 22:23 541-73-1				
1,4-Dichlorobenzene	ND ug/L	1.0	1	09/28/09 22:23 106-46-7				
Dichlorodifluoromethane	ND ug/L	1.0	1	09/28/09 22:23 75-71-8				
1,1-Dichloroethane	ND ug/L	1.0	1	09/28/09 22:23 75-34-3				
1,2-Dichloroethane	ND ug/L	1.0	1	09/28/09 22:23 107-06-2				
1,2-Dichloroethene (Total)	ND ug/L	1.0	1	09/28/09 22:23 540-59-0				
1,1-Dichloroethene	ND ug/L	1.0	1	09/28/09 22:23 75-35-4				
cis-1,2-Dichloroethene	ND ug/L	1.0	1	09/28/09 22:23 156-59-2				
trans-1,2-Dichloroethene	ND ug/L		1	09/28/09 22:23 156-60-5				
1,2-Dichloropropane	ND ug/L	1.0	1	09/28/09 22:23 78-87-5				
1,3-Dichloropropane	ND ug/L	1.0	1	09/28/09 22:23 142-28-9				
2,2-Dichloropropane	ND ug/L	1.0	1	09/28/09 22:23 594-20-7				
1,1-Dichloropropene	ND ug/L		1	09/28/09 22:23 563-58-6				
cis-1,3-Dichloropropene	ND ug/L		1	09/28/09 22:23 10061-01-5				
trans-1,3-Dichloropropene	ND ug/L		1	09/28/09 22:23 10061-02-6				
Ethylbenzene	ND ug/L		1	09/28/09 22:23 100-41-4				
Hexachloro-1,3-butadiene	ND ug/L	1.0	1	09/28/09 22:23 87-68-3				
2-Hexanone	ND ug/L		1	09/28/09 22:23 591-78-6				
Isopropylbenzene (Cumene)	ND ug/L		1	09/28/09 22:23 98-82-8				
p-lsopropyltoluene	ND ug/L		1	09/28/09 22:23 99-87-6				
Methylene chloride	ND ug/L		1	09/28/09 22:23 75-09-2				
4-Methyl-2-pentanone (MIBK)	ND ug/L		1	09/28/09 22:23 108-10-1				
Methyl-tert-butyl ether	ND ug/L		1	09/28/09 22:23 1634-04-4				

Date: 10/13/2009 03:25 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 15 of 23

Project: Kansas Waste Water

Pace Project No.: 6066709

Sample: QCTB-W-924096	Lab ID: 6066709006	Collected: 09/24/0	9 16:40	Received: 09	9/25/09 08:50 N	Matrix: Water	
Parameters	Results Unit	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
Naphthalene	ND ug/L	10.0	1		09/28/09 22:23	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		09/28/09 22:23	103-65-1	
Styrene	ND ug/L	1.0	1		09/28/09 22:23	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		09/28/09 22:23	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		09/28/09 22:23	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		09/28/09 22:23	127-18-4	
Toluene	ND ug/L	1.0	1		09/28/09 22:23	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		09/28/09 22:23	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		09/28/09 22:23	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		09/28/09 22:23	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		09/28/09 22:23	79-00-5	
Trichloroethene	ND ug/L	1.0	1		09/28/09 22:23	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		09/28/09 22:23	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		09/28/09 22:23	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		09/28/09 22:23	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		09/28/09 22:23	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		09/28/09 22:23	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		09/28/09 22:23	1330-20-7	
4-Bromofluorobenzene (S)	103 %	87-115	1		09/28/09 22:23	460-00-4	
Dibromofluoromethane (S)	107 %	87-113	1		09/28/09 22:23	1868-53-7	
1,2-Dichloroethane-d4 (S)	109 %	81-121	1		09/28/09 22:23	17060-07-0	
Toluene-d8 (S)	107 %	89-111	1		09/28/09 22:23	2037-26-5	
Preservation pH	7.0	0.10	1		09/28/09 22:23		

REPORT OF LABORATORY ANALYSIS

Project:	Kansas Waste	e Water											
Pace Project No.:	6066709												
QC Batch:	WETA/1099	5		Analys	sis Method	: E	PA 300.0						
QC Batch Method:	EPA 300.0			Analys	sis Descrip	tion: 3	00.0 IC Anic	ons					
Associated Lab Sam	nples: 60667	709001, 606	6709002, 6	066709003	3, 6066709	004, 60667	709005						
METHOD BLANK:	541949				Matrix: Wa	iter							
Associated Lab Sam	nples: 60667	709001, 606	6709002, 6	066709003	3, 6066709	004, 60667	709005						
				Blanl	k F	Reporting							
Param	neter	I	Jnits	Resu	lt	Limit	Analyz	zed	Qualifiers				
Nitrate as N		mg/L			ND	0.10	09/25/09	21:46					
LABORATORY CON) Jnits	Spike Conc.	LCS		LCS % Rec	% Rec		ualifiers			
	leter		Jhits							amers			
Nitrate as N		mg/L		5)	4.9	97	90	-110				
MATRIX SPIKE & M	ATRIX SPIKE	DUPLICATE	: 54195 ⁻	1		541952							
				MS	MSD								
Paramet	er	60 Units	66657003 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Nitrate as N		mg/L	2.5	5	5	5.7	5.7	65	64	73-114	0	5	M0
MATRIX SPIKE SAM		54208	<u></u>										
		54200	0	60667	07001	Spike	MS	М	IC	% Rec			
Param	neter	I	Jnits	Res		Conc.	Result		Rec	% Rec		Quali	fiers
Nitrate as N		mg/L			0.21	5	2	4.8	92	73-	114		

Date: 10/13/2009 03:25 PM

REPORT OF LABORATORY ANALYSIS

Page 17 of 23

Project: Kansas Waste Water

Pace Project No.: 6066709

QC Batch:	MSV/23759	Analysis Method:	EPA 5030B/8260			
QC Batch Method:	EPA 5030B/8260	Analysis Description:	8260 MSV Water 7 day			
Associated Lab Sam	Associated Lab Samples: 6066709001, 6066709002, 6066709003, 6066709004, 6066709005, 6066709006					
METHOD BLANK:	548226	Matrix: Water				

Associated Lab Samples: 6066709001, 6066709002, 6066709003, 6066709004, 6066709005, 6066709006

_		Blank	Reporting		_
Parameter	Units	Result	Limit	Analyzed	Qualifier
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	09/28/09 20:06	
1,1,1-Trichloroethane	ug/L	ND	1.0	09/28/09 20:06	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	09/28/09 20:06	
1,1,2-Trichloroethane	ug/L	ND	1.0	09/28/09 20:06	
1,1-Dichloroethane	ug/L	ND	1.0	09/28/09 20:06	
1,1-Dichloroethene	ug/L	ND	1.0	09/28/09 20:06	
1,1-Dichloropropene	ug/L	ND	1.0	09/28/09 20:06	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	09/28/09 20:06	
1,2,3-Trichloropropane	ug/L	ND	2.5	09/28/09 20:06	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	09/28/09 20:06	
1,2,4-Trimethylbenzene	ug/L	ND	1.0	09/28/09 20:06	
1,2-Dibromo-3-chloropropane	ug/L	ND	2.5	09/28/09 20:06	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	09/28/09 20:06	
1,2-Dichlorobenzene	ug/L	ND	1.0	09/28/09 20:06	
1,2-Dichloroethane	ug/L	ND	1.0	09/28/09 20:06	
1,2-Dichloroethene (Total)	ug/L	ND	1.0	09/28/09 20:06	
1,2-Dichloropropane	ug/L	ND	1.0	09/28/09 20:06	
1,3,5-Trimethylbenzene	ug/L	ND	1.0	09/28/09 20:06	
1,3-Dichlorobenzene	ug/L	ND	1.0	09/28/09 20:06	
1,3-Dichloropropane	ug/L	ND	1.0	09/28/09 20:06	
1,4-Dichlorobenzene	ug/L	ND	1.0	09/28/09 20:06	
2,2-Dichloropropane	ug/L	ND	1.0	09/28/09 20:06	
2-Butanone (MEK)	ug/L	ND	10.0	09/28/09 20:06	
2-Chlorotoluene	ug/L	ND	1.0	09/28/09 20:06	
2-Hexanone	ug/L	ND	10.0	09/28/09 20:06	
4-Chlorotoluene	ug/L	ND	1.0	09/28/09 20:06	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	10.0	09/28/09 20:06	
Acetone	ug/L	ND	10.0	09/28/09 20:06	
Benzene	ug/L	ND	1.0	09/28/09 20:06	
Bromobenzene	ug/L	ND	1.0	09/28/09 20:06	
Bromochloromethane	ug/L	ND	1.0	09/28/09 20:06	
Bromodichloromethane	ug/L	ND	1.0	09/28/09 20:06	
Bromoform	ug/L	ND	1.0	09/28/09 20:06	
Bromomethane	ug/L	ND	1.0	09/28/09 20:06	
Carbon disulfide	ug/L	ND	5.0	09/28/09 20:06	
Carbon tetrachloride	ug/L	ND	1.0	09/28/09 20:06	
Chlorobenzene	ug/L	ND	1.0	09/28/09 20:06	
Chloroethane	ug/L	ND	1.0	09/28/09 20:06	
Chloroform	ug/L	ND	1.0	09/28/09 20:06	
Chloromethane	ug/L	ND	1.0	09/28/09 20:06	
cis-1,2-Dichloroethene	ug/L	ND	1.0	09/28/09 20:06	
cis-1,3-Dichloropropene	ug/L	ND	1.0	09/28/09 20:06	
Dibromochloromethane	ug/L	ND	1.0	09/28/09 20:06	

Date: 10/13/2009 03:25 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Project: Kansas Waste Water

METHOD BLANK: 548226		Matrix:	Water		
Associated Lab Samples: 6066	709001, 6066709002, 6	6066709003, 6066	709004, 606670	9005, 6066709006	;
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifier
Dibromomethane	ug/L	 ND	1.0	09/28/09 20:06	
Dichlorodifluoromethane	ug/L	ND	1.0	09/28/09 20:06	
Ethylbenzene	ug/L	ND	1.0	09/28/09 20:06	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	09/28/09 20:06	
sopropylbenzene (Cumene)	ug/L	ND	1.0	09/28/09 20:06	
Methyl-tert-butyl ether	ug/L	ND	1.0	09/28/09 20:06	
Methylene chloride	ug/L	ND	1.0	09/28/09 20:06	
n-Butylbenzene	ug/L	ND	1.0	09/28/09 20:06	
n-Propylbenzene	ug/L	ND	1.0	09/28/09 20:06	
Naphthalene	ug/L	ND	10.0	09/28/09 20:06	
o-Isopropyltoluene	ug/L	ND	1.0	09/28/09 20:06	
sec-Butylbenzene	ug/L	ND	1.0	09/28/09 20:06	
Styrene	ug/L	ND	1.0	09/28/09 20:06	
ert-Butylbenzene	ug/L	ND	1.0	09/28/09 20:06	
Tetrachloroethene	ug/L	ND	1.0	09/28/09 20:06	
Toluene	ug/L	ND	1.0	09/28/09 20:06	
rans-1,2-Dichloroethene	ug/L	ND	1.0	09/28/09 20:06	
rans-1,3-Dichloropropene	ug/L	ND	1.0	09/28/09 20:06	
Trichloroethene	ug/L	ND	1.0	09/28/09 20:06	
Trichlorofluoromethane	ug/L	ND	1.0	09/28/09 20:06	
√inyl chloride	ug/L	ND	1.0	09/28/09 20:06	
Xylene (Total)	ug/L	ND	3.0	09/28/09 20:06	
1,2-Dichloroethane-d4 (S)	%	105	81-121	09/28/09 20:06	
4-Bromofluorobenzene (S)	%	102	87-115	09/28/09 20:06	
Dibromofluoromethane (S)	%	104	87-113	09/28/09 20:06	
Toluene-d8 (S)	%	106	89-111	09/28/09 20:06	

LABORATORY CONTROL SAMPLE: 548227

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	10	7.6	76	75-121	
1,1,1-Trichloroethane	ug/L	10	8.8	88	73-120	
1,1,2,2-Tetrachloroethane	ug/L	10	10	100	73-128	
1,1,2-Trichloroethane	ug/L	10	10.4	104	83-125	
1,1-Dichloroethane	ug/L	10	9.8	98	79-115	
1,1-Dichloroethene	ug/L	10	10.2	102	76-122	
1,1-Dichloropropene	ug/L	10	10.5	105	80-119	
1,2,3-Trichlorobenzene	ug/L	10	9.5	95	70-138	
1,2,3-Trichloropropane	ug/L	10	10.3	103	74-129	
1,2,4-Trichlorobenzene	ug/L	10	9.0	90	72-131	
1,2,4-Trimethylbenzene	ug/L	10	9.2	92	78-123	
1,2-Dibromo-3-chloropropane	ug/L	10	8.9	89	61-139	
1,2-Dibromoethane (EDB)	ug/L	10	10	100	80-124	
1,2-Dichlorobenzene	ug/L	10	9.4	94	82-113	
1,2-Dichloroethane	ug/L	10	10.9	109	78-118	

Date: 10/13/2009 03:25 PM

REPORT OF LABORATORY ANALYSIS

Page 19 of 23

Project: Kansas Waste Water

Pace Project No.: 6066709

LABORATORY CONTROL SAMPLE: 548227

Dickingsprogane ug/L 10 10.9.3 108 83.117 3,5-Trimethylbenzene ug/L 10 9.3.1 91 82.112 Dichingsprogane ug/L 10 9.1 91 82.112 Dichingsprogane ug/L 10 9.1 91 81.111 Dichingsprogane ug/L 10 9.1 91 81.111 Dichingsprogane ug/L 10 9.1 91 81.111 Dichingsprogane ug/L 25 22.6 111 66-132 Dichingsprogane ug/L 25 27.7 111 58-126 Inzene ug/L 10 10.8 108 81-114 Somochromethane ug/L 10 11.2 179-120 112 79-120 Somochromethane ug/L 10 10.8 66-132 113 113 114 114 114 114 114 114 114 114 114 114 114 114<	Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Dickinogroppane ug/L 10 10.9 10.9 83-117 3,5-Trimethylbenzene ug/L 10 9.3 93 79-116 Dickinoropropane ug/L 10 9.1 91 82-112 Dickinoropropane ug/L 10 9.1 91 81-111 Dickinoropropane ug/L 10 6.3 63 55-139 Jaunanon (MEK) ug/L 25 22.6 119 81-116 Chorotoluene ug/L 25 27.7 111 58-126 Dickorotoluene ug/L 10 10.8 108 81-114 omodenzene ug/L 10 10.8 84-113 10 morechinormethane ug/L 10 10.8 84-113 10 monchinormethane ug/L 10 10.8 66-132 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	1,2-Dichloroethene (Total)	ua/L	20	21.5	107	79-120	
5Timehylbenzene upL 10 9.3 93 79-116 >Dichhorobenzene ugL 10 9.1 91 82-112 >Dichhorobenzene ugL 10 9.1 91 82-112 >Dichhoroppane ugL 10 9.1 91 81-111 >Dichoroppane ugL 25 29.6 119 61-136 Shorophuene ugL 25 27.7 111 65-137 Shorophuene ugL 25 27.7 111 65-133 etanne ugL 10 9.2 92 81-114 monoherzene ugL 10 10.8 108 81-114 monoherzene ugL 10 10.8 81-114 56-133 monoherzene ugL 10 10.8 81-114 56-133 monoherzene ugL 10 10.8 81-114 56-133 monoherzene ugL 10 10.8 66-132 56-1513 <td>1,2-Dichloropropane</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,2-Dichloropropane						
Dicknownerweine up/L 10 9.1 91 82-112 Dichloropropane ug/L 10 0.1 191 81-111 Dichloropropane ug/L 10 6.3 63 55-139 Jutanone (MEK) ug/L 25 29.6 119 61-136 Chlorotoluene ug/L 10 9.1 91 81-115 Texanone ug/L 10 9.2 81-111 65-137 Chlorotoluene ug/L 10 9.2 81-111 65-133 Velocitone ug/L 10 10.8 108 81-114 Dirotoluene ug/L 10 1.3 93 84-113 Dirotoluene ug/L 10 1.0 100 75-119 Dirotoluene ug/L 10 1.0 10 75-119 Dirotofuromethane ug/L 10 7.4 74 62-137 Dirotofuromethane ug/L 10 1.0 7.4 7.5	1,3,5-Trimethylbenzene						
bichloropropane ug/L 10 10.4 104 82-121 bichloropenzene ug/L 10 8.1 91 81-111 bichloropenzene ug/L 10 6.3 655-139 Dichoropropane ug/L 25 29.6 119 61-136 Dichoropropane ug/L 25 29.6 111 65-137 Dichoropropane ug/L 25 27.7 111 58-126 Dichoropropane ug/L 10 9.2 92 81-111 bethyl-2-pentanone (MIBK) ug/L 10 10.8 108 81-114 omoder ug/L 10 11.2 112 79-120 20 omoder ug/L 10 10.8 108 86-132 20 omodichloromethane ug/L 10 10.9 99 94-148 10 10.9 49-448 10 10.9 49-448 10 10.9 49-448 10 10.8 108 80-13	1,3-Dichlorobenzene	-					
Dicknowski ug/L 10 9.1 91 81-111 2Dicknorporpane ug/L 10 6.3 63 55-139 2Dicknorporpane ug/L 10 9.1 91 61-136 2Norotoluene ug/L 10 9.1 91 65-137 Chlorotoluene ug/L 25 27.8 111 65-137 Chlorotoluene ug/L 25 32.1 129 65-133 etone ug/L 25 32.1 129 65-133 mochoromethane ug/L 10 10.8 108 81-114 omobenzene ug/L 10 10.8 108 81-113 omochioromethane ug/L 10 10.0 100 75-119 omochioromethane ug/L 10 10.8 86 88-151 ubo disulfide ug/L 10 10.4 76-118 10 ubo referane ug/L 10 10.4 104 76-118		-					
2-Dichloropropane ug/L 10 6.3 63 55-139 Jutanone (MEK) ug/L 25 29.6 119 61-136 Chlorotoluene ug/L 25 27.8 111 65-137 Chlorotoluene ug/L 25 27.7 111 55-123 etone ug/L 25 27.7 111 55-126 monoene ug/L 10 0.8 108 81-114 pomochicromethane ug/L 10 11.2 129 75-139 pomochicromethane ug/L 10 10.0 100 75-119 pomochicromethane ug/L 10 10.9 109 49-148 utono tisulide ug/L 10 10.9 109 49-148 utorotertanchoride ug/L 10 10.4 74 74 62-137 utonotertanchoride ug/L 10 10.4 104 76-118 107 utonotertanchoride ug/L 10 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>		-					
Butanone (MEK) ug/L 25 29.6 119 61-136 Chlorobluene ug/L 10 9.1 91 81-115 coxanone ug/L 25 27.8 111 65-137 Chlorobluene ug/L 25 32.1 129 65-133 consent ug/L 25 32.7 111 58-126 nzene ug/L 10 10.8 81-114 omobenzene ug/L 10 10.2 122 79-120 omochioromethane ug/L 10 10.0 75-119 0 omochioromethane ug/L 10 10.0 74 62-137 omochioromethane ug/L 10 10.9 99 81-113 iorobenzene ug/L 10 10.4 104 76-118 iorobenzene ug/L 10 10.4 64-132 77 iorobenzene ug/L 10 10.4 64-132 77 iorob							
Chlorotoluene ug/L 10 9.1 91 81-115 texanone ug/L 25 27.8 111 65-137 blorotoluene ug/L 25 32.1 129 65-133 etone ug/L 25 32.1 129 65-133 etone ug/L 10 9.3 93 84-114 omochloromethane ug/L 10 9.3 93 84-113 omochloromethane ug/L 10 10.0 100 75-119 omochloromethane ug/L 10 10.0 100 75-119 omochloromethane ug/L 10 10.9 99 49-148 rbro nettrachloride ug/L 10 7.4 74 62-137 iorobernene ug/L 10 10.4 104 76-118 iorotorm ug/L 10 10.4 104 76-118 iorotorm ug/L 10 10.8 80-119 13 iorotormane ug/L 10 8.4 84 72-124 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>		-					
Hexanone ug/L 25 27.8 111 65-137 Chlorobluene ug/L 10 9.2 92 81-111 Chlorobluene ug/L 25 32.1 129 65-133 etone ug/L 10 10.8 108 81-114 mochenzene ug/L 10 11.2 172 79-120 omochiromethane ug/L 10 10.0 75-119 10 omochiromethane ug/L 10 5.8 58-151 10 omochiromethane ug/L 10 7.4 74 62-137 ibro disulfide ug/L 10 7.4 74 62-137 ibro disulfide ug/L 10 7.4 74 62-137 ibro disulfide ug/L 10 9.4 91-148 13 ibro disulfide ug/L 10 9.6 96 40-132 ibro disulfide ug/L 10 10.4 104 76-118		-					
Chlorotoluene ug/L 10 9.2 92 81-111 Wethyl-2-pentanone (MIBK) ug/L 25 32.1 129 65-133 inzene ug/L 10 10.8 108 81-114 pmobenzene ug/L 10 9.3 93 84-113 pmochloromethane ug/L 10 10.2 112 79-120 pmodichloromethane ug/L 10 10.0 100 75-119 pmodorm ug/L 10 6.8 68 66-132 pmodrm ug/L 10 7.4 74 62-137 ubro disulfide ug/L 10 7.4 74 62-137 ubro disulfide ug/L 10 10.4 104 76-118 ubro disulfide ug/L 10 10.4 76-118 13 ubro disulfide ug/L 10 10.4 76-118 13 ubro disulfide ug/L 10 10.4 104 76-118 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Wethyl-2-pentanone (MIBK) ug/L 25 32.1 129 65-133 etone ug/L 10 10.8 108 81-114 pomobenzene ug/L 10 9.3 93 84-113 pomocholoromethane ug/L 10 11.2 112 79-120 pomocholoromethane ug/L 10 10.0 100 75-119 pomocholoromethane ug/L 10 5.8 58-151 58-151 pomocholoromethane ug/L 10 10.9 199 49-148 pomocholoromethane ug/L 10 7.4 74 62-137 pomocholorom ug/L 10 12.4 124 65-119 L3 pomocholorom ug/L 10 12.4 65-119 L3 126 pomocholorom ug/L 10 12.4 65-119 L3 126 pomocholoromethane ug/L 10 12.4 65-119 L3 137 pomochol							
etone ug/L 25 27.7 111 58-126 nzene ug/L 10 10.8 108 81-114 omobenzene ug/L 10 10.3 93 84-113 omochloromethane ug/L 10 11.2 112 79-120 omochloromethane ug/L 10 6.8 66 66-132 omodethane ug/L 10 5.8 58 58-151 othor tarchloride ug/L 10 10.9 99 81-113 ilorobenzene ug/L 10 12.4 124 65-119 L3 ilorobenzene ug/L 10 10.4 104 76-118 10 ilorobenzene ug/L 10 10.4 104 76-118 10 ilorobenzene ug/L 10 10.8 108 80-119 12 ilorobenzene ug/L 10 10.8 18 11-15 11 ilorobenzene ug/L							
nzene ug/L 10 10.8 108 81-114 omochloromethane ug/L 10 9.3 93 84-113 omochloromethane ug/L 10 11.2 112 79-120 omochloromethane ug/L 10 10.0 100 75-119 omochloromethane ug/L 10 5.8 58 58-151 irbon disulfide ug/L 10 7.4 74 62-137 ilorobenzene ug/L 10 9.9 99 81-113 ilorobenzene ug/L 10 10.4 104 76-118 ilorothane ug/L 10 10.4 104 76-118 ilorotherne ug/L 10 10.8 108 80-119 -1,2-Dichloropthene ug/L 10 8.4 84 72-12 ordomethane ug/L 10 8.1 81 11-156 ordomethane ug/L 10 8.1 81 81 <		-					
bmobenzene ug/L 10 9.3 93 84-113 omochloromethane ug/L 10 11.2 172 79-120 omochloromethane ug/L 10 10.0 100 75-119 omochorm ug/L 10 6.8 68 66-132 omomothane ug/L 10 5.8 58-151 ubon disulfide ug/L 10 7.4 74 62-137 ilorobenzene ug/L 10 7.4 74 62-137 ilorobenzene ug/L 10 10.4 104 65-119 ilorotethane ug/L 10 10.4 104 65-113 ilorotethane ug/L 10 10.4 104 76-118 ilorotethane ug/L 10 10.4 104 76-122 oromochloromethane ug/L 10 8.4 84 72-124 oromochloromethane ug/L 10 8.1 81 11-156		-					
bmochloromethane ug/L 10 11.2 112 79-120 omodichloromethane ug/L 10 10.0 100 75-119 omodichloromethane ug/L 10 6.8 68 66-132 omomethane ug/L 10 5.8 58 58-151 orbon disulfide ug/L 10 10.9 49-148 orbon tetrachloride ug/L 10 7.4 74 62-137 loroberzene ug/L 10 9.9 99 81-113 lorobertane ug/L 10 10.4 104 76-118 lorobertane ug/L 10 10.8 108 80-119 -1,2-Dichloroethene ug/L 10 10.8 80 112 -1,2-Dichloroethene ug/L 10 8.1 81 11-156 oromochloromethane ug/L 10 8.1 81 11-156 oromochloromethane ug/L 10 8.3 83 72-1							
omodichloromethane ug/L 10 10.0 100 75-119 omoform ug/L 10 6.8 68 66-132 omomethane ug/L 10 5.8 58 58-151 irbon disulfide ug/L 10 10.9 109 49-148 irbon tetrachloride ug/L 10 7.4 74 62-137 ilorobenzene ug/L 10 9.9 99 81-113 ilorobenzene ug/L 10 12.4 124 65-119 L3 ilorobenzene ug/L 10 10.4 104 76-118 ilorobenzene ug/L 10 9.6 96 40-132 ilorobenzene ug/L 10 8.4 84 72-124 oromochloromethane ug/L 10 8.1 81 11-156 ryblenzene ug/L 10 8.3 83 72-139 propolyblenzene ug/L 10 8.4 84							
omoform ug/L 10 6.8 68 66-132 omomethane ug/L 10 5.8 58 58-151 ubon disulfide ug/L 10 10.9 109 49-148 ubon disulfide ug/L 10 7.4 74 62-137 ilorobenzene ug/L 10 9.9 99 81-113 ilorobenzene ug/L 10 10.4 104 62-137 ilorobenzene ug/L 10 10.4 104 62-132 ilorobenzene ug/L 10 10.4 104 63-119 ilorobenzene ug/L 10 10.4 104 76-118 ilorobenzene ug/L 10 10.8 108 80-119 -1,2-Dichloropropene ug/L 10 8.4 72-124 poromochloromethane ug/L 10 8.1 81 11-156 ormomethane ug/L 10 8.1 81 11-156							
ormomethane ug/L 10 5.8 58 58-151 urbon disulfide ug/L 10 10.9 109 49-148 urbon tetrachloride ug/L 10 7.4 74 62-137 ilorobenzene ug/L 10 9.9 99 81-113 ilorobertane ug/L 10 12.4 124 65-119 L3 ilorobertane ug/L 10 10.4 104 76-118 ilorobertane ug/L 10 9.6 96 40-132 -1,2-Dichloroethene ug/L 10 9.5 95 75-122 oromoethane ug/L 10 8.4 84 72-124 oromoethane ug/L 10 8.1 81 11-156 oromoethane ug/L 10 8.3 83 72-139 oromoethane ug/L 10 8.4 84 69-103 tyblenzene ug/L 10 9.4 65-113 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
nrbon disulfide ug/L 10 10.9 109 49-148 nrbon tetrachloride ug/L 10 7.4 74 62-137 ilorobenzene ug/L 10 9.9 99 81-113 ilorobenzene ug/L 10 12.4 124 65-119 L3 iloroform ug/L 10 10.4 104 76-118 iloromethane ug/L 10 9.6 96 40-132 i-1.2-Dichloroethene ug/L 10 9.5 95 75-122 oromochloromethane ug/L 10 11.0 110 79-121 chloromethane ug/L 10 8.1 81 11-156 oromochloromethane ug/L 10 8.1 81 11-156 oromochloromethane ug/L 10 8.3 83 72-139 oromochloromethane ug/L 10 8.4 84 69-103 stxachloro-1,3-butadiene ug/L 10 9.4 94 65-113 stylbenzene ug/L 10 9.1		-					
nbon tetrachloride ug/L 10 7.4 74 62-137 klorobenzene ug/L 10 9.9 99 81-113 klorobenzene ug/L 10 12.4 124 65-119 L3 klorofm ug/L 10 10.4 104 76-118 10 kloromethane ug/L 10 9.6 96 40-132 i-1,2-Dichloroethene ug/L 10 9.5 95 75-122 oromochloromethane ug/L 10 8.4 84 72-124 oromochloromethane ug/L 10 8.1 81 11-156 orybenzene ug/L 10 8.1 81 11-55 synbenzene ug/L 10 8.3 83 72-139 opropylbanzene (Cumene) ug/L 10 8.4 86-103 sthylenzene ug/L 10 9.4 94 65-113 sthylenzene ug/L 10 9.1 97-121 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
biorobenzene ug/L 10 9.9 99 81-113 loroethane ug/L 10 12.4 124 65-119 L3 loroform ug/L 10 10.4 104 76-118 loromethane ug/L 10 9.6 96 40-132 -1,2-Dichloroethene ug/L 10 10.8 80-119 -1,3-Dichloroethene ug/L 10 9.5 95 75-122 oromochloromethane ug/L 10 8.4 84 72-124 oromochloromethane ug/L 10 8.1 81 11-156 vijblenzene ug/L 10 8.1 81 11-156 vijblenzene ug/L 10 8.3 83 72-139 propylbenzene (Cumene) ug/L 10 8.4 86-1103 thyl-tert-butyl ether ug/L 10 9.1 91 77-121 Propylbenzene ug/L 10 8.9 89 79-116							
oroethane ug/L 10 12.4 124 65-119 L3 oroform ug/L 10 10.4 104 76-118 oromethane ug/L 10 9.6 96 40-132 1,2-Dichloroethene ug/L 10 9.5 95 75-122 romochloromethane ug/L 10 8.4 84 72-124 romochloromethane ug/L 10 8.1 81 11-156 ylbenzene ug/L 10 8.1 81 11-156 ylbenzene ug/L 10 8.3 83 72-139 propylbenzene (Cumene) ug/L 10 8.4 84 69-103 thyl-tert-butyl ether ug/L 10 9.4 94 65-113 thylene chloride ug/L 10 9.1 91 77-121 thylenezhene ug/L 10 9.1 91 77-121 thylenzene ug/L 10 10.6 106							
oroform ug/L 10 10.4 104 76-118 oromethane ug/L 10 9.6 96 40-132 1,2-Dichloroethene ug/L 10 10.8 108 80-119 1,3-Dichloropropene ug/L 10 9.5 95 75-122 romochloromethane ug/L 10 8.4 84 72-124 romomethane ug/L 10 8.1 81 11-156 vibroardifluoromethane ug/L 10 8.1 81 11-156 vibroardifluoromethane ug/L 10 8.3 83 72-134 propylbenzene ug/L 10 8.4 84 69-103 thyl-tert-butyl ether ug/L 10 9.4 94 65-113 thyletre-butyl ether ug/L 10 9.1 91 77-121 torylbenzene ug/L 10 9.1 91 89 79-116 ohthalene ug/L 10 8.8		-					2
oromethane ug/L 10 9.6 96 40-132 1,2-Dichloroethene ug/L 10 10.8 108 80-119 1,3-Dichloropropene ug/L 10 9.5 95 75-122 romochloromethane ug/L 10 8.4 84 72-124 romomethane ug/L 10 11.0 110 79-121 hlorodifluoromethane ug/L 10 8.1 81 11-156 ylbenzene ug/L 10 8.3 83 72-139 oropylbenzene (Cumene) ug/L 10 8.4 84 69-103 thyl-tert-butyl ether ug/L 10 8.3 83 72-139 oppylbenzene (Cumene) ug/L 10 9.4 94 65-113 thyl-tert-butyl ether ug/L 10 10.0 77-124 oppylbenzene ug/L 10 10.6 66-132 oppropyltoluene ug/L 10 10.6 66-132 B		-					_3
1,2-Dichloroethene ug/L 10 10.8 108 80-119 1,3-Dichloropropene ug/L 10 9.5 95 75-122 comochloromethane ug/L 10 8.4 84 72-124 comomethane ug/L 10 11.0 110 79-121 norooffluoromethane ug/L 10 8.1 81 11-156 /benzene ug/L 10 8.1 81 11-156 /benzene ug/L 10 8.3 83 72-139 oropylbenzene (Cumene) ug/L 10 8.4 84 69-103 hyl-tert-butyl ether ug/L 10 8.4 84 69-103 hyl-tert-butyl ether ug/L 10 9.4 94 65-113 hylenzene ug/L 10 9.1 91 77-121 ropylbenzene ug/L 10 8.9 89 79-116 ihthalene ug/L 10 8.8 88 77-114 Butylbenzene ug/L 10 9.1 91							
1,3-Dichloropropene ug/L 10 9.5 95 75-122 romochloromethane ug/L 10 8.4 84 72-124 romomethane ug/L 10 11.0 110 79-121 hlorodifluoromethane ug/L 10 8.1 81 11-156 ylbenzene ug/L 10 9.6 96 82-115 cachloro-1,3-butadiene ug/L 10 8.3 83 72-139 oropylbenzene (Cumene) ug/L 10 8.4 84 69-103 oropylbenzene (Cumene) ug/L 10 9.4 94 65-113 thyl-tert-butyl ether ug/L 10 10.0 100 76-124 utylbenzene ug/L 10 9.1 91 77-121 ropylbenzene ug/L 10 8.9 89 79-116 obthalene ug/L 10 9.1 91 80-119 rene ug/L 10 9.1 91 80-119 Butylbenzene ug/L 10 9.1 91							
romochloromethane ug/L 10 8.4 84 72-124 romomethane ug/L 10 11.0 110 79-121 hlorodifluoromethane ug/L 10 8.1 81 11-156 ylbenzene ug/L 10 8.3 83 72-139 oropylbenzene (Cumene) ug/L 10 8.4 84 69-103 hyl-tert-butyl ether ug/L 10 8.4 84 69-103 hyl-tert-butyl ether ug/L 10 8.4 84 69-103 hyl-tert-butyl ether ug/L 10 9.4 94 65-113 hyl-tert-butyl ether ug/L 10 10.0 100 76-124 utylbenzene ug/L 10 8.9 89 79-116 opropylbolzene ug/L 10 8.8 88 77-114 -Butylbenzene ug/L 10 9.1 91 80-119 rene ug/L 10 9.2 92							
romomethaneug/L1011.011079-121hlorodifluoromethaneug/L108.18111-156ylbenzeneug/L109.69682-115kachloro-1,3-butadieneug/L108.38372-139boropylbenzene (Cumene)ug/L108.48469-103htyl-tert-butyl etherug/L109.49465-113htyl-tert-butyl etherug/L1010.010076-124utylbenzeneug/L109.19177-121ropylbenzeneug/L108.98979-116obthaleneug/L108.88877-114sopropyltolueneug/L109.19180-119reneug/L109.19180-119reneug/L109.19180-119reneug/L109.19180-119reneug/L109.19180-119reneug/L109.29277-121achlorotheneug/L109.29273-122ueneug/L1010.610682-114us-1,2-Dichlorotheneug/L1010.710775-122us-1,3-Dichloropropeneug/L1010.65666-114us-1,3-Dichloropropeneug/L1010.610678-119		-					
hlorodifluoromethaneug/L108.18111-156ylbenzeneug/L109.69682-115kachloro-1,3-butadieneug/L108.38372-139propylbenzene (Cumene)ug/L108.48469-103thyl-tert-butyl etherug/L109.49465-113thylene chlorideug/L1010.010076-124utylbenzeneug/L109.19177-121thylenzeneug/L108.98979-116obthaleneug/L1010.610666-132sopropyltolueneug/L109.19180-119reneug/L109.19180-119reneug/L109.19180-119reneug/L109.19180-119reneug/L109.19180-119reneug/L109.19180-119reneug/L109.29277-121rachloroetheneug/L109.29273-122ueneug/L1010.610682-114ns-1,2-Dichloroetheneug/L1010.710775-122ns-1,3-Dichloropropeneug/L106.56566-114L2chloroetheneug/L1010.610678-119		-					
vybenzeneug/L109.69682-115xachloro-1,3-butadieneug/L108.38372-139propylbenzene (Cumene)ug/L108.48469-103thyl-tert-butyl etherug/L109.49465-113thylene chlorideug/L1010.010076-124tutylbenzeneug/L109.19177-121tropylbenzeneug/L108.98979-116topylbenzeneug/L1010.610666-132sopropyltolueneug/L109.19180-119reneug/L109.19180-119reneug/L109.19180-119reneug/L109.19180-119reneug/L109.19180-119reneug/L1010.110181-115-Butylbenzeneug/L109.29277-121rachloroetheneug/L109.29273-122ueneug/L1010.610682-114ns-1,2-Dichloroetheneug/L1010.710775-122ns-1,3-Dichloropropeneug/L106.56566-114L2chloroetheneug/L1010.610678-119							
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx							
propylbenzene (Cumene)ug/L108.48469-103thyl-tert-butyl etherug/L109.49465-113thylene chlorideug/L1010.010076-124Butylbenzeneug/L109.19177-121Propylbenzeneug/L108.98979-116ophthaleneug/L1010.610666-132sopropyltolueneug/L108.88877-114c-Butylbenzeneug/L109.19180-119reneug/L109.19180-119reneug/L109.29277-121rachloroetheneug/L109.29273-122ueneug/L1010.610682-114ns-1,2-Dichloroetheneug/L1010.710775-122chloroetheneug/L106.56566-114L2chloroetheneug/L1010.610678-119	-						
thyl-tert-butyl etherug/L109.49465-113ethylene chlorideug/L1010.010076-124Butylbenzeneug/L109.19177-121Propylbenzeneug/L108.98979-116uphthaleneug/L1010.610666-132sopropyltolueneug/L108.88877-114c-Butylbenzeneug/L109.19180-119yreneug/L109.19180-119t-Butylbenzeneug/L1010.110181-115t-Butylbenzeneug/L109.29277-121trachloroetheneug/L109.29273-122lueneug/L1010.610682-114ns-1,2-Dichloroptheneug/L1010.710775-122ns-1,3-Dichloropropeneug/L106.56566-114L2chloroetheneug/L1010.610678-119		-					
thylene chlorideug/L1010.010076-124Butylbenzeneug/L109.19177-121Propylbenzeneug/L108.98979-116phthaleneug/L1010.610666-132sopropyltolueneug/L108.88877-114c-Butylbenzeneug/L109.19180-119c-Butylbenzeneug/L1010.110181-115reneug/L109.29277-121rachloroetheneug/L109.29273-122ueneug/L1010.610682-114ns-1,2-Dichloroetheneug/L1010.710775-122chloroetheneug/L106.56566-114L2chloroetheneug/L1010.610678-119		-					
Butylbenzeneug/L109.19177-121Propylbenzeneug/L108.98979-116phthaleneug/L1010.610666-132sopropyltolueneug/L108.88877-114c>Butylbenzeneug/L109.19180-119reneug/L1010.110181-115t-Butylbenzeneug/L109.29277-121rachloroetheneug/L109.29273-122ueneug/L1010.610682-114ns-1,2-Dichloroetheneug/L1010.710775-122ns-1,3-Dichloropropeneug/L106.56566-114L2chloroetheneug/L1010.610678-119							
Propylbenzene ug/L 10 8.9 89 79-116 phthalene ug/L 10 10.6 106 66-132 sopropyltoluene ug/L 10 8.8 88 77-114 c>Butylbenzene ug/L 10 9.1 91 80-119 c>Butylbenzene ug/L 10 10.1 101 81-115 rrene ug/L 10 9.2 92 77-121 rachloroethene ug/L 10 9.2 92 73-122 uene ug/L 10 10.6 106 82-114 ns-1,2-Dichloroethene ug/L 10 10.7 107 75-122 ns-1,3-Dichloropropene ug/L 10 6.5 65 66-114 L2 chloroethene ug/L 10 10.6 106 78-119	-	-					
uphthalene ug/L 10 10.6 106 66-132 sopropyltoluene ug/L 10 8.8 88 77-114 c-Butylbenzene ug/L 10 9.1 91 80-119 yrene ug/L 10 10.1 101 81-115 t-Butylbenzene ug/L 10 9.2 92 77-121 trachloroethene ug/L 10 9.2 92 73-122 luene ug/L 10 10.6 106 82-114 ns-1,2-Dichloroethene ug/L 10 10.7 107 75-122 ns-1,3-Dichloropropene ug/L 10 6.5 65 66-114 L2 chloroethene ug/L 10 10.6 106 78-119							
sopropyltolueneug/L108.88877-114c-Butylbenzeneug/L109.19180-119yreneug/L1010.110181-115t-Butylbenzeneug/L109.29277-121trachloroetheneug/L109.29273-122lueneug/L1010.610682-114ns-1,2-Dichloroetheneug/L1010.710775-122ns-1,3-Dichloropropeneug/L106.56566-114L2chloroetheneug/L1010.610678-119							
c-Butylbenzeneug/L109.19180-119yreneug/L1010.110181-115t-Butylbenzeneug/L109.29277-121trachloroetheneug/L109.29273-122lueneug/L1010.610682-114ns-1,2-Dichloroetheneug/L1010.710775-122ns-1,3-Dichloropropeneug/L106.56566-114L2chloroetheneug/L1010.610678-119							
yreneug/L1010.110181-115t-Butylbenzeneug/L109.29277-121trachloroetheneug/L109.29273-122lueneug/L1010.610682-114ns-1,2-Dichloroetheneug/L1010.710775-122ns-1,3-Dichloropropeneug/L106.56566-114L2chloroetheneug/L1010.610678-119							
t-Butylbenzeneug/L109.29277-121trachloroetheneug/L109.29273-122lueneug/L1010.610682-114ns-1,2-Dichloroetheneug/L1010.710775-122ns-1,3-Dichloropropeneug/L106.56566-114L2chloroetheneug/L1010.610678-119	-						
trachloroetheneug/L109.29273-122ueneug/L1010.610682-114ns-1,2-Dichloroetheneug/L1010.710775-122ns-1,3-Dichloropropeneug/L106.56566-114L2chloroetheneug/L1010.610678-119							
lueneug/L1010.610682-114ns-1,2-Dichloroetheneug/L1010.710775-122ns-1,3-Dichloropropeneug/L106.56566-114L2chloroetheneug/L1010.610678-119	•	-					
ns-1,2-Dichloroethene ug/L 10 10.7 107 75-122 ns-1,3-Dichloropropene ug/L 10 6.5 65 66-114 L2 chloroethene ug/L 10 10.6 106 78-119	trachloroethene	-					
ns-1,3-Dichloropropene ug/L 10 6.5 65 66-114 L2 chloroethene ug/L 10 10.6 106 78-119	luene	-					
chloroethene ug/L 10 10.6 106 78-119	1	-					
	ans-1,3-Dichloropropene						_2
chlorofluoromethane ug/L 10 9.7 97 71-120		-					
	richlorofluoromethane	ug/L	10	9.7	97	71-120	

Date: 10/13/2009 03:25 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 20 of 23

Project: Kansas Waste Water Pace Project No.: 6066709

LABORATORY CONTROL SAMPLE: 548227

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Vinyl chloride	ug/L		9.2	92	67-139	
Xylene (Total)	ug/L	30	26.9	90	81-116	
1,2-Dichloroethane-d4 (S)	%			104	81-121	
4-Bromofluorobenzene (S)	%			101	87-115	
Dibromofluoromethane (S)	%			105	87-113	
Toluene-d8 (S)	%			105	89-111	

REPORT OF LABORATORY ANALYSIS

Page 21 of 23

Project:	Kansas Waste W	ater									
Pace Project No.:	6066709										
QC Batch:	OEXT/19948		Analysis Method:			PA 504.1					
QC Batch Method:	EPA 504.1		Analysi	s Descripti	on: G	CS 504 E	EDB DBC	P			
Associated Lab Sar	nples: 6066709	001, 6066709002, 60	66709003,	60667090	04, 60667	09005					
METHOD BLANK:	548830		М	atrix: Wate	er						
Associated Lab Sar	nples: 6066709	001, 6066709002, 60	66709003,	60667090	04, 60667	09005					
			Blank	Re	porting						
Paran	neter	Units	Result		Limit	Ana	lyzed	Qualifi	ers		
1,2-Dibromoethane	(EDB)	ug/L		ND	0.050	10/09/0	09 15:13				
LABORATORY COI	NTROL SAMPLE 8	& LCSD: 548831		54	48832						
			Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parar	neter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,2-Dibromoethane	(EDB)	ug/L	.25	0.29	0.30) 117	121	70-130		4 20	

REPORT OF LABORATORY ANALYSIS

Page 22 of 23

QUALIFIERS

Project: Kansas Waste Water

Pace Project No.: 6066709

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

U - Indicates the compound was analyzed for, but not detected.

BATCH QUALIFIERS

Batch: MSV/23759

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

- L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
- L3 Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

October 30, 2009

Mr. Travis Kamler TCW Construction Inc 141 M Street Lincoln, NE 68508

RE: Project: Kansas Waste Water Pace Project No.: 6068053

Dear Mr. Kamler:

Enclosed are the analytical results for sample(s) received by the laboratory on October 20, 2009. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Judy Sipson

Trudy Gipson

trudy.gipson@pacelabs.com Project Manager

Enclosures

cc: Mr. David Surgnier

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 1 of 19

CERTIFICATIONS

Project: Kansas Waste Water

Pace Project No.: 6068053

Kansas Certification IDs

Washington Certification #: C2069 Utah Certification #: 9135995665 Texas Certification #: T104704407-08-TX Oregon Certification #: KS20001 Oklahoma Certification #: 9205/9935 Nevada Certification #: KS000212008A Louisiana Certification #: 03055 Kansas/NELAP Certification #: E-10116 Iowa Certification #: 118 Illinois Certification #: 001191 Arkansas Certification #: 05-008-0 A2LA Certification #: 2456.01

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: Kansas Waste Water)53

Pace	Project	t No.:	606805
------	---------	--------	--------

Lab ID	Sample ID	Matrix	Date Collected	Date Received
6068053001	CNPURGE-W-1019091	Water	10/19/09 11:00	10/20/09 09:05
6068053002	BAPURGE-W-1019092	Water	10/19/09 12:28	10/20/09 09:05
6068053003	HAPURGE-W-1019093	Water	10/19/09 13:52	10/20/09 09:05
6068053004	QCTB-W-1019094	Water	10/19/09 17:40	10/20/09 09:05

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: Kansas Waste Water Pace Project No.: 6068053

Lab ID	Sample ID	Method	Analysts	Analytes Reported
6068053001	CNPURGE-W-1019091	EPA 300.0	RAB	1
		EPA 5030B/8260	AJA	70
		EPA 504.1	NAW	1
6068053002	BAPURGE-W-1019092	EPA 300.0	RAB	1
		EPA 5030B/8260	AJA	70
		EPA 504.1	NAW	1
6068053003	HAPURGE-W-1019093	EPA 300.0	RAB	1
		EPA 5030B/8260	AJA	70
		EPA 504.1	NAW	1
6068053004	QCTB-W-1019094	EPA 5030B/8260	AJA	70

REPORT OF LABORATORY ANALYSIS

Project: Kansas Waste Water

Pace Project No.: 6068053

Sample: CNPURGE-W-1019091	Lab ID: 60680	053001	Collected: 10	0/19/0	9 11:00	Received: 10	/20/09 09:05	Matrix: Water	
Parameters	Results	Units	Report Li	imit	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical Metho	od: EPA 50	4.1 Preparatio	n Metl	hod: EP/	A 504.1			
1,2-Dibromoethane (EDB)	ND ug/L	-	0.	.028	1	10/27/09 00:00	10/27/09 17:43	106-93-4	
8260 MSV	Analytical Metho	od: EPA 50	30B/8260						
Acetone	ND ug/L	-		10.0	1		10/24/09 19:10	67-64-1	
Benzene	ND ug/L			1.0	1		10/24/09 19:10	71-43-2	
Bromobenzene	ND ug/L	-		1.0	1		10/24/09 19:10	108-86-1	
Bromochloromethane	ND ug/L	-		1.0	1		10/24/09 19:10	74-97-5	
Bromodichloromethane	ND ug/L	-		1.0	1		10/24/09 19:10	75-27-4	
Bromoform	ND ug/L	-		1.0	1		10/24/09 19:10	75-25-2	
Bromomethane	ND ug/L	_		1.0	1		10/24/09 19:10	74-83-9	
2-Butanone (MEK)	ND ug/L	_		10.0	1		10/24/09 19:10	78-93-3	
n-Butylbenzene	ND ug/L			1.0	1		10/24/09 19:10	104-51-8	
sec-Butylbenzene	ND ug/L			1.0	1		10/24/09 19:10		
tert-Butylbenzene	ND ug/L			1.0	1		10/24/09 19:10	98-06-6	
Carbon disulfide	ND ug/L			5.0	1		10/24/09 19:10		
Carbon tetrachloride	2.3 ug/L			1.0	1		10/24/09 19:10		
Chlorobenzene	ND ug/L			1.0	1		10/24/09 19:10		
Chloroethane	ND ug/L			1.0	1		10/24/09 19:10		
Chloroform	ND ug/L			1.0	1		10/24/09 19:10		
Chloromethane	-								
	ND ug/L			1.0	1		10/24/09 19:10		
2-Chlorotoluene	ND ug/L			1.0	1		10/24/09 19:10		
4-Chlorotoluene	ND ug/L			1.0	1		10/24/09 19:10		
1,2-Dibromo-3-chloropropane	ND ug/L			2.5	1		10/24/09 19:10		
Dibromochloromethane	ND ug/L			1.0	1		10/24/09 19:10		
1,2-Dibromoethane (EDB)	ND ug/L			1.0	1		10/24/09 19:10		
Dibromomethane	ND ug/L			1.0	1		10/24/09 19:10		
1,2-Dichlorobenzene	ND ug/L	-		1.0	1		10/24/09 19:10	95-50-1	
1,3-Dichlorobenzene	ND ug/L	-		1.0	1		10/24/09 19:10	541-73-1	
1,4-Dichlorobenzene	ND ug/L	-		1.0	1		10/24/09 19:10	106-46-7	
Dichlorodifluoromethane	ND ug/L	-		1.0	1		10/24/09 19:10	75-71-8	
1,1-Dichloroethane	ND ug/L	-		1.0	1		10/24/09 19:10	75-34-3	
1,2-Dichloroethane	ND ug/L	-		1.0	1		10/24/09 19:10	107-06-2	
1,2-Dichloroethene (Total)	ND ug/L	_		1.0	1		10/24/09 19:10	540-59-0	
1,1-Dichloroethene	ND ug/L	-		1.0	1		10/24/09 19:10	75-35-4	
cis-1,2-Dichloroethene	ND ug/L			1.0	1		10/24/09 19:10	156-59-2	
trans-1,2-Dichloroethene	ND ug/L			1.0	1		10/24/09 19:10		
1,2-Dichloropropane	ND ug/L			1.0	1		10/24/09 19:10		
1,3-Dichloropropane	ND ug/L			1.0	1		10/24/09 19:10		
2,2-Dichloropropane	ND ug/L			1.0	1		10/24/09 19:10		
1,1-Dichloropropene	ND ug/L			1.0	1		10/24/09 19:10		
cis-1,3-Dichloropropene	ND ug/L			1.0	1		10/24/09 19:10		
trans-1,3-Dichloropropene	ND ug/L			1.0	1		10/24/09 19:10		
Ethylbenzene	ND ug/L			1.0	1		10/24/09 19:10		
	-								
Hexachloro-1,3-butadiene	ND ug/L			1.0	1		10/24/09 19:10		
2-Hexanone	ND ug/L		·	10.0	1		10/24/09 19:10		
Isopropylbenzene (Cumene)	ND ug/L			1.0	1		10/24/09 19:10		
p-Isopropyltoluene	ND ug/L	-		1.0	1		10/24/09 19:10	99-87-6	

Date: 10/30/2009 10:54 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Page 5 of 19

Project: Kansas Waste Water

Pace Project No.: 6068053

Sample: CNPURGE-W-1019091	Lab ID: 6068053001	Collected: 10/19/09	11:00	Received: 10/20/	09 09:05	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 5	5030B/8260					
Methylene chloride	ND ug/L	1.0	1	10	/24/09 19:10) 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1	10	/24/09 19:10) 108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1	10	/24/09 19:10) 1634-04-4	
Naphthalene	ND ug/L	10.0	1	10	/24/09 19:10	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1	10	/24/09 19:10) 103-65-1	
Styrene	ND ug/L	1.0	1	10	/24/09 19:10) 100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1	10	/24/09 19:10) 630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	10	/24/09 19:10) 79-34-5	
Tetrachloroethene	ND ug/L	1.0	1	10	/24/09 19:10) 127-18-4	
Toluene	ND ug/L	1.0	1	10	/24/09 19:10) 108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1	10	/24/09 19:10	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1	10	/24/09 19:10) 120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1	10	/24/09 19:10) 71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1	10	/24/09 19:10) 79-00-5	
Trichloroethene	ND ug/L	1.0	1	10	/24/09 19:10) 79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1	10	/24/09 19:10) 75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1	10	/24/09 19:10	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1	10	/24/09 19:10) 95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1	10	/24/09 19:10	0 108-67-8	
Vinyl chloride	ND ug/L	1.0	1	10	/24/09 19:10) 75-01-4	
Xylene (Total)	ND ug/L	3.0	1	10	/24/09 19:10) 1330-20-7	
4-Bromofluorobenzene (S)	103 %	87-115	1	10	/24/09 19:10) 460-00-4	
Dibromofluoromethane (S)	99 %	87-113	1	10	/24/09 19:10) 1868-53-7	
1,2-Dichloroethane-d4 (S)	101 %	81-121	1	10	/24/09 19:10	17060-07-0	
Toluene-d8 (S)	101 %	89-111	1	10	/24/09 19:10	2037-26-5	
Preservation pH	6.0	0.10	1	10	/24/09 19:10)	
300.0 IC Anions	Analytical Method: EPA 3	800.0					
Nitrate as N	2.1 mg/L	0.10	1	10	/20/09 18:55	5 14797-55-8	

Date: 10/30/2009 10:54 AM

REPORT OF LABORATORY ANALYSIS

Page 6 of 19

Project: Kansas Waste Water

Pace Project No.: 6068053

Sample: QCTB-W-1019094	Lab ID: 6068053004	Collected: 10/19/0	9 17:40	Received: 10/20/09 09:05 Matrix:	Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CA	S No. Qual
8260 MSV	Analytical Method: EPA	5030B/8260			
Acetone	ND ug/L	10.0	1	10/24/09 19:59 67-64	4-1
Benzene	ND ug/L	1.0	1	10/24/09 19:59 71-43	3-2
Bromobenzene	ND ug/L	1.0	1	10/24/09 19:59 108-8	36-1
Bromochloromethane	ND ug/L	1.0	1	10/24/09 19:59 74-97	7-5
Bromodichloromethane	ND ug/L	1.0	1	10/24/09 19:59 75-27	7-4
Bromoform	ND ug/L	1.0	1	10/24/09 19:59 75-25	5-2
Bromomethane	ND ug/L	1.0	1	10/24/09 19:59 74-83	3-9
2-Butanone (MEK)	ND ug/L	10.0	1	10/24/09 19:59 78-93	3-3
n-Butylbenzene	ND ug/L	1.0	1	10/24/09 19:59 104-5	51-8
sec-Butylbenzene	ND ug/L	1.0	1	10/24/09 19:59 135-9	98-8
tert-Butylbenzene	ND ug/L	1.0	1	10/24/09 19:59 98-06	3-6
Carbon disulfide	ND ug/L	5.0	1	10/24/09 19:59 75-15	
Carbon tetrachloride	ND ug/L	1.0	1	10/24/09 19:59 56-23	
Chlorobenzene	ND ug/L	1.0	1	10/24/09 19:59 108-9	90-7
Chloroethane	ND ug/L	1.0	1	10/24/09 19:59 75-00	
Chloroform	ND ug/L	1.0	1	10/24/09 19:59 67-66	
Chloromethane	ND ug/L	1.0	1	10/24/09 19:59 74-87	
2-Chlorotoluene	ND ug/L	1.0	1	10/24/09 19:59 95-49	
4-Chlorotoluene	ND ug/L	1.0	1	10/24/09 19:59 106-4	
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1	10/24/09 19:59 96-12	-
Dibromochloromethane	ND ug/L	1.0	1	10/24/09 19:59 124-4	-
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1	10/24/09 19:59 106-9	-
Dibromomethane	ND ug/L	1.0	1	10/24/09 19:59 74-95	
1,2-Dichlorobenzene	ND ug/L	1.0	1	10/24/09 19:59 95-50	
1,3-Dichlorobenzene	ND ug/L	1.0	1	10/24/09 19:59 541-7	
1,4-Dichlorobenzene	ND ug/L	1.0	1	10/24/09 19:59 106-4	
Dichlorodifluoromethane	ND ug/L	1.0	1	10/24/09 19:59 75-7	
1,1-Dichloroethane	ND ug/L	1.0	1	10/24/09 19:59 75-34	
1,2-Dichloroethane	ND ug/L	1.0	1	10/24/09 19:59 107-0	
1,2-Dichloroethene (Total)	ND ug/L	1.0	1	10/24/09 19:59 540-5	
1,1-Dichloroethene	ND ug/L	1.0	1	10/24/09 19:59 75-35	
cis-1,2-Dichloroethene	ND ug/L	1.0	1	10/24/09 19:59 156-5	
trans-1,2-Dichloroethene	ND ug/L	1.0	1	10/24/09 19:59 156-6	
1,2-Dichloropropane	ND ug/L	1.0	1	10/24/09 19:59 78-87	
1,3-Dichloropropane	ND ug/L	1.0	1	10/24/09 19:59 142-2	
2,2-Dichloropropane	ND ug/L	1.0	1	10/24/09 19:59 594-2	
1,1-Dichloropropene	ND ug/L	1.0	1	10/24/09 19:59 563-5	
cis-1,3-Dichloropropene	ND ug/L	1.0	1	10/24/09 19:59 1006	
trans-1,3-Dichloropropene	ND ug/L	1.0	1	10/24/09 19:59 1000	
Ethylbenzene	ND ug/L	1.0	1	10/24/09 19:59 1000	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1	10/24/09 19:59 87-68	
2-Hexanone	ND ug/L	10.0	1	10/24/09 19:59 57-00	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1	10/24/09 19:59 98-82	
p-lsopropyltoluene	ND ug/L	1.0	1	10/24/09 19:59 98-82	
,	•				
Methylene chloride	ND ug/L	1.0	1		
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1	10/24/09 19:59 108-7 10/24/09 19:59 1634	
Methyl-tert-butyl ether	ND ug/L	1.0	1	10/24/09 19:59 1634	-04-4

Date: 10/30/2009 10:54 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 11 of 19

Project: Kansas Waste Water

Pace Project No.: 6068053

Sample: QCTB-W-1019094	Lab ID: 6068053004	Collected: 10/19/0	9 17:40	Received: 10/20/09 09:05 Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260			
Naphthalene	ND ug/L	10.0	1	10/24/09 19:59 91-20-3	
n-Propylbenzene	ND ug/L	1.0	1	10/24/09 19:59 103-65-1	
Styrene	ND ug/L	1.0	1	10/24/09 19:59 100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1	10/24/09 19:59 630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	10/24/09 19:59 79-34-5	
Tetrachloroethene	ND ug/L	1.0	1	10/24/09 19:59 127-18-4	
Toluene	ND ug/L	1.0	1	10/24/09 19:59 108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1	10/24/09 19:59 87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1	10/24/09 19:59 120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1	10/24/09 19:59 71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1	10/24/09 19:59 79-00-5	
Trichloroethene	ND ug/L	1.0	1	10/24/09 19:59 79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1	10/24/09 19:59 75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1	10/24/09 19:59 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1	10/24/09 19:59 95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1	10/24/09 19:59 108-67-8	
Vinyl chloride	ND ug/L	1.0	1	10/24/09 19:59 75-01-4	
Xylene (Total)	ND ug/L	3.0	1	10/24/09 19:59 1330-20-7	
4-Bromofluorobenzene (S)	102 %	87-115	1	10/24/09 19:59 460-00-4	
Dibromofluoromethane (S)	98 %	87-113	1	10/24/09 19:59 1868-53-7	
1,2-Dichloroethane-d4 (S)	101 %	81-121	1	10/24/09 19:59 17060-07-0	
Toluene-d8 (S)	102 %	89-111	1	10/24/09 19:59 2037-26-5	
Preservation pH	6.0	0.10	1	10/24/09 19:59	

REPORT OF LABORATORY ANALYSIS

Page 12 of 19

Project:	Kansas Was	ste Water											
Pace Project No .:	6068053												
QC Batch:	WETA/112	39		Analys	sis Method	: E	PA 300.0						
QC Batch Method:	EPA 300.0			Analys	sis Descrip	tion: 3	00.0 IC Anic	ons					
Associated Lab Sam	ples: 6068	8053001, 606	8053002, 6	068053003	3								
METHOD BLANK:	554827			1	Matrix: Wa	iter							
Associated Lab Sam	ples: 6068	8053001, 606	8053002, 6	068053003	5								
				Blank	K R	Reporting							
Param	eter		Units	Resu	lt	Limit	Analyz	ed	Qualifiers				
Nitrate as N		mg/L			ND	0.10) 10/20/09	18:20					
LABORATORY CON	TROL SAMF	PLE: 55482	.8										
				Spike	LCS	5	LCS	% Re	С				
Param	eter		Units	Conc.	Resu	ult	% Rec	Limits	s Qi	ualifiers			
Nitrate as N		mg/L		5	5	4.7	94	90	0-110		-		
MATRIX SPIKE & M	ATRIX SPIKE	E DUPLICATE	E: 55482	9		554830							
				MS	MSD								
		60	68053001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrate as N		mg/L	2.1	5	5	7.2	7.3	104	104	68-120	1	16	

Date: 10/30/2009 10:54 AM

REPORT OF LABORATORY ANALYSIS

Page 13 of 19

Project: Kansas Waste Water

Pace Project No.: 6068053

Associated Lab Samples:

QC Batch:	MSV/24399	Analysis Method:	EPA 5030B/8260
QC Batch Method:	EPA 5030B/8260	Analysis Description:	8260 MSV Water 7 day
Associated Lab Sam	nples: 6068053001, 6068053002, 606	8053003, 6068053004	

		-
METHOD BLANK:	557805	

5 Matrix: Water 6068053001, 6068053002, 6068053003, 6068053004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	10/24/09 18:38	
1,1,1-Trichloroethane	ug/L	ND	1.0	10/24/09 18:38	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	10/24/09 18:38	
1,1,2-Trichloroethane	ug/L	ND	1.0	10/24/09 18:38	
1,1-Dichloroethane	ug/L	ND	1.0	10/24/09 18:38	
1,1-Dichloroethene	ug/L	ND	1.0	10/24/09 18:38	
1,1-Dichloropropene	ug/L	ND	1.0	10/24/09 18:38	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	10/24/09 18:38	
1,2,3-Trichloropropane	ug/L	ND	2.5	10/24/09 18:38	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	10/24/09 18:38	
1,2,4-Trimethylbenzene	ug/L	ND	1.0	10/24/09 18:38	
1,2-Dibromo-3-chloropropane	ug/L	ND	2.5	10/24/09 18:38	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	10/24/09 18:38	
1,2-Dichlorobenzene	ug/L	ND	1.0	10/24/09 18:38	
1,2-Dichloroethane	ug/L	ND	1.0	10/24/09 18:38	
1,2-Dichloroethene (Total)	ug/L	ND	1.0	10/24/09 18:38	
1,2-Dichloropropane	ug/L	ND	1.0	10/24/09 18:38	
1,3,5-Trimethylbenzene	ug/L	ND	1.0	10/24/09 18:38	
1,3-Dichlorobenzene	ug/L	ND	1.0	10/24/09 18:38	
1,3-Dichloropropane	ug/L	ND	1.0	10/24/09 18:38	
1,4-Dichlorobenzene	ug/L	ND	1.0	10/24/09 18:38	
2,2-Dichloropropane	ug/L	ND	1.0	10/24/09 18:38	
2-Butanone (MEK)	ug/L	ND	10.0	10/24/09 18:38	
2-Chlorotoluene	ug/L	ND	1.0	10/24/09 18:38	
2-Hexanone	ug/L	ND	10.0	10/24/09 18:38	
4-Chlorotoluene	ug/L	ND	1.0	10/24/09 18:38	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	10.0	10/24/09 18:38	
Acetone	ug/L	ND	10.0	10/24/09 18:38	
Benzene	ug/L	ND	1.0	10/24/09 18:38	
Bromobenzene	ug/L	ND	1.0	10/24/09 18:38	
Bromochloromethane	ug/L	ND	1.0	10/24/09 18:38	
Bromodichloromethane	ug/L	ND	1.0	10/24/09 18:38	
Bromoform	ug/L	ND	1.0	10/24/09 18:38	
Bromomethane	ug/L	ND	1.0	10/24/09 18:38	
Carbon disulfide	ug/L	ND	5.0	10/24/09 18:38	
Carbon tetrachloride	ug/L	ND	1.0	10/24/09 18:38	
Chlorobenzene	ug/L	ND	1.0	10/24/09 18:38	
Chloroethane	ug/L	ND	1.0	10/24/09 18:38	
Chloroform	ug/L	ND	1.0	10/24/09 18:38	
Chloromethane	ug/L	ND	1.0	10/24/09 18:38	
cis-1,2-Dichloroethene	ug/L	ND	1.0	10/24/09 18:38	
cis-1,3-Dichloropropene	ug/L	ND	1.0	10/24/09 18:38	
Dibromochloromethane	ug/L	ND	1.0	10/24/09 18:38	

Date: 10/30/2009 10:54 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Project: Kansas Waste Water

Pace Project No.: 6068053	6				
METHOD BLANK: 557805		Matrix:	Water		
Associated Lab Samples:	6068053001, 6068053002, 6068	3053003, 60680	053004		
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dibromomethane	ug/L	ND	1.0	10/24/09 18:38	
Dichlorodifluoromethane	ug/L	ND	1.0	10/24/09 18:38	
Ethylbenzene	ug/L	ND	1.0	10/24/09 18:38	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	10/24/09 18:38	
Isopropylbenzene (Cumene)	ug/L	ND	1.0	10/24/09 18:38	
Methyl-tert-butyl ether	ug/L	ND	1.0	10/24/09 18:38	
Methylene chloride	ug/L	ND	1.0	10/24/09 18:38	
n-Butylbenzene	ug/L	ND	1.0	10/24/09 18:38	
n-Propylbenzene	ug/L	ND	1.0	10/24/09 18:38	
Naphthalene	ug/L	ND	10.0	10/24/09 18:38	
p-Isopropyltoluene	ug/L	ND	1.0	10/24/09 18:38	
sec-Butylbenzene	ug/L	ND	1.0	10/24/09 18:38	
Styrene	ug/L	ND	1.0	10/24/09 18:38	
tert-Butylbenzene	ug/L	ND	1.0	10/24/09 18:38	
Tetrachloroethene	ug/L	ND	1.0	10/24/09 18:38	
Toluene	ug/L	ND	1.0	10/24/09 18:38	
trans-1,2-Dichloroethene	ug/L	ND	1.0	10/24/09 18:38	
trans-1,3-Dichloropropene	ug/L	ND	1.0	10/24/09 18:38	
Trichloroethene	ug/L	ND	1.0	10/24/09 18:38	
Trichlorofluoromethane	ug/L	ND	1.0	10/24/09 18:38	
Vinyl chloride	ug/L	ND	1.0	10/24/09 18:38	
Xylene (Total)	ug/L	ND	3.0	10/24/09 18:38	
1,2-Dichloroethane-d4 (S)	%	99	81-121	10/24/09 18:38	
4-Bromofluorobenzene (S)	%	101	87-115	10/24/09 18:38	
Dibromofluoromethane (S)	%	95	87-113	10/24/09 18:38	
Toluene-d8 (S)	%	102	89-111	10/24/09 18:38	

LABORATORY CONTROL SAMPLE: 557806

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
r didifición						Quaimero
1,1,1,2-Tetrachloroethane	ug/L	10	10.1	101	75-121	
1,1,1-Trichloroethane	ug/L	10	9.6	96	73-120	
1,1,2,2-Tetrachloroethane	ug/L	10	10.8	108	73-128	
1,1,2-Trichloroethane	ug/L	10	10.1	101	83-125	
1,1-Dichloroethane	ug/L	10	9.7	97	79-115	
1,1-Dichloroethene	ug/L	10	9.5	95	76-122	
1,1-Dichloropropene	ug/L	10	10.0	100	80-119	
1,2,3-Trichlorobenzene	ug/L	10	11.6	116	70-138	
1,2,3-Trichloropropane	ug/L	10	11.5	115	74-129	
1,2,4-Trichlorobenzene	ug/L	10	10.7	107	72-131	
1,2,4-Trimethylbenzene	ug/L	10	10.0	100	78-123	
1,2-Dibromo-3-chloropropane	ug/L	10	11.3	113	61-139	
1,2-Dibromoethane (EDB)	ug/L	10	10.2	102	80-124	
1,2-Dichlorobenzene	ug/L	10	10	100	82-113	
1,2-Dichloroethane	ug/L	10	9.6	96	78-118	

Date: 10/30/2009 10:54 AM

REPORT OF LABORATORY ANALYSIS

Page 15 of 19

Project: Kansas Waste Water

Pace Project No.: 6068053

LABORATORY CONTROL SAMPLE: 557806

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethene (Total)	ug/L	20	19.4	97	79-120	
1,2-Dichloropropane	ug/L	10	10.9	109	83-117	
1,3,5-Trimethylbenzene	ug/L	10	8.5	85	79-116	
1,3-Dichlorobenzene	ug/L	10	10.1	101	82-112	
1,3-Dichloropropane	ug/L	10	10.2	102	82-121	
1,4-Dichlorobenzene	ug/L	10	9.9	99	81-111	
2,2-Dichloropropane	ug/L	10	9.2	92	55-139	
2-Butanone (MEK)	ug/L	25	26.7	107	61-136	
2-Chlorotoluene	ug/L	10	10.0	107	81-115	
	ug/L	25	25.6	100	65-137	
-Chlorotoluene	ug/L	10	9.9	99	81-111	
	-	25	22.9	99 92	65-133	
-Methyl-2-pentanone (MIBK)	ug/L				58-133	
cetone	ug/L	25	28.8	115		
Benzene	ug/L	10 10	9.6 10.0	96 100	81-114	
Bromobenzene	ug/L	10	10.0	100	84-113	
romochloromethane	ug/L	10	9.3	93	79-120	
romodichloromethane	ug/L	10	9.4	94	75-119	
romoform	ug/L	10	9.7	97	66-132	
romomethane	ug/L	10	13.0	130	58-151	
rbon disulfide	ug/L	10	11.1	111	49-148	
rbon tetrachloride	ug/L	10	9.8	98	62-137	
lorobenzene	ug/L	10	9.2	92	81-113	
loroethane	ug/L	10	10	100	65-119	
loroform	ug/L	10	9.9	99	76-118	
loromethane	ug/L	10	10.2	102	40-132	
-1,2-Dichloroethene	ug/L	10	9.4	94	80-119	
-1,3-Dichloropropene	ug/L	10	10.1	101	75-122	
promochloromethane	ug/L	10	9.5	95	72-124	
promomethane	ug/L	10	9.8	98	79-121	
chlorodifluoromethane	ug/L	10	10.0	100	11-156	
nylbenzene	ug/L	10	9.2	92	82-115	
exachloro-1,3-butadiene	ug/L	10	11.8	118	72-139	
propylbenzene (Cumene)	ug/L	10	8.3	83	69-103	
ethyl-tert-butyl ether	ug/L	10	10.4	104	65-113	
ethylene chloride	ug/L	10	10.6	106	76-124	
Butylbenzene	ug/L	10	10.4	104	77-121	
Propylbenzene	ug/L	10	10.0	100	79-116	
aphthalene	ug/L	10	11.2	112	66-132	
Isopropyltoluene	ug/L	10	9.8	98	77-114	
c-Butylbenzene	ug/L	10	10.4	104	80-119	
yrene	ug/L	10	9.6	96	81-115	
rt-Butylbenzene	ug/L	10	10.2	102	77-121	
etrachloroethene	ug/L	10	9.1	91	73-122	
luene	ug/L	10	9.5	95	82-114	
ans-1,2-Dichloroethene	ug/L	10	9.9	99	75-122	
ans-1,3-Dichloropropene	ug/L	10	9.1	99 91	66-114	
richloroethene	ug/L	10	9.1 10.1	101	78-114	
richlorofluoromethane	-					
nonioronuoromethane	ug/L	10	9.7	97	71-120	

Date: 10/30/2009 10:54 AM

REPORT OF LABORATORY ANALYSIS

Project: Kansas Waste Water

Pace Project No.: 6068053

LABORATORY CONTROL SAMPLE: 557806

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Vinyl chloride	ug/L		11.2	112	67-139	
Xylene (Total)	ug/L	30	28.3	94	81-116	
1,2-Dichloroethane-d4 (S)	%			99	81-121	
4-Bromofluorobenzene (S)	%			103	87-115	
Dibromofluoromethane (S)	%			98	87-113	
Toluene-d8 (S)	%			102	89-111	

REPORT OF LABORATORY ANALYSIS

Page 17 of 19

Project:	Kansas Waste W	/ater									
Pace Project No.:	6068053										
QC Batch:	OEXT/20399		Analysi	s Method:	E	PA 504.1					
QC Batch Method:	EPA 504.1		Analysi	s Descripti	on: G	CS 504 E	EDB DBC	P			
Associated Lab Sar	nples: 6068053	001, 6068053002, 606	68053003								
METHOD BLANK:	558502		Μ	latrix: Wate	er						
Associated Lab Sar	nples: 6068053	001, 6068053002, 606	68053003								
			Blank		eporting						
Parar	neter	Units	Result	:	Limit	Ana	lyzed	Qualif	iers		
1,2-Dibromoethane	(EDB)	ug/L		ND	0.030	10/27/	09 00:00				
LABORATORY CO	NTROL SAMPLE &	& LCSD: 558503		-	58504						
_			Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parar	neter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,2-Dibromoethane	(EDB)	ug/L	.25	0.24	0.24	4 97	94	70-130		3 20	

REPORT OF LABORATORY ANALYSIS

Page 18 of 19

QUALIFIERS

Project: Kansas Waste Water

Pace Project No.: 6068053

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

U - Indicates the compound was analyzed for, but not detected.

BATCH QUALIFIERS

Batch: MSV/24399

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

REPORT OF LABORATORY ANALYSIS

Page 19 of 19

GEM 40 L	GENERAL RECEIPT Office of City Clerk	037934
Received of Matt Fifty + %	City of Sabetha, Kansas,/- <u>MTCW</u> Const.	- 18, 20 09 \$ 50,00 DOLLARS
For <u>Unged</u> W Distribution:	Fund Fund	
	Fund SC & R	City Clerk

Appendix C:

Data Summaries for Verification VOCs Analyses by TestAmerica Laboratories, Inc.

TestAmerica Laboratories, Inc.

May 8, 2009

Mr. Clyde Dennis Argonne National Laboratory 9700 S. Cass Avenue Building 203, Office B149 Argonne, IL 60439

Re: Laboratory Project No. 21005 Case: CENTRLIA; SDG: 131359

Dear Mr. Dennis:

Enclosed are analytical results for samples that were received by TestAmerica Burlington on April 23rd, 2009. Laboratory identification numbers were assigned, and designated as follows:

Lab ID	Client	Sample	Sample
	<u>Sample ID</u>	<u>Date</u>	<u>Matrix</u>
	Received: 04/23/09 ETR No:	131359	
793268	CNMW02-W-27140	04/22/09	WATER
793269	CNPMP8-W-27144	04/22/09	WATER
793270	CNQCTB-W-27148	04/22/09	WATER
793271	VHBLK01	04/23/09	WATER

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal. The samples, as received, were not acid preserved. On that basis, the laboratory did provide for the analytical work to be performed within seven days of sample collection.

In order to accommodate field length limitations in processing the data summary forms, the laboratory did, in certain instances, abbreviate the sample identifier. The electronically formatted data provides for the full sample identifier.

SOM01.2 Volatile Organics (Trace Level Water)

A storage blank was prepared for volatile organics analysis, and stored in association with the storage of the sample. That storage blank, identified as VHBLK01, was carried through the holding period with the samples, and analyzed.

30 Community Drive, Suite 11 South Burlington, VT 05403 tel 802.660.1990 fax 802.660.1919 www.testamericainc.com

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Samples CNMW02-W-27140 and CNPMP8-W-27144 were analyzed at a dilution, based on the results of preliminary screening. An additional, more concentrated analysis was performed on each sample in order to provide a lower reporting limit for those target analytes that were not identified as constituents in the primary analysis. Both sets of results for the analysis of samples CNMW02-W-27140 and CNPMP8-W-27144 are included in this submittal. Each of the analyses associated with the sample set exhibited an acceptable internal standard performance. There was an acceptable recovery of each deuterated monitoring compound (DMC) in the analysis the method blank associated with the analytical work, and in the analysis of the storage blank. The analysis of the samples in this sample set did meet the technical acceptance criteria specific to DMC recoveries, although not all DMC recoveries were within the control range in each analysis. The technical acceptance criteria does provide for the recovery of up to three DMCs to fall outside of the control range in the analysis of field samples. The derived recoveries of 2-butanone-d₅ and 2-hexanone-d₅ were elevated in each analysis of samples CNMW02-W-27140 and CNPMP8-W-27144. Matrix spike and matrix spike duplicate analyses were not performed on the samples in this sample set. A trace concentration of acetone was identified in the analysis of one of the method blanks associated with the analytical work (VBLKY8). The concentration level in that analysis was below the established reporting limit, and the acquisition did meet the technical acceptance criteria for an acceptable method blank analysis. The analysis of the storage blank associated with the sample set was free of target analyte contamination. Present in the storage blank and method blank analyses was a nontarget constituent that represented a compound that is related to the DMC formulation. The fact that the presence of this compound is not within the laboratory's control is at issue. The derived results for that compound have been qualified with an "X" qualifier to reflect the source of the contamination. An instrument blank (VIBLKN1) was analyzed following the more concentrated analysis of sample CNMW02-W-27140. There was an acceptable recovery of each deuterated monitoring compound in that analysis. A trace concentration of acetone was identified in the analysis of the instrument blank. The concentration level in that analysis was below the established reporting limit, and the acquisition did meet the technical acceptance criteria for an acceptable instrument blank analysis.

The responses for each target analyte met the relative standard deviation criterion in the initial calibration. The response for each target analyte met the percent difference criterion in the continuing calibration check acquisition. The response for each target analyte met the 50.0 percent difference criterion in the closing calibration check acquisition.

The primary quantitation mass for methylcyclohexane that is specified in the Statement of Work is mass 83. The laboratory did identify a contribution to mass 83 from 1,2-dichloropropane- d_6 , one of the deuterated monitoring compounds (DMCs). The laboratory did change the primary quantitation mass assignment to mass 55 for the quantification of methylcyclohexane.

Manual integration was employed in deriving certain of the analytical results. The values that have been derived from manual integration are qualified on the quantitation reports. Extracted ion current profiles for each manual integration are included in the data package, and further documented in the Sample Preparation section of this submittal.

Any reference within this report to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.) The analytical results associated with the samples presented in this test report were generated

under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

Kirk F. Young Project Manager

KFY/hsf Enclosure

TestAmerica Burlington Data Qualifier Definitions

<u>Organic</u>

- U: Compound analyzed but not detected at a concentration above the reporting limit.
- J: Estimated value.

N: Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds (TICs) where the identification of a compound is based on a mass spectral library search.

P: SW-846: The relative percent difference for detected concentrations between two GC columns is greater than 40%. Unless otherwise specified the higher of the two values is reported on the Form I.

CLP SOW: Greater than 25% difference for detected concentrations between two GC columns. Unless otherwise specified the lower of the two values is reported on the Form I.

- C: Pesticide result whose identification has been confirmed by GC/MS.
- B: Analyte is found in the sample and the associated method blank. The flag is used for tentatively identified compounds as well as positively identified compounds.
- E: Compounds whose concentrations exceed the upper limit of the calibration range of the instrument for that specific analysis.
- D: Concentrations identified from analysis of the sample at a secondary dilution.
- A: Tentatively identified compound is a suspected aldol condensation product.
- X,Y,Z: Laboratory defined flags that may be used alone or combined, as needed. If used, the description of the flag is defined in the project narrative.

Inorganic/Metals

- E: Reported value is estimated due to the presence of interference.
- N: Matrix spike sample recovery is not within control limits.
- * Duplicate sample analysis is not within control limits.
- B: The result reported is less than the reporting limit but greater than the instrument detection limit.
- U: Analyte was analyzed for but not detected above the reporting limit.

Method Codes:

- P ICP-AES
- MS ICP-MS
- CV Cold Vapor AA
- AS Semi-Automated Spectrophotometric

FQA009:02.18.08:4 TestAmerica Burlington

				Chiming Container No
MATRIX:	X:	Water	CHAIN OF CUSTODY RECORD*	Shipping Info:
PROJECT/SITE:	PROJECT/SITE:	ITE: Latalia KS	ANALYSIS	ANL Field Contact (Name & Temporary Phone):
SAMPI	LER(S)	SAMPLER(S) (Signature)	Number	
DATE	OF CO	DATE OF COLLECTION SAMPLE ID NUMBER(S)	con- tainers	REMARKS
-		0110-11/101-11/-01140	2 2	2×40ml For VOC to Test Ary
				Lev voc he
Ţ	- 22	-09 CNOCTB-W-27148		1 x 40ml Ser Vec to 100+ AM
	\downarrow			
	\downarrow			
Relinqu	uished I	Relinquished by (Signature) Date Time Received	wed by (Signature) Relinquished by (Signature)	
1	1	11.11 4-22 17:23		
Reling	uished I	Relinquished by (Signature) Date Time Received	foy Lab	Remarks
		1		
≻	z	FOR LAB USE ONLY	*A sample is under custody if:	•
X		Custody seal was intact when shipment received.	1. It is in your possession; or,	Volir possession: OL
X		Sample containers were intact when received.		n your possesses of the
X		Shipment was at required temperature when received.		
	X	Sample labels, Tags and COC agree.	4, II IS III a designated second area:	hivision 9700 S. Cass Avenue, Argonne, IL 60439
	Ą	roonne National Laboratory, Applied Geosciences & I	-nvironmental Mgt. Group, Elivironnentar riesearon	

ER-160 (12-94)

2819

. .

THE LEADER IN ENVIRONMENTAL TESTING

Sample Data Summary – SOM01.2 Volatiles – Trace

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON Lab Code: STLV Case No.: CENTRLIA Mod. Ref No.: SDG No.: 131359 Lab Sample ID: 793268 Matrix: (SOIL/SED/WATER) Water (g/mL) mL Lab File ID: 793268D2 Sample wt/vol: 25.0 Date Received: 04/23/2009 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 04/27/2009 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 67.7 Soil Aliquot Volume: (uL) (uL) Soil Extract Volume: (mL) Purge Volume: 25.0

	CONTRACTOR	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
CAS NO.	COMPOUND		*=======
=======================================	Dichlorodifluoromethane	34	υ
75-71-8		34	Ū
74-87-3		34	υ
1 1	Vinyl chloride	34	Ū
74-83-9		34	U
75-00-3	Chloroethane	34	U
	Trichlorofluoromethane	34	U
75-35-4		34	U
76-13-1		450	U
67-64-1		34	u
75-15-0		34	U U
79-20-9	Methyl acetate	34	
75-09-2	Methylene chloride		
156-60-5	trans-1,2-Dichloroethene	34	1 0
1634-04-4	Methyl tert-butyl ether	34	U
75-34-3	1,1-Dichloroethane	34	U
156-59-2	cis-1,2-Dichloroethene	34	υ
78-93-3	2-Butanone	2500	
74-97-5	Bromochloromethane	34	U
67-66-3	Chloroform	34	U
71-55-6	1,1,1-Trichloroethane	34	U
110-82-7	-	34	υ
56-23-5		34	υ
71-43-2		34	U
107-06-2	1,2-Dichloroethane	34	U
			I

Report 1,4-Dioxane for Low-Medium VOA analysis only

SOM01.2

EPA SAMPLE NO.

MW02W27140

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

MW02W27140

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		I
Lab Code: STLV Case No.: CENTRLIA	A Mod.R	ef No.:	SDG No.: 131359	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 793	268	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 79326	8D2	
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/	23/2009	
% Moisture: not dec.		Date Analyzed: 04/	/27/2009	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 0	57.7	
Soil Extract Volume:	(uL)	Soil Aliquot Volur	ne:	(uL)
Purge Volume: 25.0	(mL)			

1		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=======================================		=======================================	=======
79-01-6	Trichloroethene	34	U
108-87-2	Methylcyclohexane	34	ע ו
78-87-5	1,2-Dichloropropane	34	ט
75-27-4	Bromodichloromethane	34	ט
10061-01-5	cis-1,3-Dichloropropene	34	υ
108-10-1	4-Methyl-2-pentanone	340	υ
108-88-3	Toluene	3600	Е
10061-02-6	trans-1,3-Dichloropropene	34	ប
79-00-5	1,1,2-Trichloroethane	34	U
127-18-4	Tetrachloroethene	34	υ
591-78-6	2-Hexanone	340	U
124-48-1	Dibromochloromethane	34	U
106-93-4	1,2-Dibromoethane	34	U
108-90-7	Chlorobenzene	34	υ
100-41-4	Ethylbenzene	24	J
95-47-6	o-Xylene	34	U
179601-23-1	m,p-Xylene	34	U
100-42-5	Styrene	34	U
75-25-2	Bromoform	34	U
98-82-8	Isopropylbenzene	34	U
79-34-5	1,1,2,2-Tetrachloroethane	34	
541-73-1	1,3-Dichlorobenzene	34	1 .
106-46-7	1,4-Dichlorobenzene	34	-
95-50-1	1,2-Dichlorobenzene	. 34	-
96-12-8	1,2-Dibromo-3-chloropropane	34	1
120-82-1	1,2,4-Trichlorobenzene	34	-
87-61-6	1,2,3-Trichlorobenzene	34	υ
			_ [

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

MW02W27140DL

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: CENTRLIA	Mod. Re	ef No.:	SDG No.: 131359	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 793	268D1	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 79326	8D	
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/	23/2009	
% Moisture: not dec.		Date Analyzed: 04/	27/2009	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 6	77.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volum	le:	(uL)
Purge Volume: 25.0	(mL)			

1		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
================		=======================================	
75-71-8	Dichlorodifluoromethane	340	Ŭ
	Chloromethane	340	U
75-01-4	Vinyl chloride	340	U
74-83-9		340	U
75-00-3	Chloroethane	340	U
75-69-4	Trichlorofluoromethane	340	U
75-35-4	1.1-Dichloroethene	340	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	340	U
67-64-1		3900	D
	Carbon disulfide	340	U
79-20-9		340	υ
75-09-2		340	U
156-60-5		340	U
1634-04-4		340	U
75-34-3		340	U
156-59-2		340	U
78-93-3	4	2600	DJ
74-97-5		340	υ
67-66-3	-	340	U
71-55-6		340	ט
	Cyclohexane	340	U
56-23-5		340	U
71-43-2		340	υ
107-06-2		340	υ
	-,		_ [

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

MW02W27140DL Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON Lab Code: STLV Case No.: CENTRLIA Mod. Ref No.: SDG No.: 131359 Lab Sample ID: 793268D1 Matrix: (SOIL/SED/WATER) Water Sample wt/vol: 25.0 (g/mL) mL Lab File ID: 793268D Date Received: 04/23/2009 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 04/27/2009 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 677.0 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: (mL) Purge Volume: 25.0

	LAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
==		Trichloroethene	340	U
	108-87-2	Methylcyclohexane	340	υ
	78-87-5	1,2-Dichloropropane	340	υ
	75-27-4	Bromodichloromethane	340	U
1	L0061-01-5	cis-1,3-Dichloropropene	340	U
	108-10-1	4-Methyl-2-pentanone	3400	U
	108-88-3	Toluene	9400	D
	10061-02-6	trans-1,3-Dichloropropene	340	υ.
	79-00-5	1,1,2-Trichloroethane	340	υ
ļ	127-18-4	Tetrachloroethene	340	υ
1	591-78-6	2-Hexanone	3400	·U
	124-48-1	Dibromochloromethane	340	υ
	106-93-4	1,2-Dibromoethane	340	U
	108-90-7	Chlorobenzene	340	υ
	100-41-4	Ethylbenzene	340	U
	95-47-6	o-Xylene	340	υ
11	79601-23-1	m,p-Xylene	340	U
-	100-42-5	Styrene	340	U
	75-25-2	Bromoform	340	ט
	98-82-8	Isopropylbenzene	340	U
	79-34-5	1,1,2,2-Tetrachloroethane	340	U
	541-73-1	1,3-Dichlorobenzene	340	υ
	106-46-7		340	υ
	95-50-1		340	Ū Ū
	96-12-8	1,2-Dibromo-3-chloropropane	340	υ
	120-82-1	1,2,4-Trichlorobenzene	340	U
	87-61-6	1,2,3-Trichlorobenzene	340	ש
				.

SOM01.2

EPA SAMPLE NO.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

PMP8W27144

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		I
Lab Code: STLV Case No.: CENTRLIA	Mod. R	ef No.:	SDG No.: 131359	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 793	269	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 79326	9	
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/	23/2009	
% Moisture: not dec.		Date Analyzed: 04/	27/2009	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volum	ie:	(uL)
Purge Volume: 25.0	(mL)			

		CONCENTRATION UNITS:	Q
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	
=================		0.50	 U
75-71-8	Dichlorodifluoromethane	0.50	U
	Chloromethane	0.50	U
	Vinyl chloride	0.50	U
74-83-9		0.50	U
75-00-3		0.50	U U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1		540	E
	Acetone	0,46	L L J
75-15-0	Carbon disulfide		្រា
79-20-9		0.50	U
75-09-2		3.3	
156-60-5		0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3		460	E
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	3.6	
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	_	0.50	U
56-23-5		1.2	
71-43-2		0.50	U
107-06-2		0.50	U
	-,		<u> </u>

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		PMP8W27144	
Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302		
Lab Code: STLV Case No.: CENTRLIA Mod. R	ef No.: SDG N	0.: 131359	
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 793269		
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: 793269		
Level: (TRACE/LOW/MED) TRACE	Date Received: 04/23/200	9	
% Moisture: not dec.	Date Analyzed: 04/27/200	9	
GC Column: DB-624 ID: 0.53 (mm)	Dilution Factor: 1.0		
Soil Extract Volume: (uL)	Soil Aliquot Volume:	(uL	.)
Purge Volume: 25.0 (mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
======================================	Trichloroethene	0.50	υ
108-87-2	Methylcyclohexane	0.50	υ
78-87-5	1,2-Dichloropropane	0.50	υ
75-27-4	Bromodichloromethane	0.50	υ
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.92	
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	υ
127-18-4	Tetrachloroethene	0.50	υ
591-78-6	2-Hexanone	5.0	ט (
124-48-1	Dibromochloromethane	0.50	υ
106-93-4	1,2-Dibromoethane	0.50	υ
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	υ
95-47-6	o-Xylene	0.50	ט (
179601-23-1	m,p-Xylene	0.44	J
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	ប
541-73-1		0.50	U
106-46-7		0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	υ
96-12-8		0.50	υ
120-82-1		0.50	ט
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

PMP8W27144DL

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: CENTRLIA	Mod. Re	ef No.:	SDG No.: 131359	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 7932	269D1	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 79326	9D	
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/2	23/2009	
% Moisture: not dec.		Date Analyzed: 04/	27/2009	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 6	.3	
Soil Extract Volume:	(uL)	Soil Aliquot Volum	e:	(uL)
Purge Volume: 25.0	(mL)			

1		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=======================================	=======================================		=======
75-71-8	Dichlorodifluoromethane	3.2	Ū
74-87-3	Chloromethane	3.2	υ
	Vinyl chloride	3.2	i - i
	Bromomethane	3.2	1 -
75-00-3	Chloroethane	3.2	U
75-69-4	Trichlorofluoromethane	3.2	U.
75-35-4	1,1-Dichloroethene	3.2	υ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	3.2	-
	Acetone	570	D
75-15-0	Carbon disulfide	3.2	υ
	Methyl acetate	3.2	-
75-09-2	Methylene chloride	2.5	1 .
156-60-5	trans-1,2-Dichloroethene	3.2	-
	Methyl tert-butyl ether	3.2	
	1,1-Dichloroethane	3.2	_
156-59-2	cis-1,2-Dichloroethene	3.2	-
1	2-Butanone	460	D
74-97-5	Bromochloromethane	3.2	U
	Chloroform	4.9	
71-55-6		3.2	-
	Cyclohexane	3.2	
56-23-5		1.9	
71-43-2		3.2	1
107-06-2		3.2	υ
		_	_1

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

PMP8W27144DL

Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON SDG No.: 131359 Lab Code: STLV Case No.: CENTRLIA Mod. Ref No.: Lab Sample ID: 793269D1 Matrix: (SOIL/SED/WATER) Water (g/mL) mL Lab File ID: 793269D Sample wt/vol: 25.0 Date Received: 04/23/2009 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 04/27/2009 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 6.3 (uL) Soil Aliquot Volume: (uL) ` Soil Extract Volume: (mL) Purge Volume: 25.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
=======================================	======================================	3.2	U
108-87-2	Methylcyclohexane	3.2	υ
78-87-5	1,2-Dichloropropane	3.2	υ
75-27-4	Bromodichloromethane	3.2	υ
10061-01-5	cis-1,3-Dichloropropene	3.2	υ
108-10-1	4-Methyl-2-pentanone	32	υ
108-10-1	Toluene	3.2	υ
10061-02-6	trans-1,3-Dichloropropene	3.2	υ
79-00-5	1,1,2-Trichloroethane	3.2	υ
127-18-4	· · ·	3.2	υ
591-78-6	2-Hexanone	32	υ
124-48-1	Dibromochloromethane	3.2	υ
106-93-4	1,2-Dibromoethane	3.2	υ
108-90-7	Chlorobenzene	3.2	U
100-41-4	Ethylbenzene	3.2	υ
95-47-6		3.2	U
179601-23-1	m,p-Xylene	3.2	U
100-42-5	Styrene	3.2	U
75-25-2	Bromoform	3.2	ט
98-82-8	Isopropylbenzene	3.2	υ
79-34-5	1,1,2,2-Tetrachloroethane	3.2	ט
541-73-1	1,3-Dichlorobenzene	3.2	U U
106-46-7	1,4-Dichlorobenzene	3.2	υ
95-50-1	1,2-Dichlorobenzene	3.2	υ
96-12-8	1,2-Dibromo-3-chloropropane	3.2	U
120-82-1		3.2	U
87-61-6	1,2,3-Trichlorobenzene	3.2	U
07-01-0	1/2/3 111011-010-010		

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

QCTBW27148 Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON SDG No.: 131359 Lab Code: STLV Case No.: CENTRLIA Mod. Ref No.: Lab Sample ID: 793270 Matrix: (SOIL/SED/WATER) Water Lab File ID: 793270 (g/mL) mL Sample wt/vol: 25.0 Date Received: 04/23/2009 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 04/27/2009 % Moisture: not dec. Dilution Factor: 1.0 GC Column: DB-624 ID: 0.53 (mm) Soil Aliquot Volume: (uL) (uL) Soil Extract Volume: (mL) Purge Volume: 25.0

1-			CONCENTRATION UNITS:	
	CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
	===============================			=======
	75-71-8	Dichlorodifluoromethane	0.50	υ
	74-87-3	Chloromethane	0.50	υ
		Vinyl chloride	0.50	υ
		Bromomethane	0.50	ט
		Chloroethane	0.50	ט
	75-69-4	Trichlorofluoromethane	0.50	ט
	75-35-4	1,1-Dichloroethene	0.50	U
	76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
		Acetone	4.3	J
	75-15-0	Carbon disulfide	0.50	U
	79-20-9		0.50	U
	75-09-2		0.50	U
i	156-60-5		0.50	U
	1634-04-4		0.50	U
	75-34-3	1,1-Dichloroethane	0.50	U
l		cis-1,2-Dichloroethene	0.50	U
ł	78-93-3		1.0	J
	74-97-5	Bromochloromethane	0.50	U
	67-66-3	Chloroform	0.50	1
Ì	71-55-6	1,1,1-Trichloroethane	0.50	U
	110-82-7	Cyclohexane	0.50	U
	56-23-5		0.50	U U
	71-43-2	Benzene	0.50	U
	107-06-2	1,2-Dichloroethane	0.50	υ
				_

Report 1,4-Dioxane for Low-Medium VOA analysis only

SOM01.2

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

QCTBW27148

Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON SDG No.: 131359 Lab Code: STLV Case No.: CENTRLIA Mod. Ref No.: Lab Sample ID: 793270 , Matrix: (SOIL/SED/WATER) Water Lab File ID: 793270 Sample wt/vol: 25.0 (g/mL) mL Date Received: 04/23/2009 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 04/27/2009 % Moisture: not dec. Dilution Factor: 1.0 GC Column: DB-624 ID: 0.53 (mm) (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: (mL) Purge Volume: 25.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
=================		0.50	 U
79-01-6	Trichloroethene	0.50	Ŭ
108-87-2	Methylcyclohexane	0.50	Ŭ
78-87-5	1,2-Dichloropropane	0.50	Ū
75-27-4	Bromodichloromethane	0.50	Ū
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	0.50	Ū
108-88-3	Toluene	0.50	Ū
10061-02-6	trans-1,3-Dichloropropene	0.50	υ
79-00-5	1,1,2-Trichloroethane	0.50	Ŭ
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	0.50	U U
124-48-1	Dibromochloromethane	0.50	υ
106-93-4		0.50	υ
108-90-7		0.50	
100-41-4	Ethylbenzene	0.50	U
95-47-6	1 -	0.50	Ū
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	υ
75-25-2	Bromoform	0.50	υ
98-82-8	Isopropylbenzene		U U
79-34-5		0.50	U U
541-73-1		0.50	U U
106-46-7	1,4-Dichlorobenzene	0.50	1 -
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	υ

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

VHBLK01

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: CENTRLIA	Mod. R	ef No.:	SDG No.: 13	1359
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 793	271	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 79327	1	
Level: (TRACE/LOW/MED) TRACE		Date Received:		
% Moisture: not dec.		Date Analyzed: 04/	27/2009	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volum	le:	(uL)
Purge Volume: 25.0	(mL)			

1		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=======================================		=======================================	=======
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
	Vinyl chloride	0.50	U
	Bromomethane	0.50	U
	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1.1-Dichloroethene	0.50	υ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	υ
67-64-1	Acetone	5.0	U
	Carbon disulfide	0.50	U
79-20-9		0.50	U
75-09-2		0.50	1
156-60-5		0.50	ប
1634-04-4		0.50	U
75-34-3		0.50	U
	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5		0.50	
67-66-3		0.50	-
71-55-6	1,1,1-Trichloroethane	0.50	1
	Cyclohexane	0.50	-
56-23-5		0.50	
71-43-2		0.50	U
107-06-2		0.50	U
1 107 00 2	-,		_
······			

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

VHBLK01

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302	
Lab Code: STLV Case No.: CENTRLIA	Mod. Ref No.: SDG No.: 131359	
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 793271	
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: 793271	
Level: (TRACE/LOW/MED) TRACE	Date Received:	
% Moisture: not dec.	Date Analyzed: 04/27/2009	
GC Column: DB-624 ID: 0.53	(mm) Dilution Factor: 1.0	
Soil Extract Volume:	(uL) Soil Aliquot Volume:	(uL)
Purge Volume: 25.0	(mL)	

	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
CAS NO.			
79-01-6	Trichloroethene	0.50	υ
	Methylcyclohexane	0.50	υ
78-87-5	1,2-Dichloropropane	0.50	υ
75-27-4	Bromodichloromethane	0.50	υ
10061-01-5	cis-1,3-Dichloropropene	0.50	υ
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	υ
79-00-5	1,1,2-Trichloroethane	0.50	υ
127-18-4	Tetrachloroethene	0.50	υ
591-78-6	2-Hexanone	5.0	υ
	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	ט
95-47-6	o-Xylene	0.50	υ
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U U
98-82-8	Isopropylbenzene	0.50	υ
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1		0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	υ
95-50-1	1,2-Dichlorobenzene	0.50	υ
96-12-8	1,2-Dibromo-3-chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U
			_ !

TestAmerica Laboratories, Inc.

November 2, 2009

lestAmeric

THE LEADER IN ENVIRONMENTAL TESTING

Mr. Clyde Dennis Argonne National Laboratory 9700 S. Cass Avenue Bldg. 203, Office B149 Argonne, IL 60439

Re: Laboratory Project No. 21005 Case: CENTRLIA; SDG: 134016

Dear Mr. Dennis:

Enclosed are analytical results for samples that were received by TestAmerica Burlington on October 8th, 2009. Laboratory identification numbers were assigned, and designated as follows:

Lab ID	Client	Sample	Sample
	<u>Sample ID</u>	<u>Date</u>	<u>Matrix</u>
	Received: 10/08/09 ETR No:	134016	
809271	CNMW10-W-27158	10/06/09	WATER
809272	CNMW05-W-27153	10/06/09	WATER
809273	CNPMP8-W-27172	10/07/09	WATER
809274	CNQCTB-W-27178	10/07/09	WATER
809275	VHBLK01	10/09/09	WATER

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal. The samples, as received, were not acid preserved. On that basis, the laboratory attempted to provide for the analytical work to be performed within seven days of sample collection. The analysis of sample CNMW10-W-27158 did occur on the eighth day from the date that the sample was collected, and the analysis of sample CNMW05-W-27153 and did occur on the ninth day from the date that the sample was collected.

In order to accommodate field length limitations in processing the data summary forms, the laboratory did, in certain instances, abbreviate the sample identifier. The electronically formatted data provides for the full sample identifier.

SOM01.2 Volatile Organics (Trace Level Water)

A storage blank was prepared for volatile organics analysis, and stored in association with the storage of the samples. That storage blank, identified as VHBLK01, was carried through the

30 Community Drive, Suite 11 South Burlington, VT 05403 tel 802.660.1990 fax 802.660.1919 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

holding period with the samples, and analyzed.

Each of the analyses associated with the sample set exhibited an acceptable internal standard performance. There was an acceptable recovery of each deuterated monitoring compound (DMC) in the analysis of the method blank associated with the analytical work, and in the analysis of the storage blank associated with the sample set. The analysis of the samples in this sample set did meet the technical acceptance criteria specific to DMC recoveries, although not all DMC recoveries were within the control range in each analysis. The technical acceptance criteria does provide for the recovery of up to three DMCs to fall outside of the control range in the analysis of field samples. With the exception of that performed on sample CNMW05-W-27153, the analysis of each field sample did yield elevated recoveries of 2-butanone-d5 and 2-hexanone-d₅. Matrix spike and matrix spike duplicate analyses were not performed on samples in this sample set. The analysis of each method blank associated with the analytical work was free of contamination, as was the analysis of the storage blank. Present in the method blank and storage blank analyses was a non-target constituent that represented a compound that is related to the DMC formulation. The fact that the presence of this compound is not within the laboratory's control is at issue. The derived results for that compound have been qualified with an "X" gualifier to reflect the source of the contamination.

The reported result for acetone from the analysis of sample CNPMP8-W-27172 was derived from a response that exceeded the range of calibrated instrument response. The derived concentration of acetone in that analysis was 220 ug/L. The concentration of acetone in the high concentration standard in the initial calibration is 200 ug/L. Given the compound at issue, and the fact that the derived concentration was within 10 percent of that in the high concentration standard, a secondary analysis of the sample was not performed.

With the exception of those for bromomethane in the initial calibration identified as "MZT", the responses for each of the target analytes met the relative standard deviation criterion in each initial calibration. The relative standard deviation of the responses for bromomethane in the referenced initial calibration was 35.2 percent. Although above the 30.0 percent relative standard deviation criterion established for that compound, the technical acceptance criteria for a compliant initial calibration were met. The response for each target analyte met the percent difference criterion in each continuing calibration check acquisition. The response for each target analyte met the 50.0 percent difference criterion in each closing calibration check acquisition.

The primary quantitation mass for methylcyclohexane that is specified in the Statement of Work is mass 83. The laboratory did identify a contribution to mass 83 from 1,2-dichloropropane- d_6 , one of the deuterated monitoring compounds (DMCs). The laboratory did change the primary quantitation mass assignment to mass 55 for the quantification of methylcyclohexane.

Manual integration was employed in deriving certain of the analytical results. The values that have been derived from manual integration are qualified on the quantitation reports. Extracted ion current profiles for each manual integration are included in the data package, and further documented in the Sample Preparation section of this submittal.

Any reference within this report to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.) The analytical results associated with the samples presented in this test report were generated

under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

Kirk F. Young Project Manager

KFY/hsf Enclosure

Organic

- U: Compound analyzed but not detected at a concentration above the reporting limit.
- J: Estimated value.
- N: Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds (TICs) where the identification of a compound is based on a mass spectral library search.
- P: SW-846: The relative percent difference for detected concentrations between two GC columns is greater than 40%. Unless otherwise specified the higher of the two values is reported on the Form I.

CLP SOW: Greater than 25% difference for detected concentrations between two GC columns. Unless otherwise specified the lower of the two values is reported on the Form I.

- C: Pesticide result whose identification has been confirmed by GC/MS.
- B: Analyte is found in the sample and the associated method blank. The flag is used for tentatively identified compounds as well as positively identified compounds.
- E: Compounds whose concentrations exceed the upper limit of the calibration range of the instrument for that specific analysis.
- D: Concentrations identified from analysis of the sample at a secondary dilution.
- A: Tentatively identified compound is a suspected aldol condensation product.
- X,Y,Z: Laboratory defined flags that may be used alone or combined, as needed. If used, the description of the flag is defined in the project narrative.

Inorganic/Metals

- E: Reported value is estimated due to the presence of interference.
- N: Matrix spike sample recovery is not within control limits.
- * Duplicate sample analysis is not within control limits.
- B: The result reported is less than the reporting limit but greater than the instrument detection limit.
- U: Analyte was analyzed for but not detected above the reporting limit.

Method Codes:

Ρ	ICP-AES
---	---------

- MS ICP-MS
- CV Cold Vapor AA
- AS Semi-Automated Spectrophotometric

FQA009:02.18.08:4 TestAmerica Burlington

ARGONNE NATIONAL LABORATORY Shipping Container No. CHAIN OF CUSTODY RECORD Shipping Into: CHAIN OF CUSTODY RECORD Shipping Into: One ANALYSIS ANL Field Contract (Name & Temporary Phone): Analysis ANL Field Contract (Name & Temporary Phone): ANALYSIS Analysis ANL Field Contract (Name & Temporary Phone): ANALYSIS Analysis ANL Field Contract (Name & Temporary Phone): ANALYSIS Analysis ANALYSIS ANL Field Contract (Name & Temporary Phone): Analysis ANALYSIS ANL Field Contract (Name & Temporary Phone): Analysis ANALYSIS ANL Field Contract (Name & Temporary Phone): Analysis ANALYSIS ANL Field Contract (Name & Temporary Phone): Analysis Analysis ANL Field Contract (Name & Temporary Phone): Analysis Analysis Analysis Analysis Analysis Analysis	ARGON AR	EST America EST America SAMPLE ID NUMBER(S SAMPLE ID NUMBER(S CNMW06-W-271 CNMW06-W06-W-271 CNMW	MATRIX: A A text RECEIVING LAB: 7 PROJECT/SITE: 7 SAMPLER(S) (Signature) DATE OF COLLECTION 0ct 6, 2009 0ct 7, 2009 0ct 7, 2009 Painquished by (Signature) Relinquished by (Signature) Relinquished by (Signature) Relinquished by (Signature)
		Shipment was at required terriperature when terri	
3. It was in your possession and you locked it up; or,		Sample containers were intact when received. Shipment was at required temperature when received.	Shipment w
עטור possession, טי, איירי יויאשי הלפר havinn heen in vour nossession; Of,		al was intact when shipment received	Custody se
e is under custody if:		FOR LAB USE ONLY	$\left - \right $
	20		quished by (Signature)
-			$\langle \rangle$
Date Time	eived by (Signature)	Date Time	quished by (Signature)
		2 1 7 8 20	10000 1
40 mL for	61	- 1 - C - M - O	SIVC C
	80	CICC - 1 - 20 MW	400P 1
N 40 VC tor 1	10	SICC-MESULIN	-
40 mL for	R	21152 - W- 27154	6.2009
REMARKS	tainers	SAMPLE ID NUMBER(S)	OF COLLECTION
		ł	\mathcal{O}
	CHAIN OF CU		NG LAB: 7
l	ARGONNE NATIC		

ER-160 (12-94)

Ā

Full # 8558 7682 9109

2613

THE LEADER IN ENVIRONMENTAL TESTING

Sample Data Summary – SOM01.2 Volatiles – Trace

CNMW05W27153 Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON Lab Code: STLV Case No.: CENTRLIA Mod. Ref No.: SDG No.: 134016 Lab Sample ID: 809272 Matrix: (SOIL/SED/WATER) Water (g/mL) mL Lab File ID: 809272 Sample wt/vol: 25.0 Date Received: 10/08/2009 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 10/15/2009 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: Purge Volume: 25.0 (mL)

		CONCENTRATION UNITS:	_
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=======================================		0.50	тт т
75-71-8	Dichlorodifluoromethane	0.50	U
	Chloromethane	0.50	U
	Vinyl chloride		U
1 1	Bromomethane	0.50	U U
75-00-3		0.50	-
	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1		5.0	U
75-15-0	Carbon disulfide	0.50	U
79-20-9		0.50	U
75-09-2		0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	υ
75-34-3	1,1-Dichloroethane	0.50	ט
156-59-2	cis-1,2-Dichloroethene	0.50	ט ו
78-93-3		5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	1.1	
71-55-6		0.50	ט
110-82-7	Cyclohexane	0.50	ט
56-23-5		14	
71-43-2		0.50	ע
107-06-2		0.50	υ
			.il

Report 1,4-Dioxane for Low-Medium VOA analysis only

,

SOM01.2

EPA SAMPLE NO.

CNMW05W27153

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302			
Lab Code: STLV Case No.: CENTRLIA	Mod. R	ef No.:	SDG No.:	134016	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 809	272		
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 80927	2		
Level: (TRACE/LOW/MED) TRACE		Date Received: 10/	08/2009		
% Moisture: not dec.		Date Analyzed: 10/	15/2009		
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	.0		
Soil Extract Volume:	(uL)	Soil Aliquot Volum	e:		(uL)
Purge Volume: 25.0	(mL)				

1		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=======================================		=======================================	========
79-01-6	Trichloroethene	0.51	
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	υ
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	υ
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	υ
124-48-1	Dibromochloromethane	0.50	υ
		0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	ប
79-34-5	1,1,2,2-Tetrachloroethane	0.50	υ
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	υ
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	υ
		_]	

Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON SDG No.: 134016 Lab Code: STLV Case No.: CENTRLIA Mod. Ref No.: Lab Sample ID: 809271 Matrix: (SOIL/SED/WATER) Water Lab File ID: 809271 (g/mL) mL Sample wt/vol: 25.0 Date Received: 10/08/2009 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 10/14/2009 % Moisture: not dec. Dilution Factor: 1.0 GC Column: DB-624 ID: 0.53 (mm) (uL) Soil Aliquot Volume: Soil Extract Volume: (uL) (mL) Purge Volume: 25.0

1			CONCENTRATION UNITS:	
	CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
	=======================================			========
	75-71-8	Dichlorodifluoromethane	0.50	ע
		Chloromethane	0.50	υ
		Vinyl chloride	0.50	υ
		Bromomethane	0.50	U
		Chloroethane	0.50	U
ĺ		Trichlorofluoromethane	0.50	U
		1,1-Dichloroethene	0.50	υ
Ì	76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
	67-64-1		5.0	υ
	75-15-0	Carbon disulfide	0.50	U
ĺ	79-20-9		0.50	U
	75-09-2	Methylene chloride	0.50	U,
ĺ	156-60-5	trans-1,2-Dichloroethene	0.50	υ
	1634-04-4	Methyl tert-butyl ether	0.50	υ
	75-34-3	1,1-Dichloroethane	0.50	υ
	156-59-2	cis-1,2-Dichloroethene	0.50	υ
		2-Butanone	5.0	υ
	74-97-5	Bromochloromethane	0.50	υ
	67-66-3	Chloroform	0.50	υ
	71-55-6	1,1,1-Trichloroethane	0.50	U
	110-82-7	Cyclohexane	0.50	U
	56-23-5	Carbon tetrachloride	0.50	υ
	71-43-2	Benzene	0.50	U
	107-06-2	1,2-Dichloroethane	0.50	υ

Report 1,4-Dioxane for Low-Medium VOA analysis only

SOM01.2

EPA SAMPLE NO.

CNMW10W27158

EPA SAMPLE NO.

CNMW10W27158

Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON SDG No.: 134016 Lab Code: STLV Case No.: CENTRLIA Mod. Ref No.: Lab Sample ID: 809271 Matrix: (SOIL/SED/WATER) Water Lab File ID: 809271 (g/mL) mL Sample wt/vol: 25.0 Date Received: 10/08/2009 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 10/14/2009 % Moisture: not dec. Dilution Factor: 1.0 GC Column: DB-624 ID: 0.53 (mm) Soil Aliquot Volume: (uL) (uL) Soil Extract Volume: (mL) Purge Volume: 25.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
=======================================	=======================================	0.50	====== U
79-01-6	Trichloroethene		υ
108-87-2	Methylcyclohexane	0.50	UUU
78-87-5	1,2-Dichloropropane	0.50	υ
75-27-4	Bromodichloromethane	0.50	
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	υ
591-78-6	2-Hexanone	5.0	υ
124-48-1	Dibromochloromethane	0.50	υ
106-93-4	1,2-Dibromoethane	0.50	υ
108-90-7	Chlorobenzene	0.50	υ
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	υ
179601-23-1	m,p-Xylene	0.50	υ
100-42-5	Styrene	0.50	υ
75-25-2	Bromoform	0.50	υ
98-82-8	Isopropylbenzene	0.50	U U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	ט
541-73-1		0.50	U
	1,4-Dichlorobenzene	0.50	U
95-50-1		0.50	υ
96-12-8		0.50	υ
120-82-1		0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	υ

CNPMP8W27172

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: CENTRLIA	Mod. Re	ef No.:	SDG No.: 134016	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 8092	273	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 80927	3	
Level: (TRACE/LOW/MED) TRACE		Date Received: 10/	08/2009	
% Moisture: not dec.		Date Analyzed: 10/	14/2009	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volum	e:	(uL)
Purge Volume: 25.0	(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=======================================		=======================================	========
75-71-8	Dichlorodifluoromethane	0.50	Ŭ
74-87-3	Chloromethane	0.50	U U
75-01-4	Vinyl chloride	0.50	U I
74-83-9	Bromomethane	0.50	Ŭ
75-00-3	Chloroethane	0.50	Ŭ
	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	ן ט
67-64-1	Acetone	220	Е
75-15-0	Carbon disulfide	0.56	<u>.</u>
79-20-9		0.50	U
75-09-2		0.98	<u> </u>
156-60-5	trans-1,2-Dichloroethene	0.50	υ
1634-04-4		0.50	υ
75-34-3		0.50	υ
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	120	<u></u>
74-97-5		0.50	U
67-66-3			
71-55-6	1,1,1-Trichloroethane	0.50	U U
110-82-7		0.50	U
56-23-5	Carbon tetrachloride		<u> </u>
71-43-2	Benzene	0.50	
107-06-2	1,2-Dichloroethane	0.50	U
		_]	

Report 1,4-Dioxane for Low-Medium VOA analysis only

EPA SAMPLE NO.

CNPMP8W27172

Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON SDG No.: 134016 Lab Code: STLV Case No.: CENTRLIA Mod. Ref No.: Lab Sample ID: 809273 Matrix: (SOIL/SED/WATER) Water Sample wt/vol: 25.0 (g/mL) mL Lab File ID: 809273 Date Received: 10/08/2009 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 10/14/2009 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 (uL) Soil Aliquot Volume: Soil Extract Volume: (uL) Purge Volume: 25.0 (mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
=======================================	Trichloroethene	0.50	U
79-01-6	Methylcyclohexane	0.50	υ
108-87-2	1,2-Dichloropropane	0.50	υ
78-87-5	Bromodichloromethane	0.50	υ
75-27-4	cis-1,3-Dichloropropene	0.50	υ
108-10-1	4-Methyl-2-pentanone	5.0	υ
108-10-1	Toluene	2.6	
10061-02-6	trans-1,3-Dichloropropene	0.50	Ū
79-00-5	1,1,2-Trichloroethane	0.50	ប
127-18-4	Tetrachloroethene	0.50	υ
591-78-6		5.0	U
124-48-1	-	0.50	υ
106-93-4	1,2-Dibromoethane	0.50	υ
108-90-7	Chlorobenzene	0.50	υ
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	υ
179601-23-1	m,p-Xylene	0.50	υ
100-42-5	Styrene	0.50	υ
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U U
541-73-1		0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	υ
95-50-1	1,2-Dichlorobenzene	0.50	υ
96-12-8	1,2-Dibromo-3-chloropropane	0.50	U U
120-82-1	· · · · · · · · · · · · · · · · · · ·	0.50	υ
87-61-6	1,2,3-Trichlorobenzene	0.50	U

Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON SDG No.: 134016 Lab Code: STLV Case No.: CENTRLIA Mod. Ref No.: Lab Sample ID: 809274 Matrix: (SOIL/SED/WATER) Water Lab File ID: 809274 Sample wt/vol: 25.0 (g/mL) mL Date Received: 10/08/2009 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 10/14/2009 % Moisture: not dec. Dilution Factor: 1.0 GC Column: DB-624 ID: 0.53 (mm) (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: (mL) Purge Volume: 25.0

1			CONCENTRATION UNITS:	
	CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
	==================================		=======================================	======
	75-71-8	Dichlorodifluoromethane	0.50	ប
	74-87-3	Chloromethane	0.50	ប ·
		Vinyl chloride	0.50	υ
	74-83-9		0.50	ប
		Chloroethane	0.50	U
	75-69-4		0.50	U
	75-35-4		0.50	U
	76-13-1		0.50	ע ו
	67-64-1		2.4	J
	75-15-0	Carbon disulfide	0.50	υ
	79-20-9		0.50	ט
	75-09-2		0.50	U
	156-60-5	trans-1,2-Dichloroethene	0.50	ប
	1634-04-4	Methyl tert-butyl ether	0.50	ប
	75-34-3		0.50	U
	156-59-2		0.50	υ
	78-93-3		5.0	ט
	78-93-5		0.50	U
	67-66-3		0.50	U
	71-55-6	1	0.50	U
	110-82-7		0.50	U
	56-23-5	Carbon tetrachloride	0.50	υ
	71-43-2		0.50	υ
	107-06-2	1,2-Dichloroethane	0.50	U
	101-00-2			
	1			

Report 1,4-Dioxane for Low-Medium VOA analysis only

SOM01.2

EPA SAMPLE NO.

CNOCTBW27178

EPA SAMPLE NO.

CNQCTBW27178

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302	
Lab Code: STLV Case No.: CENTR	RLIA Mod.	Ref No.: SDG No.: 13	34016
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 809274	
Sample wt/vol: 25.0 (g/mL)	mL	Lab File ID: 809274	
Level: (TRACE/LOW/MED) TRACE		Date Received: 10/08/2009	
% Moisture: not dec.		Date Analyzed: 10/14/2009	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume:	(uL)
Purge Volume: 25.0	(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
	Trichloroethene	0.50	υ
79-01-6	Methylcyclohexane	0.50	Ū
		0.50	Ū
78-87-5	1,2-Dichloropropane Bromodichloromethane	0.50	Ŭ
75-27-4		0.50	Ū
10061-01-5	cis-1,3-Dichloropropene	5.0	υ
108-10-1	4-Methyl-2-pentanone	0.30	J
108-88-3	Toluene	0.50	υ
10061-02-6	trans-1,3-Dichloropropene	0.50	υ
79-00-5	1,1,2-Trichloroethane	0.50	υ.
127-18-4	Tetrachloroethene		U
591-78-6	2-Hexanone	5.0	-
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	U
120-82-1		0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U
07-01-0	1,2,5 111011010001120110		

EPA SAMPLE NO.

VHBLK01

				1
Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302	,	
Lab Code: STLV Case No.: CENTRLIA	A Mod. Re	ef No.:	SDG No.: 134016	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 8092	275	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 809275	5	
Level: (TRACE/LOW/MED) TRACE		Date Received:		
% Moisture: not dec.		Date Analyzed: 10/2	17/2009	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume	e:	(uL)
Purge Volume: 25.0	(mL)			

1		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=======================================		0.50	тт
	Dichlorodifluoromethane	0.50	υ
	Chloromethane	0.50	σ
	Vinyl chloride	0.50	υ
	Bromomethane	0.50	υ
75-00-3	Chloroethane		υυ
	Trichlorofluoromethane	0.50	-
75-35-4	1,1-Dichloroethene	0.50	Ŭ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	Ŭ
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	!!!!
75-09-2	Methylene chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
	1,1-Dichloroethane	0.50	1 -
156-59-2	cis-1,2-Dichloroethene	0.50	U.
	2-Butanone	5.0	-
	Bromochloromethane	0.50	U
	Chloroform	0.50	U
	1,1,1-Trichloroethane	0.50	U
	Cyclohexane	0.50	U
56-23-5		0.50	ע .
71-43-2		0.50	U U
107-06-2		0.50	U
107 00 2			<u> </u>
1			

Report 1,4-Dioxane for Low-Medium VOA analysis only

EPA SAMPLE NO.

VHBLK01

		i i
Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302	
Lab Code: STLV Case No.: CENTRLIA Mod	L. Ref No.: SDG No.: 134016	
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 809275	
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: 809275	
Level: (TRACE/LOW/MED) TRACE	Date Received:	
% Moisture: not dec.	Date Analyzed: 10/17/2009	
GC Column: DB-624 ID: 0.53 (mm)	Dilution Factor: 1.0	
Soil Extract Volume: (uL)	Soil Aliquot Volume: (ul	L)
Purge Volume: 25.0 (mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=======================================	=======================================		=======
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	υ
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	υ
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4		0.50	U
591-78-6	2-Hexanone	5.0	υ
124-48-1		0.50	υ
106-93-4	1,2-Dibromoethane	0.50	υ
108-90-7	Chlorobenzene	0.50	υ
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5		0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	
79-34-5		0.50	_
541-73-1		0.50	U
	1,4-Dichlorobenzene	0.50	U
95-50-1		0.50	
96-12-8		0.50	
120-82-1		0.50	
87-61-6	1,2,3-Trichlorobenzene	0.50	U
			_

Appendix D:

Time Series Diagrams for Selected Parameters at IM Monitoring Points

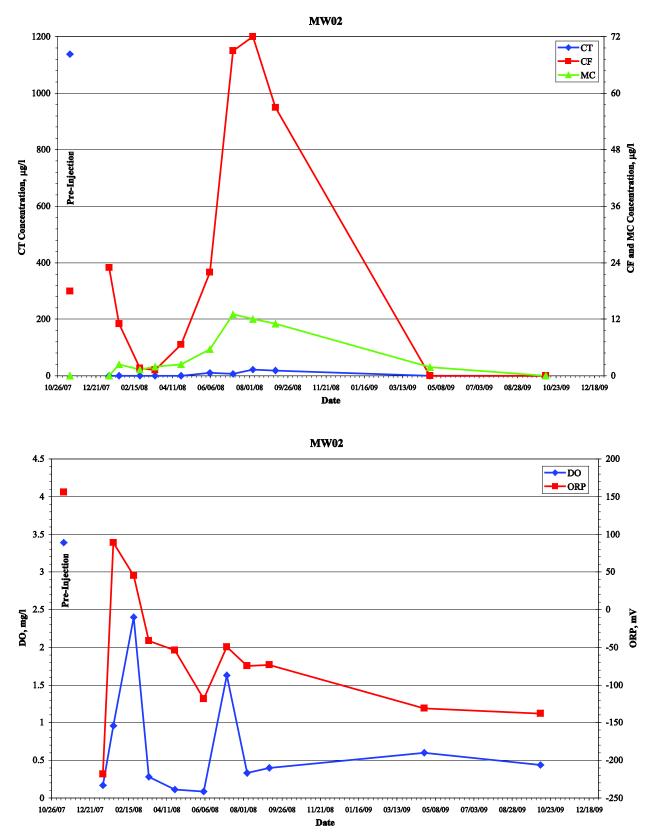


FIGURE D.1 Analytical results for VOCs, DO, and ORP in groundwater samples collected at location MW02, November 2007 to October 2009.

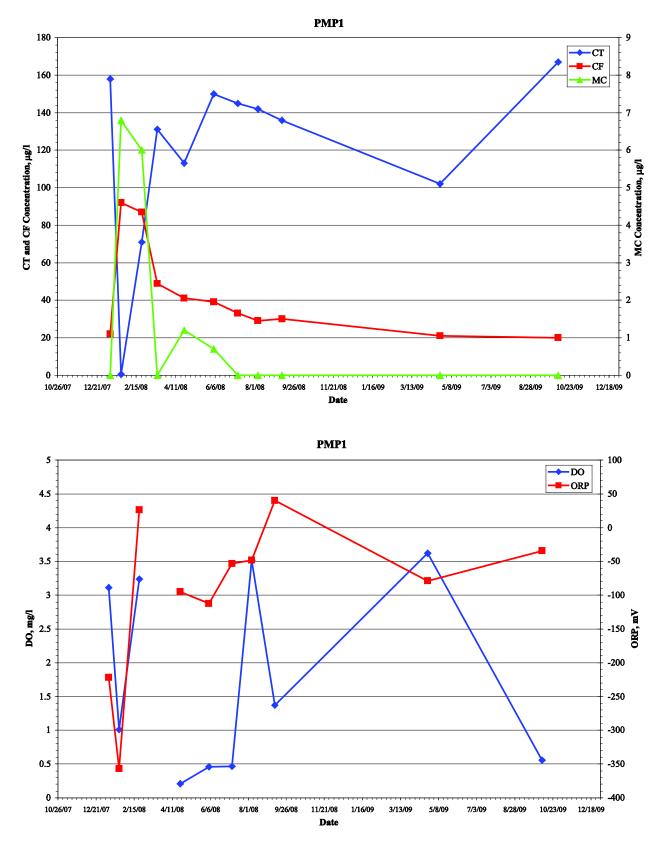


FIGURE D.2 Analytical results for VOCs, DO, and ORP in groundwater samples collected at location PMP1, January 2008 to October 2009.

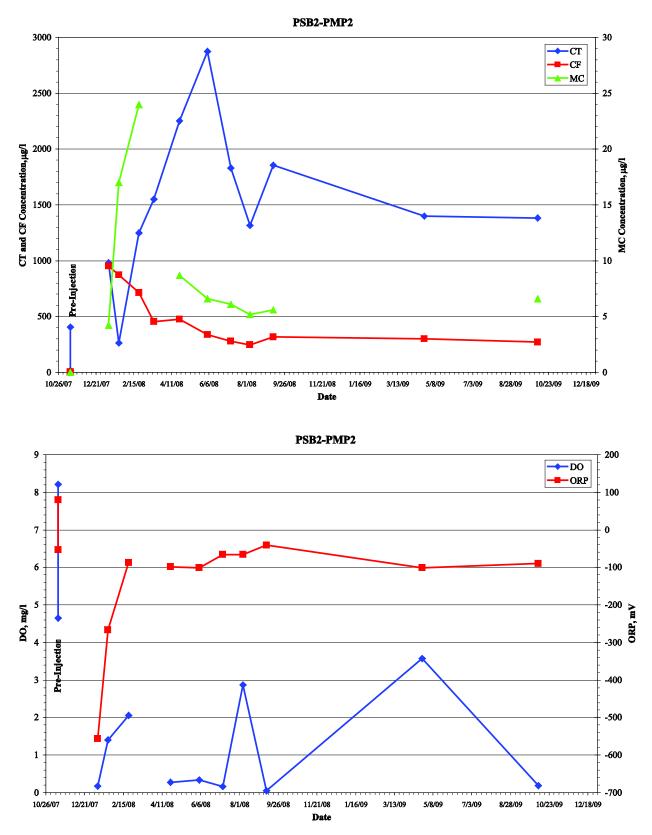


FIGURE D.3 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB2 and PMP2, November 2007 to October 2009.

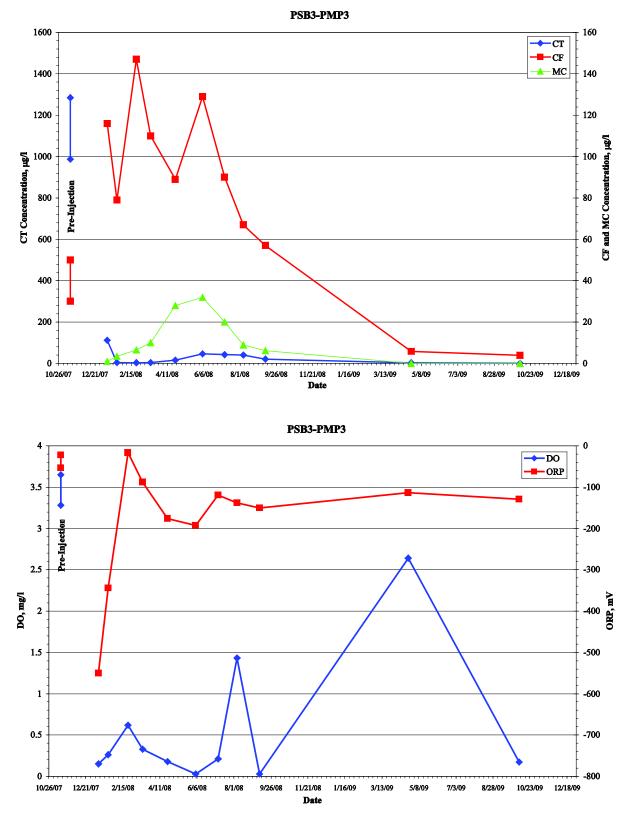


FIGURE D.4 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB3 and PMP3, November 2007 to October 2009.

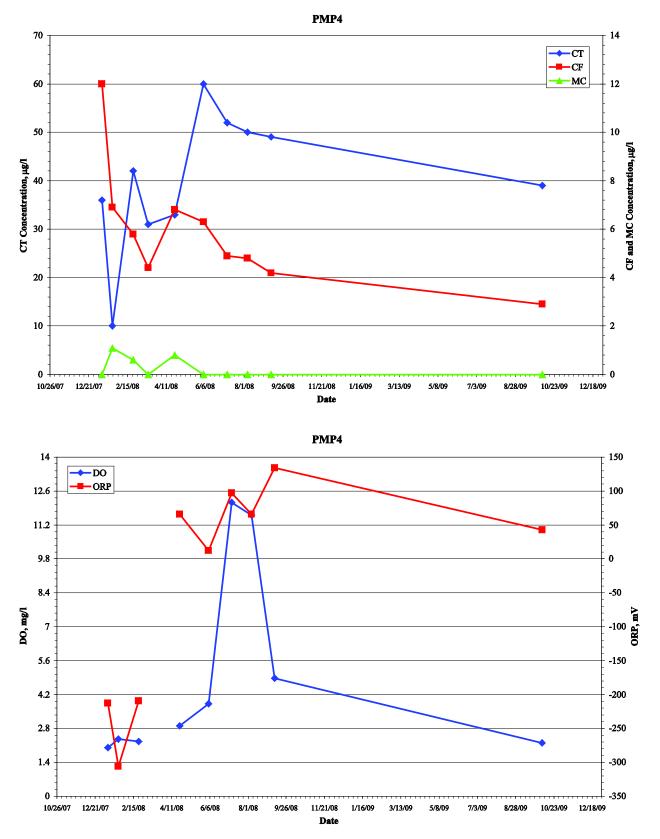


FIGURE D.5 Analytical results for VOCs, DO, and ORP in groundwater samples collected at location PMP4, January 2008 to October 2009.

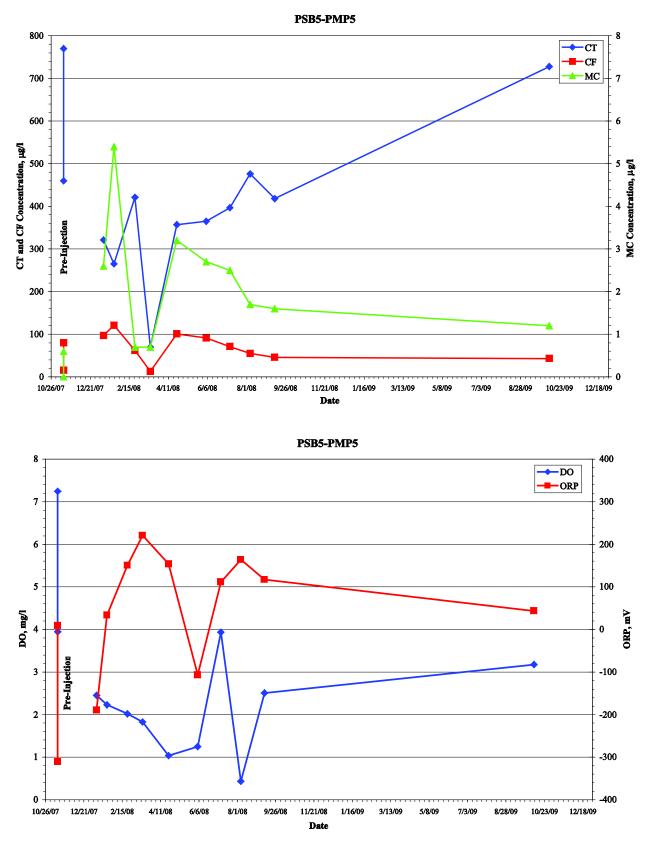


FIGURE D.6 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB5 and PMP5, November 2007 to October 2009.

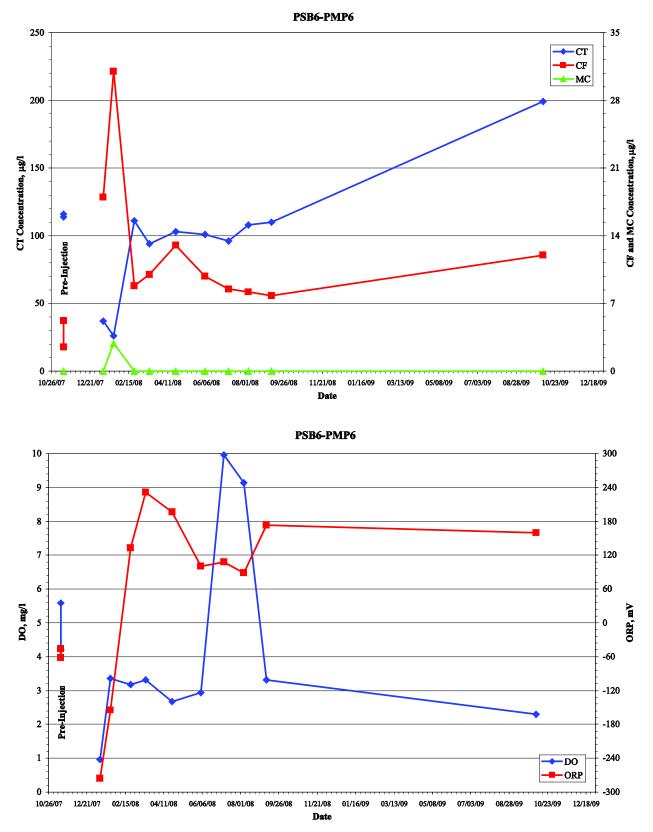


FIGURE D.7 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB6 and PMP6, November 2007 to October 2009.

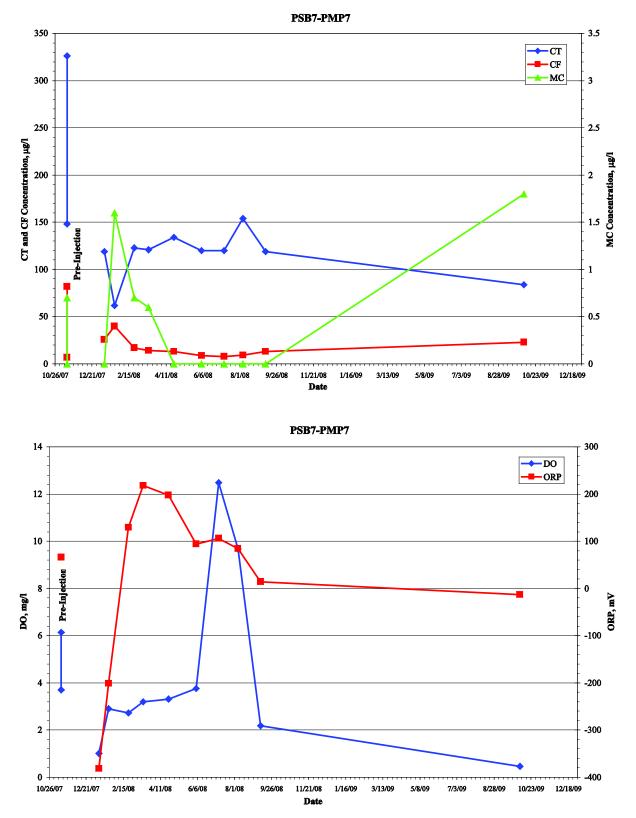


FIGURE D.8 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB7 and PMP7, November 2007 to October 2009.

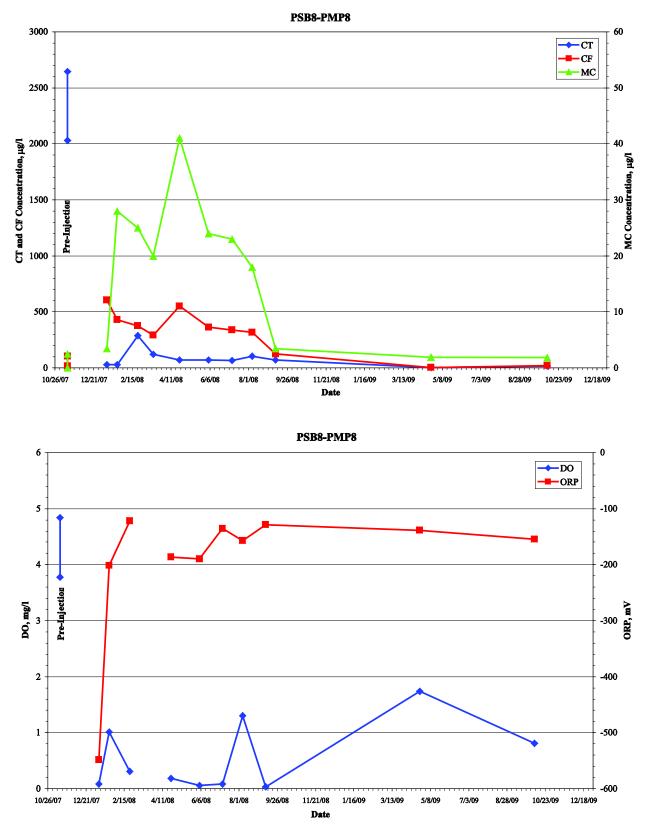


FIGURE D.9 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB8 and PMP8, November 2007 to October 2009.

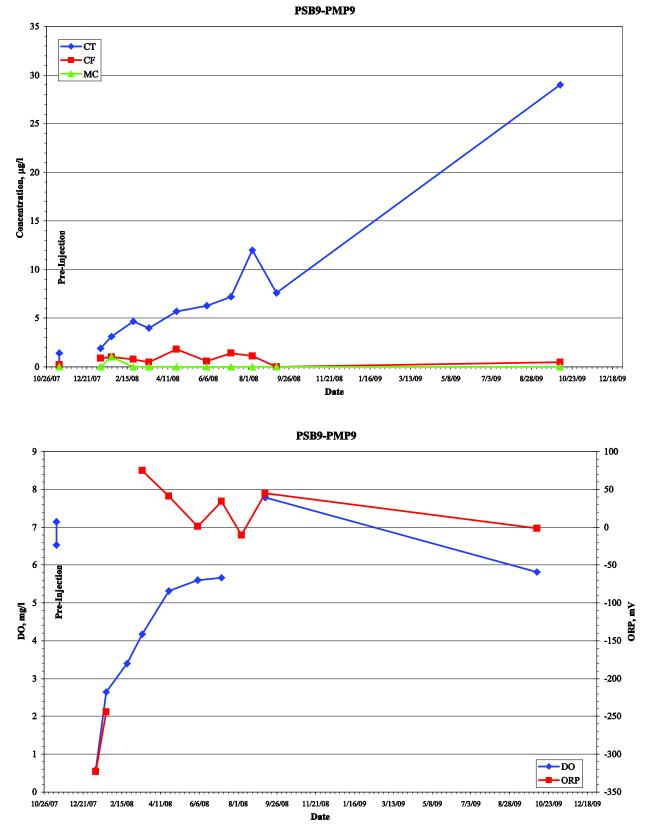


FIGURE D.10 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB9 and PMP9, November 2007 to October 2009.

Environmental Science Division

Argonne National Laboratory 9700 South Cass Avenue, Bldg. 203 Argonne, IL 60439-4843 www.anl.gov

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC