SOURCE OF MICROBUNCHING AT BNL NSLS SOURCE DEVELOPMENT LABORATORY

PDF Version Also Available for Download.

Description

We report experimental studies of the origins of electron beam microbunching instability at BNL Source Development Laboratory (SDL). We eliminated laser-induced microbunching by utilizing an ultra-short photocathode laser. The measurements of the resulting electron beam led us to conclude that, at SDL, microbunching arising from shot noise is not amplified to any significant level. Our results demonstrated that the only source of microbunching instability at SDL is the longitudinal modulation of the photocathode laser pulse. Our work shows that assuring a longitudinally smoothed photocathode laser pulse allows mitigating microbunching instability at a typical FEL injector with a moderate microbunching gain. ... continued below

Creation Information

Seletskiy, S.; Hidaka, Y.; Murphy, J.B.; Podobedov, B.; Qian, H.; Shen, Y. et al. March 28, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We report experimental studies of the origins of electron beam microbunching instability at BNL Source Development Laboratory (SDL). We eliminated laser-induced microbunching by utilizing an ultra-short photocathode laser. The measurements of the resulting electron beam led us to conclude that, at SDL, microbunching arising from shot noise is not amplified to any significant level. Our results demonstrated that the only source of microbunching instability at SDL is the longitudinal modulation of the photocathode laser pulse. Our work shows that assuring a longitudinally smoothed photocathode laser pulse allows mitigating microbunching instability at a typical FEL injector with a moderate microbunching gain. In this paper we investigated the source of microbunching instability at the SDL. To distinguish microbunching induced by shot noise from that arising from the longitudinal modulation of the photocathode laser, we studied the beam created by a very short laser pulse, thus eliminating the possibility of laser-induced microbunching. While the measured energy spectra of compressed beam did reveal severe longitudinal fragmentation, an analysis of the beam dynamics proved this to be due to self-fields acting on a beam with an initially smooth longitudinal profile, and not due to microbunching instability. Such fragmentation only was possible with the very short bunch chosen for these studies, and is absent in routine SDL operations. Our experiment shows that in the absence of the initial laser-induced beam modulation, microbunching instability at the SDL is not observed, and must be well below the levels that would limit the FEL performance. This result agrees with assumption of previous SDL studies that (when present under different machine conditions) microbunching instability at the SDL was laser-induced. Microbunching instability gain at the SDL is moderate. This is mainly because the SDL utilizes a single stage bunch compressor as well as due to the small compression ratio. Since the design of the SDL injector is typical of the majority of FEL injectors, our experiment proves that one possible way to control microbunching instability in such machines (that by design have a moderate microbunching gain) is to maintain a sufficiently smooth longitudinal profile of the photo-cathode laser. We note that the general principles for designing a machine with a moderate microbunching instability gain are presented in [12]. In conclusion, our experiment demonstrates that microbunching instability can be eliminated from a typical FEL injector with single stage bunch compressor (and operating without a laser heater) as long as the photocathode laser is longitudinally smooth. For machines with multi-stage bunch compressors, our results offer an important benchmark to establish a minimal laser heater power for instability-free operation.

Source

  • Particle Accelerator Conference PAC11; New York, NY; 20110328 through 20110401

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--94944-2011-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 1016643
  • Archival Resource Key: ark:/67531/metadc836272

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 28, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 29, 2016, 3:40 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Seletskiy, S.; Hidaka, Y.; Murphy, J.B.; Podobedov, B.; Qian, H.; Shen, Y. et al. SOURCE OF MICROBUNCHING AT BNL NSLS SOURCE DEVELOPMENT LABORATORY, article, March 28, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc836272/: accessed April 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.