Setting the Renormalization Scale in QCD: The Principle of Maximum Conformality Metadata

Metadata describes a digital item, providing (if known) such information as creator, publisher, contents, size, relationship to other resources, and more. Metadata may also contain "preservation" components that help us to maintain the integrity of digital files over time.

Title

  • Main Title Setting the Renormalization Scale in QCD: The Principle of Maximum Conformality

Creator

  • Author: Brodsky, Stanley J.
    Creator Type: Personal
  • Author: /SLAC /Southern Denmark U., CP3-Origins
    Creator Type: Personal
  • Author: Di Giustino, Leonardo
    Creator Type: Personal
  • Author: /SLAC
    Creator Type: Personal

Contributor

  • Sponsor: United States. Department of Energy.
    Contributor Type: Organization

Publisher

  • Name: SLAC National Accelerator Laboratory
    Place of Publication: United States
    Additional Info: SLAC National Accelerator Laboratory (SLAC)

Date

  • Creation: 2011-08-19

Language

  • English

Description

  • Content Description: A key problem in making precise perturbative QCD predictions is the uncertainty in determining the renormalization scale {mu} of the running coupling {alpha}{sub s}({mu}{sup 2}): The purpose of the running coupling in any gauge theory is to sum all terms involving the {beta} function; in fact, when the renormalization scale is set properly, all non-conformal {beta} {ne} 0 terms in a perturbative expansion arising from renormalization are summed into the running coupling. The remaining terms in the perturbative series are then identical to that of a conformal theory; i.e., the corresponding theory with {beta} = 0. The resulting scale-fixed predictions using the 'principle of maximum conformality' (PMC) are independent of the choice of renormalization scheme - a key requirement of renormalization group invariance. The results avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The PMC is also the theoretical principle underlying the BLM procedure, commensurate scale relations between observables, and the scale-setting method used in lattice gauge theory. The number of active flavors nf in the QCD {beta} function is also correctly determined. We discuss several methods for determining the PMC/BLM scale for QCD processes. We show that a single global PMC scale, valid at leading order, can be derived from basic properties of the perturbative QCD cross section. The elimination of the renormalization scheme ambiguity using the PMC will not only increase the precision of QCD tests, but it will also increase the sensitivity of collider experiments to new physics beyond the Standard Model.
  • Physical Description: 12 pages

Subject

  • Keyword: Phenomenology-Hep,Hepph, Hepth
  • Keyword: Quantum Chromodynamics
  • STI Subject Categories: 71 Classical And Quantum Mechanics, General Physics
  • Keyword: Standard Model Phenomenology-Hep,Hepph, Hepth
  • Keyword: Sensitivity
  • Keyword: Cross Sections
  • STI Subject Categories: 72 Physics Of Elementary Particles And Fields
  • Keyword: Renormalization
  • Keyword: Physics
  • Keyword: Accuracy

Source

  • Journal Name: Submitted to Physics Letters B

Collection

  • Name: Office of Scientific & Technical Information Technical Reports
    Code: OSTI

Institution

  • Name: UNT Libraries Government Documents Department
    Code: UNTGD

Resource Type

  • Article

Format

  • Text

Identifier

  • Report No.: SLAC-PUB-14479
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 1022463
  • Archival Resource Key: ark:/67531/metadc836522

Note

  • Display Note: http://www.slac.stanford.edu/cgi-wrap/pubpage?slac-pub-14479.html