Hole-Coupled Resonators Tunable Infrared Free Electron Lasers

PDF Version Also Available for Download.

Description

We review the study of hole-coupled resonators for broadly tunable free electron laser (FEL) applications. The mode profiles inside and outside the cavity, the diffraction losses at the mirror edges and intracavity apertures, the amount of useful power coupled through the holes, and the FEL gain are calculated for several dominant azimuthal and radial modes. The FEL interaction is taken into account by constructing a propagator similar to the Fresnel integral for free space propagation. It is found that non-confocal resonators can provide efficient hole coupling over a broad wavelength range, as long as the mode beating caused by a ... continued below

Physical Description

14

Creation Information

Xie, M. & Kim, K.-J. February 1, 1993.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We review the study of hole-coupled resonators for broadly tunable free electron laser (FEL) applications. The mode profiles inside and outside the cavity, the diffraction losses at the mirror edges and intracavity apertures, the amount of useful power coupled through the holes, and the FEL gain are calculated for several dominant azimuthal and radial modes. The FEL interaction is taken into account by constructing a propagator similar to the Fresnel integral for free space propagation. It is found that non-confocal resonators can provide efficient hole coupling over a broad wavelength range, as long as the mode beating caused by a degeneracy in the round trip loss can be avoided. The degeneracy between the azimuthally symmetric class of modes is removed by FEL interaction, and the azimuthally asymmetric modes can be suppressed by means of intracavity apertures. Therefore, in a nonconfocal configuration, a hole-coupled resonator can be designed that is tunable over a broad range of wavelength by employing an adjustable intracavity aperture. On the other hand, confocal resonators are not suitable for hole coupling; Although mode beating does not occur in a confocal resonator, the hole coupling is difficult because the modes tend to avoid the hole. We provide a simple physical understanding of the difference in the performance of the confocal and non-confocal resonators. We also calculate and analyze the mode content of an empty resonator under continuous external mode injection. Such calculation is useful in interpreting experiments testing the hole coupling performance using CW lasers.

Physical Description

14

Source

  • SPIE's International Symposia on Laser Engineering (OE/LASE '93), Los Angeles, CA, January 18-22, 1993

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBL-33697
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 1001638
  • Archival Resource Key: ark:/67531/metadc836526

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 1993

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • June 15, 2016, 8:33 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Xie, M. & Kim, K.-J. Hole-Coupled Resonators Tunable Infrared Free Electron Lasers, article, February 1, 1993; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc836526/: accessed January 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.