The exciton energy deposited in an argon cluster, (Arn ,< n=20>) using VUV radiation is transferred to softly ionize doped water clusters, ((H2O)n, n=1-9) leading to the formation of non-fragmented clusters. Following the initial excitation, electronic energy is channeled to ionize the doped water cluster while evaporating the Ar shell, allowing identification of fragmented and complete water cluster ions. Examination of the photoionization efficiency curve shows that cluster evaporation from excitons located above 12.6 eV are not enough to cool the energized water cluster ion, and leads to their dissociation to (H2O)n-2H+ (protonated) clusters.
Publisher Info:
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (United States)
Place of Publication:
Berkeley, California
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this article.
Follow the links below to find similar items on the Digital Library.
Description
The exciton energy deposited in an argon cluster, (Arn ,< n=20>) using VUV radiation is transferred to softly ionize doped water clusters, ((H2O)n, n=1-9) leading to the formation of non-fragmented clusters. Following the initial excitation, electronic energy is channeled to ionize the doped water cluster while evaporating the Ar shell, allowing identification of fragmented and complete water cluster ions. Examination of the photoionization efficiency curve shows that cluster evaporation from excitons located above 12.6 eV are not enough to cool the energized water cluster ion, and leads to their dissociation to (H2O)n-2H+ (protonated) clusters.
This article is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Golan, Amir & Ahmed, Musahid.Ionization of Water Clusters is Mediated by Exciton Energy Transfer from Argon Clusters,
article,
January 25, 2012;
Berkeley, California.
(https://digital.library.unt.edu/ark:/67531/metadc836360/:
accessed November 28, 2023),
University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.