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Abstract 

One of the challenges in the chemistry of actinide and lanthanide (f-ion) is quantifying exchange 

coupling between f-ions. While qualitative information about exchange coupling may be readily 

obtained using the diamagnetic substitution approach, obtaining quantitative information is much 

more difficult. This article describes how exchange coupling may be quantified using the 

susceptibility of a magnetically isolated analog, as in the diamagnetic substitution approach, 



along with the anisotropy of the ground state as determined by EPR spectroscopy. Several 

examples are used to illustrate and test this approach. 
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Introduction 

One major challenge in the chemistry and physics of actinide and lanthanide (f-ion) complexes 

is understanding the role that f-electrons play in magnetism in general and in exchange-coupling 

in particular.1,2 This is in marked contrast to transition metal magnetochemistry where a 

straightforward spin-only Hamiltonian approach can clarify magnetic behavior and quantify the 

exchange coupling of d-electrons.3-5 Other than f7-systems, exchange coupling in few actinide 

and lanthanide complexes has been analyzed quantitatively since a spin-only Hamiltonian is not 

applicable to systems with unquenched orbital angular momenta. This difficulty complicates 

efforts to explain the interesting and fundamentally important magnetic behavior of lanthanide 

and actinide complexes. Some recent examples include work by Booth and Walter et al., which 

has shown that the behavior of certain Ce and Yb complexes can only be rationalized within a 

framework of multiconfigurational, Kondo-like, ground states.6-8 In addition, Schelter, et al. have 

shown that intramolecular coupling exists between U and Yb centers in polymetallic clusters,9 

and Ishikawa et al. have demonstrated that phthalocyanine complexes of the lanthanides possess 

interesting magnetic properties.10-13 In addition, a large number of studies have examined the 

coupling between f-ions and adjacent paramagnetic transition metals or organic radicals.1,14-27  



 

Two factors make it challenging to quantify f-electron coupling. First, the magnetic moments 

of f-ions, except for f7-systems, are temperature dependent and highly anisotropic due to a 

combination of strong spin-orbit coupling and weak crystal fields.18 The crystal field splits each 

2S+1LJ free-ion term, where S is the spin, L is the orbital angular momentum, and J is the total 

angular momentum of the term, into series of states (Stark sublevels), where the total splitting 

varies from approximately 102 to 103 cm-1.28 Consequently, the populations of the low-lying 

states change over the temperature range of susceptibility experiments, which renders the 

effective magnetic moments of these complexes highly temperature dependent. The second 

factor is the fact that the exchange interaction between adjacent f-metal centers is highly 

anisotropic, largely due to anisotropy in the spectroscopic splitting factor, g.28 These two factors, 

temperature dependent moments and anisotropic coupling, generally preclude the use of the 

simple spin-only Hamiltonian, and require other approaches to investigate exchange-coupling 

between f-ions. 

 

Ideally, exchange coupling may be investigated directly by diagonalizing a Hamiltonian that 

includes contributions from free-ion, crystal field, Zeeman, and exchange-coupling terms: 

Htot=HFI+HCF+HZe+HExch. This approach is technically challenging but has been successfully 

applied to exchange coupled systems involving f-ions.11,18,24,25,27,29,30 The great advantage of this 

approach is that it can provide a detailed understanding of exchange coupling in f-ion systems as 

it explicitly describes the wave functions of the states of the f-ion and the paramagnetic moiety to 

which it is coupled. The biggest challenge to implementing this approach is that it requires 

accurate crystal field parameters, which can be very difficult to determine. For complexes 



involving organic ligands, accurate crystal field parameters are known for only a few, highly 

symmetric systems. Nevertheless, if accurate crystal field parameters can be determined, this 

approach provides the most detailed description of exchange coupling. 

 

Due to the difficulty in determining crystal field parameters accurately, especially when the 

complexes are not highly symmetric, the preceding approach is not widely employed for f-ions in 

organic complexes (as opposed to f-ions in inorganic matrices), so other methods are typically 

used to investigate exchange coupling in such systems. If the excited states are significantly 

higher in energy than the ground state and the degree of anisotropy of the coupling between the 

f-ions is known, the susceptibility can be analyzed using a spin-only Hamiltonian. This approach 

was used by Rosen, et al. to model the susceptibility of a pentavalent uranium complex with a 

bridging imido ligand, [(MeCp)3U]2(μ-1,4-N2C6H4), where MeCp is methylcyclopentadienyl, and 

1,4-N2C6H4 is 1,4-benzenediimide.31 Recently, the same method has been applied to another 

pentavalent uranium complex consisting of a pair of uranium bis-imido moieties.32 It should be 

noted that both systems involve U(V) multiply-bonded to imide ligands, which results in the 

strong crystal field required for this approach. While this approach is straightforward, the 

requirement for a well-isolated ground state limits the instances where it may be applied. 

 

The most widely used approach to investigate coupling between f-ions with unknown crystal 

field parameters is the diamagnetic substitution method, in which the susceptibility of an 

exchange-coupled pair of f-ions is evaluated by comparing it to the susceptibility of a 

magnetically isolated analog, which is usually prepared by replacing one f-ion by a diamagnetic 

equivalent, such as Lu or La.15,16,33 The magnetically isolated analog has a very similar crystal 



field to the original f-ion pair but lacks the complicating effect of the coupling between the f-

ions. The susceptibility of the magnetically isolated analog may be subtracted from the 

susceptibility of the coupled system to determine whether the coupling is ferromagnetic or 

antiferromagnetic. Recent work by Long and coworkers has extended this approach to provide 

information about the coupling of excited states in uranium complexes.26,34 

 

As noted above, the diamagnetic substitution method is widely used to determine qualitative 

information about coupling between f-ions, namely whether the coupling is ferromagnetic or 

antiferromagnetic. The principal reason that this approach is so widely used is that it allows the 

information about the crystal field contained in the susceptibility of the magnetically isolated 

analog to be used to analyze the coupling between f-ions without having to determine the crystal 

field parameters. This manuscript describes how this information, along with the magnetic 

anisotropy of ground state, typically determined by EPR spectroscopy, can be used to determine 

the phenomenological coupling between both the effective spins of the f-ions and the true spins 

of the f-electrons. 

 

Experimental  

Data for the lanthanide phthalocyanine triple-decker complexes were scanned and digitized 

from ref 11. Data for the cerium, ytterbium, and uranium complexes were provided by the 

authors of refs 7, 35, 36, and 31. All susceptibility data analysis, including least-squares fitting, 

was performed using Microsoft Excel. Cp*2Yb(bipy)I was prepared as previously reported.36 

Electron paramagnetic resonance (EPR) spectra were obtained at 1.5 K using a Varian E-12 

spectrometer equipped with an EIP-547 microwave frequency counter and a Varian E-500 



gaussmeter that was calibrated using 2,2-diphenyl-1-picrylhydrazyl. The EPR spectrum was fit 

using a version of the code ABVG modified to allow anisotropic line-widths and to fit spectra 

using the downhill simplex method.37  

 

Results and Discussion  

Quantitative diamagnetic substitution approach 

The logic used to develop the theoretical model closely follows that outlined by Lines to 

describe the coupling between two high-spin Co(II) ions; however, the details are completely 

different.38 The Lines approach requires an accurate description of the crystal field; however, if 

accurate crystal field parameters are available, the Hamiltonian may be diagonalized directly, as 

described above. The quantitative diamagnetic substitution approach can be used to quantify the 

ground state exchange coupling when the crystal field parameters are not available. The 

following sections provide the basis for this approach. 

 

Susceptibility of a magnetically isolated f-ion 

The method described here extracts crystal field information from the susceptibility of a 

magnetically isolated f-ion; therefore, the starting point is to describe the susceptibility of an 

isolated f-ion. The f-ion is assumed to possess axial symmetry. While it is possible to perform 

this analysis in lower symmetry, the majority of the reported complexes where this method can 

be applied possess axial or nearly axial symmetry. For an isolated f-metal ion, a crystal field of 

axial (or lower) symmetry will split the 2S+1LJ free-ion terms into a number of states characterized 

by mJ (in reality, the states will generally be some linear combination of mJ states).28 If the ion 

possesses an odd number of electrons, an axial crystal field will split each 2S+1LJ term into J+1/2 



Kramers’ doublets, and if the ion possesses an even number of electrons, most of these states are 

doublets, but at least one state is a singlet.28 These doublets and singlets can be described using a 

fictitious effective spin, ˜ S , equal to  for the doublets and zero for the singlets. The splitting of 

each effective-spin doublet in a magnetic field will be anisotropic due to the axial crystal field, 

and can be described using gz
 and gx to represent the splitting when the magnetic field is parallel 

and perpendicular to the principal crystal field axis, respectively.28 The susceptibility of the f-ion 

may be represented by eq 1 where   ̃ S n, gn, En, and Zn are the effective spin, g-values of the 

effective spins, the energy, and the second-order Zeeman term of the nth state, respectively, and 

the other symbols have their usual meanings.39 Since the states are typically quite anisotropic, the 

susceptibility along each axis is treated separately, and the powder susceptibility is the average 

of the susceptibility along each axis. 
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Exchange coupling of thermally isolated doublets and singlets 

The goal of the quantitative diamagnetic substitution method is to quantify the exchange 

coupling of the ground state doublets of the f-ions. For this reason, the exchange coupling in such 

an doublet, isolated from the excited states, will be examined. The phenomenological 

Heisenberg-Dirac-Van Vleck Hamiltonian for exchange coupling of the spins of the f-electrons 

of a pair of identical, exchange-coupled f-ions related by an inversion center is given by eq 2, 

where J is diagonal, which may be rewritten as eq 3 where J is the isotropic term and  is the 



traceless anisotropy tensor with xx= yy=- zz/2 and the off-diagonal elements are zero under 

axial symmetry.28,38,40 The spins of the f-electrons will be referred to as “true spins” to distinguish 

them from the effective spins. Antisymmetric exchange is not included since the f-ions are 

related by an inversion center.41  

 

Hex = 2Sa J Sb (2) 

 

      Hex = 2JSa Sb Sa Sb  (3) 

 

Assuming Russel-Saunders coupling, the true spin may be projected onto the angular 

momentum, J, using S=(gJ-1)J, where gJ is the Landé g-value.28,42 The addition of the Zeeman 

term to the exchange term gives the spin Hamiltonian for the exchange-coupled system, eq 4.  

 

        H = gJ (H Ja +H Jb) (gJ 1)2(2JJa Jb + Ja Jb) (4) 

 

As in the magnetically isolated case, the axial crystal field splits the 2S+1LJ term into a number 

of states, each of which can be described by an effective spin, ˜ S , which, is equivalent to gJJ /g , 

where  is z, y, or z.28 The effective-spin Hamiltonian for two identical interacting f-ions is then 

given by eq 5, which includes the dipole-dipole coupling term, D, where Dxx=Dyy=-Dzz/2, Dzz= 

2Ddd/3, and Ddd is the magnitude of the dipole-dipole interaction and the z-axis is the 

intermetallic axis as well as the axis of symmetry.28 If the symmetry of the complex is lower than 

axial, gz may not be coincident with the intermetallic axis, and eqs 7 and 8 would need to be 

changed accordingly. Equation 5 may be more conveniently expressed as the Hamiltonian for 



anisotropic coupling, eq 6, where Jx, Jz, and Ddd are given by eqs 7-9 and 2/r3 = 4.4 10-4 cm-1 

nm-3. 
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For this effective spin Hamiltonian, the magnetic susceptibility is given by eqs 10 and 12. 

Different forms of these equations have been reported by Nakatsuka, et al. for antiferromagnetic 

coupling.43 Since F (J,g,T) becomes 2 as J goes to zero, the susceptibility of uncoupled f-ions is 

just the sum of the susceptibilities of the isolated f-ions. Therefore, for the singlet states, which 

are not exchange-coupled, the susceptibility of the coupled pair is equal to the sum of the 

susceptibilities of the isolated states. 
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Susceptibility of a pair of coupled f-ions 

Figure 1 is a qualitative diagram illustrating the relationship of the low-lying states of a pair of 

coupled f-ions to the states of the isolated f-ions along a given axis. Since gn is typically 

anisotropic, the splitting of the states will be anisotropic even when the exchange of the true 

spins is isotropic. The susceptibility of the coupled pair can be described by combining eq 1 with 

eq 10 to give eq 13.  

 

      

,pair =
N 2

3kT

F (Jn,gn,T)(2˜ S n +1) ˜ S n(˜ S n +1)gn,
2 2ZnkT

 

  
 

  
e

En / kT

n

(2˜ S n +1)e En / kT

n

 (  = x or z)  (13) 

 

 



ψ3ψ3

ψ2 ψ2

ψ1
ψ1

ψ0 ψ0

Fα(J3,g3,T)

E3

E2

E1

Fα(J2,g2,T)

Fα(J1,g1,T)

Fα(J,g,T)

 

Figure 1. Qualitative diagram illustrating the splitting of the low-lying states of a pair of coupled 

f-ions along a given axis, , where  is x, y, or z. The splitting due to coupling is exaggerated for 

clarity; J is generally much smaller than En. 

 

Approximations 

While eq 13 describes the susceptibility of a pair of identical f-ions undergoing exchange 

coupling, it is not particularly useful if the values of   ̃ S n, gn, En, and Zw,n are unknown. In other 

words, it is not useful if the crystal field parameters are unknown. Moreover, if the crystal field 

parameters are known, the more appropriate approach would be to diagonalize the full 

Hamiltonian, as described in the introduction. Nevertheless, eq 13 may be used to quantify 

coupling of the ground state doublet using the diamagnetic substitution method with certain 

approximations. In order to determine when this approach is accurate, it is necessary to examine 

the approximations necessary to apply the diamagnetic substitution method and determine when 

they are valid.  

 



The first approximation is that the exchange coupling of the excited states is identical to that of 

the ground state. In other words, the F (Jn,gn,T) terms in eq 13 are replaced by F (J,g,T) of the 

ground state doublet to give eq 14. This approximation is valid when the energy of the first 

excited state is much greater than the exchange coupling (En>>Jn), which is usually true if the 

crystal field is much stronger than the exchange coupling. In this case, at the temperatures at 

which the nth
 state is occupied, F (Jn,gn,T) has only a small effect on the susceptibility of the pair, 

so replacing it with ground state splitting, F (J,g,T), is a good approximation. 
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The second approximation is that crystal field of the f-ion in the coupled complex is the same 

as that of the magnetically isolated analog. Therefore, the term in braces in eq 14 can be replaced 

by the susceptibility of the magnetically isolated analog yielding eq 15. The validity of this 

approximation is determined by the similarity of the ligand environment of the magnetically 

isolated analog to that of the coupled complex. There are many examples for which this 

approximation, as well as the preceding one, is valid since these are the requirements for using 

the diamagnetic substitution method.1,18-23,26  

 

      ,pair F (J,g,T) ,iso  (15) 



A final approximation is needed to approximate ,iso from the powder susceptibility of the 

magnetically isolated analog ( ,iso can be determined by single-crystal susceptibility with no 

assumptions). It is necessary to define a single-ion anisotropy parameter, , where  =gx/gz and gz 

and gx are the g-values for the ground state doublet of the magnetically isolated analog. For f-

ions with an even number of electrons, gx and  are zero except in rare cases.28 For f-ions with an 

odd number of electrons,  can be determined from by gz and gx, which can be measured by EPR 

spectroscopy at low temperature. If a low temperature EPR spectrum cannot be observed, gx 

must be zero (or very small), so  is zero (or very close to it).28 Alternatively,  can be 

determined from the wavefunction of the ground state.44,45 The third and final approximation is 

that the anisotropy of all of the energy levels is equal to that of the ground state doublet, . For 

ions with an even number of electrons, this approximation is generally true since  is usually 

zero. For ions with an odd number of electrons, this approximation is certainly false, but is still 

valid when the energy of the first excited state is much greater than the exchange coupling for 

the reason discussed in the first approximation.  

 

Since the anisotropy of the excited states can be approximated using , ,iso can be 

approximated from  and the powder susceptibility of a magnetically isolated analog, iso, using 

eqs 16 and 17 at each temperature. The susceptibility of the coupled system can then be 

simulated using eq 15 and allowing J to vary since Jz and Jx are given by eqs 10 and 11. As 

shown below, allowing the anisotropic coupling of the true spins, xx,
 to vary is problematic, so it 

should be determined independently.  

 



    
z,iso

3 iso

1+ 2 2
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    x,iso
2

z,iso  (17) 

 

The main result of the methodology described above is that the exchange coupling, J, of the f-

electrons (the true spins) and the coupling parameters for the ground state doublet, Jx and Jz,
 may 

be determined from the magnetic susceptibility of a pair of identical exchange-coupled f-ions 

without knowing the crystal field parameters. For the ground state, the only assumption is that 

the crystal field of the f-ions in the coupled system is the same as that in the magnetically 

isolated analog; the other assumptions apply only to the excited states. As shown above, this 

approach is valid if the energy of the first excited state is much greater than the exchange 

coupling and if the crystal field of the coupled complex is sufficiently similar to that of the 

magnetically isolated analog.  

 

Application to f-ion systems 

The formulas given above describe the results for an ideal experiment. In practice, two 

experimental problems need to be addressed: paramagnetic impurities and weighing errors. The 

influence of paramagnetic impurities are not always readily apparent in the susceptibility plots; 

however, their inclusion does dramatically affect the fit in some cases, and previous work in 

related systems clearly shows that paramagnetic impurities may be present.6,8,31 The other issue is 

weighing error, which is particularly problematic for air sensitive samples due to charging and 

buoyancy effects (in spin-only models, of allowing g to vary as a fitting parameter mitigates any 

weighing errors). For these reasons, the data described below was modeled using eq 18, where 



x,pair and z,pair are given by eq 15, C is the Curie constant for the impurities and w is the factor to 

correct for weighing errors and should be roughly equal to 1. All fits were initially conducted 

with w and C equal to 1 and 0, respectively, then w and C were allowed to vary. If inclusion of w 

and/or C did not decrease chi-squared by more than 10 %, they were fixed at 1 and 0, 

respectively. Empirically, allowing w and C to vary has very little effect on J.  

 

calc = w
z,pair + 2 x,pair

3

 

 

 
 

 

 

 
 +

C

T
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Lanthanide phthalocyanine triple-deckers, M2Pc3, where M = Tb, Dy, Ho, Er and Pc = 

phthalocyanine 

This first example compares the results of the quantitative diamagnetic substitution method to 

the results of a detailed calculation using crystal field parameters. To the best of our knowledge, 

the only system of f-ion pair for which detailed calculations and the susceptibilities of the 

coupled systems as well as a magnetically isolated analogs are available is a series of late 

lanthanide phthalocyanine complexes studied by Ishikawa, et al. for Tb through Yb.10-13,46 The 

coupling between the f-ions in these complexes was examined in detail and found to originate 

almost exclusively from dipole-dipole coupling. The authors provide an ideal set of magnetically 

isolated analogs by replacing one of the lanthanide ions with a nonmagnetic yttrium ion, and they 

report the ground state assignments for these molecules from which  and gz were determined. 

The magnetic susceptibilities of the triple-deckers are shown in Figure 1 along with the least-

squares fits using eq 18. The results of fitting the data are reported in Table 1. In all cases, the 

coupling between the f-ions in these late lanthanide complexes is largely due to dipole-dipole 



interactions, and the contribution from exchange coupling is minor at best, which is in good 

agreement with the detailed calculations reported by Ishikawa, et al.11 
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Figure 2. Magnetic susceptibility of lanthanide phthalocyanine triple-decker complexes 

(symbols) and fits (lines) performed using eqs 18 and the anisotropy and susceptibility of the 

magnetically isolated analogs, MYPc3,
 prepared by replacing one of the ions with yttrium 

(M=Tb-Er). Susceptibility data are taken from ref. 11. 



Table 1: Data for coupling between f-element pairs (only J, w, and C are variables) 

Compound a gz
a r (Å) Ddd 

(cm-1) 
xx 

(cm-1) 
J 

(cm-1) 
Jz, Jx 

(cm-1) 
w C 

Pc3Tb2
11 0 17.65 3.57 3.0 0 0.07 3.2, -0.49 0.94 0b 

Pc3Dy2
11

 0 16.0 3.57 2.0 0 0.08 1.7, -0.33 1b 0b 

Pc3Ho2
11 0 13.1 3.57 1.6 0 -0.04 0.25, -0.27 1b 0b 

Pc3Er2
11 8.08 1.57 3.57 0.8 0 -0.05 0.26, -0.36 1b 0b 

COT3Ce2
7 2.023 1.123 4.0 0.026 -0.035c -35 -1.2, -5.1 0.95 0.029 

[MeCp3U]2 

(μ-N-C6H4-N)31 
0 2.57 9.8d 0.003 0 -90 -16, -5 10-4 0.92 0.029 

[Cp*2Yb]2 

(μ-bipyrimidine)35 
0.205 7.050 6.23 0.09 0 -13 -10, -0.45 1.02 0b 

[Cp*2Yb]2 

(μ-azobenzene)35 
0.205 7.050 9.17 0.03 0 -17 -14, -0.56 1.06 0.055 

a) From EPR for [COT2Ce]- and the [Cp*2Yb](μ-L) complexes and calculated from the ground 
state for the others. 

b) Not varied. 

c) From EPR for COT3Ce2. 

d) Estimated from the crystal structure of 1,4-diaminobenzene and the U-N distance in 
(MeCp)3UNC5H6.

47,48 

 



Cerium cyclooctatetraene triple-decker, Ce2COT3
 (COT = C8H8) 

The magnetism of this complex has previously been reported by Walter, et al.; however, the 

coupling was not correctly modeled.7 In the previous report, a version of the method described 

here was applied directly to the effective spins rather than to the true spins. Consequently, iso 

was inserted into an equation describing the coupling between the effective spins as isotropic 

rather than highly anisotropic.  

 

Ce2COT3 is a particularly useful example since both it and its magnetically isolated analog, 

anionic [COT2Ce]-, are EPR active. The anisotropy ( ), 2.023, and value of gz, 1.123, were 

determined from the EPR spectrum of [COT2Ce]-. The value of xx was determined from the 

EPR spectrum of Ce2COT3. The observed magnitudes of the zero-field splitting of the effective 

spin triplet state of Ce2COT3 are Dx=0.014 cm-1 and Dz=0.020 cm-1, which must have opposite 

signs, and Dz is assumed to be positive. These may be corrected for the effect of dipole-dipole 

coupling to give, Dx’ = -5.3 10-3 cm-1 and Dz’ = 2.7 10-3 cm-1 from which xx and zz, may be 

determined using gJ, gx, and gz to give -3.7 10-2 cm-1 and 7.7 10-2 cm-1, respectively, which are in 

good agreement with the requirement that xx=- zz/2. Eq 15 can be used to fit the susceptibility 

of Ce2COT3 with J as the only variable (Figure S1); however, a better fit, shown in Figure 3, may 

be obtained using eq 18 with the values given in Table 1. 
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Figure 3. Magnetic susceptibility of Ce2COT3 (symbols) and fit (lines) performed using eq 18 

and the anisotropy and susceptibility of the magnetically isolated analog [COT2Ce]-. 

Susceptibility data are taken from ref. 7. 

 

The isotropic exchange coupling is much stronger than either the dipole-dipole coupling or the 

anisotropic coupling. The weighted average of the phenomenological parameters, (Jz + 2Jx)/3, is -

3.8 cm-1, which is similar to that previously reported isotropic value, -4.0 cm-1. However, the 

coupling of the true spins is much stronger than that of the effective spins. As shown in Figure 3, 

the fit is generally good with some deviation at high temperature. The deviation is believed to be 

a consequence of the shorter COT-Ce distance in [COT2Ce]-
 than in COT3Ce2 (2.68 vs. 2.73 Å) 

resulting in a stronger crystal field in [COT2Ce]-. The assumption that the crystal field in the 

magnetically isolated analog is identical to the coupled complex is therefore not completely true; 

however, it is still fairly good. 

 

As noted above, allowing the coupling anisotropy, xx, to vary as a fitting parameter is 

problematic. In this case, xx can be determined from the EPR spectrum of COT3Ce2, and J can 

be determined by fitting the susceptibility. If both J and xx are allowed to vary when fitting the 



susceptibility, a slightly better fit is obtained with J and xx equal to -14 cm-1 and -60 cm-1, 

respectively; however, this value of xx is clearly incorrect. In the complexes examined here, the 

major contributor to the anisotropy of the coupling is the single-ion anisotropy due to coupling of 

the spins of the f-electrons with their unquenched orbital angular momenta. It should be noted the 

anisotropy of the coupling can be significant for systems in which f-ions interact with transition 

metals.29 

 

A U(V) pair: [(MeCp)3U]2(μ-1,4- N2C6H4) 

This molecule, reported by Rosen, et al., is one of the archetypical examples of exchange 

coupling between f-metal ions.31 The anisotropy and value of gz were determined from the failure 

to observe an EPR spectrum for this complex or for the monomeric (MeCp)3UNC6H5. The 

ground state must be 2F5/2 with mJ=±3/2, for which  is zero and gz is 2.57. 31 [(MeCp)3U]2(μ-1,3-

N2C6H4) was used as the magnetically isolated analog (the uranium centers are not appreciably 

coupled when bridged by 1,3-N2C6H4). The susceptibility of the coupled sample, shown in Figure 

4, was fit using eq 18, and the fit parameters are given in Table 1. As in the original report, an 

impurity contribution had to be included to obtain an acceptable fit. In this reexamination, the 

best fit to the data was provided by a simple paramagnet rather than a uranium impurity. The 

value of Jz is similar to the previously reported phenomenological coupling constant. 
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Figure 4. Magnetic susceptibility (symbols) of [(MeCp)3U]2(μ-1,4-C6H4N2) and fits (lines) 

performed using eqs 18 and the anisotropy and susceptibility of the magnetically isolated analog 

[(MeCp)3U]2(μ-1,3-C6H4N2). Susceptibility data are taken from ref. 31. 

 

 

Decamethylytterbocene complexes: [Cp*2Yb]2(μ-L), where L= 2,2’-bipyrimidine and 

azobenzene, and Cp* = pentamethylcyclopentadienyl 

A series of complexes consisting of two Cp*2Yb units linked by a heterocyclic nitrogen bases 

were described by Berg, et al.35 These complexes show evidence for exchange coupling between 

the Yb(III) centers, which is surprising in light of the fact that the 4f orbitals of Yb(III) are highly 

contracted and not anticipated to sufficiently participate in bonding to allow superexchange via 

covalency. The complex with the weakest coupling is [Cp*2Yb]2(μ-bipm) (bipm is 2,2’-

dipyrimidine), which is of particular interest due to the similarity of the Yb coordination 

environment to that of Cp*2Yb(bipy) (bipy is 2,2’-bipyridine) for which extensive data is 

available.6,8 Consequently, it was assumed that the magnetically isolated analog of 

[Cp*2Yb]2(μ bipm) is cationic Cp*2Yb(bipy)+, where a neutral bipy ligand is coordinated to a 

trivalent, cationic Cp*2Yb+ center.36 The EPR spectrum of Cp*2Yb(bipy)I is shown in Figure 5. 



Although the symmetry is not truly axial since gx is not equal to gy, gz is very different from gx 

and gy, so the average of gx and gy was used to calculate .  It should be noted that the 

ytterbocene complexes do not possess axial symmetry; therefore, the intermetallic axis cannot be 

assigned in this case, and was assumed to lie along the z-axis. While the intermetallic axis may 

be incorrectly assigned in these complexes, dipole-dipole coupling in these complexes is weak 

since the Yb centers are well separated. Therefore, incorrect assignment of the intermetallic axis 

has little effect on the analysis of exchange coupling in these systems As shown by the dashed 

line in Figure 6, fitting the susceptibility of [Cp*2Yb]2(μ-bipm) using Cp*2Yb(bipy)I as the 

magnetically isolated analog is effective at low temperature and quite poor at high temperature. 

Two potential causes of this discrepancy are that Cp*2Yb(bipy)I is a poor analog or that the 

bridging bipm dianion has a low-lying triplet state that is populated above 90 K. Based on the 

similarity of the Yb coordination environment in [Cp*2Yb]2(μ-bipm) and 

[Cp*2Yb(bipy)]+[Cp*2YbCl2]
-, which strongly suggests that Cp*2Yb(bipy)I is a good analog, the 

possibility of a low-lying triplet state for the bipm dianion was examined. 
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Figure 5. EPR spectrum of Cp*2Yb(bipy)I and simulation with g1=7.050, g2=1.731, and 

g3=1.165; g1 is assigned as gz, and the average of g2 and g3 was assigned as gx.  
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Figure 6. Magnetic susceptibility of [Cp*2Yb]2(μ-bipm) (symbols) and fits (dashed lines) 

performed using eqs 15 and the anisotropy and susceptibility of the magnetically isolated analog, 

Cp*2Yb(bipy)I. The fit shown by the solid line includes a contribution from the triplet state of 

the bipm dianion. Susceptibility data are taken from ref. 35. 

 

The magnetic behavior of the bipm dianion has not been reported; however, neutral analogs, 

bis(verdazyl) diradicals, have been extensively studied.49-51 In particular, Cu(I) complexes of 

1,1’,5,5’-tetramethyl-6,6’-dioxobis(verdazyl) have singlet-triplet splittings ca. -200 cm-1;49 

therefore, it is plausible that the triplet state of bipyrimidine dianion could contribute to the 

susceptibility of [Cp*2Yb]2(μ-bipyrimidine). To examine this possibility, the contribution from a 

bipyrimidine dianion triplet state was included in the model, and the triplet-singlet splitting was 

allowed to vary. A much better fit was obtained (solid lines in Figure 6) with singlet-triplet 

splitting of -207 cm-1. The close agreement with the singlet-triplet splitting of the Cu(I) 

bis(verdazyl) complexes is consistent with the postulate that the triplet state of the bridging 

bipyrimidine dianion contributes to the susceptibility above ~90 K. It is interesting to note that 

while the inclusion of the triplet state greatly improves the fit, it has little effect on the value of J. 



 

In contrast to [Cp*2Yb]2(μ-bipm), the susceptibility of [Cp*2Yb]2(μ-azb), does not show any 

evidence that the triplet state of the bridging ligand is thermally populated. The Yb centers in this 

complex are trivalent; therefore, as noted by Berg, et al., the bridging ligand in this complex is 

actually 1,2-diphenylhydrazide2- rather than azobenzene.35 Therefore, a magnetically isolated 

analog would be a monodentate amide complex of Cp*2Yb. A good candidate is [Cp*2Yb]2(μ-

phz) where phz is phenazine. In this case, the bridging ligand is actually the dianion, 5,10-

phenazide2-, where the charge is localized on the nitrogen atoms, and the ytterbium centers are 

trivalent. The Yb-Yb distance in [Cp*2Yb]2(μ-azb) was determined from the analogous Sm 

complex reported by Evans, et al.52 No EPR spectrum has been reported for any Cp*2Yb amide 

complex, so the values of  and gz were determined from the EPR spectrum of Cp*2Yb(bipy)I. 

The fit of the susceptibility of [Cp*2Yb]2(μ-azb) using [Cp*2Yb]2(μ-phz) as the magnetically 

isolated analog is shown in Figure 7. Unlike the previous case, the fit is good without having to 

include the contribution from the triplet state of the bridging ligand.  
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Figure 7. Magnetic susceptibility of [Cp*2Yb]2(μ-azobenzene) (symbols) and fits (lines) 

performed using eq 18 and the anisotropy and susceptibility of the magnetically isolated analog, 

[Cp*2Yb]2(μ-phenazine). Susceptibility data are taken from ref. 35. 

Conclusion 

The quantitative diamagnetic substitution approach, which models the ground state exchange 

coupling of identical f-ions using the susceptibility of a magnetically isolated analog, allows 

exchange coupling between identical f-ions to be quantified without knowing the crystal field 

parameters. This method involves approximations that are valid when the crystal field is much 

stronger than the exchange coupling and when an appropriate magnetically isolated analog can 

be prepared. Although this method cannot provide a detailed description of the microscopic 

origin of exchange coupling (e.g. superexchange vs. spin-polarization) as it is based on a 

phenomenological HDVV Hamiltonian, this method does quantify the phenomenological 

coupling between the true spins of the f-electrons as well as the the effective spins. More 

importantly, this method provides a quantitative coupling constant, which can be compared to 

that predicted by a particular coupling mechanism, such as superexchange.  
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 TOC Synopsis:  

Exchange coupling in complexes containing pairs of lanthanide or actinide ions may be 

quantified using the magnetic susceptibility and EPR spectrum of a complex with a similar 

crystal field but no exchange coupling, which may prepared by the diamagnetic substitution 

method. 
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