# Final Phase II Report: QuickSite<sup>®</sup> Investigation, Everest, Kansas

Environmental Research Division



**Argonne National Laboratory** 

Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the

**United States Department of Energy** 

#### About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne, see www.anl.gov.

#### Availability of This Report

This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728 reports@adonis.osti.gov

#### Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC.

# Final Phase II Report: QuickSite® Investigation, Everest, Kansas

Applied Geosciences and Environmental Management Section, Environmental Research Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439

September 2003

Work sponsored by Commodity Credit Corporation, United States Department of Agriculture

# Contents

| No | tation                 |                                                                                                                                                                                                                                    | viii                   |
|----|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 1  | Intro                  | duction                                                                                                                                                                                                                            | 1-1                    |
| 2  | Inves                  | stigative Methods                                                                                                                                                                                                                  | 2-1                    |
|    | 2.1<br>2.2             | Method to Confirm an Association of Carbon Tetrachloride Contamination<br>with the Former Everest CCC/USDA Facility<br>Method to Characterize the Hydrogeologic Factors Controlling                                                | 2-1                    |
|    | 2.3<br>2.4             | Contaminant Migration<br>Method to Delineate the Distribution of the Carbon Tetrachloride Plume<br>Method to Investigate for Indications of Possible Groundwater<br>Contamination Associated with the Former Private Grain Storage | 2-2<br>2-4             |
| 2  | <b>T</b> , 1           |                                                                                                                                                                                                                                    | 2-4                    |
| 3  | Field                  | and Laboratory Data                                                                                                                                                                                                                | 3-1                    |
|    | 3.1                    | Soils Analysis Data                                                                                                                                                                                                                | 3-1                    |
|    |                        | 3.1.1 Contaminant Data for Near-Surface Soils                                                                                                                                                                                      | 3-2                    |
|    | 2.0                    | 3.1.2 Contaminant Data for Subsurface Soils                                                                                                                                                                                        | 3-3                    |
|    | 3.2                    | Soil Boring and Cone Penetrometer Sensor Data                                                                                                                                                                                      | 3-4                    |
|    | 3.3                    | Coordinates Survey Data                                                                                                                                                                                                            | 3-5                    |
|    | 3.4                    | Physical Property Data for Soils                                                                                                                                                                                                   | 3-5                    |
|    | 3.5                    | Groundwater Level Data                                                                                                                                                                                                             | 3-6                    |
|    | 3.6                    | Geochemical Analysis Data for Groundwater and Surface Water Samples                                                                                                                                                                | 3-9                    |
|    |                        | 3.6.1 Field Measurements for Groundwater Samples                                                                                                                                                                                   | 3-9                    |
|    |                        | 3.6.2 Nitrate Data for Groundwater Samples                                                                                                                                                                                         | 3-10                   |
|    |                        | 3.6.3 Tritium Isotope Data for Groundwater and Surface Water Samples                                                                                                                                                               | 3-10                   |
|    | 3.7                    | Contaminant Data for Groundwater and Surface Water Samples                                                                                                                                                                         | 3-11                   |
|    | 3.8                    | Data for Trace Metals and Semivolatile Hydrocarbons in Groundwater                                                                                                                                                                 |                        |
|    | •                      | Samples                                                                                                                                                                                                                            | 3-11                   |
|    | 3.9                    | Quality Control Data for Soil, Groundwater, and Surface Water Analyses                                                                                                                                                             | 3-12                   |
|    | 3.10                   | Summary                                                                                                                                                                                                                            | 3-16                   |
| 4  | Inter                  | pretation of Results                                                                                                                                                                                                               | 4-1                    |
|    | 11                     | Confirm on Association of Carbon Tetrachloride Contamination with                                                                                                                                                                  |                        |
|    | 4.1                    | the Former Everest CCC/USDA Eacility                                                                                                                                                                                               | 11                     |
|    |                        | 1.1.1 Contamination in Near-Surface Soils                                                                                                                                                                                          | 4-1                    |
|    |                        | 4.1.1 Contamination in Nubsurface Soils                                                                                                                                                                                            | 4-2                    |
|    |                        | 4.1.2 Containination in Subsurface Soils                                                                                                                                                                                           | 4-3                    |
|    | 12                     | Characterize the Hydrogeologic Eactors Controlling Contaminant Migration                                                                                                                                                           | 4- <del>4</del><br>1 5 |
|    | 7.2                    | 4.2.1 Lithologic Factors Affecting Migration                                                                                                                                                                                       | 4-J                    |
|    |                        | 4.2.1 Eulologic Factors Affecting Migration                                                                                                                                                                                        | /<br>/ 11              |
|    |                        | 4.2.2 Hydrologic Factors Affecting Migration                                                                                                                                                                                       | 4-11                   |
|    | 13                     | The Delineate the Distribution of the Carbon Tatrachloride Dlume                                                                                                                                                                   | <del>-</del>           |
|    | <del>т</del> .5<br>Д Д | Investigate for Indications of Possible Groundwater Contamination                                                                                                                                                                  | <del>4</del> -10       |
|    | 4.4                    | Associated with the Former Private Grain Storage Facility                                                                                                                                                                          |                        |
|    |                        | on the Nigh Property                                                                                                                                                                                                               | 4_20                   |
|    | 15                     | Summery                                                                                                                                                                                                                            | 4-20                   |
|    | 4.9                    | Summa y                                                                                                                                                                                                                            | +-71                   |

# Contents (Cont.)

| 5     | Conc              | Conclusions and Recommendations |                                                                                                                                                                                                                                                                                                                                             |                   |  |
|-------|-------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
|       | 5.1<br>5.2<br>5.3 | Conc<br>Reco<br>Tech<br>5.3.1   | Elusions<br>mmendations and Technical Objectives for Further Investigation<br>nical Program for Completion of CI Activities<br>Further Identify the Potential Distribution of Carbon Tetrachloride<br>in Subsurface Soils at the Former CCC/USDA Facility and Evaluate<br>Selected Soil Parameters That Affect the Fate of This Contaminant | 5-1<br>5-3<br>5-5 |  |
|       |                   | 5.3.2                           | in the Vadose Zone<br>Confirm the Interpreted Patterns of Groundwater Flow and the<br>Potential for Groundwater Discharge to the Surface along the                                                                                                                                                                                          | 5-5               |  |
|       |                   | 5.3.3                           | Obtain Quantitative <i>In Situ</i> Estimates of Hydraulic Parameters for                                                                                                                                                                                                                                                                    | 5-6               |  |
| 5.3.4 |                   | 5.3.4                           | the Sedimentary Materials That Compose the Everest Aquifer Unit<br>Install Monitoring Wells; Collect and Analyze Groundwater Samples at<br>Established Monitoring Points along the Plume Migration Pathway as a                                                                                                                             | 5-7               |  |
|       |                   | 5 2 5                           | Basis for Potential Future Comparisons                                                                                                                                                                                                                                                                                                      | 5-8               |  |
|       |                   | 5.3.5<br>5.3.6                  | Affect the Migration and Fate of Carbon Tetrachloride in Groundwater<br>Develop and Propose an Initial List of Corrective Action Alternatives<br>for Further Consideration and Present a Work Plan                                                                                                                                          | 5-9               |  |
|       |                   |                                 | for Their Evaluation                                                                                                                                                                                                                                                                                                                        | 5-9               |  |
| 6     | Refe              | rences                          | 5                                                                                                                                                                                                                                                                                                                                           | 6-1               |  |
| Ap    | pendi             | x A:                            | Soil Sample Data                                                                                                                                                                                                                                                                                                                            | A-1               |  |
| Ap    | pendi             | x B:                            | Core Logs and Cone Penetrometer Traces                                                                                                                                                                                                                                                                                                      | B-1               |  |
| Ap    | pendi             | x C:                            | Survey Coordinates                                                                                                                                                                                                                                                                                                                          | C-1               |  |
| Ap    | pendi             | x D:                            | Water Level Data                                                                                                                                                                                                                                                                                                                            | D-1               |  |
| Ap    | pendi             | x E:                            | Piezometer Construction Diagrams                                                                                                                                                                                                                                                                                                            | E-1               |  |
| Ap    | pendi             | x F:                            | Groundwater and Surface Water Sample Data                                                                                                                                                                                                                                                                                                   | F-1               |  |
| Ap    | pendi             | x G:                            | Quality Control for Sample Collection, Handling, and Analysis                                                                                                                                                                                                                                                                               | G-1               |  |

# Tables

| 3.1 | Summary of construction parameters for the Phase II temporary piezometers at Everest                                                     | 3-7 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.2 | Summary of automated groundwater level monitoring periods for the permanent piezometers and the Nigh well in the western part of Everest | 3-8 |
| 4.1 | Stratigraphy for the area of the Phase II investigation at Everest                                                                       | 4-5 |

# Tables (Cont.)

| 4.2 | Results of hydraulic conductivity estimations based on grain size data |      |
|-----|------------------------------------------------------------------------|------|
|     | for samples collected from unit 3b at Everest                          | 4-12 |

# Figures

| 1.1 | Locations of Everest, Kansas; the former Everest and Everest East CCC/USDA grain storage facilities; and the nearby Nigh property                                                                                                                                                        | 1-6  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.2 | Schematic stratigraphic sequence, showing the principal lithologic and hydrostratigraphic units identified in the vicinity of Everest                                                                                                                                                    | 1-7  |
| 1.3 | Distribution of carbon tetrachloride identified in groundwater in Phase I work<br>at Everest, with the local potentiometric surface determined from hand<br>measurements on July 10, 2000                                                                                                | 1-8  |
| 3.1 | Locations of grain bins at the former Everest CCC/USDA facility in 1966,<br>Phase II near-surface soil samples collected in the first session of Phase II work,<br>and subsurface soil samples collected in the second session of Phase II work<br>with the electronic cone penetrometer | 3-18 |
| 3.2 | Locations of grain bins at the former Everest CCC/USDA facility in 1966,<br>Phase II subsurface soil sampling with the electronic cone penetrometer,<br>and Phase II near-surface soil samples, with results of headspace analyses<br>of near-surface soils for carbon tetrachloride     | 3-19 |
| 3.3 | Collection depths for subsurface soil samples from the former Everest CCC/USDA facility, with results of purge-and-trap analyses of these samples for carbon tetrachloride and chloroform, displayed on lithologic logs of SB23, SB24, and SB34                                          | 3-20 |
| 3.4 | Locations of the former CCC/USDA facility, the Nigh property, and Phase II soil borings made with direct-push technology                                                                                                                                                                 | 3-21 |
| 3.5 | Comparison of the lithologic logs for three borings located along a line northwest of the former CCC/USDA facility and within 500 ft of each other                                                                                                                                       | 3-22 |
| 3.6 | Locations of soil borings sampled in Phase II for grain size analysis                                                                                                                                                                                                                    | 3-23 |
| 3.7 | Locations of the temporary piezometers installed during the second and third sessions of Phase II in the western part of Everest, the former CCC/USDA facility, and the Nigh property                                                                                                    | 3-24 |
| 3.8 | Locations of the permanent piezometers installed during Phase I and the second<br>and third sessions of Phase II in the western part of Everest, the former<br>CCC/USDA facility, and the Nigh property                                                                                  | 3-25 |
| 3.9 | Results of nitrate analyses on Phase II groundwater samples from the western part of Everest, with the locations of the samples, the former CCC/USDA facility, and the Nigh property                                                                                                     | 3-26 |

# Figures (Cont.)

| 3.10 | Results of tritium analyses on groundwater and surface water samples collected<br>during Phase I and the second and third sessions of Phase II in the western<br>part of Everest, with the locations of the samples, the former CCC/USDA<br>facility, and the Nigh property      | 3-27 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3.11 | Results of carbon tetrachloride analyses on groundwater samples collected<br>during the second and third sessions of Phase II in the western part of Everest,<br>with the locations of the samples, the former CCC/USDA facility, and<br>the Nigh property                       | 3-28 |
| 3.12 | Results of chloroform analyses on groundwater samples collected during the second and third sessions of Phase II in the western part of Everest, with the locations of the samples, the former CCC/USDA facility, and the Nigh property                                          | 3-29 |
| 3.13 | Results of carbon tetrachloride analyses on surface water samples collected<br>during the second and third sessions of Phase II in the western part of Everest,<br>with the locations of the samples, the former CCC/USDA facility, and<br>the Nigh property                     | 3-30 |
| 3.14 | Results of analyses of groundwater samples collected during the third session<br>of Phase II in the western part of Everest for total petroleum hydrocarbons and<br>trace metals, with the locations of the samples, the former CCC/USDA facility,<br>and the Nigh property      | 3-31 |
| 4.1  | Locations of grain bins at the former Everest CCC/USDA facility in 1966, with interpreted pattern of carbon tetrachloride from headspace analyses of shallow near-surface soil samples and locations where subsurface soils were collected with the electronic cone penetrometer | 4-24 |
| 4.2  | Locations of grain bins at the former Everest CCC/USDA facility in 1966, with interpreted pattern of carbon tetrachloride from headspace analyses of deeper near-surface soil samples and locations where subsurface soils were collected with the electronic cone penetrometer  | 4-25 |
| 4.3  | Results of purge-and-trap analyses of subsurface soil samples from the former CCC/USDA facility for carbon tetrachloride and chloroform, displayed by depth on lithologic logs for SB23, SB24, and SB34                                                                          | 4-26 |
| 4.4  | Locations of all borings in the western part of Everest at which lithologic cores<br>were collected in Phase I and Phase II, with locations of the former<br>CCC/USDA facility and the Nigh property                                                                             | 4-27 |
| 4.5  | Locations of selected Phase I and Phase II investigative activities; Phase II vertical hydrogeologic cross sections A-A', B-B', and C-C'; the former CCC/USDA facility; and the Nigh property in the western part of Everest                                                     | 4-28 |
| 4.6  | Aquifer unit and estimates of hydraulic conductivities in the western part<br>of Everest, displayed on interpretive southeast-to-northwest hydrogeologic<br>cross section A-A <sup>´</sup>                                                                                       | 4-29 |

# Figures (Cont.)

| 4.7  | Aquifer unit and estimates of hydraulic conductivities in the western part<br>of Everest, displayed on interpretive west-to-east hydrogeologic<br>cross section B-B'                                                                                                                                       | 4-30 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.8  | Aquifer unit and estimates of hydraulic conductivities in the western part of Everest, displayed on interpretive west-to-east hydrogeologic cross section C-C <sup>-</sup>                                                                                                                                 | 4-31 |
| 4.9  | Interpretive structural contour map at the base of the Everest aquifer unit<br>in the western part of Everest                                                                                                                                                                                              | 4-32 |
| 4.10 | Potentiometric surface for the aquifer unit in the western part of Everest<br>on April 1-5, 2001, with locations of the former CCC/USDA facility<br>and the Nigh property                                                                                                                                  | 4-33 |
| 4.11 | Potentiometric surface for the aquifer unit in the western part of Everest<br>on November 9, 2002, with locations of the former CCC/USDA facility<br>and the Nigh property                                                                                                                                 | 4-34 |
| 4.12 | Potentiometric surface for the aquifer unit in the western part of Everest<br>on January 17, 2003, with locations of the former CCC/USDA facility<br>and the Nigh property                                                                                                                                 | 4-35 |
| 4.13 | Hydrographs from the Everest water level monitoring network, with<br>barometric pressure and daily precipitation recorded at Horton, Kansas,<br>from July 10, 2000, to June 11, 2001                                                                                                                       | 4-36 |
| 4.14 | Hydrographs from the Everest water level monitoring network, with daily precipitation recorded at Horton, Kansas, from November 21, 2002, to January 17, 2003                                                                                                                                              | 4-37 |
| 4.15 | Locations of groundwater samples collected during Phase I and Phase II<br>in the western part of Everest and results of analyses of these samples<br>for nitrate, with locations of the former CCC/USDA facility<br>and the Nigh property                                                                  | 4-38 |
| 4.16 | Locations of selected Phase I and Phase II groundwater samples from the western part of Everest and the results of analyses of these samples for tritium, with locations of the former CCC/USDA facility and the Nigh property                                                                             | 4-39 |
| 4.17 | Locations of Phase I and Phase II groundwater samples from the aquifer unit<br>in the western part of Everest and results of analyses of these samples<br>for carbon tetrachloride, with locations of the former CCC/USDA facility<br>and the Nigh property and groundwater elevations on November 9, 2002 | 4-40 |
| 4.18 | Locations of Phase I and Phase II groundwater samples from the aquifer unit<br>in the western part of Everest and results of analyses of these samples<br>for chloroform, with locations of the former CCC/USDA facility and the<br>Nigh property and groundwater elevations on November 9, 2002           | 4-41 |

# Figures (Cont.)

| 4.19 | Distribution of carbon tetrachloride in groundwater in the aquifer unit<br>at Everest during Phase I and Phase II sampling, displayed on                                                                                                                                                         | 4 40 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|      | southeast-to-northwest cross section A-A                                                                                                                                                                                                                                                         | 4-42 |
| 5.1  | Proposed locations for additional subsurface soil sampling for the analysis of VOCs                                                                                                                                                                                                              | 5-11 |
| 5.2  | Proposed locations of additional soil borings and locations for the possible installation of temporary or permanent piezometers to confirm the patterns of groundwater flow and potential groundwater discharge to the surface along the intermittent creek west of the former CCC/USDA facility | 5-12 |
| 5.3  | Locations of permanent piezometers in the western part of Everest proposed<br>for use in aquifer slug testing                                                                                                                                                                                    | 5-13 |
| 5.4  | Proposed locations of additional soil borings to be investigated with the cone<br>penetrometer, as well as for the possible installation of temporary or permanent<br>piezometers and for aquifer slug testing                                                                                   | 5-14 |
| 5.5  | Proposed locations for monitoring wells for continuing analysis of groundwater for VOCs                                                                                                                                                                                                          | 5-15 |

# Notation

| AGEM   | Applied Geosciences and Environmental Management |
|--------|--------------------------------------------------|
| AMSL   | above mean sea level                             |
| ASTM   | American Society for Testing and Materials       |
| BGL    | below ground level                               |
| °C     | degree(s) Celsius                                |
| CAS    | Corrective Action Study                          |
| CCC    | Commodity Credit Corporation                     |
| CI     | Comprehensive Investigation                      |
| CLP    | Contract Laboratory Program                      |
| COC    | chain of custody                                 |
| DF     | dilution factor                                  |
| DOE    | U.S. Department of Energy                        |
| ECPT   | electronic cone penetrometer                     |
| EPA    | U.S. Environmental Protection Agency             |
| ESC    | Expedited Site Characterization                  |
| ft     | foot (feet)                                      |
| GC-ECD | gas chromatograph-electron capture detector      |
| GC-MS  | gas chromatograph(y)-mass spectrometer(-metry)   |
| hr     | hour(s)                                          |
| in.    | inch(es)                                         |
| KDHE   | Kansas Department of Health and Environment      |
| µg/kg  | microgram(s) per kilogram                        |
| µg/L   | microgram(s) per liter                           |
| μS/cm  | microsiemen(s) per centimeter                    |
| MCL    | maximum contaminant level                        |
| mg/L   | milligram(s) per liter                           |
| mi     | mile(s)                                          |
| min    | minute(s)                                        |
| mL     | milliliter(s)                                    |
| NAD    | North American Datum                             |
| ng     | nanogram(s)                                      |
| NGVD   | North Geodetic Vertical Datum                    |
| PVC    | polyvinyl chloride                               |
| QA     | quality assurance                                |
| QC     | quality control                                  |
|        |                                                  |

Everest, Kansas, QuickSite<sup>®</sup> Investigation Phase II Report Version 00, 05/09/03

| RPD  | relative percent difference    |
|------|--------------------------------|
| SDG  | sample delivery group          |
| STL  | Severn-Trent Laboratory        |
| TOC  | top of casing                  |
| ТРН  | total petroleum hydrocarbons   |
| TU   | tritium unit(s)                |
| USDA | U.S. Department of Agriculture |
| USGS | U.S. Geological Survey         |
| VOC  | volatile organic compound      |
| yr   | year(s)                        |

## Final Phase II Report: QuickSite<sup>®</sup> Investigation, Everest, Kansas

## **1** Introduction

The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), operated grain storage facilities at two different locations at Everest, Kansas (Figure 1.1). One facility (referred to in this report as the Everest facility) was at the western edge of the city of Everest. The CCC/USDA operated this facility from 1950 until the early 1970s. The second facility (referred to in this report as Everest East) was about 0.5 mi northeast of the town. The CCC/USDA operated this facility from 1954 until the early 1970s. While these two former CCC/USDA grain storage facilities were in operation, commercial grain fumigants containing carbon tetrachloride were in common use by the CCC/USDA and the private grain storage industry to preserve grain.

In 1997, the Kansas Department of Health and Environment (KDHE) sampled several domestic drinking water and nondrinking water wells in the Everest area. The KDHE sampling was part of the CCC/USDA Private Well Sampling Program, which was initiated to determine whether carbon tetrachloride was present in domestic wells near former CCC/USDA grain storage facilities in Kansas. All of the sampled domestic drinking water wells were located outside the Everest city boundaries. As a result of this sampling, carbon tetrachloride contamination was identified at a single domestic drinking water well (the Nigh well; DW06) approximately 3/8 mi northwest of the former Everest CCC/USDA grain storage facility. The CCC/USDA subsequently connected the Nigh residence to the Everest municipal water system. As a result of the detection of carbon tetrachloride in this well, the KDHE conducted preliminary investigations to further evaluate the existence of contamination and its potential effect on public health and the environment. The KDHE concluded that carbon tetrachloride in groundwater at Everest might, in part, be linked to historical use of carbon tetrachloride-based grain fumigants at the former CCC/USDA facilities. For this reason, the CCC/USDA is conducting an environmental site investigation to determine the source(s) and extent of the carbon tetrachloride contamination at Everest and to assess whether the contamination requires remedial action.

The investigation at Everest is being performed by the Environmental Research Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. At these facilities, Argonne is applying its QuickSite<sup>®</sup> environmental site characterization methodology. This methodology has been applied successfully at a number of former CCC/USDA facilities in Kansas and Nebraska and has been adopted by the American Society for Testing and Materials (ASTM 1998) as standard practice for environmental site characterization.

Phase I of the QuickSite<sup>®</sup> investigation examined the key geologic, hydrogeologic, and hydrogeochemical relationships that define potential contaminant migration pathways at Everest (Argonne 2001). The principal findings were as follows:

- No groundwater threat is posed by carbon tetrachloride that might have been used at the former Everest East CCC/USDA facility. The presence of subsurface water in the vicinity of the former Everest East facility is controlled by groundwater drainage to a nearby creek; no groundwater was found beneath the property itself during Argonne's investigation, and the only previously reported evidence of contaminated groundwater in this area (KDHE 1998) could not be confirmed.
- The stratigraphic sequence in the Phase I area of investigation (see Figure 1.2) includes, in order of increasing depth from the surface, Holocene and Pleistocene (1) loess, (2) silts and clays, (3) sands and sandy to gravelly clay till, and (4) blue-gray silty clay unconformably overlying Cretaceous limestone bedrock.
- Only one aquifer unit of significance was identified at Everest. This unit consists of a 4- to 20-ft-thick saturated interval near the base of the stratigraphic interval designated by Argonne as unit 3b (see Figure 1.2).
- Unit 3b is lithologically heterogeneous and varies in character across the study area. Beds of glaciofluvial sand and gravel, occasionally cemented by caliche, occur within the clay till and are best developed in a channel-like feature that underlies and opens to the southwest of the former Everest CCC/USDA facility. To the north and northwest of the former Everest facility,

coarser-grained deposits within the till are limited to thinner and more discontinuous stringers and lenses.

- Groundwater level relationships indicate that the saturated, more permeable channels, lenses, and stringers in unit 3b form a complex, but hydraulically continuous, network within the till across the study area. Semiradial groundwater flow was identified toward the southwest, west, and northwest from an apparent recharge area near (and to the east of) the former CCC/USDA facility.
- Carbon tetrachloride (727  $\mu$ g/L) and chloroform (34  $\mu$ g/L) were detected in groundwater at the top of the aquifer beneath the northwest corner of the former Everest CCC/USDA facility, but the contaminants were absent upgradient to the southeast of the former facility. A groundwater contaminant plume was identified extending at least 500 ft downgradient from the former Everest facility toward the Nigh property (see Figure 1.3).
- An apparent correlation between (1) the lithologies within the saturated zone of unit 3b, (2) variations in the hydraulic gradients across the Phase I study area, (3) groundwater tritium isotope relationships, and (4) the identified presence of carbon tetrachloride in groundwater was interpreted to reflect the areal distribution of relatively more permeable and relatively less permeable groundwater migration pathways within the aquifer. A possible hydrogeologic/permeability barrier separating the former Everest CCC/USDA facility from the Nigh property to its northwest was hypothesized on the basis of these observations.
- In sampling on the Nigh property, carbon tetrachloride was detected in vegetation and near-surface soils associated with the locations of private grain storage structures formerly present there. The results suggested that a local source for the groundwater carbon tetrachloride contamination identified in the Nigh well (DW06) might exist on the Nigh property.

Phase II of the QuickSite<sup>®</sup> investigation at Everest was undertaken with the primary goal of delineating and improving understanding of the distribution of carbon tetrachloride

contamination in groundwater at this site and the potential source area(s) that might have contributed to this contamination. To address this goal, four specific technical objectives were developed to guide the Phase II field studies. These technical objectives are to accomplish the following:

- 1. Confirm an association of carbon tetrachloride contamination with the former Everest CCC/USDA facility.
- 2. Characterize the hydrogeologic factors controlling contaminant migration.
- 3. Delineate the distribution of the carbon tetrachloride plume.
- 4. Investigate for indications of possible groundwater contamination associated with the former private grain storage facility on the Nigh property.

Sampling of near-surface soils at the former Everest CCC/USDA facility that was originally planned for Phase I had to be postponed until October 2000 because of access restrictions. Viable vegetation was not available for sampling then. This period is termed the first session of Phase II field work at Everest.

The main session of field work for the Phase II QuickSite<sup>®</sup> investigation of the Everest site began on March 6, 2001. Work was suspended at the site on April 6, 2001, (1) because of access limitations to key properties, located north and west of the former CCC/USDA facility, imposed by the private owners at the onset of the spring planting season and (2) to permit further documentation by Argonne, at the request of the CCC/USDA, of the land use and ownership history of the Nigh property as a precursor to completion of the field work. This period is termed the second session of Phase II field work at Everest.

Investigation of the Nigh property history was prompted by groundwater contamination evidence obtained during the second session of Phase II field activities (discussed in Section 3.7). This evidence suggested the potential for intermingling of carbon tetrachloride plumes associated with contaminant source areas at both the former Everest CCC/USDA facility and the private grain storage structures formerly located on the Nigh property. To address this concern, Argonne conducted a title search for the Nigh property and reported the results to the CCC/USDA in February 2002. Argonne received authorization from the CCC/USDA in May

2002 to continue the Phase II investigation at Everest. Phase II field work resumed at the site on November 4, 2002, and was completed on November 13, 2002. This period is termed the third session of Phase II field work at Everest.

This report documents the findings of all of the Phase II activities at Everest. Section 1 provides a brief history of the site and the QuickSite<sup>®</sup> process, a summary of the Phase I findings, a brief chronology of the Phase II investigation, and a description of the sections contained in this report. Section 2 describes the investigative methods used during the Phase II investigation. Section 3 presents all of the results obtained during the investigation. Section 4 describes the interpretation of the pertinent data used to meet each of the technical objectives of the study. Section 5 summarizes the conclusions of the investigation relative to the technical objectives. Section 5 also presents technical justification and recommendations for further work at this site. The goal would be to facilitate the evaluation of possible human health and environmental risks, and hence the potential remedial requirements, associated with the documented carbon tetrachloride contamination in groundwater.

To streamline the reporting process, materials from the site-specific *Work Plan* (Argonne 2000) and Phase I report (Argonne 2001), as well as relevant sections of the *Master Work Plan* (Argonne 2002), are not repeated in detail in this report. Consequently, these documents must also be consulted to obtain the complete details of the QuickSite<sup>®</sup> investigative program for Everest.



FIGURE 1.1 Locations of Everest, Kansas; the former Everest and Everest East CCC/USDA grain storage facilities; and the nearby Nigh property.

Everest, Kansas, QuickSite<sup>®</sup> Investigation Phase II Report Version 00, 05/09/03



FIGURE 1.2 Schematic stratigraphic sequence (vertically exaggerated), showing the principal lithologic and hydrostratigraphic units identified in the vicinity of Everest.



FIGURE 1.3 Distribution of carbon tetrachloride identified in groundwater in Phase I work at Everest, with the local potentiometric surface determined from hand measurements on July 10, 2000.

#### 2 Investigative Methods

The Everest Phase II investigation was performed by using an iterative process of data collection, evaluation, and interpretation during the field program, to ensure that all data necessary to achieve the specific technical objectives defined for the site were obtained. Fundamental to this approach is the use of multiple complementary investigative techniques to acquire data relevant to each of the specific technical objectives, so that the interpretations being developed can be tested independently against multiple lines of evidence. Individual data sets acquired by a particular technique can also be interpreted in multiple ways to yield information addressing more than one specific technical objective. Throughout the field program, a comprehensive quality assurance/quality control (QA/QC) program is implemented to confirm the reliability of all information as it is accumulated. With this procedure, an integrated, technically defensible model of the hydrogeologic environment and the distribution and migration of carbon tetrachloride within this setting is assembled as the specific technical objectives are addressed.

The primary goals of the Phase II studies at Everest and the program of activities outlined to achieve these goals were discussed in Section 6.2 of the Phase I report (Argonne 2001). Specific technical objectives developed to guide the progress of the Phase II field activities are presented in Section 1 of the present report. Procedures for the individual techniques employed by Argonne at this site are in the *Master Work Plan* (Argonne 2002). This section presents a brief summary of the methods used to implement Phase II at Everest, and it identifies certain modifications made to the field program (relative to recommendations in the Phase I report [Argonne 2001]) in response to the new information obtained during the course of the study.

# 2.1 Method to Confirm an Association of Carbon Tetrachloride Contamination with the Former Everest CCC/USDA Facility

Previous Argonne investigations have demonstrated that analysis of vegetation and nearsurface (vadose zone) soils for carbon tetrachloride by the headspace method (a modification of U.S. Environmental Protection Agency [EPA] Method 5021) is a sensitive and positive indicator of potential deeper vadose zone soil contamination. In this application, the headspace data are not used quantitatively but are examined for distribution patterns in order to prioritize areas for additional, follow-up subsurface soil sampling and analysis. In conjunction with the headspace analyses, the near-surface soils are also examined by using purge-and-trap sample preparation with analysis by gas chromatography-mass spectrometry (GC-MS; EPA Methods 5030B and 8260B) as a quantitative basis for the evaluation of potential health risks associated with the near-surface soils.

Argonne experience has also demonstrated that the distribution of carbon tetrachloride concentrations in shallow soils can be affected by differences in soil types across a site, as well as by the history of land use at the site, potentially complicating interpretation of the contaminant analysis results. For this reason, shallow soils are not collected randomly; sample locations are selected only after an evaluation of the past facilities and activities at each site and after characterization of the local soil types.

Sampling of near-surface soils and vegetation at the former Everest CCC/USDA facility was originally planned for Phase I of the Everest investigation (Argonne 2000), but the sampling could not be performed at that time because of access restrictions to this property. These activities were therefore delayed for inclusion as part of the Phase II studies. Targeted sampling of near-surface soils as described above was performed at the former Everest facility in October 2000 to accommodate the requirements of the current land owner. Vegetation sampling was not performed at the former Everest facility, because in October 2000, after the end of the annual growth cycle, viable vegetation was not available. (This period was the first session of Phase II field work at Everest.) The results of the near-surface soil analyses for volatile organic compounds (VOCs) are presented in Section 3.1.1 and discussed in relation to this technical objective in Section 4.1.

Distribution patterns observed in the headspace analysis results for near-surface soils were used to select three locations for additional sampling of soils from the ground surface to the top of the saturated zone, in order to confirm the presence of carbon tetrachloride contamination in the deeper vadose zone. The results of these analyses are summarized in Section 3.1.2 and interpreted in Section 4.1.

# 2.2 Method to Characterize the Hydrogeologic Factors Controlling Contaminant Migration

Phase I of the Everest investigation indicated that groundwater flow within the Everest aquifer unit occurs via a complex network of relatively permeable channels, lenses, and stringers within less permeable clay till, and that the distribution of the permeable and less permeable zones is expected to have a significant controlling influence on the migration of carbon tetrachloride within the aquifer unit. The purpose of this objective is to refine the site-specific hydrostratigraphic interpretations developed in Phase I and thereby aid the identification of pathway(s) for groundwater flow and contaminant migration.

This task requires (1) the identification of saturated intervals within the stratigraphic sequence that together define the aquifer unit; (2) detailed characterization of the lithology, continuity, and heterogeneity of the sedimentary units within the saturated zone; and (3) determination of the resulting groundwater flow field in the aquifer unit.

The multiple investigative techniques used to determine the spatial distribution and hydrogeologic characteristics of the aquifer unit at Everest included coring performed with the electronic cone penetrometer (ECPT) and the Geoprobe; electronic profiling of soils by using the ECPT; visual description and physical analyses of cored materials; and the evaluation and display of these data in logs, maps, and cross sections to aid in their interpretation. Hydraulic relationships within the aquifer unit were examined by the installation of temporary and permanent piezometers and the measurement of groundwater levels, by the collection of groundwater samples for geochemical and tritium isotope analyses, and by the analysis of groundwater samples for VOCs. The resulting data were integrated, within the context of the regional and local hydrogeologic setting identified in the Everest Phase I *Work Plan* (Argonne 2000) and Phase I report (Argonne 2001), to develop an internally consistent picture (based on multiple lines of evidence) of the factors controlling groundwater flow and contaminant migration at this site.

Technical activities originally planned to address this objective were described in Section 6.2 of the Phase I report (Argonne 2001). Information available at the completion of Phase I suggested that a hydrogeologic/permeability barrier northwest of the former CCC/USDA facility could be impeding carbon tetrachloride migration in groundwater from the vicinity of the former CCC/USDA facility toward the Nigh property. The planned series of Phase II investigation activities relevant to this objective was therefore targeted to test this hypothesis.

The results of the planned studies, performed during the second Phase II field session (March 6-April 6, 2001), demonstrated that contaminant migration along a continuous pathway from the former CCC/USDA facility to the Nigh property was possible. In light of this determination, the areal scope of the investigation was expanded in the third Phase II field

session (November 4-13, 2002) to include the evaluation of aquifer characteristics and potential downgradient migration pathways west, northwest, and southwest of the Nigh property.

The results of the analyses relevant to the consideration of this objective are presented in Sections 3.2-3.6 and discussed in Section 4.2.

## 2.3 Method to Delineate the Distribution of the Carbon Tetrachloride Plume

The investigation of this objective was guided by all of the hydrogeologic results and interpretations described in Section 2.2. Locations for groundwater and surface water sampling for VOC analyses were selected as the hydrogeologic picture of the Everest aquifer and groundwater flow system progressively evolved. Sampling locations were chosen to characterize and bound the plume both vertically and areally within the study area. The results of the water sampling and analyses for VOCs are summarized in Section 3.7. The identified distribution of the carbon tetrachloride contamination in groundwater at Everest is described in Section 4.3.

# 2.4 Method to Investigate for Indications of Possible Groundwater Contamination Associated with the Former Private Grain Storage Facility on the Nigh Property

Phase I of the QuickSite<sup>®</sup> investigation at Everest identified carbon tetrachloride contamination in vegetation and near-surface soils on the Nigh farmstead, in association with the locations of several private grain storage structures formerly on this property. In conjunction with the results of groundwater analyses for VOCs and other data on groundwater flow and contaminant migration pathways obtained during the second field session of the Phase II investigation (March 6-April 6, 2001), this Phase I information indicated a potential for intermingling in groundwater of carbon tetrachloride contamination originating from both the former Everest CCC/USDA facility and the private grain storage facility formerly on the Nigh property.

When the Phase II field investigation was suspended in 2001, a title search was performed by Argonne, at the direction of the CCC/USDA, to document the ownership and land use history of the Nigh property. The results of this activity determined that the Nigh property was leased for petroleum exploration in 1938-1943, although no records were discovered to indicate that any petroleum-related activities actually took place.

In light of these concerns, this technical objective was targeted in the third session of Phase II work to identifying potential groundwater contamination associated with the Nigh property that cannot be also linked to the former Everest CCC/USDA facility. The investigation approach used in November 2002 to address this objective included (1) the evaluation of potentially anomalous patterns of carbon tetrachloride distribution in the vicinity of the Nigh farmstead that would indicate a contribution of the contaminant from the Nigh property and (2) analyses of groundwater samples from selected locations for additional organic compounds and heavy metals found in petroleum and/or drilling fluids, which might serve as chemical tracers of groundwater contaminant migration pathways originating from the Nigh property.

Groundwater samples were collected for the purposes of this objective only during the third session of the Phase II field work (November 4-13, 2002). The results of these analyses are summarized in Section 3.8, and the interpretations developed from these results are presented in Section 4.4.

#### **3** Field and Laboratory Data

The investigative methods used in Phase II of the characterization studies at Everest are described in Section 2. In this section, the data obtained in the Phase II field and laboratory studies are summarized. These results, together with the information contained in the Phase I *Work Plan* (Argonne 2000) and the Phase I report (Argonne 2001) for Everest, provide the quality-assured data required to address the specific technical objectives of this study.

The suite of investigative technologies implemented during Phase II of the Everest program was selected to provide multiple independent lines of evidence that could be used to address each of the technical objectives. To meet this goal effectively and efficiently, individual technologies and activities were therefore chosen, whenever possible, that would generate data critical to the consideration of more than one objective. For example, analyses of groundwater samples for VOCs provided useful tracer information for the identification of groundwater migration pathways (objective 2), as well as data needed to delineate the present carbon tetrachloride plume (objective 3).

For organizational simplicity, the data in this section are presented in general categories reflecting the types of media investigated and the activities performed, without detailed references to the technical objectives to which they are applied. The integration of these data and their interpretation in the context of each of the Phase II technical objectives are discussed fully in Section 4.

The detailed results of all analyses are in Appendixes A-G.

#### 3.1 Soils Analysis Data

A program of near-surface and subsurface soil sampling was performed in the first session of Phase II work on the property formerly occupied by the Everest CCC/USDA grain storage facility. The purpose was to determine whether carbon tetrachloride contamination exists in the vadose zone soils beneath this property, and hence to identify the origin(s) of possible contaminant migration pathway(s) associated with the former Everest facility. The near-surface soil sampling was originally planned for Phase I of the field investigation at this site (May 15-June 2, 2000), but the sampling could not be performed at that time because of access

restrictions and was deferred until October 2000 for inclusion as the first session of the Phase II activities.

#### 3.1.1 Contaminant Data for Near-Surface Soils

Geographic locations for near-surface soil sampling at the former Everest facility in October 2000 were based on the results of a survey of the current and historical features and land use of this site. The property is now an agricultural field, and no bins from the former CCC/USDA facility remain. Argonne found no evidence to indicate that the property has been used for any purposes other than agriculture and (until the early 1970s) the storage of grain by the CCC/USDA.

The locations of the former CCC/USDA grain bins were determined from historical aerial photos of the facility. On the basis of these images, 38 locations were selected for near-surface soil sampling, as shown in Figure 3.1. Seventy-six near-surface soil samples were collected, in accordance with procedures described in the *Master Work Plan* (Argonne 2002, Section 6.1.1). At each location, an upper sample was taken from organic-rich material immediately below the base of the plow zone. With few exceptions, these samples were composed of black loam topsoil, collected at a depth of 0.9-1.2 ft below ground level (BGL). A deeper sample was obtained at each location, at 5.5-6 ft BGL, consisting of light gray or light brown clay. The soil samples were taken from hand-driven, sleeved cores recovered with an ESP<sup>™</sup> sampler. Ten blind duplicate soil samples, plus a background sample from a field 0.5 mi west of the former CCC/USDA facility, were also collected. Descriptions of the soil samples are in Appendix A, Table A.1.

The near-surface soil samples were placed in jars, sealed, preserved on dry ice, and shipped to the Applied Geosciences and Environmental Management (AGEM) Laboratory at Argonne National Laboratory for analysis. The samples were analyzed (Argonne 2002, Section 6.3.1) by (1) a headspace method with a gas chromatograph and electron capture detector (GC-ECD; modified EPA Method 5021) and (2) a purge-and-trap sample preparation method with analysis by GC-MS (EPA Methods 5030B and 8260B).

The headspace analysis was used to achieve the low detection limits required to evaluate possible contaminant distribution patterns, for use in guiding subsurface soil sampling. The results of the headspace analyses for shallow and deeper near-surface soils are presented in Appendix A, Table A.2, and are summarized in Figure 3.2. Low concentrations of carbon tetrachloride were detected by headspace analysis in soils from both depth intervals across much of the site, most commonly in association with the locations of the former grain storage bins.

The purge-and-trap analysis data were used to support risk assessment calculations for the near-surface soils (Section 4.1.3). The results of the purge-and-trap analyses on these soils are in Appendix A, Table A.2. Neither carbon tetrachloride nor chloroform was detected above a quantitation limit of 10  $\mu$ g/kg in any of the near-surface soils prepared by the purge-and-trap method and analyzed by GC-MS.

#### 3.1.2 Contaminant Data for Subsurface Soils

Access to the agricultural field formerly occupied by the Everest CCC/USDA facility was denied after April 6, 2001 (during the second session of the Phase II investigation), because of crop planting requirements and deteriorating surface conditions caused by heavy rains during the field session. For this reason, sampling of deeper subsurface vadose zone soils at the former Everest facility for VOC analyses in the second session of Phase II work was limited to only three locations, as shown in Figure 3.2 (SB23, SB24, and SB34). These locations received the highest priority on the basis of the distribution of relatively higher carbon tetrachloride levels observed in headspace analyses of the near-surface soils. Subsurface soil sampling could not be performed to test the areas of relatively higher carbon tetrachloride levels identified in the near-surface soils in the central and southwestern portions of the former facility (Figure 3.2). A total of 68 subsurface soil samples were recovered from cores collected at SB23, SB24, and SB34 by using the ECPT (Argonne 2002, Section 6.1.1). Descriptions of the soils are in Appendix A, Table A.1. The samples were placed in 125-mL jars and immediately preserved on dry ice for shipment to the AGEM Laboratory. The samples were analyzed for VOCs by using the purge-and-trap GC-MS method described in Section 3.1.1 (Argonne 2002, Section 6.3.1).

The results of the subsurface soil analyses (Appendix A, Table A.3) are shown in relation to the lithologic logs for these borings in Figure 3.3. Carbon tetrachloride was detected in 11 of the 68 samples (above the quantitation limit of 10  $\mu$ g/kg for the purge-and-trap GC-MS method), at concentrations ranging from 10  $\mu$ g/kg to 66  $\mu$ g/kg.

#### 3.2 Soil Boring and Cone Penetrometer Sensor Data

Subsurface geologic coring with direct-push technologies and ECPT electronic sensor profiling were used in Phase II of the Everest investigation to confirm the interpretation of local stratigraphic (units 1-4) and hydrostratigraphic relationships identified at the site during Phase I, as well as, more specifically, to examine the internal lithologic and hydrologic characteristics of the saturated sand and sandy to gravelly till interval (within stratigraphic unit 3b) that forms the Everest aquifer unit. Forty-one locations (SB20-SB59, SB61; see Figure 3.4) were investigated in the second and third sessions of Phase II work by using the Argonne 40-ton truck-mounted and 22-ton crawler (tracked) ECPT vehicles and a model 6610 Geoprobe direct-push unit. The operation of these vehicles was in accordance with procedures described in the *Master Work Plan* (Argonne 2002, Section 6).

Logs of ECPT tip and sleeve conductance data were collected at SB20-SB52, SB57-SB59, and SB61. Supplemental conductivity logs were obtained at borings SB49-SB52, SB57-SB59, and SB61, by using ECPT sensing technology acquired by Argonne prior to the third session of the Phase II field work (November 4-13, 2002). This technology was unavailable during the second Phase II field session (March 6-April 6, 2001).

Soil cores were collected by using the 40-ton truck-mounted or the 22-ton crawler ECPT at SB20-SB36, SB38-SB41, SB44, and SB49-SB50. Cores were collected by using the Geoprobe at SB53-SB56. At most of the boring locations, continuous coring was performed across stratigraphic unit 3b to permit detailed description and sampling (see Section 3.4) of the lithologies present. More selective confirmatory coring was performed in the later borings completed during the study. The ECPT sensor logs were used as a guide for the general identification of major stratigraphic units. Intervals to be cored were selected on the basis of qualitative relationships between the ECPT sensor responses across the study area, plus the stratigraphic zonation identified by coring during the Phase I and Phase II investigations. However, subsurface geologic interpretation was based only on the lithologic descriptions of the cored intervals.

All soil coring was conducted by using a 4-ft or 5-ft Geoprobe Macro-Core<sup>®</sup> sampler. Argonne has adapted the Geoprobe Macro-Core<sup>®</sup> sampler for use in association with the ECPT vehicles. With this device, both 4- to 5-ft cores were recovered in plastic tube liners. All cores were removed from the liners for study and placed in cardboard core boxes for subsequent archiving at the Argonne storage facility in Lincoln, Nebraska.

The ECPT sensor logs and soil core descriptions are in Appendix B.

Results obtained from the ECPT and Geoprobe boring activities confirmed the heterogeneous lithologic character of the unit 3b sandy clay till complex, by demonstrating rapid changes in the distribution and thickness of coarser-grained and finer-grained intervals within the unit over relatively short vertical and lateral distances. Such changes often precluded the correlation of individual sandy intervals between adjacent borings. An example of these relationships is illustrated in Figure 3.5, which compares the lithologic logs for three borings located along a line northwest of the former CCC/USDA facility and within 500 ft of each other (SB20, SB27, and SB21; see Figure 3.4 for locations). As shown, two distinct sandy intervals were penetrated at SB20, within a relatively thick (approximately 13 ft) portion of the till. In adjacent boring SB27, less than 1 ft of sandy material was identified, and the till sequence was significantly thinned. At SB21 little sand was again present within a thickened till section, and the positions of the observed sandy intervals bore no apparent relationship to those in the nearby borings.

## 3.3 Coordinates Survey Data

Accurate location information for the activities performed in the field is required to provide horizontal and vertical control for stratigraphic correlation, water level measurement, and hydrogeologic mapping.

All investigative boring locations (SB20-SB64) and two reference points along the intermittent stream at the western edge of the study area were surveyed by professional surveyors, Schwab-Eaton of Manhattan, Kansas. The locations of all surface water sampling points were estimated by Argonne personnel by extrapolation from the surveyed locations and by reference to aerial photography (USGS 1991) and the U.S. Geological Survey topographic map for the study area (USGS 1979). The results of the coordinates survey are in Appendix C.

## 3.4 Physical Property Data for Soils

During the second and third sessions of Phase II work, 17 soil samples selected from cores collected at 11 locations (see Figure 3.6) were shipped to HWS Consulting Group, Inc., Lincoln, Nebraska, for particle size analysis according to the procedures outlined in ASTM

Standard D422-63 (reapproved in 1990 and 1998), as described in the *Master Work Plan* (Argonne 2002, Section 4.3.1.3). The samples were chosen from a variety of lithologic types, to objectively confirm the lithologic descriptions prepared by the site geologists in the field and as a basis for the preliminary estimation of hydraulic conductivities for these materials (Section 4.2).

The particle size data and soil compositions are in Appendix A, Table A.4 and Table A.5, respectively. Positive verification of almost all of the lithologic descriptions resulted.

### 3.5 Groundwater Level Data

Groundwater levels were measured in borings completed in the unit 3b aquifer to provide information on the hydraulic continuity of this unit and the patterns of groundwater flow, recharge, and discharge affecting contaminant migration in this aquifer.

Water levels were measured during the second and third sessions of the Phase II investigation, both by hand and with automatic water level recorders (Argonne 2002, Appendix E, Sections E.1 and E.2). Manual measurements were made to the nearest 0.01 ft from a surveyed reference mark with an electronic water level sensor. Automatic measurements were made by installing self-contained water level sensors/recorders that were programmed to collect data once every 4 hr.

Hand measurements of water levels were made at a total of 15 temporary piezometers installed during the second and third sessions of the Phase II field investigation (see Figure 3.7). The results of these measurements are in Appendix D, Table D.1. The temporary piezometers were installed by using a slight modification of the standard procedure for piezometer installation with the ECPT (Argonne 2002, Section 6.4.6). Sand was placed as a filter pack around the screened interval, and bentonite grout was used to seal the remainder of the annulus from the top of the filter pack to the surface, but no permanent surface housing was installed. Instead, a temporary, "stickup" outer casing equipped with a waterproof closure was imbedded in the annular grout seal.

A network of nine temporary piezometers (SB25, SB30, SB35-SB38, SB41-SB42, and SB44) was established during the second session of the Phase II field work (March 6-April 6, 2001) in the portion of the study area east of Prairie Road. A network of six temporary piezometers (SB49t-SB54t) was constructed in the portion of the study area west of Prairie Road

during the third Phase II field session (November 4-13, 2002). Construction data for the temporary piezometers in summarized in Table 3.1. At the end of each field session, the respective temporary piezometers were abandoned by removing the polyvinyl chloride (PVC) casings and screens and grouting the boreholes through a tremie pipe.

Eight permanent piezometers (sand point wells) were also constructed, in accordance with Kansas regulations, for the long-term monitoring of water level fluctuations (see Figure 3.8). Piezometers SB22, SB31, and SB34 were installed during the second Phase II field session; SB49, SB60, and SB62-SB64 were installed in the third field session. The sand point wells were completed either aboveground or in flush mounts approved through a variance from the KDHE, in accordance with construction information supplied by the Kansas Bureau of Water (Taylor 2000). Construction diagrams for the piezometers are in Appendix E.

| TABLE 3.1   | Summary of construction parameters for the Phase II |
|-------------|-----------------------------------------------------|
| temporary p | biezometers at Everest.                             |

|                                                                                         |                                                                                                 | Screened Interval                                                                                                 |                                                                                                                                                       |  |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Boring                                                                                  | Bottom of Hole<br>(depth, ft BGL)                                                               | Depth<br>(ft BGL)                                                                                                 | Elevation<br>(ft AMSL)                                                                                                                                |  |
| Installed in M<br>east of Prairie                                                       | arch-April 2001 (secc<br>Ə Road                                                                 | ond session),                                                                                                     |                                                                                                                                                       |  |
| SB25<br>SB30<br>SB35<br>SB36<br>SB37<br>SB38<br>SB41<br>SB42<br>SB44<br>Installed in No | 51.0<br>61.0<br>59.0<br>54.5<br>70.0<br>67.5<br>72.8<br>70.0<br>62.0<br>by cember 2002 (third s | 45.0-51.0<br>59.5-61.0<br>56.0-59.0<br>51.5-54.5<br>65.0-70.0<br>63.5-67.5<br>68.0-72.8<br>65.5-70.0<br>52.0-57.0 | 1086.4-1080.4<br>1090.6-1089.1<br>1082.0-1079.0<br>1088.8-1085.8<br>1089.0-1084.0<br>1089.9-1085.9<br>1085.0-1080.2<br>1085.4-1080.9<br>1101.2-1096.2 |  |
| west of Praine<br>SB49t<br>SB50t<br>SB51t<br>SB52t<br>SB53t<br>SB53t                    | 60.1<br>54.0<br>64.0<br>61.5<br>26.0<br>27.0                                                    | 57.1-60.1<br>42.5-54.0<br>59.0-64.0<br>56.5-61.5<br>21.0-26.0<br>22.0-27.0                                        | 1075.8-1072.8<br>1087.6-1076.1<br>1083.1-1078.1<br>1077.9-1072.9<br>1081.4-1076.4<br>1073.8-1068.8                                                    |  |

The eight permanent Phase II piezometers, the five sand point wells installed previously during Phase I (SB01, SB09, SB16, SB18, SB19), and the private well (DW06) on the Nigh property were used for periodic hand measurement of water levels and for the installation of long-term water level recorders. A summary of the periods during which automatic water level monitoring took place at each of these locations is in Table 3.2. The results of hand measurements from these locations are in Appendix D, Table D.2. Water level monitoring data from the automatic recorders are in Appendix D, Tables D.3-D.5.

The results of the water level measurements in the temporary and permanent piezometers were consistent with Phase I observations. The results indicated a general pattern of groundwater levels that decrease toward the northwest, west, and southwest from an apparent local high in the vicinity of the former CCC/USDA facility. These results are discussed further in Section 4.2.2.

| Boring | July 10, 2000-<br>June 11, 2001 <sup>a</sup> | May 8, 2001-June 11,<br>2001 <sup>b</sup> | November 21, 2002-<br>January 17, 2003 <sup>c</sup> |
|--------|----------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| DW06   | x                                            |                                           |                                                     |
| SB01   | Х                                            |                                           |                                                     |
| SB09   | Х                                            |                                           | х                                                   |
| SB16   | Х                                            |                                           | х                                                   |
| SB18   | Х                                            |                                           |                                                     |
| SB19   | х                                            |                                           |                                                     |
| SB22   |                                              | х                                         |                                                     |
| SB31   |                                              | х                                         |                                                     |
| SB34   |                                              | х                                         |                                                     |
| SB49   |                                              |                                           | х                                                   |
| SB60   |                                              |                                           | х                                                   |
| SB62   |                                              |                                           | х                                                   |
| SB63   |                                              |                                           | х                                                   |
| SB64   |                                              |                                           | х                                                   |
|        |                                              |                                           |                                                     |

TABLE 3.2 Summary of automated groundwater level monitoring periods for the permanent piezometers and the Nigh well (DW06) in the western part of Everest.

<sup>a</sup> Data for June 10, 2000, through noon on August 16, 2000, were reported in the Phase I report (Argonne 2001, Table D.1, Appendix D). Subsequent data are in the present report (Table D.3, Appendix D).

<sup>b</sup> Data are in Table D.4, Appendix D, of this report.

<sup>c</sup> Data are in Table D.5, Appendix D, of this report.

## 3.6 Geochemical Analysis Data for Groundwater and Surface Water Samples

Groundwater samples were collected during the second and third sessions of Phase II for a limited suite of analyses. The analyses were targeted (on the basis of Argonne experience at a number of similar investigation sites in Kansas and Nebraska) to provide multiple lines of geochemical evidence for use in (1) evaluating the hydraulic continuity of the Everest aquifer unit, (2) identifying preferred groundwater flow and hence contaminant migration pathways, and (3) examining groundwater-surface water (recharge-discharge) relationships at this site. Descriptions of the water samples collected are in Appendix F, Table F.1.

Groundwater sampling was performed by using identical procedures for the 40-ton truckmounted and 22-ton crawler ECPT vehicles and the Geoprobe, as outlined in the *Master Work Plan* (Argonne 2002, Section 6.1.2). Samples were collected by pushing the respective rods with a disposable tip to the target water-bearing zone. The rods were then withdrawn a predetermined distance to expose an internal filter screen section into which groundwater passed. Groundwater was sampled by using a bailer inserted through PVC riser attached to the filter screen.

All groundwater sampling holes were abandoned by grouting with a tremied bentonite slurry.

Surface water samples were collected during the second and third sessions of Phase II work for VOC and tritium analyses. Sampling was according to the procedures outlined in the *Master Work Plan* (Argonne 2002, Section 6.1.3).

#### 3.6.1 Field Measurements for Groundwater Samples

The measurement of selected parameters at the time of sampling provides immediate results that can sometimes aid in the evaluation of groundwater relationships in the field. Groundwater temperature, pH, and conductivity were measured for samples collected at one or more depths at each of 38 Phase II locations, by using a Checkmate field meter system after calibration with the appropriate standard solutions (Argonne 2002, Section 6.3.2.2). Titrimetric techniques in commercial kits manufactured by CHEMetrics, Inc., were used to determine alkalinity and nitrate-nitrogen concentrations for samples collected during the second Phase II field session (March 6-April 6, 2001; SB20-SB48), but these analyses were largely discontinued

for the third field session (November 4-13, 2002). The results of the field measurements are in Appendix F, Table F.2.

#### 3.6.2 Nitrate Data for Groundwater Samples

Samples for laboratory analysis of nitrate (Argonne 2002, Section 6.3.2.3) were collected by using the ECPT at 23 locations during the second session of Phase II field work only, as a possible indicator of relatively recent surface water recharge to the portion of the Everest groundwater flow system east of the Nigh property. Concentrations at more than two-thirds of the locations (see Figure 3.9) exceeded the maximum contaminant level (MCL) of 10 mg/L. The analytical results for nitrate are shown in detail in Table F.3 in Appendix F.

#### 3.6.3 Tritium Isotope Data for Groundwater and Surface Water Samples

Tritium is a short-lived isotope of hydrogen with a half-life of 12.43 yr that is produced naturally by solar radiation. However, during the atmospheric testing of thermonuclear weapons in 1951-1980, vastly greater quantities of tritium were released to the atmosphere (Clark and Fritz 1997). As a result, precipitation and therefore recharge to groundwater was enriched in tritium during this period. Low tritium values in groundwater (< 1 TU [tritium unit; 1 TU = 1 atom of tritium per 10<sup>18</sup> atoms of hydrogen]) suggest that the water originated prior to 1951. Therefore, the presence of elevated tritium in groundwater is an indicator of relatively modern (post-1951) groundwater recharge.

The following water samples were collected at Everest for tritium analyses and are reported in Appendix F: (1) groundwater samples collected at 4 locations during Phase I, for which results were received too late for the Phase I report (Argonne 2001); (2) groundwater samples collected during the second and third sessions of Phase II, at one or more depths at 33 locations; and (3) 1 surface water sample, collected during the third session of Phase II from the intermittent stream at the west edge of the study area. These samples were submitted for analysis at the Tritium Laboratory at the University of Miami in Miami, Florida. The detailed results of these analyses (Appendix F, Table F.4) are summarized in Figure 3.10. Tritium concentrations measured ranged from 0.19 TU to > 17 TU. These results are discussed further in Section 4.2.3.

### 3.7 Contaminant Data for Groundwater and Surface Water Samples

Groundwater and surface water samples collected for VOC analyses during the second and third sessions of Phase II work were preserved in the field by cooling to 4°C and shipped to the AGEM Laboratory for analysis in accordance with the procedures described in the *Master Work Plan* (Argonne 2002, Sections 6.2 and 6.3.2.1). Replicate groundwater samples were collected for verification analysis with EPA Contract Laboratory Program (CLP) methodology.

The results of the analyses are in Appendix F, Table F.5. Carbon tetrachloride and chloroform were the only VOCs detected. Carbon tetrachloride was found in groundwater at 19 of the 38 locations sampled in Phase II (see Figure 3.11), at concentrations of  $< 5-919 \,\mu$ g/L, along an irregular trend extending north-northwestward from the vicinity of the former CCC/USDA facility toward the Nigh property, and then westward from the vicinity of the Nigh property. Chloroform was identified in groundwater at 14 of the 38 locations (see Figure 3.12), at concentrations of  $< 5-61 \,\mu$ g/L. (Values are reported as  $< 5 \,\mu$ g/L when the compound was detected but could not be quantified.) The highest concentrations of carbon tetrachloride (at SB33) and chloroform (at SB29) in groundwater were found in the area north-northwest of the former CCC/USDA facility and southeast of the Nigh property.

As shown in Figure 3.13, carbon tetrachloride was not detected in 7 surface water samples collected in the vicinity (downgradient) of the former CCC/USDA facility, or in 5 samples collected along the intermittent stream at the western edge of the study area, during the second and third sessions of Phase II work.

# 3.8 Data for Trace Metals and Semivolatile Hydrocarbons in Groundwater Samples

Selected groundwater samples collected during the third session of Phase II at locations in the area downgradient (to the west) of the Nigh property were submitted for analyses of total (semivolatile) petroleum hydrocarbons (TPH; SB49-SB53) and heavy trace metals (SB49-SB52); see Figure 3.14. Water samples selected for TPH analysis were preserved by adding sulfuric acid at the time of collection. The TPH analysis was conducted at Severn-Trent Laboratory, Colchester, Vermont, with EPA Method 8015B. Analyses for heavy trace metals were also performed at Severn-Trent Laboratory with EPA Methods 3010A/6010B. The results of the TPH and metals analyses are in Appendix F, Tables F.6 and F.7, respectively.

Low concentrations of diesel fuel (approximately < 1 mg/L) and motor oil, possibly associated with the operation of the diesel-powered ECPT and Geoprobe vehicles used for sample collection, were identified in all of the groundwater samples analyzed for these contaminants. Concentrations of barium exceeding the quantitation limit (200 µg/L) for this compound were detected at three locations (SB49, SB51, and SB52); vanadium was not identified at quantifiable levels in any of the groundwater samples analyzed. These results are interpreted in Section 4.4.

## 3.9 Quality Control Data for Soil, Groundwater, and Surface Water Analyses

The QA/QC procedures for sample collection, handling, and analysis followed during Everest Phase II activities are described in detail in the *Master Work Plan* (Argonne 2002). A detailed evaluation of the sample collection, handling, and analysis procedures and the resulting analytical data is in Appendix G. Evaluation of the analytical data was consistent with EPA guidelines (EPA 1994a,b). Significant results include the following:

- Sample integrity was tracked throughout the collection, shipping, and analysis activities by the documentation of samples as they were collected and the use of custody seals and chain-of-custody (COC) records. Minor discrepancies in sample identifiers for some samples were resolved by comparison of the various records. Such a discrepancy could not be resolved for one sample submitted for tritium analysis. The result for the questionable sample is not reported (Table F.4, Appendix F).
- Groundwater sample EVSB28-W-12815, collected for organic analysis at the AGEM Laboratory, was broken during shipment. The vial for the replicate of that sample, EVSB28-W-12816, contained a bubble. No result is reported for depth interval 62.0-64.9 ft BGL at sample location SB28 (Table F.5, Appendix F).
- Samples for organic analysis were received at the appropriate temperature and were analyzed within the required holding time.
- Rinsates of decontaminated sampling bailers and push rods contained no carbon tetrachloride or chloroform, indicating that decontamination
procedures for the reusable sampling equipment were followed properly. Disposable equipment was used during collection of other sample types.

- Trip blanks contained no carbon tetrachloride or chloroform, indicating that the environmental samples collected were not contaminated during collection, handling, and shipment. No designated trip blank was included in 6 of the 33 shipments of water samples sent to the AGEM Laboratory for organic analysis, as specified under the QC plan. The affected shipments are those under COC 1963 on March 15, 2001; COC 502 on March 22, 2001; COC 205 and COC 207 on March 28, 2001; COC 208 on March 30, 2001; COC 1084 on April 3, 2001; and COC 1887 on April 4, 2001. One or more equipment rinsates included in each of these shipments had no carbon tetrachloride contamination detected, and none of these shipments showed a consistent pattern of contamination in the samples. These observations indicate that cross-contamination did not occur during shipment.
- The lack of contamination in laboratory method blanks verified that contamination was not introduced within the laboratory.
- Near-surface soil samples were analyzed at the AGEM Laboratory by using a modification of the protocol in EPA Method 5021 (headspace analysis by GC-ECD). Typical detection limits achieved were 0.10 µg/kg for carbon tetrachloride and 0.750 µg/kg for chloroform. A limitation of the chloroform analysis is the presence of chloroform (at very low concentrations) in the methanol solvent used in standard preparation. An 11-point calibration of the GC system was established on the basis of the mass of known quantities of carbon tetrachloride and chloroform in the concentration range 0.125-4.000 ng. Consistency in the headspace analysis results was evident in dual analyses for 18 near-surface soil sampling locations (i.e., analysis of blind replicate samples or duplicate analyses of samples selected by the laboratory). The analytical data obtained by using this method are acceptable for qualitative determination of contaminant distribution.
- Near-surface and subsurface soil samples were prepared and analyzed for carbon tetrachloride and chloroform at the AGEM Laboratory with EPA Methods 5030B and 8260B (purge-and-trap GC-MS) to achieve a detection

limit of 10  $\mu$ g/kg. To verify the accuracy of the analytical results obtained by the AGEM Laboratory, random soil samples (14% of the samples) were split and prepared for verification analysis at Severn-Trent Laboratory with the same analytical method. Accuracy and precision limits were met for the analyses (described in detail in Appendix G). The soil analysis data obtained by the AGEM Laboratory with the purge-and-trap GC-MS method are acceptable for quantitative determination of contaminant distribution.

- Water samples were analyzed at the AGEM Laboratory by using EPA Method 524.2 (a purge-and-trap method). Analytes were 23 VOCs, including carbon tetrachloride and chloroform. The concentration of each component was calculated by comparison of the MS response for the quantitation ion to the response on corresponding calibration curves, for internal standards, or both. Calibration checks with each sample delivery group were required to be within  $\pm 20\%$ . The internal standard recovery limits were 80-120%. In the case of two groundwater samples and one surface water sample for which the minimum recovery of 80% was not achieved, similar results were found for associated replicate samples analyzed within recovery limits, and the data are accepted without qualification. To verify the results obtained by the AGEM Laboratory with the purge-and-trap method, selected samples (28% of the water samples) were also analyzed at the Clayton Laboratory, Novi, Michigan, with EPA CLP methodology. Quality control parameters measuring accuracy and precision were acceptable (Appendix G), and the analytical data from the AGEM Laboratory are accepted for determination of contaminant distribution.
- In the analysis of individual aliquots of some groundwater samples with substantial carbon tetrachloride contamination, variability was apparent in the detected carbon tetrachloride concentrations (as shown in Table G.10 in Appendix G). This variability was especially evident in the sample and replicate collected at a depth of 64.0-68.0 ft BGL at sampling location SB33. The probable primary cause is the heterogeneity of the sampled aquifer. The highest concentration measured at each sample location is reported.
- Groundwater samples collected for nitrate analysis were shipped immediately to Severn-Trent Laboratory for preservation, filtration, and analysis with

EPA Method 300. Four samples were delayed in shipment and were prepared for analysis after the allowable 48-hr holding time. The reported nitrate concentrations for these samples (EVSB20-W-12064, EVSB20-W-12068, EVSB21-W-12072, EVSB21-W-12074) are qualified (Table F.3, Appendix F). The QA/QC procedures followed included initial and continuing instrument calibration through analysis of spiked calibration check standards, analysis of laboratory QC samples with each sample delivery group, and duplicate analyses of selected samples. On the basis of the recovery of nitrate in laboratory control samples (89-97%) and the low relative percent difference (RPD) between duplicate analyses (0-2.3%), the nitrate data from Severn-Trent Laboratory are accepted.

- Selected groundwater samples were analyzed for tritium at the University of Miami Tritium Laboratory, Miami, Florida. Reported tritium concentrations were based on the U.S. National Institute of Science and Technology tritium water standard #4926, as measured on September 3, 1961, and again on September 3, 1978, with a half-life of 12.43 yr. Concentrations were reported in tritium units (TU), equivalent to 3.193 picocuries per kilogram of water. The reported concentrations were corrected for cosmic intensity, gas pressure, and other parameters to account for variances in counter efficiency and background. The isotope data are accepted for age dating of groundwaters.
- Selected groundwater samples were analyzed for TPH extractables at Severn-Trent Laboratory with EPA Method 8015B. Sulfuric acid was added as a preservative to each of the samples at the time of collection. Recovery of surrogate compound *o*-terphenyl was below the QC limit of 60% for samples EVSB50-W-13160, EVSB50-W-13158, and EVSB52-W-13164, and the reported results for those samples are qualified (Table F.6, Appendix F). The surrogate was recovered well in the other samples and in laboratory QC samples. Sample volume was insufficient to reanalyze the affected samples. The TPH data are acceptable for determination of contaminant distribution in groundwater.
- Selected groundwater samples were analyzed for trace metals at Severn-Trent Laboratory with EPA Methods 3010A/6010B. The target analytes were recovered well in the analyses of laboratory QC samples. Matrix interferences

specific to the target analytes were not evident in a serial dilution analysis. The data are accepted for determination of contaminant distribution in groundwater.

A detailed QA/QC report addressing activities related to sample collection, handling, and analysis, including the results for replicate groundwater samples analyzed for VOCs with EPA CLP methodology, is in Appendix G.

# 3.10 Summary

The following are key results of the Phase II investigation at Everest:

- Carbon tetrachloride was detected by headspace GC-ECD analysis (modified EPA Method 5021) at low levels in shallow and deeper near-surface soils across much of the former Everest CCC/USDA facility.
- Carbon tetrachloride was identified at concentrations of 10-66 µg/kg in 11 of 68 subsurface soils prepared by using the purge-and-trap method and analyzed by GC-MS.
- Lithologic data obtained from cores collected with the ECPT and Geoprobe and the results of ECPT sensor logging indicate that the generalized stratigraphic sequence (units 1-4) identified during Phase I of the Everest investigation is applicable to the entire study area.
- Geologic and sediment physical property data obtained in Phase II indicate that the stratigraphic interval (unit 3b) hosting the Everest aquifer is present throughout the area of Argonne's investigation, but that this unit is lithologically heterogeneous.
- Two networks of temporary piezometers (one established during the second session of the Phase II field work and another during the third field session) and eight permanent piezometers were installed in accordance with KDHE regulations to provide information on the occurrence and levels of groundwater in the vicinity of Everest, as well as the apparent patterns of

groundwater flow. Measurements of groundwater levels were obtained both manually and by the use of automatic recording devices installed in the permanent piezometers. The results of these measurements are consistent with Phase I observations, indicating a general pattern of decreasing groundwater levels toward the northwest, west, and southwest from an apparent local high in the vicinity of the former CCC/USDA facility.

- Concentrations of nitrate in groundwater exceeded the MCL of 10 mg/L for this compound at most of the 23 locations sampled in the vicinity of the former Everest CCC/USDA facility and the Nigh property.
- Tritium concentrations ranging from 0.19 TU to > 17 TU were identified in groundwater samples collected at 37 locations across the area of investigation in Phase I and Phase II and in 1 surface water sample collected from the intermittent stream at the western edge of the study area.
- Carbon tetrachloride concentrations ranging from  $< 5 \ \mu g/L$  (meaning that contaminant was detected but could not be quantified) to 919  $\mu g/L$  were identified in groundwater in an irregular band extending north-northwestward from the vicinity of the former CCC/USDA facility toward the Nigh property, and then westward from the vicinity of the Nigh property. Carbon tetrachloride was not detected in surface water collected in the vicinity of the former CCC/USDA facility or from the intermittent stream at the western edge of the study area.
- Low levels of petroleum hydrocarbons, possibly associated with the operation of the ECPT and Geoprobe vehicles used for groundwater sampling at the site, were identified in groundwater samples from selected locations west of the Nigh property. Barium concentrations exceeding  $200 \,\mu g/L$  were also identified in groundwater at several of these locations; however, vanadium was not detected at quantifiable levels.
- The results of QA/QC activities performed during Phase II demonstrated that the analytical data reported by the various laboratories are acceptable for the purposes of this investigation.



FIGURE 3.1 Locations of grain bins at the former Everest CCC/USDA facility in 1966, Phase II nearsurface soil samples collected in the first session of Phase II work, and subsurface soil samples collected in the second session of Phase II work with the electronic cone penetrometer. Numbers indicate the sample code. (Source of aerial photograph: USDA 1966.)



FIGURE 3.2 Locations of grain bins at the former Everest CCC/USDA facility in 1966, Phase II (second session) subsurface soil sampling with the electronic cone penetrometer, and Phase II (first session) near-surface soil samples (0.9-1.2 ft and 5.5-6 ft BGL), with results of headspace analyses of near-surface soils for carbon tetrachloride. (Source of photograph: USDA 1966.)



FIGURE 3.3 Collection depths for subsurface soil samples from the former Everest CCC/USDA facility (second session of Phase II work), with results of purge-and-trap analyses of these samples for carbon tetrachloride and chloroform, displayed on lithologic logs of SB23, SB24, and SB34.



FIGURE 3.4 Locations of the former CCC/USDA facility, the Nigh property, and Phase II (second and third sessions) soil borings made with direct-push technology (electronic cone penetrometer or Geoprobe).



FIGURE 3.5 Comparison of the lithologic logs (vertically exaggerated) for three borings (SB20, SB27, and SB21) located along a line northwest of the former CCC/USDA facility and within 500 ft of each other.



FIGURE 3.6 Locations of soil borings sampled in Phase II (second and third sessions) for grain size analysis.



FIGURE 3.7 Locations of the temporary piezometers installed during the second and third sessions of Phase II in the western part of Everest, the former CCC/USDA facility, and the Nigh property. All temporary piezometers were removed, and the soil borings were grouted, within 30 days of installation.



FIGURE 3.8 Locations of the permanent piezometers installed during Phase I and the second and third sessions of Phase II in the western part of Everest, the former CCC/USDA facility, and the Nigh property.



FIGURE 3.9 Results of nitrate analyses on Phase II (second session) groundwater samples from the western part of Everest, with the locations of the samples, the former CCC/USDA facility, and the Nigh property.



FIGURE 3.10 Results of tritium analyses on groundwater and surface water samples collected during Phase I and the second and third sessions of Phase II in the western part of Everest, with the locations of the samples, the former CCC/USDA facility, and the Nigh property.



FIGURE 3.11 Results of carbon tetrachloride analyses on groundwater samples collected during the second and third sessions of Phase II in the western part of Everest, with the locations of the samples, the former CCC/USDA facility, and the Nigh property.



FIGURE 3.12 Results of chloroform analyses on groundwater samples collected during the second and third sessions of Phase II in the western part of Everest, with the locations of the samples, the former CCC/USDA facility, and the Nigh property.



FIGURE 3.13 Results of carbon tetrachloride analyses on surface water samples collected during the second and third sessions of Phase II in the western part of Everest, with the locations of the samples, the former CCC/USDA facility, and the Nigh property.



FIGURE 3.14 Results of analyses of groundwater samples collected during the third session of Phase II in the western part of Everest for total petroleum hydrocarbons and trace metals, with the locations of the samples, the former CCC/USDA facility, and the Nigh property.

## 4 Interpretation of Results

Phase II of the QuickSite<sup>®</sup> investigation at Everest was undertaken with the primary goal of delineating and further understanding the distribution of carbon tetrachloride in groundwater at the site and its relationship to the potential source area(s) that might have contributed to the contamination. To address this goal, four specific technical objectives were developed to guide the Phase II field studies. These technical objectives are to accomplish the following:

- 1. Confirm an association of carbon tetrachloride contamination with the former Everest CCC/USDA facility.
- 2. Characterize the hydrogeologic factors controlling contaminant migration.
- 3. Delineate the distribution of the carbon tetrachloride plume.
- 4. Investigate for indications of possible groundwater contamination associated with the former private grain storage facility on the Nigh property.

In this section, the quality-assured data acquired in Phase II are evaluated and discussed in the context of these specific objectives and the hydrogeologic framework established for the site in the Phase I *Work Plan* and the subsequent Phase I field studies (Argonne 2000, 2001). With this investigative approach, an integrated, technically defensible understanding of the hydrogeologic environment at Everest — and the distribution and migration of carbon tetrachloride within this setting — is progressively assembled as the specific technical goals of each phase of the investigation are achieved.

# 4.1 Confirm an Association of Carbon Tetrachloride Contamination with the Former Everest CCC/USDA Facility

During the Phase I investigation at Everest, concentrations of carbon tetrachloride exceeding  $5 \mu g/L$  were identified in groundwater sampled from a location (SB11) at the northwestern edge of the former CCC/USDA grain storage facility, as well at additional locations (SB06, SB09) immediately northwest of and downgradient from the former facility. These results suggested an association of the observed groundwater contamination with the property on which the former facility was located.

Argonne experience has demonstrated that the presence of carbon tetrachloride in nearsurface soils is often diagnostic of deeper subsurface carbon tetrachloride concentrations that might represent a present or former source of contamination to groundwater. To confirm the inferred association of carbon tetrachloride contamination with the former CCC/USDA facility, targeted sampling of near-surface soils and analysis for VOCs was performed by headspace GC-ECD analysis. Locations for this sampling were chosen through evaluation of past activities and structures on this property. No usage of this land for purposes other than agriculture has been found to precede or follow the period of grain storage operations by the CCC/USDA.

The results of headspace GC-ECD analyses of the near-surface soil samples were used to guide the selection of several locations for additional subsurface soil sampling and analysis. The results of purge-and-trap GC-MS analyses of these samples were used to evaluate potential human health risks that might arise from exposure to the near-surface soils.

## 4.1.1 Contamination in Near-Surface Soils

Near-surface soils were collected at the former CCC/USDA facility for carbon tetrachloride analysis with a modification of EPA Method 5021 (headspace GC-ECD). As discussed in Section 3.1.1, samples were collected at both *shallow* (typically 0.9-1.2 ft BGL) and *deeper* (5.5-6.0 ft BGL) soil horizons across the former facility, and the spatial distributions of the resulting concentrations at each depth were reviewed and compared.

Figures 4.1 and 4.2 show, respectively, the distributions of the highest relative headspace carbon tetrachloride concentrations in the shallow and deeper near-surface soils. Although the identified distribution patterns are not identical, close similarity is apparent in the patterns of higher concentrations at the two depths at the locations of the former eastern and central lines of grain bins, as well as at the northern portion of the southwestern line of bins. The consistency of these observations is interpreted to indicate the most likely areas for possible contamination of the underlying subsurface soils.

Access to the agricultural field formerly occupied by the Everest CCC/USDA facility was restricted during Phase II because of planting requirements and poor surface conditions caused by heavy rains during the second field session of the investigation. For this reason, sampling of the deeper, subsurface vadose zone soils at the former Everest facility during this phase of the investigation was limited to only three locations, as shown in Figures 4.1 and 4.2 (SB23, SB24,

and SB34). The analytical results for the subsurface soils from these three borings are interpreted in Section 4.1.2. Subsurface sampling to investigate the areas of relatively higher carbon tetrachloride levels in near-surface soils associated with the former central and southwestern lines of grain bins could not be completed during Phase II.

#### 4.1.2 Contamination in Subsurface Soils

Soil samples from cores collected in the vadose zone at ECPT borings SB23, SB24, and SB34 were prepared and analyzed by EPA Methods 5030B and 8260B (purge-and-trap GC-MS), as discussed in Section 3.1.2. The distributions of carbon tetrachloride and chloroform in these soils are shown in Figure 4.3 in conjunction with the lithologic logs for SB23, SB24, and SB34. Carbon tetrachloride concentrations exceeding the purge-and-trap GC-MS method detection limit of 10  $\mu$ g/kg were identified in vadose zone soils from SB23 and SB34 but not in soils from SB24. Carbon tetrachloride concentrations above the method detection limit observed in all three borings at the top of the saturated zone are interpreted to reflect contamination of the groundwater at these depths.

Boring SB23 is at the southern end of the former eastern row of grain bins (Figures 4.1 and 4.2), corresponding with an area of high relative carbon tetrachloride concentrations (headspace analysis) in both the shallow and deeper near-surface soils. Purge-and-trap GC-MS carbon tetrachloride values of  $12-23 \mu g/kg$  were found at this location at 15-23 ft BGL in dry, dense, silty clays. Chloroform was identified in two of the five samples from this interval, at concentrations of 10 and 11  $\mu g/kg$  (Figure 4.3). The sample at 43 BGL, at the top of the saturated zone, contained carbon tetrachloride at 66  $\mu g/kg$ .

Boring SB34 was selected to test the northern end of the eastern line of bins, where relatively high carbon tetrachloride levels had been detected in both shallow near-surface soils and adjacent deeper near-surface soils. Carbon tetrachloride values of 10-14  $\mu$ g/kg were found at 39-43 ft BGL, in clayey silts and clayey sands immediately above the saturated zone. The highest carbon tetrachloride concentration identified, 15  $\mu$ g/kg at a depth of 47 ft BGL, occurred in the saturated zone.

Boring SB24 was sampled to test a localized high in the headspace carbon tetrachloride concentrations observed only for the deeper near-surface soils, in the northwestern portion of the former CCC/USDA facility and somewhat removed from the former locations of the grain

storage bins. No carbon tetrachloride or chloroform was detected in the vadose zone soil at this location. A carbon tetrachloride concentration of  $16 \,\mu g/kg$  was measured for a single sample from the saturated zone at 43 ft BGL.

The identified presence of carbon tetrachloride and chloroform in the vadose zone soils confirms an association of these contaminants with the property formerly occupied by the CCC/USDA grain storage facility. The results indicate that a potential source of groundwater contamination remains in the soils; however, these contaminants will be mobilized only if the low concentrations presently observed can be effectively leached from the vadose zone clays by infiltrating precipitation.

#### 4.1.3 Health Risks Associated with the Contaminated Soils

Levels of soil contamination required to surpass EPA limits for risks due to direct ingestion and inhalation of carbon tetrachloride in shallow soils have been calculated by using parameters defined as reasonable maximum exposures for average Americans (EPA 1989, 1991). The pathways considered were direct ingestion of contaminated soil, inhalation of contaminated dust (indoors and outdoors), and ingestion of vegetables and fruits grown in contaminated soil. Pathways requiring transfer of contaminants from soil to groundwater were not included. The results show that a concentration of 5,800  $\mu$ g/kg would be required to yield a carcinogenic risk of 10<sup>-4</sup>, the maximum risk within the acceptable (10<sup>-4</sup> to 10<sup>-6</sup>) range (EPA 1990). The concentration of carbon tetrachloride in soil required to yield the maximum allowable hazard index is 2,333  $\mu$ g/kg. The fact that none of the near-surface soil samples (approximately from the surface to a depth of 6 ft) contained carbon tetrachloride at levels above the detection limit of 10  $\mu$ g/kg for the purge-and-trap GC-MS method indicates that no human health risk is associated with exposure to the near-surface soils at the former Everest CCC/USDA facility.

Health risks associated with both exposure to contaminated surface soils and the potential soil-to-groundwater contamination pathway are addressed in the KDHE *Risk-Based Standards for Kansas (RSK Manual*; KDHE 1999). Section 5.2 of the *RSK Manual* indicates that the maximum concentrations of carbon tetrachloride and chloroform identified in soils at the former CCC/USDA facility must be compared to the KDHE's Tier 2 Risk-Based Summary Table to assess the potential hazard associated with these contaminants. Under the KDHE guidance, if concentrations in excess of the appropriate Tier 2 values are detected, the KDHE may determine that remedial action is warranted. The minimum Tier 2 concentrations listed in the Risk-Based

Summary Table for soil contamination with carbon tetrachloride and chloroform are  $200 \ \mu g/kg$  and  $1,200 \ \mu g/kg$ , respectively. The concentrations of carbon tetrachloride and chloroform identified in soils at the former CCC/USDA facility in Phase II are well below these specified target levels.

# 4.2 Characterize the Hydrogeologic Factors Controlling Contaminant Migration

The Phase I investigation at Everest determined the sequence of major Holocene and Pleistocene sedimentary units (here identified as stratigraphic units 1-4) that form the unconsolidated geologic framework overlying Pennsylvanian shale bedrock in the vicinity of the former Everest CCC/USDA facility. The major units identified, in order of increasing depth from the surface to bedrock, consist of (1) windblown loess, (2) silts and clays, (3) sand and sandy to gravelly clay till, and (4) blue-gray silty clay. The more detailed lithologic characteristics of this stratigraphic column and the features used to define laterally persistent subunits within several of the intervals are summarized in Table 4.1. The lithologic information presented in Table 4.1 was initially compiled from the evaluation of logs of ECPT cores collected in Phase I, then confirmed and refined further on the basis of cores obtained from ECPT borings SB20-SB36, SB38-SB41, SB44, and SB49-SB50 during Phase II of the Everest studies. The locations of all cored borings are shown in Figure 4.4; the Phase II core logs are in Appendix B.

Hydrogeologic and preliminary geochemical data obtained during Phase I identified only one lithologic unit of significance as an aquifer at this site: the sandy to gravelly clay till interval defined as stratigraphic unit 3b. The presence of saturated conditions and localized groundwater

|                                                                  |           | Thickness |                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------|-----------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Age                                                              | Rock Unit | (ft)      | Physical Characteristics                                                                                                                                                                                                                                       |
| Holocene                                                         | Topsoil   | 0-4.5     | Dark brown-black silty loam to black loamy clay with few medium- to coarse-grained sand erratics, patches of iron oxide staining, abundant roots, and high organic content; noncalcareous.                                                                     |
| Holocene/<br>Pleistocene<br>(Illinoian-<br>Wisconsinan<br>Stage) | Loess (1) | 0-11      | Tan clayey silt to gray silt with minor iron oxide filaments and<br>coatings throughout, few medium- to coarse-grained sand and<br>pebble-sized erratics, minor iron oxide staining and manganese<br>concretions, and many root and worm holes; noncalcareous. |

TABLE 4.1 Stratigraphy for the area of the Phase II investigation at Everest.

TABLE 4.1 (Cont.)

|                                           |                                                                          | Thickness |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------|--------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Age                                       | Rock Unit                                                                | (ft)      | Physical Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pleistocene                               | Dark brown silty<br>clay (2a)                                            | 0-5       | Chocolate brown and gray silty clay with mottled mixture of dark<br>brown and gray clays, many carbon filaments and coatings, minor iron<br>oxide, and very few sand grains; dense, noncalcareous.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Upper                                     | Gray and brown<br>silty clay to<br>clayey silt (2b)                      | 5-18      | Gray and brown silty clay to clayey silt with mottled appearance due<br>to a mixture of gray and brown clays and iron oxide staining, few small<br>limestone pebbles (less than 0.25 in. in diameter), some manganese<br>concretions, few coarse sand grains. Iron oxide in small areas<br>(possibly worm or root casts), some black carbon filaments, scattered<br>sand grains, few black manganese coatings on grains;<br>noncalcareous.                                                                                                                                                                                                                                                                                                                                                            |
| Independence<br>Formation                 | Gray silty clay<br>(2c)                                                  | 8-15      | Gray clay, silty, massive, with many black carbonized root casts and organic debris, few manganese concretions, minor iron oxide coating on scattered sand erratics; noncalcareous.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                           | Gray and brown<br>sandy and silty<br>clay (2d)                           | 8-13      | Dark gray and brown clayey silt to sandy clay with occasional sand<br>stringers, carbonized plant material, minor iron oxide staining;<br>noncalcareous, dry. Lenses of grayish brown clayey to silty sand that<br>may form transient perched aquifers in northern part of Phase II area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (Kansan<br>Stage)                         | Gray-brown to<br>white clayey<br>sand (3a)                               | 3-7       | Gray-brown to white clayey sand, medium to coarse grained,<br>cemented by clay and calcium carbonate. Color due to cement (gray-<br>brown clay, white caliche). Caliche-cemented zones are patchy and<br>irregular (up to 4 in. across). Much black carbonized plant material in<br>carbonate cement; calcareous, mostly dry. Cemented caliche gravel<br>common at base of unit.                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                           | Brown to orange-<br>brown sandy to<br>gravelly clay till<br>complex (3b) | 6-20      | Brown to orange-brown sandy clay till. Calcareous, stained by iron<br>oxides, with metamorphic gravel-sized erratics (up to<br>1.5 in. in diameter), dry to wet. Thin cemented coarse sand and fine<br>gravel (caliche rubble) lenses near or at the top of the till. Sand is 80-<br>90% cemented by caliche, with hard caliche gravel up to 2 in. in<br>diameter and occasional frosted sand grains. Till contains beds of<br>glaciofluvial sand and gravel in channels, lenses, and stringers,<br>occasionally cemented by caliche. Sand is fine- to coarse-grained, tan<br>to brown, subangular to rounded; mostly noncalcareous, wet. Sand<br>and gravel unit is poorly-sorted, mixed-lithology (predominantly<br>quartz) gravel in rounded to subrounded medium- to coarse-grained<br>sand; wet. |
|                                           | Blue-gray to<br>olive silty clay (4)                                     | 0-23      | Blue-gray to olive silty clay, massive, calcareous, dense. Minor fine sand inclusions and occasional shale pebble erratics (up to 0.75 in. in diameter); brittle fracture, dry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Pennsylvan-<br>ian<br>Waubaunsee<br>Group | Shale and limestone                                                      | Unknown   | Gray limestone and gray and brown calcareous shale.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

contamination were demonstrated in this unit during Phase I. The available data indicated, however, that unit 3b was lithologically heterogeneous and that its vertical and lateral hydraulic continuity to the northwest of the former CCC/USDA facility were questionable. Most specifically, the observed hydrogeologic relationships and preliminary groundwater contamination data obtained in Phase I suggested that lithologically controlled permeability variations might restrict or preclude the migration of groundwater containing carbon tetrachloride from the vicinity of the former CCC/USDA facility northwestward toward the contaminated private well identified on the Nigh property (DW06). To reflect these hydrogeologic complexities, the term *aquifer unit* is invoked in this report to represent the groundwater-bearing sediments present in stratigraphic unit 3b.

The present Phase II specific technical objective is focused on further identification and delineation of the hydrogeologic characteristics of stratigraphic unit 3b that control groundwater flow and contaminant migration pathways in the Everest aquifer unit, both in the downgradient areas between the former CCC/USDA facility and the Nigh property and to the west of the Nigh property.

## 4.2.1 Lithologic Factors Affecting Migration

Lithology and moisture content data from the core logs were considered in conjunction with qualitative relationships drawn from the comparison of ECPT sensor logs to the core data at selected locations to develop a picture of the three-dimensional geometry and internal lithologic structure of stratigraphic unit 3b and the Everest aquifer unit in the investigation area. To illustrate these features, three hydrogeologic cross sections were constructed and interpreted, at the locations shown in Figure 4.5.

Hydrogeologic cross section A-A', shown in Figure 4.6, extends from southeast to northwest across the study area and was constructed to depict the geology affecting potential direct groundwater migration between the former CCC/USDA facility and the contaminated well (DW06) previously identified on the Nigh property. All of the borings east of or on the Nigh property and used in the interpretation of this section were continuously cored across unit 3b. The sand and sandy to gravelly clay till (unit 3b) that hosts the aquifer unit along this line of section attains a maximum thickness of 18 ft near the Nigh property, but it thins between the former CCC/USDA facility and the Nigh well to a minimum thickness of < 6 ft at SB27. The predominant lithology of unit 3b consists of calcareous sandy clay till, with metamorphic gravel

to cobble-sized erratics up to 1.5 in. in diameter. A thin, cemented zone of coarse sand and fine gravel (caliche rubble) was identifiable at or near the top of the till across much of the study area and is a local stratigraphic marker. Within the caliche rubble zone, the sand is 80-90% cemented by calcium carbonate, with hard calcareous gravel up to 2 in. in diameter. The moisture content of the till within unit 3b varies from wet to dry, depending on the amounts of clay and silt in the matrix and the degree of cementation and compaction.

Beds of glaciofluvial sand and gravel in channels and stringers, occasionally cemented by caliche, are enclosed within the sandy clay till and also fill shallow depressions cut into it. The thickest deposits of sand and sand mixed with gravel are found in a channel-like feature that underlies the area of the former CCC/USDA facility and is interpreted as centered immediately to the west of the property (Figure 4.6). Here the sand is wet, fine- to coarse-grained, and generally noncalcareous. The gravel bed is composed of wet, mixed-lithology gravel (predominantly quartz) in medium- to coarse-grained sand.

In contrast to these relatively well developed coarse-grained deposits, sands to the northwest of the former CCC/USDA facility, from the location of boring SB06 to the vicinity of the Nigh well (DW06), are restricted to randomly distributed, discontinuous lenses enclosed in the sandy clay till. These isolated sandy lenses variably consist of clayey sand, silty sand, and mixtures of fine- to medium-grained sand and gravel. The isolated sandy deposits are mostly wet; however, ECPT sampling at SB27 did not encounter saturated sand. Here the till is dry, and the only sandy interval penetrated consists of a 3-in.-thick mixture of calcareous sand and black silt at a depth of 60 ft BGL, within the clayey till. The lithologies and moisture contents identified in this area therefore support the hypothesis, proposed in Phase I, that a lithologically controlled (unsaturated) zone of reduced permeability impedes direct (line-of-sight) groundwater flow — and hence contaminant migration — from the former CCC/USDA facility toward the Nigh well (DW06).

The general characteristics of unit 3b in the area northwest of SB05 and the Nigh well (DW06) were interpreted on the basis of ECPT sensor log responses for boring SB49t. These responses were corroborated by (1) coring of selected stratigraphic intervals, (2) comparison of these sensor traces to the lithologic descriptions and ECPT sensor responses obtained from continuously cored borings elsewhere in the study area, (3) results of groundwater sampling performed at multiple depth intervals at this location, and (4) continuous coring at SB55 at the northwestern end of this section. In this area, multiple thin sandy lenses were identified in the till

matrix. Although several of the lenses are of limited extent, an apparently continuous sandy zone was encountered overlying the till.

Hydrogeologic cross section B-B' (Figure 4.7) was constructed from west to east across the central portion of the area between the former CCC/USDA facility and the Nigh property. All of the borings used in the interpretation of this section were continuously cored across unit 3b. Along this line of section, unit 3b appears as two relatively thick segments, separated by a thinned interval (projected from the north; see discussion to follow) between borings SB20 and SB29. To the east of SB29, glaciofluvial sediments identified at the base of unit 3b are interpreted to represent the northward extension of the coarse-grained deposits shown at the southern end of section A-A'. Thin, wet sandy lenses are distributed sporadically throughout the sandy clay till along this line of section; however, they occur at various elevations and could not be correlated between adjacent borings, suggesting that they lack lateral continuity.

Figure 4.8 depicts hydrogeologic cross section C-C<sup>'</sup>, which extends from the intermittent stream at the western margin of the Phase II study area, through the Nigh property, and then eastward across the area directly north of the former CCC/USDA facility. The eastern portion of section C-C<sup>'</sup>, east of SB05 and the Nigh well (DW06), was interpreted from continuously cored borings. This portion of section C-C<sup>'</sup> exhibits many of the same features observed in section B-B<sup>'</sup> to the south. Unit 3b is again segmented, as a result of thinning (to approximately 4 ft) at boring SB39. Along this line of section, however, the sediments within the thinned interval consist of sands that thicken slightly and coarsen westward (at SB38) before they thin again to < 1 ft thick near the Nigh well (DW06). To the east of SB39, coarse-grained sediments found in the upper portion of unit 3b are again interpreted to represent a northward extension and a slight shallowing of the glaciofluvial deposits penetrated in the eastern portion of section B-B<sup>'</sup> and the southern portion of section A-A<sup>'</sup>.

The general characteristics of unit 3b in the area west of the Nigh well (DW06) were interpreted on the basis of ECPT sensor log responses that were corroborated by (1) coring of selected stratigraphic intervals, (2) comparison of these sensor traces to the lithologic descriptions and ECPT sensor responses obtained from the continuously cored borings elsewhere in the study area, (3) results of groundwater sampling performed at multiple depth intervals at each location, and (4) continuous coring at SB53 at the western end of this section. The results of these analyses indicate that unit 3b in the area west of the Nigh well (DW06) also contains multiple thin lenses or stringers of wet sandy material within a sandy clay till matrix. The sandy deposits within the till are relatively discontinuous and generally cannot be positively correlated

between adjacent borings; however, a sandy zone again identified overlying the till could be traced across the area to the intermittent stream.

Cores obtained from boring SB53, along the bank of the intermittent stream at the western margin of the study area, consisted of dark brown to gray silty clays directly overlying the variably wet to dry silty clayey sands and sandy clay till of unit 3b at an approximate depth of 20 ft BGL. Cores obtained from boring SB54 — approximately 900 ft southwest of SB53 (see Figure 4.5) and at a ground surface elevation approximately 6 ft lower than that of SB53 — also penetrated variably wet to dry sands, gravelly sands, and clay till of unit 3b at approximately 17 ft BGL. These observations, plus topographic relationships observed at the site, suggest that the deeply incised bed of the intermittent stream can be expected to penetrate stratigraphic unit 3b at some distance downstream of the SB54 location.

The interpreted cross sections indicate that the thickness variations of unit 3b are predominantly a result of deposition of the sediments on the irregular surface, illustrated in Figure 4.9, of the underlying blue-gray silty clay interval identified as stratigraphic unit 4. The discussions presented above, however, demonstrate that the distribution of sandy channels, lenses, and stringers within the till complex shows little relationship to the gross thickness of unit 3B and cannot be predicted on this basis.

The results of the Phase II analyses confirm that fairly well developed and relatively continuous deposits of sand and mixed sand and gravel are present in the immediate vicinity of, and to the north of, the former CCC/USDA facility. The distribution of coarser-grained materials northwest of the former CCC/USDA facility, in the vicinity of the Nigh well (DW06), is restricted to fairly thin and discontinuous, silty to sandy lenses and stringers that are randomly distributed within the sandy clay till. A localized area of dry clay till, lacking sandy materials, was confirmed at SB27, along a direct line from the former CCC/USDA facility to the private well (DW06) on the Nigh property. To the west of the Nigh property, multiple discontinuous sandy lenses are also present within the till; however, a thin zone of sandy deposits overlying the till appears to extend across the area to the intermittent stream. These results confirm the hypothesis that a lithologically defined barrier impedes direct groundwater flow from the former CCC/USDA facility toward the Nigh property.

## 4.2.2 Hydrologic Factors Affecting Migration

Grain size analyses were performed on soil samples collected during both the Phase I and Phase II investigations, representing the lithologies identified in stratigraphic unit 3b. The results used as a basis to estimate the hydraulic conductivity ( $K_h$ ) of the sediments in unit 3b and hence the heterogeneity of the permeability distribution within it. Hydraulic conductivities were calculated by using the methods of Hazen, Beyer, and Kruger (Vukovic and Soro 1992), which yield optimal results for sandy materials. Porosity values needed for the calculations were approximated by using Istomina's empirical formula (Vukovic and Soro 1992). The results of these calculations are summarized in Table 4.2 and depicted in relation to the local stratigraphy in Figures 4.6-4.8 as an aid to understanding contaminant migration pathways. Estimated maximum  $K_h$  values for the sand and gravel channel deposits ranged from 10<sup>1</sup> to 10<sup>2</sup> ft/d, while the conductivities for silty to sandy lenses in the northwestern and western portions of the study area were lower by one to two orders of magnitude, ranging from 10<sup>-1</sup> to 10<sup>1</sup> ft/d. The  $K_h$  of the surrounding compact sandy clay tills was generally less than 10<sup>-1</sup> ft/d.

Unit 3b is fully saturated only in the eastern portion of the study area, beneath and to the south of the former CCC/USDA facility. An area of dry till, lacking sandy lenses, was identified southeast of the Nigh well (DW06) at boring SB27 (Figures 4.5 and 4.6); however, over the rest of the study area the moisture content of the till varied with the amount of clay and silt in the matrix and the degree of compaction, cementation, and fracturing. The thin, randomly distributed sandy lenses and stringers identified in the northwestern and western portions of the study area were generally water bearing. No discrete interconnecting pathways between these deposits could be recognized at the scale of these investigations; however, multiple lines of evidence indicate that hydraulic communication exists, to varying degrees, between most of these saturated intervals. This hydraulic communication is interpreted to occur via patchy zones of slightly more sandy till — as well as via very thin silty to sandy partings and fractures within the till — and is expected to be less effective in areas where the till is more compact and free of coarser-grained sediments.

Data collected during the Phase I investigation indicate that groundwater levels measured in temporary and permanent piezometers at the site define a smooth, semiradial pattern of levels declining to the west and northwest from a localized high presumed to reflect a local recharge area southeast of the former CCC/USDA facility. This pattern is consistent with the interpretation that hydraulic continuity exists among the more permeable intervals within the Everest aquifer unit.

| TABLE 4.2     | Results of hyd  | draulic conductivity | (K <sub>h</sub> ) | estimations | based of | on grain | size c | data for sa | mples |
|---------------|-----------------|----------------------|-------------------|-------------|----------|----------|--------|-------------|-------|
| collected fro | om unit 3b at E | verest.              |                   |             |          |          |        |             |       |

| Boring | Sample<br>Depth<br>(ft BGL)   | D <sub>40</sub> a (mm) | D <sub>kruger</sub> b                   | D <sub>oo</sub> c (mm) | C <sub>u</sub> <sup>d</sup>         | K (ft/d) | Log <i>K</i><br>(ft/d) | Method <sup>e</sup> |
|--------|-------------------------------|------------------------|-----------------------------------------|------------------------|-------------------------------------|----------|------------------------|---------------------|
| 2011.9 | ()                            |                        | ((((((((((((((((((((((((((((((((((((((( | D <sub>60</sub> (mm)   | (D <sub>60</sub> /D <sub>10</sub> ) |          | (                      | Method              |
| SB01   | 15 5 16 5                     | 0 2020                 | 0.020                                   | 0 4750                 | 2.24                                | 120 22   | 2.1                    | вц                  |
| SB01   | 45.5-40.5<br>56 2-56 <i>1</i> | ~ 0.2030               | 0.039                                   | 0.4750                 | 2.34                                | ~ 0.10   | 2.1<br>- 10            | b, H                |
| 5001   | 50.2-50.4                     | < 0.001                | 0.007                                   | 0.0000                 | -                                   | < 0.10   | < -1.0                 | I                   |
| SB03   | 44.0-45.0                     | 0.0046                 | 0.023                                   | 0.1570                 | 34.13                               | 0.29     | -0.5                   | К                   |
| SB03   | 45.0-46.0                     | 0.0796                 | 0.023                                   | 0.2440                 | 3.07                                | 17.77    | 1.2                    | В                   |
| SB03   | 47.0-47.5                     | 0.0089                 | 0.020                                   | 0.2580                 | 28.99                               | 0.22     | -0.7                   | К                   |
| SB03   | 48.0-49.0                     | 0.0487                 | 0.051                                   | 0.7890                 | 16.20                               | 1.62     | 0.2                    | К                   |
| SB03   | 49.0-50.0                     | < 0.001                | 0.007                                   | 0.1520                 | -                                   | < 0.10   | < -1.0                 | f                   |
| SB05   | 61 8-62 5                     | < 0.001                | 0.026                                   | 0 3800                 | _                                   | 0.37     | -0.4                   | ĸ                   |
| SB05   | 77 0-77 8                     | 0.1750                 | 0.020                                   | 3 2600                 | - 18.63                             | 10.72    | -0.4                   | R K                 |
| 3005   | 11.0-11.8                     | 0.1750                 | 0.100                                   | 3.2000                 | 10.05                               | 19.72    | 1.5                    | D, K                |
| SB06   | 51.5-53.5                     | < 0.001                | 0.005                                   | 0.0470                 | -                                   | < 0.10   | < -1.0                 | f                   |
| SB06   | 53.5-54.5                     | < 0.001                | 0.006                                   | 0.0326                 | -                                   | < 0.10   | < -1.0                 | f                   |
| SB06   | 55.5-55.8                     | < 0.001                | 0.003                                   | 0.0070                 | -                                   | < 0.10   | < -1.0                 | f                   |
| SB11   | 41 5-42 0                     | < 0.001                | 0.021                                   | 0 2070                 | -                                   | 0.25     | -0.6                   | к                   |
| SB11   | 42 0-44 0                     | 0.0016                 | 0.021                                   | 0.1320                 | 83.63                               | 0.20     | -0.9                   | ĸ                   |
| SB11   | 44 0-45 0                     | < 0.0010               | 0.013                                   | 0.1020                 | -                                   | < 0.10   | < -1 0                 | f                   |
| SB11   | 45 2-45 5                     | 0 2180                 | 0.001                                   | 0.5790                 | 2 66                                | 154 65   | 22                     | в н                 |
| SB11   | 45 5-47 0                     | 0 1770                 | 0.039                                   | 0.5280                 | 2.98                                | 98.88    | 2.0                    | B H                 |
| SB11   | 47.0-47.4                     | 0.1850                 | 0.056                                   | 0.6840                 | 3.70                                | 101.59   | 2.0                    | B. H                |
| SB11   | 47.4-48.0                     | < 0.001                | 0.007                                   | 0.0980                 | -                                   | < 0.10   | < -1.0                 | f                   |
| SB11   | 48.0-49.1                     | 0.2530                 | 0.059                                   | 0.7790                 | 3.08                                | 200.33   | 2.3                    | В. Н                |
| SB11   | 49.6-50.0                     | 0.0013                 | 0.007                                   | 0.0418                 | 32.15                               | < 0.10   | < -1.0                 | ŕ                   |
| SB11   | 50.0-50.4                     | < 0.001                | 0.007                                   | 0.0849                 | -                                   | < 0.10   | < -1.0                 | f                   |
| SB11   | 50.6-51.0                     | < 0.001                | 0.004                                   | 0.0180                 | -                                   | < 0.10   | < -1.0                 | f                   |
| SB11   | 51.3-51.8                     | < 0.001                | 0.003                                   | 0.0048                 | -                                   | < 0.10   | < -1.0                 | f                   |
| 0040   |                               | 0.004                  | 0.007                                   | 0.0000                 |                                     | 0.40     | 4.0                    | ,                   |
| SB16   | 54.0-55.0                     | < 0.001                | 0.007                                   | 0.2090                 | -                                   | < 0.10   | < -1.0                 | f                   |
| SB16   | 55.5-56.5                     | < 0.001                | 0.006                                   | 0.0530                 | -                                   | < 0.10   | < -1.0                 | I<br>4              |
| SB16   | 59.0-60.0                     | < 0.001                | 0.006                                   | 0.2110                 | -                                   | < 0.10   | < -1.0                 | T K                 |
| SB16   | 62.0-63.6                     | 0.0023                 | 0.023                                   | 0.4710                 | 204.78                              | 0.31     | -0.5                   | ĸ                   |
| SB16   | 63.6-64.0                     | < 0.001                | 0.025                                   | 0.5530                 | -                                   | 0.37     | -0.4                   | ĸ                   |
| SB18   | 65.6-66.2                     | < 0.001                | 0.015                                   | 0.1910                 | -                                   | 0.14     | -0.9                   | К                   |
| SB18   | 66.2-67.0                     | < 0.001                | 0.020                                   | 0.2010                 | -                                   | 0.22     | -0.7                   | K                   |
| SB18   | 67.4-68.5                     | < 0.001                | 0.008                                   | 0.2570                 | -                                   | < 0.10   | < -1.0                 | f                   |
| SB18   | 69.5-70.3                     | < 0.001                | 0.006                                   | 0.0760                 | -                                   | < 0.10   | < -1.0                 | f                   |
| SB18   | 70.3-71.0                     | < 0.001                | 0.005                                   | 0.0320                 | -                                   | < 0.10   | < -1.0                 | f                   |

## TABLE 4.2 (Cont.)

| Boring | Sample<br>Depth<br>(ft BGL) | D <sub>10</sub> ª (mm) | D <sub>kruger</sub> b<br>(mm) | D <sub>60</sub> c (mm) | C <sub>u</sub> <sup>d</sup><br>(D <sub>60</sub> /D <sub>10</sub> ) | K (ft/d) | Log <i>K</i><br>(ft/d) | Method <sup>e</sup> |
|--------|-----------------------------|------------------------|-------------------------------|------------------------|--------------------------------------------------------------------|----------|------------------------|---------------------|
| SB19   | 46.0-47.8<br>47 8-50 0      | < 0.001                | 0.015                         | 0.2440                 | -<br>8 53                                                          | 0.13     | -0.9                   | ĸ                   |
| SB19   | 50.0-50.6                   | < 0.001                | 0.020                         | 0.1490                 | -                                                                  | 0.22     | -0.7                   | ĸ                   |
| SB19   | 50.6-51.8                   | < 0.001                | 0.005                         | 0.0465                 | -                                                                  | < 0.10   | < -1.0                 | f                   |
| SB19   | 51.8-52.8                   | < 0.001                | 0.008                         | 0.0194                 | -                                                                  | < 0.10   | < -1.0                 | f                   |
| SB19   | 52.6-54.3                   | 0.0039                 | 0.019                         | 0.0424                 | 10.87                                                              | 0.26     | -0.6                   | К                   |
| SB19   | 54.3-54.6                   | 0.0037                 | 0.019                         | 0.1230                 | 33.24                                                              | 0.21     | -0.7                   | K                   |
| SB19   | 54.6-54.8                   | 0.0095                 | 0.026                         | 3.3000                 | 347.37                                                             | 0.40     | -0.4                   | K                   |
| SB19   | 54.8-55.0                   | 0.0010                 | 0.007                         | 0.3990                 | 411.50                                                             | < 0.10   | < -1.0                 | f                   |
| SB19   | 55.0-56.0                   | 0.0455                 | 0.097                         | 0.6910                 | 15.19                                                              | 5.92     | 0.8                    | K                   |
| SB20   | 56.0-58.0                   | 0.0031                 | 0.016                         | 0.4390                 | 141.61                                                             | 0.14     | -0.9                   | К                   |
| SB20   | 62.0-63.0                   | 0.0025                 | 0.014                         | 0.4000                 | 160.00                                                             | 0.11     | -1.0                   | К                   |
| SB21   | 60.0-62.0                   | <0.001                 | 0.001                         | 0.0194                 | -                                                                  | < 0.10   | < -1.0                 | f                   |
| SB21   | 64.0-66.0                   | <0.001                 | 0.007                         | 0.1940                 | -                                                                  | < 0.10   | < -1.0                 | f                   |
| SB33   | 66.0-68.0                   | 0.0013                 | 0.009                         | 0.2880                 | 221.54                                                             | < 0.10   | < -1.0                 | к                   |
| SB38   | 55.0-57.0                   | 0.0233                 | 0.036                         | 0.4100                 | 17.60                                                              | 0.77     | -0.1                   | К                   |
| SB38   | 70.0-72.0                   | 0.0045                 | 0.016                         | 0.5530                 | 122.89                                                             | 0.15     | -0.8                   | К                   |
| SB39   | 70.0-72.0                   | 0.1040                 | 0.024                         | 0.4760                 | 4.58                                                               | 4.56     | 0.7                    | Н, К                |
| SB41   | 70.0-72.0                   | 0.0474                 | 0.094                         | 0.5970                 | 12.59                                                              | 5.84     | 0.8                    | к                   |
| SB49   | 46.0-47.3                   | 0.0503                 | 0.049                         | 0.3720                 | 7.40                                                               | 2.06     | 0.3                    | К                   |
| SB50   | 49.8-50.8                   | 0.0090                 | 0.030                         | 0.3100                 | 34.44                                                              | 0.52     | -0.3                   | K                   |
| SB50   | 50.8-51.8                   | 0.0046                 | 0.023                         | 0.1840                 | 40.00                                                              | 0.29     | -0.5                   | К                   |
| SB50   | 52.3-52.6                   | < 0.001                | 0.003                         | 0.0168                 | -                                                                  | < 0.10   | < -1.0                 | f                   |
| SB53   | 22.0-23.0                   | 0.0099                 | 0.021                         | 0.0871                 | 8.80                                                               | 0.35     | -0.5                   | к                   |
| SB53   | 26.0-28.0                   | < 0.001                | 0.006                         | 0.0423                 | -                                                                  | < 0.10   | < -1.0                 | f                   |
| SB54   | 23.0-25.0                   | 0.0473                 | 0.039                         | 1.2600                 | 26.64                                                              | 0.89     | -0.1                   | К                   |
| SB56   | 23.0-25.0                   | 0.0329                 | 0.068                         | 0.5580                 | 16.96                                                              | 2.82     | 0.4                    | К                   |
|        |                             |                        |                               |                        |                                                                    |          |                        |                     |

<sup>a</sup> Ten percent of the sample is finer than this grain diameter.
<sup>b</sup> Effective grain diameter defined by Kruger (Vukovic and Soro 1992).

<sup>c</sup> Sixty percent of the sample is finer than this grain diameter.

<sup>d</sup> Uniform coefficient.

<sup>e</sup> Estimation methods: B (Beyer), H (Hazen), K (Kruger); see Vukovic and Soro (1992).

<sup>f</sup> K is not estimated when effective diameter < 0.01 (mostly silt and clay) and K < 0.1 ft/d because of limitations of the methods.

Additional groundwater level measurements during the Phase II studies corroborated the Phase I findings. Figures 4.10-4.12, respectively, depict mechanically contoured potentiometric surfaces for the Everest aquifer unit as mapped from water level measurements performed on April 1-5, 2001, November 9, 2002, and January 17, 2003. Water levels in the eastern part of the study area have declined by as much as 10 ft during the period of observation, resulting in a decrease in the hydraulic gradient across this region; however, the topology of the potentiometric surfaces has remained consistent, suggesting that groundwater flow from the former CCC/USDA facility is initially to the west-northwest. Figures 4.11 and 4.12 indicate that the apparent direction of groundwater flow west of the Nigh property turns progressively more southwestward with approach to the intermittent stream at the boundary of the study area. Water levels measured at SB53t/SB54t (November 9, 2002; Figure 4.11) and SB63/SB64 (January 17, 2003; Figure 4.12) were similar to the elevation of the base of the stream bed at these respective locations. These observations, in conjunction with the lithologic relationships near the stream channel described in Section 4.2.1, are consistent with the interpretation that groundwater levels in the area west of the Nigh property are locally controlled by discharge to the intermittent stream.

Topographic relationships at the western edge of the study area (Figure 4.5) indicate that the intermittent stream channel forms a local surface drainage divide. The hydrogeologic relationships discussed above further suggest that the channel might also represent a groundwater divide, thus forming a natural hydraulic boundary to westward groundwater flow (and potential contaminant migration) from the former CCC/USDA facility and the Nigh property. Additional investigation (recommended in Section 5.3.2) is required, however, to confirm the continuity of the aquifer unit and the inferred patterns of groundwater flow in the area west of the stream.

Detailed patterns of groundwater fluctuation across the Everest site, recorded during two periods of Phase II monitoring, also support the interpretation that groundwater levels and hydraulic gradients across the study area are driven by local recharge in the area to the southeast of the former CCC/USDA facility. Figure 4.13 presents hydrographs from the network of Phase I and Phase II permanent piezometers installed at the Everest site by the end (April 6, 2001) of the second session of Phase II field work, plus the Nigh private well (DW06). Automatic water level recorders were installed in these piezometers to obtain continuous water level measurements for the period July 10, 2000, to June 11, 2001. The hydrographs in Figure 4.13 are shown in comparison to precipitation data measured at Horton, Kansas, approximately 5 mi west of Everest. Barometric pressure fluctuations monitored during this period, also shown in

Figure 4.13, indicate that the effects of changes in atmospheric pressure on the patterns of water level fluctuation were insignificant.

The degree of groundwater response to precipitation events at each piezometer location is indicative of both (1) the relative impact of local recharge at that location and (2) the relative ease with which nearby changes in water levels can be transmitted, and hence dissipated, through the adjacent portions of the aquifer unit. Piezometers SB01, SB09, and SB19, all in the southeastern portion of the study area, showed distinct, relatively immediate increases in piezometer water levels in fall 2000 (September to mid November) and in spring 2001 (February to June), in response to frequent precipitation events during these periods (most of which were greater than 0.2 in.). The increase in water levels during the spring of 2001 is remarkably large, as much as 10-12 ft in this group of piezometers; however, the more recent measurements presented in Figure 4.12 demonstrate that the levels in this area have subsequently declined, probably due to a lack of precipitation (Figure 4.14). The piezometers at SB22, SB31, and SB34 were installed during the second session of Phase II field work. Hydrographs were recorded at these locations for only about one month (Figure 4.13); however, comparison of these traces to the record for SB01 suggests that these piezometers respond like those at SB01, SB09, and SB19.

The groundwater level responses for these piezometers contrast markedly with the responses for the Nigh well (DW06), northwest of the former CCC/USDA facility. The DW06 hydrograph shows effectively no response to the precipitation events in fall 2000 and only a modest and somewhat delayed increase in response to precipitation in spring 2001. Limited monitoring data are presently available for five piezometers (SB49, SB60, SB62-SB64) installed during the third session of Phase II field work in the portion of the study area west of the Nigh well (DW06). Recorders were also reinstalled at piezometers SB09 and SB16 at this time, to provide a basis for comparison of the responses in the new piezometers to those at the more eastern locations. Although the available records are relatively short (from November 21, 2002, to January 17, 2003; see Figure 4.14), the results to date suggest that water level responses in the piezometers west of the Nigh well are relatively subdued (relative to those of the SB01 group), like those observed at the Nigh well (DW06).

A localized increase in the apparent hydraulic gradient within the Everest aquifer unit is indicated in Figure 4.11 (November 9, 2002) and Figure 4.12 (January 17, 2003). Although this feature is less evident in the data depicted in Figure 4.10 (April 1-5, 2001), it was identified from the measurements obtained during Phase I. The region of higher hydraulic gradient roughly

corresponds with the area of dry till and absence of sandy materials identified to the south of the Nigh well (DW06), as well as to the thinning and reduced abundance of sandy lenses and stringers observed in the vicinity of the Nigh property, strongly suggesting that the change in hydraulic gradient reflects a decrease in the net transmissivity (or the effective permeability over the full saturated thickness) of the aquifer unit in this area.

Integration of the geologic and hydrogeologic relationships observed for the Everest aquifer unit leads to the following interpretation:

- Hydraulic communication exists among most of the saturated portions of the aquifer unit, via a complex network of discontinuous sandy channels, stringers, and lenses enclosed within variably permeable and/or fractured sandy clay till.
- Groundwater flow, and hence contaminant migration, within the aquifer unit is driven predominantly by groundwater recharge in the area southeast of the former CCC/USDA facility and by inferred groundwater discharge to the intermittent stream west of the Nigh property.
- Groundwater flow and contaminant migration are relatively less effective in the vicinity of the Nigh property than elsewhere because of an identified zone of dry till southeast of the property and a general reduction in the frequency and thickness of permeable materials within the aquifer unit in this area.
- Variations in groundwater levels and hydraulic gradients in the area to the west of the Nigh property are moderated, showing less dramatic responses to local recharge events than those in the southeastern portion of the study area. These conditions reflect the damping effects of the upgradient zone of more restricted groundwater flow described above, coupled with the inferred influence of groundwater discharge to the nearby intermittent stream at the western boundary of the study area.

To test this interpretation, geochemical data for groundwater samples collected across the investigation site were evaluated as possible indicators of (1) groundwater-surface water interactions and (2) the relative mobility of groundwater within the aquifer unit.

#### 4.2.3 Geochemical Evidence of Migration Patterns

Nitrate concentrations and tritium isotope compositions of groundwater samples collected during Phase II (and Phase I) were determined to evaluate the interpretation of factors affecting groundwater migration outlined in Sections 4.2.1 and 4.2.2. These parameters were selected to serve as potential independent geochemical "tracers" of the origins of groundwater within the Everest aquifer unit and hence to assist in the potential identification of the groundwater flow patterns affecting contaminant migration pathways.

Nitrate is frequently identified as a groundwater contaminant in the rural areas of Kansas and Nebraska because of the widespread application of agricultural fertilizers. Experience has demonstrated, however, that the investigation of nitrate distribution can in some cases be indicative of the relative degree of surface water influx and subsequent migration patterns within the groundwater flow system. The maximum nitrate concentrations identified at all sampled locations at Everest (Appendix F, Table F.3) are shown in Figure 4.15. Nitrate concentrations were elevated at all sampling locations and exceeded the MCL of 10 mg/L for this compound at most of the locations. The concentrations showed no clear trend of variation across the site, indicating that the infiltration of surface water and subsequent migration of groundwater containing nitrate has occurred fairly ubiquitously within the aquifer unit over time. Consideration of the data for locations where groundwater samples were collected at multiple depth intervals (Table F.3, Appendix F) indicates, however, that the distribution of nitrate concentrations within the aquifer unit at any given location is not clearly correlated with increasing depth. This observation is qualitatively consistent with the interpretation that groundwater (and contaminant) migration occurs within the aquifer unit via a complex network of more permeable and less permeable materials that do not generally define discrete, laterally continuous migration pathways.

Tritium is the unstable isotope of hydrogen that has become enriched in precipitation after the years of atmospheric nuclear testing that began in 1951 (Clark and Fritz 1997). Precipitation that formed in the atmosphere prior to nuclear weapons testing and subsequently might have entered groundwater systems is not enriched with tritium and has tritium concentration values typically near zero, while groundwater derived from precipitation in the last 50 yr has elevated tritium values. According to Clark and Fritz (1997), tritium values < 0.8 TU for groundwater in continental regions are indicative of submodern water (recharged prior to 1952), while values from 0.8 TU to about 4 TU represent mixtures of submodern and recent recharge.
The spatial distribution of tritium values for the groundwaters sampled at the Everest site (Appendix F, Table F.4) is shown in Figure 4.16. For locations where groundwater samples were collected at multiple depths, the maximum and minimum tritium concentrations detected have been plotted to provide an indication of the most enriched (and hence isotopically "youngest") and least enriched (isotopically "oldest") groundwater within the aquifer unit at that point in the groundwater flow field. The results of the analyses indicate that, although the variation in the range of tritium values across the site is considerable, elevated levels of tritium (> 5 TU) are most consistently observed in the southeastern portion of the study area (in the vicinity of the former CCC/USDA facility). This distribution, in conjunction with the hydraulic head relationships described in Section 4.2.2, supports the interpretation that significant recharge of the Everest aquifer unit by the infiltration of recent precipitation occurs locally within or near the southeastern portion of the Everest study area.

In contrast, very low tritium concentrations (< 2 TU and frequently < 1 TU) were detected primarily near the Nigh property and in several individual sandy lenses immediately northeast of the Nigh property. These low tritium concentrations generally coincide with the area of reduced sand abundance and increased hydraulic gradient identified within the aquifer unit (Sections 4.2.1 and 4.2.2), again supporting the interpretation that groundwater and contaminant migration are not precluded in this area but are relatively less effective because of a reduction in the net effective transmissivity of the aquifer unit near the Nigh property. In this area particularly, groundwater and contaminant migration are expected to occur via a complex, more sparsely distributed, less interconnected permeability network.

Analyses of groundwater samples for VOCs, which act as indicators of the specific migration pathways for the contaminants associated with the former CCC/USDA facility and the former grain storage facility on the Nigh property, are discussed in Section 4.3. Selected groundwater samples were analyzed for petroleum and drilling-related heavy metals as other possible indicators of contaminant migration pathways uniquely associated with the Nigh property. The interpretation of these results is in Section 4.4.

## 4.3 Delineate the Distribution of the Carbon Tetrachloride Plume

Groundwater sampling to delineate the extent of the groundwater contamination at Everest was guided by the hydrogeologic interpretation of the aquifer unit and groundwater flow patterns presented in Section 4.2. Groundwater sampling was performed by using the ECPT to collect samples over discrete water-bearing intervals, selected on the basis of the core and ECPT sensor log analyses for each boring, to provide a vertical profile of the contaminant distribution within the till complex at each location. Because the sampling was targeted in this manner, the number of samples collected and the specific depth interval(s) sampled differed at each location. The complete results of the sampling and VOC analyses are in Appendix F, Table F.5.

The spatial distributions of carbon tetrachloride and chloroform in groundwater across the Everest investigation site are mapped in Figures 4.17 and 4.18, respectively. In each case, the lateral margins of the plumes were interpreted on the basis of sampling locations with no detectable contaminant concentrations. The vertical distribution of carbon tetrachloride within the aquifer along section line A-A' (see Figure 4.5), which intersects the main body of the plume to the southeast at the former CCC/USDA facility and to the northwest near the Nigh property, is shown in Figure 4.19.

Both contaminants define plumes that initially extend north-northwestward from the former CCC/USDA facility, then turn abruptly westward and become narrower in the vicinity of and downgradient from the Nigh property. Although the resulting "dogleg" bend in the carbon tetrachloride (and chloroform) plume appears unusual, the observed distribution corroborates the interpretation of lithologic and hydrologic controls on groundwater and contaminant migration developed in Section 4.2. The diversion of the migration pathways to the north-northwest from the former CCC/USDA facility and the absence of contamination immediately south and southeast of the Nigh property are consistent with (1) the identified region of dry tills and the lack of saturated sandy materials southeast of the Nigh property and (2) the presence of thicker, more permeable channel deposits beneath and to the north of the former CCC/USDA facility (Figure 4.19). The apparent lateral constriction of the plume in the vicinity of the Nigh property and the relatively rapid decrease in concentrations downgradient to the west are similarly in keeping with the interpretation of more restricted groundwater flow and contaminant migration through these areas, as discussed in Section 4.2.

The results of these analyses indicate that groundwater contaminated with carbon tetrachloride and chloroform has not affected the intermittent stream at the western margin of the study area. The hydrogeologic relationships discussed in Section 4.2 demonstrate, however, that this stream represents a probable future location for contaminant discharge to the surface. The VOC analyses of water samples collected from multiple locations having persistent (during the period of Argonne's Phase II investigations) standing water within the stream bed, as well as from several surface runoff locations identified near and to the southwest of the former

CCC/USDA facility (Figure 3.13), confirmed that the surface waters within the study area are presently free of VOC contamination.

# 4.4 Investigate for Indications of Possible Groundwater Contamination Associated with the Former Private Grain Storage Facility on the Nigh Property

Phase I of the investigation at Everest identified carbon tetrachloride contamination in vegetation and near-surface soils on the Nigh farmstead, in association with the locations of several private grain storage structures formerly on this property. This information, in conjunction with the results of VOC analyses of groundwater samples collected both on and upgradient of the Nigh property during the second session of Phase II field work, indicates that the potential exists for intermingling of carbon tetrachloride contamination in groundwater that might originate from both the former Everest CCC/USDA facility and the private grain storage facility formerly on the Nigh property. This potential was confirmed by the final delineation of the plume, described in Section 4.3, which was completed during the third Phase II field session. As shown in Figure 4.17, an apparently continuous plume of carbon tetrachloride extends downgradient, to the north-northwest, from the former CCC/USDA facility. This plume passes beneath the contaminated Nigh property and continues downgradient approximately 800 ft to the west of the Nigh property.

The Phase II investigation was suspended in 2001 (after the second field session), and a title search was performed to document the ownership and land use history of the Nigh property. The results of this activity indicate that, in addition to its former use for grain storage, the Nigh property was leased for petroleum exploration in 1938-1943. No records were discovered, however, indicating that any petroleum-related activities actually took place there.

In light of these findings, the following investigations were performed in Phase II to identify possible evidence of groundwater contamination that might be associated with the Nigh property but cannot also be readily linked to the former Everest CCC/USDA facility:

• An examination for potentially anomalous patterns of carbon tetrachloride distribution in the vicinity of the Nigh farmstead, which might indicate a contribution of the contaminant from the Nigh property.

• Analysis of selected groundwater samples for petroleum compounds and heavy trace metals found in drilling fluid additives that might serve as chemical "tracers" of contaminant migration pathways originating from the Nigh property.

The carbon tetrachloride distribution in Figure 4.17 shows no anomalous increases in concentrations and no divergence from the interpretation of migration pathways presented in Section 4.2 that might distinguish groundwater contamination originating from the Nigh property. The carbon tetrachloride concentrations identified show a consistent pattern of fairly rapid decline with distance downgradient from the Nigh property. These observations provide no clear evidence of a carbon tetrachloride contribution to the groundwater from the contaminated soils at the Nigh property; however, such a contribution equally cannot be ruled out on the basis of these data.

The locations of groundwater samples analyzed for petroleum hydrocarbons and heavy trace metals (specifically barium and vanadium) found in drilling fluid additives are shown in Figure 3.14 with the results of the analyses. Low concentrations of diesel fuel (< 1 mg/L) and motor oil, possibly associated with the operation of the diesel-powered ECPT and Geoprobe vehicles used for sample collection, were identified in all of the groundwater samples analyzed for these contaminants (Table F.6, Appendix F). Concentrations of barium exceeding the quantitation limit for this compound (Table F.7, Appendix F) were detected at three locations (SB49, SB51, SB52); vanadium was not identified at quantifiable levels in any of the groundwater samples analyzed. The results of these analyses again provide no definitive evidence of potential groundwater contamination or contaminant migration pathways that can be uniquely associated with an origin on the Nigh property.

## 4.5 Summary

The Phase II investigation at Everest accomplished the technical objectives established in Section 1, as indicated below:

• *Objective 1.* Confirm an association of carbon tetrachloride contamination with the former Everest CCC/USDA facility.

- Patterns of carbon tetrachloride (determined by headspace analysis) in nearsurface soils at the former CCC/USDA facility showed three areas of potential subsurface soil contamination, associated with the three lines of grain storage bins formerly located at the facility.
- Analysis (by purge-and-trap GC-MS) of subsurface soil samples from borings SB23 and SB34, in the southeastern and northeastern portions of the former facility, respectively, confirmed low levels of carbon tetrachloride contamination (10-23  $\mu$ g/kg) in the vadose zone soils at these locations.
- Calculations indicate that there is no health risk from near-surface soils at the former Everest CCC/USDA facility.
- *Objective 2.* Characterize the hydrogeologic factors controlling contaminant migration.
  - Hydraulic communication exists throughout most of the saturated portions of unit 3b, via a complex network of discontinuous sandy channels, stringers, and lenses enclosed within variably permeable and/or fractured sandy clay till.
  - Groundwater flow, and hence contaminant migration, within the aquifer unit is driven predominantly by groundwater recharge in the area southeast of the former CCC/USDA facility, as well as by probable groundwater discharge to the intermittent stream west of the Nigh property.
  - Hydrogeologic and topographic relationships near the intermittent stream suggest that it represents a surface water and groundwater divide and hence a potential natural hydraulic boundary to westward groundwater flow (and contaminant migration) from the former CCC/USDA facility and the Nigh property.
  - Groundwater flow and contaminant migration are relatively less effective in the vicinity of the Nigh property because of an identified zone of dry till southeast of the property, plus a general reduction in the frequency and thickness of permeable materials within the aquifer unit in this area.

- Variations in groundwater levels and hydraulic gradients in the area to the west of the Nigh property are moderated by the coupled damping effects of the upgradient zone of more restricted groundwater flow described above and inferred groundwater discharge to the nearby intermittent stream.
- *Objective 3.* Delineate the distribution of the carbon tetrachloride plume.
  - A continuous plume of carbon tetrachloride extends downgradient to the north-northwest from the former Everest CCC/USDA facility, passes beneath the contaminated Nigh property, and continues downgradient approximately 800 ft to the west of the Nigh property.
  - Although the "dogleg" form of the carbon tetrachloride plume appears unusual, the observed distribution is consistent with the interpretation of lithologic and hydrologic controls on groundwater and contaminant migration developed under objective 2.
  - Carbon tetrachloride contamination has not affected the intermittent stream at the western margin of the study area; however, this stream represents a probable future location for contaminant discharge to the surface.
- *Objective 4.* Investigate for indications of possible groundwater contamination associated with the former private grain storage facility on the Nigh property.
  - Carbon tetrachloride contamination detected in vegetation and near-surface soils on the Nigh farmstead (during Phase I of this investigation) identified this property as a potential source of contamination to groundwater at Everest.
  - The mapped configuration of the groundwater plume is consistent with a potential contribution of carbon tetrachloride from the Nigh property; however, no clear evidence of such a contribution could be distinguished.
  - No conclusive evidence was found for groundwater contamination by petroleum hydrocarbons or trace metals found in drilling fluids that might have been associated with former leasing of the Nigh property for petroleum exploration.



FIGURE 4.1 Locations of grain bins at the former Everest CCC/USDA facility in 1966, with interpreted pattern of carbon tetrachloride from headspace analyses of shallow (0.9-1.2 ft BGL) near-surface soil samples and locations where subsurface soils were collected with the electronic cone penetrometer. (Source of aerial photograph: USDA 1966.)



FIGURE 4.2 Locations of grain bins at the former Everest CCC/USDA facility in 1966, with interpreted pattern of carbon tetrachloride from headspace analyses of deeper (5.5-6.0 ft BGL) near-surface soil samples and locations where subsurface soils were collected with the electronic cone penetrometer. (Source of aerial photograph: USDA 1966.)



FIGURE 4.3 Results of purge-and-trap analyses of subsurface soil samples from the former CCC/USDA facility for carbon tetrachloride and chloroform, displayed by depth on lithologic logs for SB23, SB24, and SB34.



FIGURE 4.4 Locations of all borings in the western part of Everest at which lithologic cores were collected in Phase I and Phase II, with locations of the former CCC/USDA facility and the Nigh property.



FIGURE 4.5 Locations of selected Phase I and Phase II investigative activities; Phase II vertical hydrogeologic cross sections A-A´, B-B´, and C-C´; the former CCC/USDA facility; and the Nigh property in the western part of Everest.

Everest, Kansas, QuickSite<sup>®</sup> Investigation Phase II Report Version 00, 05/09/03



FIGURE 4.6 Aquifer unit and estimates of hydraulic conductivities in the western part of Everest, displayed on interpretive southeast-to-northwest hydrogeologic cross section A-A' (vertically exaggerated).

4-29



FIGURE 4.7 Aquifer unit and estimates of hydraulic conductivities in the western part of Everest, displayed on interpretive west-to-east hydrogeologic cross section B-B' (vertically exaggerated).

Everest, Kansas, QuickSite<sup>®</sup> Investigation Phase II Report Version 00, 05/09/03



FIGURE 4.8 Aquifer unit and estimates of hydraulic conductivities in the western part of Everest, displayed on interpretive west-to-east hydrogeologic cross section C-C<sup>´</sup> (vertically exaggerated).



FIGURE 4.9 Interpretive structural contour map at the base of the Everest aquifer unit in the western part of Everest. Values shown as < or  $\leq$  represent depths at which the cone penetrometer met refusal.



FIGURE 4.10 Potentiometric surface for the aquifer unit in the western part of Everest on April 1-5, 2001, with locations of the former CCC/USDA facility and the Nigh property.



FIGURE 4.11 Potentiometric surface for the aquifer unit in the western part of Everest on November 9, 2002, with locations of the former CCC/USDA facility and the Nigh property.



FIGURE 4.12 Potentiometric surface for the aquifer unit in the western part of Everest on January 17, 2003, with locations of the former CCC/USDA facility and the Nigh property.



FIGURE 4.13 Hydrographs from the Everest water level monitoring network, with barometric pressure and daily precipitation recorded at Horton, Kansas, from July 10, 2000, to June 11, 2001. (Complete data for July 10, 2000, to August 16, 2000, were reported previously [Argonne 2001]; subsequent data are in Appendix D, Table D.3, of the present report.)



FIGURE 4.14 Hydrographs from the Everest water level monitoring network, with daily precipitation recorded at Horton, Kansas, from November 21, 2002, to January 17, 2003. (Complete data are in Appendix D, Table D.5, of the present report.)



FIGURE 4.15 Locations of groundwater samples collected during Phase I and Phase II in the western part of Everest and results of analyses of these samples for nitrate (highest value recorded at each location), with locations of the former CCC/USDA facility and the Nigh property.



FIGURE 4.16 Locations of selected Phase I and Phase II groundwater samples from the western part of Everest and the results of analyses of these samples for tritium (highest and lowest values recorded at locations with multiple samples), with locations of the former CCC/USDA facility and the Nigh property.



FIGURE 4.17 Locations of Phase I and Phase II groundwater samples from the aquifer unit in the western part of Everest and results of analyses of these samples for carbon tetrachloride (highest value recorded at each location), with locations of the former CCC/USDA facility and the Nigh property and groundwater elevations on November 9, 2002.



FIGURE 4.18 Locations of Phase I and Phase II groundwater samples from the aquifer unit in the western part of Everest and results of analyses of these samples for chloroform (highest value recorded at each location), with locations of the former CCC/USDA facility and the Nigh property and groundwater elevations on November 9, 2002.

Everest, Kansas, QuickSite<sup>®</sup> Investigation Phase II Report Version 00, 05/09/03



\*Locations in gray are Phase I locations and values.

FIGURE 4.19 Distribution of carbon tetrachloride in groundwater in the aquifer unit at Everest during Phase I and Phase II sampling, displayed on southeast-to-northwest cross section A-A<sup>´</sup> (vertically exaggerated).

## **5** Conclusions and Recommendations

#### 5.1 Conclusions

The conclusions for each of the four technical objectives for the Everest Phase II investigation, as described in Section 1 and addressed during the first (October 24-25, 2000), second (March 6-April 6, 2001), and third (November 4-13, 2002) sessions of field work, are as follows:

1. Confirm an association of carbon tetrachloride contamination with the former Everest CCC/USDA facility. An association of carbon tetrachloride contamination with the soils at the former Everest CCC/USDA facility has been verified, on the basis of (1) an interpretation of headspace GC-ECD analyses for near-surface soils and (2) the identification of low levels (maximum 10-23  $\mu$ g/kg) of carbon tetrachloride in subsurface (vadose zone) soils collected from borings SB23 and SB34 and analyzed by the purge-andtrap GC-MS methodology.

Comparison of the Phase II analyses to the KDHE Tier 2 *Risk-Based Standards for Kansas* values for carbon tetrachloride and chloroform (KDHE 1999) indicates no apparent health risk (1) arising from exposure to the near-surface soils at the former facility or (2) associated with a potential continuing soil source of contamination to groundwater.

2. Characterize the hydrogeologic factors controlling contaminant migration. The three-dimensional geometry, hydrostratigraphy, and lithologic heterogeneity of the hydrogeologic framework controlling groundwater flow and contaminant migration at Everest have been characterized.

Only one hydrostratigraphic unit of significance as an aquifer exists within the area of investigation at Everest. The complex of sand and sandy to gravelly clay till defined as stratigraphic unit 3b (and, locally, the lowermost clayey sands of overlying unit 3a) is the only permanently water-bearing unit. Hydraulic communication exists within the sediments via a complex network of generally saturated, discontinuous sandy channels, stringers, and lenses

enclosed within relatively less permeable sandy clay till that is variably saturated. The term *aquifer unit* is invoked in this report to collectively represent the groundwater-bearing and unsaturated sediments within these intervals.

Groundwater flow, and hence contaminant migration, within the aquifer unit is driven by groundwater recharge in the area southeast of the former CCC/USDA facility, as well as by probable groundwater discharge to the intermittent stream at the western edge of the Phase II study area. Groundwater flow and contaminant migration are expected to occur at relatively lower rates in the vicinity of the Nigh farmstead because of an identified zone of dry till upgradient of the property (which causes northward diversion of the migration pathways leading from the former CCC/USDA facility), plus a general reduction in the frequency and thickness of permeable intervals in the aquifer unit in that area.

Groundwater levels and hydraulic gradients are interpreted to respond less dramatically to local recharge events in the area west of the Nigh property than in the southeastern portion of the study area. These conditions reflect the damping effects of the upgradient zone of more restricted groundwater flow described above, coupled with the probable influence of relatively local groundwater discharge to the nearby intermittent stream at the western boundary of the study area.

- 3. *Delineate the distribution of the carbon tetrachloride plume*. The lateral and vertical extent of the carbon tetrachloride plume at Everest has been documented. The continuous plume of carbon tetrachloride extends downgradient to the north-northwest from the former CCC/USDA facility at Everest, passes beneath and to the north of the contaminated Nigh property, and continues downgradient approximately 800 ft to the west of the Nigh property.
- 4. Investigate for indications of possible groundwater contamination associated with the former private grain storage facility on the Nigh property. The field and interpretive activities selected to address this objective were completed as planned.

Carbon tetrachloride contamination detected in vegetation and near-surface soils on the Nigh farmstead during Phase I of this investigation identified this property as a potential source of contamination to the groundwater at Everest. The groundwater plume that has been mapped, as described under objective 3, passes directly beneath the Nigh property and is therefore consistent with a potential contribution of carbon tetrachloride from these soils.

An analysis of the patterns of concentration distribution within the Everest groundwater plume did not yield conclusive evidence that the groundwater contamination originated from the Nigh property. Similarly, analyses of selected groundwater samples for suspected "tracer" contaminants other than carbon tetrachloride, possibly associated with former petroleum exploration activities on the Nigh property, were inconclusive and gave no indication of the trajectory of possible migration pathways originating from this property.

#### 5.2 Recommendations and Technical Objectives for Further Investigation

The results of the Phase I and Phase II investigations at Everest have documented (1) an association of carbon tetrachloride contamination with the former CCC/USDA facility at the western margin of the town and (2) a plume containing carbon tetrachloride at concentrations exceeding the MCL for this contaminant (5  $\mu$ g/L), extending downgradient from the former facility. The information obtained during these studies demonstrates that the residual concentrations of carbon tetrachloride identified in near-surface soils at the former facility pose no health threat and that no private wells currently being used for drinking water supply are affected by the existing plume. Argonne's interpretation of the hydrogeologic regime at Everest indicates, however, that continued groundwater flow and downgradient contaminant migration might result in the future discharge of groundwater containing carbon tetrachloride to the surface waters of the intermittent stream west of the city. On the basis of these observations, Argonne believes that further investigation at Everest is necessary to assess the remedial needs of this site.

To address this goal, Argonne recommends a limited third phase of investigation at the Everest site. The proposed investigations are targeted to generate the specific additional technical information required to support a subsequent quantitative analysis of remedial alternatives, as outlined in the KDHE guidance for a Comprehensive Investigation/Corrective Action Study

(CI/CAS) (KDHE 1996). The specific technical objectives of the proposed study are to accomplish the following:

- 1. Further identify the potential distribution of carbon tetrachloride in subsurface soils at the former CCC/USDA facility and evaluate selected parameters that affect the fate of this contaminant in the vadose zone.
- 2. Confirm the interpreted patterns of groundwater flow and the potential for groundwater discharge to the surface along the intermittent creek west of Everest.
- 3. Obtain quantitative *in situ* estimates of hydraulic parameters for the sedimentary materials that compose the Everest aquifer unit.
- 4. Install monitoring wells; collect and analyze groundwater samples at established monitoring points along the plume migration pathway, as a basis for potential future comparisons.
- 5. Obtain quantitative data for selected aquifer parameters that affect the migration and fate of carbon tetrachloride in groundwater.
- 6. Develop and propose an initial list of corrective action alternatives for further consideration and present a work plan for their evaluation.

The recommended investigation, in conjunction with the Everest Phase I *Work Plan* (Argonne 2000), the Phase I report (Argonne 2001), and the present Phase II report, is intended to complete the activities outlined for a KDHE CI. The results of the proposed study will be summarized in a separate work plan that will be submitted for review and mutual approval by the CCC/USDA and the KDHE, as a precursor to an analysis of remedial alternatives per the guidance for a CAS (KDHE 1996).

The investigative activities proposed to achieve the above technical objectives are discussed in Section 5.3. The detailed procedures governing these activities are described in the *Master Work Plan* (Argonne 2002).

# 5.3 Technical Program for Completion of CI Activities

The investigative program outlined below is based on the current understanding of the Everest site, as described in Sections 4 and 5.1 of this report. The investigative tasks and locations discussed here are intended to address the specific technical objectives proposed in Section 5.2. As new data are acquired during the field program, tasks might be revised to reflect an improved understanding of the site. Modifications might include reduction or expansion of the task activities or the elimination of specific activities judged to be unproductive in addressing the objectives.

## 5.3.1 Further Identify the Potential Distribution of Carbon Tetrachloride in Subsurface Soils at the Former CCC/USDA Facility and Evaluate Selected Soil Parameters That Affect the Fate of This Contaminant in the Vadose Zone

As described in Section 3.1.2, sampling of the deeper subsurface soils at the former CCC/USDA facility in Phase II was limited to only three locations because of access restrictions imposed by the current property owner. If further access to this property can be obtained, additional subsurface sampling is proposed to complete the investigation of the areas at the former CCC/USDA facility that were prioritized for sampling, on the basis of the results of the Phase II headspace GC-ECD analyses of near-surface soils. Figure 5.1 shows three locations recommended for this sampling that were selected to test areas of relatively high headspace carbon tetrachloride concentrations in shallow soils associated with the central and southwestern portion of Figure 5.1 and corresponding to Phase I groundwater sampling location SB11 — is also proposed for soil sampling. This location was chosen to test an isolated area of relatively high headspace concentrations in shallow soils that appear to be associated with the high carbon tetrachloride concentrations in shallow soils that appear to be associated with the high carbon tetrachloride concentration in groundwater (727  $\mu$ g/L) previously identified at this location.

The proposed sampling will be performed at each location by using direct-push techniques to obtain core samples from the ground surface to the top of the saturated zone. Soil samples will be taken every 5 ft and/or at changes in lithology. Upon recovery, the soil samples will be placed in jars, sealed, preserved on dry ice in the field (Argonne 2002), and shipped to the AGEM Laboratory for purge-and-trap preparation and GC-MS analysis for carbon tetrachloride and chloroform with EPA Methods 5030B and 8260B (Argonne 2002).

At selected intervals, core sample material may also be taken for measurement of soil properties (to possibly include moisture content, porosity, bulk density, total organic carbon content, and liquid or pneumatic permeabilities) that affect the mobility of carbon tetrachloride in the vadose zone. These measurements would be required either for the quantitative estimation of contaminant migration from the soils to groundwater or for the evaluation of potential alternatives for the treatment of soil contamination, if soil carbon tetrachloride concentrations identified at the former CCC/USDA facility would warrant such analyses as part of the planned CAS.

### 5.3.2 Confirm the Interpreted Patterns of Groundwater Flow and the Potential for Groundwater Discharge to the Surface along the Intermittent Creek West of Everest

The hydrostratigraphic, groundwater level, and topographic data discussed in Section 4.2 are consistent with the interpretation that groundwater flow and contaminant migration patterns in the Everest study area are controlled in part by probable groundwater discharge to the intermittent stream west of the former CCC/USDA facility and the Nigh property. To confirm this relationship, additional investigation is proposed in the immediate vicinity of the creek. The purpose of these studies is to accomplish the following:

- 1. Determine the hydraulic continuity of the aquifer unit on the west side of the intermittent stream.
- 2. Verify the direction(s) of groundwater flow west of the creek and establish whether a groundwater divide is formed that would prevent future groundwater flow and contaminant transport beneath and beyond the creek.
- 3. Investigate for evidence demonstrating the potential for groundwater discharge to the intermittent creek within or downstream of the Phase II study area.

To address this objective, a limited series of additional borings will be advanced, by using direct-push techniques, at the estimated locations shown in Figure 5.2. At each location, the hydrogeologic characteristics of the aquifer unit and the vertical extent of the saturated zone will be determined. At selected locations, temporary or permanent piezometers will be installed to permit the measurement of groundwater levels for mapping of the potentiometric surface in the vicinity of the creek bed.

# 5.3.3 Obtain Quantitative *In Situ* Estimates of Hydraulic Parameters for the Sedimentary Materials That Compose the Everest Aquifer Unit

Quantitative evaluation of the expected patterns of future groundwater flow and contaminant transport at the Everest site, and hence assessment of the potential viability of remedial alternatives, requires quantitative data on the *in situ* hydraulic characteristics of the sediments that compose the Everest aquifer unit. To address this data need, the following activities are proposed:

- 1. Single-well response ("slug") tests will be performed on each of the permanent piezometers shown in Figure 5.3. The distribution of these piezometers will provide *in situ* estimates of hydraulic parameters (primarily hydraulic conductivity) for a range of the permeable sediment types identified in the Phase I and Phase II coring activities.
- 2. The results presented in Section 3 and discussed in Section 4 demonstrate that significant changes in the Everest groundwater flow regime occur in the vicinity of the Nigh property. These changes affect the interpreted migration of carbon tetrachloride originating from the former CCC/USDA facility. The magnitude of the apparent hydraulic gradient increases in this area, and the predominant direction of groundwater flow shifts from north-northwest to west. The present data also suggest that the groundwater carbon tetrachloride plume narrows in this area and that contaminant concentrations in groundwater decrease significantly downgradient from the Nigh property. These observations are interpreted to reflect the relatively sparse distribution of more permeable sediments and the more limited hydraulic communication between these permeable intervals near the Nigh property.

To further refine this interpretation and permit quantitative evaluation of the hydraulic response of the aquifer unit in this area to potential remedial alternatives, several additional locations, shown in Figure 5.4, will be investigated by using the ECPT. Electronic sensor logging will be performed

at each proposed location to guide the selection of possible intervals for limited confirmatory soil coring. On the basis of the results of these activities, one or more locations — and depth intervals at these locations — will be selected for groundwater sampling for VOC analysis, the installation of temporary or permanent piezometers to be used for the measurement of groundwater levels, and slug testing. The purpose of these activities will be to more tightly constrain the relationships among groundwater levels, groundwater flow and contaminant migration pathways, and the heterogeneity of the permeability distribution in this critical area.

3. The results from the slug testing described in (1) and (2) will be analyzed to yield estimates of the hydraulic conductivities for the sediments penetrated at each investigative boring. The results of these analyzes will be interpreted, in the context of the hydrogeologic model discussed in Section 4 and the new data obtained from the limited additional borings described in (2) above, to determine the potential viability of conducting one or more aquifer pumping tests, as deemed necessary, to directly investigate the relative degree of hydraulic continuity within the Everest aquifer unit along the identified plume migration pathway. If pump testing of the Everest aquifer is determined to be both logistically and hydraulically feasible, Argonne will submit recommendations for the proposed test(s) for review and mutual approval by the CCC/USDA and the KDHE before the activities begin.

# 5.3.4 Install Monitoring Wells; Collect and Analyze Groundwater Samples at Established Monitoring Points along the Plume Migration Pathway as a Basis for Potential Future Comparisons

If access permission can be obtained from the appropriate land owners, three conventional monitoring wells will be installed by auger drilling. The proposed locations of these wells are shown in Figure 5.5. One well (identified in this report as MW1 for discussion purposes), will be located at the northwest (downgradient) corner of the former CCC/USDA grain storage facility, near the origin of the carbon tetrachloride plume. Wells MW2 and MW3 will be installed near the apparent margins of the plume at the abrupt westward bend observed in the vicinity of the Nigh residence.

Upon completion of the piezometer installation activities outlined in Sections 5.3.2 and 5.3.3, groundwater will be sampled from the monitoring wells and from selected permanent piezometers and private wells along the plume migration pathway, for the analysis of VOCs and selected geochemical parameters. These analyses will establish baseline conditions for the comparison of sampling data that might subsequently be obtained at these locations, if necessary for the planned CAS investigations, to document trends in the spatial and geochemical evolution of the contaminated groundwater over time. Such time series sampling would be necessary, for example, to evaluate the potential effects of natural attenuation processes within the Everest aquifer unit.

# 5.3.5 Obtain Quantitative Data for Selected Aquifer Parameters That Affect the Migration and Fate of Carbon Tetrachloride in Groundwater

From the geologic cores obtained during Phase I and Phase II of the Everest investigation (and possibly from the additional borings proposed in Section 5.3.1), sediment samples will be collected at selected lithologic intervals for the determination of total organic carbon content, porosity, and bulk density. The results of these analyses will provide a quantitative basis for estimating contaminant sorption effects within the Everest aquifer unit, which will be used to estimate the expected retardation of the carbon tetrachloride plume along the groundwater and contaminant migration pathways. Samples from the cores will be chosen to be representative of the range of sediment types encountered in the presently contaminated portions of the aquifer unit, as well as along the probable future contaminant migration pathway.

Samples of aquifer core materials and groundwater may also be collected at selected locations and preserved or analyzed for the determination of additional physical, geochemical, or biological parameters that may be required for the evaluation of remedial alternatives as part of the planned CAS investigation. These analyses may include the measurement of groundwater temperature, pH, redox potential; the measurement of dissolved oxygen, nitrate, and sulfate; and microbial or biological nutrient studies.

#### 5.3.6 Develop and Propose an Initial List of Corrective Action Alternatives for Further Consideration and Present a Work Plan for Their Evaluation

The results of the activities described in Sections 5.3.1-5.3.5 will be evaluated, in the context of the hydrogeologic model of the Everest groundwater flow system described in

Section 4, to conduct a preliminary review of potential aquifer restoration alternatives for the Everest site. This review will be performed in keeping with the KDHE guidance for a CI (KDHE 1996). On the basis of this analysis, the CCC/USDA and Argonne will recommend potential corrective action alternatives, including the no-action alternative, to be considered for further detailed evaluation as part of a subsequent study in keeping with the KDHE guidance for a CAS (KDHE 1996).

A work plan will be presented outlining the intended approach to be used in examining these alternatives, including proposed specifications for any groundwater flow and contaminant transport models that might be recommended as part of the analyses. An assessment of health risks associated with groundwater contamination at the Everest site, identified as an option under the guidance for a CI, will be deferred for inclusion in the subsequent CAS evaluation of the proposed corrective action alternatives



FIGURE 5.1 Proposed locations for additional subsurface soil sampling for the analysis of VOCs.


FIGURE 5.2 Proposed locations of additional soil borings and locations for the possible installation of temporary or permanent piezometers to confirm the patterns of groundwater flow and potential groundwater discharge to the surface along the intermittent creek west of the former CCC/USDA facility.



FIGURE 5.3 Locations of permanent piezometers in the western part of Everest proposed for use in aquifer slug testing.



FIGURE 5.4 Proposed locations of additional soil borings to be investigated with the cone penetrometer, as well as for the possible installation of temporary or permanent piezometers and for aquifer slug testing.



FIGURE 5.5 Proposed locations for monitoring wells for continuing analysis of groundwater for VOCs.

## **6** References

Argonne, 2000, *Final Phase I Work Plan: QuickSite<sup>SM</sup> Investigation, Everest, Kansas*, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, by Argonne National Laboratory, Argonne, Illinois, May (revised March 2003).

Argonne, 2001, *Final Phase I Report and Phase II Work Plan: QuickSite*<sup>®</sup> *Investigation, Everest, Kansas*, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, by Argonne National Laboratory, Argonne, Illinois, August (revised March 2003).

Argonne, 2002, *Final Master Work Plan: Environmental Investigations at Former CCC/USDA Facilities in Kansas, 2002 Revision*, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, by Argonne National Laboratory, Argonne, Illinois, December.

ASTM, 1998, "Standard Practice for Expedited Site Characterization of Vadose Zone and Groundwater Contamination at Hazardous Waste Contaminated Sites," D6235 in *Annual Book of ASTM Standards*, American Society for Testing and Materials, West Conshohocken, Pennsylvania.

Clark, I.D., and P. Fritz, 1997, *Environmental Isotopes in Hydrogeology*, CRC Lewis Publishers, New York.

EPA, 1989, *Risk Assessment Guidance for Superfund (RAGS). Volume I: Human Health Evaluation Manual (HHEM), Part A, Interim Final*, EPA/540/1-89/002 and NTIS PB90-155581/CCE, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.

EPA, 1990, "National Oil and Hazardous Substances Pollution Contingency Plan (Final Rule)," 40 CFR300.430(e)(2), 55 *Federal Register* 8666.

EPA, 1991, *Human Health Evaluation Manual (HHEM), Supplemental Guidance: Standard Default Exposure Factors*, publication 9285.6-03 and NTIS PB91-921314, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.

EPA, 1994a, USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA540/R-94/012, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C., February.

EPA, 1994b, USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, EPA540/R-94/013, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C., February.

KDHE, 1996, *Scope of Work (SOW) for a Comprehensive Investigation (CI)/Corrective Action Study (CAS)*, BER Policy #BER-RS-20, Bureau of Environmental Remediation/Remedial Section Guidance, Kansas Department of Health and Environment, Topeka, Kansas, May.

KDHE, 1998, *Pre-CERCLIS Site Reconnaissance and Evaluation: Everest East USDA/CCC Site, Everest, Kansas, KDHE ID P4-007-70633*, Kansas Department of Health and Environment, Bureau of Environmental Remediation, Pre-Remedial Unit, Remedial Section, Topeka, Kansas (project manager: Travis Kogl, environmental geologist), August.

KDHE, 1999, *Risk-Based Standards for Kansas (RSK Manual)*, Kansas Department of Health and Environment, Bureau of Environmental Remediation, Topeka, Kansas, March.

Taylor, D., 2000, letter from Taylor (environmental technician, Bureau of Water, Kansas Department of Health and Environment, Topeka, Kansas) to D. Surgnier (Delta Environmental, Blanchard, Oklahoma) regarding waiver request for flush-mount monitoring wells for the CCC/USDA in Brown County, Kansas, May 18.

USDA, 1966, *Aerial Photograph YY-2GG-58*, U.S. Department of Agriculture, Washington, D.C., September 8.

USGS, 1979, *Everest Quadrangle, Kansas*, 7.5 Minute Series, U.S. Geological Survey, Washington, D.C.

USGS, 1991, Aerial Photograph, Everest Quadrangle, Kansas, DI 35320, U.S. Geological Survey, Washington, D.C., October 7.

Vukovic, M., and A. Soro, 1992, *Determination of Hydraulic Conductivity of Porous Media from Grain-Size Composition*, Water Resources Publications, Littleton, Colorado.

Appendix A:

Soil Sample Data

TABLE A.1 Soil samples collected at the former CCC/USDA facility for analysis of volatile organic compounds during the Phase II investigation at Everest, Kansas.

| Location   | Sample                                                                               | Depth<br>(ft BGL) | Sample<br>Date | Sample Description                                                 |  |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------|-------------------|----------------|--------------------------------------------------------------------|--|--|--|--|--|--|
| Near-surfa | Vear-surface soil samples collected in October 2000 (first session of Phase II work) |                   |                |                                                                    |  |  |  |  |  |  |
| HC01       | EV-HC01-S-11943                                                                      | 0.8-1.2           | 10/24/00       | Location 30S/15W, Black topsoil.                                   |  |  |  |  |  |  |
| HC01       | EV-HC01-S-11944                                                                      | 5.5-6.0           | 10/24/00       | Grav-brown clay with some iron oxides.                             |  |  |  |  |  |  |
| HC02       | EV-HC02-S-11945                                                                      | 0.8-1.2           | 10/24/00       | Location 46S/15W. Black topsoil.                                   |  |  |  |  |  |  |
| HC02       | EV-HC02-S-11946                                                                      | 5.5-6.0           | 10/24/00       | Grav-brown clav with some iron oxides.                             |  |  |  |  |  |  |
| HC03       | EV-HC03-S-11947                                                                      | 0.8-1.2           | 10/24/00       | Location 50S/33W. Black topsoil.                                   |  |  |  |  |  |  |
| HC03       | EV-HC03-S-11948                                                                      | 5.5-6.0           | 10/24/00       | Light gray-brown clay with some iron oxides.                       |  |  |  |  |  |  |
| HC04       | EV-HC04-S-11949                                                                      | 0.8-1.2           | 10/24/00       | Location 100S/33W. Black topsoil.                                  |  |  |  |  |  |  |
| HC04       | EV-HC04-S-11950                                                                      | 5.5-6.0           | 10/24/00       | Light gray-brown clay with some iron oxides.                       |  |  |  |  |  |  |
| HC05       | EV-HC05-S-11951                                                                      | 1.0-1.3           | 10/24/00       | Location 250S/175W. Black loam topsoil.                            |  |  |  |  |  |  |
| HC05       | EV-HC05-S-11952                                                                      | 5.5-6.0           | 10/24/00       | Light gray-brown clay with some iron oxides.                       |  |  |  |  |  |  |
| HC06       | EV-HC06-S-11953                                                                      | 0.9-1.2           | 10/24/00       | Location 277S/210W. Black loam topsoil: sandy loam in sample zone. |  |  |  |  |  |  |
| HC06       | EV-HC06-S-11954                                                                      | 5.5-6.0           | 10/24/00       | Brown clay.                                                        |  |  |  |  |  |  |
| HC07       | EV-HC07-S-11955                                                                      | 0.8-1.2           | 10/24/00       | Location 233S/200W. Black loam topsoil.                            |  |  |  |  |  |  |
| HC07       | EV-HC07-S-11956                                                                      | 5.5-6.0           | 10/24/00       | Light gray-brown clay with some iron oxides.                       |  |  |  |  |  |  |
| HC08       | EV-HC08-S-11957                                                                      | 0.8-1.2           | 10/24/00       | Location 200S/175W. Black loam topsoil.                            |  |  |  |  |  |  |
| HC08       | EV-HC08-S-11958                                                                      | 5.5-6.0           | 10/24/00       | Light gray-brown clay with some iron oxides.                       |  |  |  |  |  |  |
| HC09       | EV-HC09-S-11959                                                                      | 0.8-1.2           | 10/24/00       | Location 173S/200W. Black loam topsoil.                            |  |  |  |  |  |  |
| HC09       | EV-HC09-S-11960                                                                      | 5.5-6.0           | 10/24/00       | Light gray-brown clay.                                             |  |  |  |  |  |  |
| HC10       | EV-HC10-S-11961                                                                      | 0.9-1.2           | 10/24/00       | Location 150S/200W. Transitional staining in clay.                 |  |  |  |  |  |  |
| HC10       | EV-HC10-S-11962                                                                      | 5.5-6.0           | 10/24/00       | Light grav-brown clay with some iron oxides.                       |  |  |  |  |  |  |
| HC11       | EV-HC11-S-11963                                                                      | 0.9-1.2           | 10/24/00       | Location 100S/200W. Black loam topsoil.                            |  |  |  |  |  |  |
| HC11       | EV-HC11-S-11964                                                                      | 5.5-6.0           | 10/24/00       | Very slight humic stain in gray-brown clay.                        |  |  |  |  |  |  |
| HC12       | EV-HC12-S-11965                                                                      | 0.9-1.2           | 10/24/00       | Location 50S/200W. Black loam topsoil.                             |  |  |  |  |  |  |
| HC12       | EV-HC12-S-11966                                                                      | 5.5-6.0           | 10/24/00       | Very slight humic stain in gray-brown clay.                        |  |  |  |  |  |  |
| HC13       | EV-HC13-S-11967                                                                      | 0.9-1.2           | 10/24/00       | Location 30S/150W, Black loam topsoil.                             |  |  |  |  |  |  |
| HC13       | EV-HC13-S-11968                                                                      | 5.5-6.0           | 10/24/00       | Light gray-brown clay.                                             |  |  |  |  |  |  |
| HC14       | EV-HC14-S-11969                                                                      | 0.9-1.2           | 10/24/00       | Location 50S/150W. Black loam topsoil.                             |  |  |  |  |  |  |
| HC14       | EV-HC14-S-11970                                                                      | 5.5-6.0           | 10/24/00       | Light gray-brown clay.                                             |  |  |  |  |  |  |
| HC15       | EV-HC15-S-11971                                                                      | 1.0-1.2           | 10/24/00       | Location 100S/150W. Black topsoil.                                 |  |  |  |  |  |  |
| HC15       | EV-HC15-S-11972                                                                      | 5.5-6.0           | 10/24/00       | Light gray-brown clay.                                             |  |  |  |  |  |  |

| TABLE A. <sup>2</sup> | I (Cont.) |
|-----------------------|-----------|
|-----------------------|-----------|

| Location    | Sample                                                                                       | Depth<br>(ft BGL) | Sample<br>Date | Sample Description                                                      |  |  |  |  |  |
|-------------|----------------------------------------------------------------------------------------------|-------------------|----------------|-------------------------------------------------------------------------|--|--|--|--|--|
| Near-surfac | lear-surface soil samples collected in October 2000 (first session of Phase II work) (Cont.) |                   |                |                                                                         |  |  |  |  |  |
| HC16        | EV-HC16-S-11973                                                                              | 1.0-1.2           | 10/24/00       | Location 150S/150W. Black topsoil.                                      |  |  |  |  |  |
| HC16        | EV-HC16-S-11974                                                                              | 5.5-6.0           | 10/24/00       | Light gray-brown clay.                                                  |  |  |  |  |  |
| HC17        | EV-HC17-S-11975                                                                              | 0.9-1.2           | 10/24/00       | Location 250S/121W. Black loam topsoil.                                 |  |  |  |  |  |
| HC17        | EV-HC17-S-11976                                                                              | 5.5-6.0           | 10/24/00       | Light gray-brown clay.                                                  |  |  |  |  |  |
| HC18        | EV-HC18-S-11977                                                                              | 0.9-1.2           | 10/24/00       | Location 200S/121W. Black loam topsoil.                                 |  |  |  |  |  |
| HC18        | EV-HC18-S-11978                                                                              | 5.5-6.0           | 10/24/00       | Light brown-gray clay; more gray than previous sample.                  |  |  |  |  |  |
| HC19        | EV-HC19-S-11979                                                                              | 0.9-1.2           | 10/24/00       | Location 150S/121W. Black loam topsoil.                                 |  |  |  |  |  |
| HC19        | EV-HC19-S-11980                                                                              | 5.5-6.0           | 10/24/00       | Light brown clay; less gray than previous sample.                       |  |  |  |  |  |
| HC20        | EV-HC20-S-11983                                                                              | 0.9-1.2           | 10/24/00       | Location 100S/121W.                                                     |  |  |  |  |  |
| HC20        | EV-HC20-S-11984                                                                              | 5.5-6.0           | 10/24/00       | No description recorded.                                                |  |  |  |  |  |
| HC21        | EV-HC21-S-11993                                                                              | 0.9-1.2           | 10/25/00       | Location 50S/121W. Black loam topsoil.                                  |  |  |  |  |  |
| HC21        | EV-HC21-S-11994                                                                              | 5.5-6.0           | 10/25/00       | Light brown clay.                                                       |  |  |  |  |  |
| HC22        | EV-HC22-S-11995                                                                              | 0.9-1.2           | 10/25/00       | Location 30S/121W. Black loam topsoil.                                  |  |  |  |  |  |
| HC22        | EV-HC22-S-11996                                                                              | 5.5-6.0           | 10/25/00       | Light brown clay.                                                       |  |  |  |  |  |
| HC23        | EV-HC23-S-11997                                                                              | 0.9-1.2           | 10/25/00       | Location 66S/90W. Black loam topsoil.                                   |  |  |  |  |  |
| HC23        | EV-HC23-S-11998                                                                              | 5.5-6.0           | 10/25/00       | Light brown clay.                                                       |  |  |  |  |  |
| HC24        | EV-HC24-S-11999                                                                              | 0.9-1.2           | 10/25/00       | Location 112S/90W. Black loam topsoil.                                  |  |  |  |  |  |
| HC24        | EV-HC24-S-12000                                                                              | 5.5-6.0           | 10/25/00       | Light brown clay.                                                       |  |  |  |  |  |
| HC25        | EV-HC25-S-12001                                                                              | 0.9-1.2           | 10/25/00       | Location 158S/90W. Black loam topsoil.                                  |  |  |  |  |  |
| HC25        | EV-HC25-S-12002                                                                              | 5.5-6.0           | 10/25/00       | Gradual color transition, ending with medium dark gray-brown at bottom. |  |  |  |  |  |
| HC26        | EV-HC26-S-12003                                                                              | 0.9-1.2           | 10/25/00       | Location 208S/90W. Black loam topsoil.                                  |  |  |  |  |  |
| HC26        | EV-HC26-S-12004                                                                              | 5.5-6.0           | 10/25/00       | Gradual transition to light brown clay.                                 |  |  |  |  |  |
| HC27        | EV-HC27-S-12005                                                                              | 1.4-1.6           | 10/25/00       | Location 250S/68W. Black loam.                                          |  |  |  |  |  |
| HC27        | EV-HC27-S-12006                                                                              | 5.5-6.0           | 10/25/00       | Gray-brown clay.                                                        |  |  |  |  |  |
| HC28        | EV-HC28-S-12007                                                                              | 0.9-1.2           | 10/25/00       | Location 250S/32W. Black loam topsoil.                                  |  |  |  |  |  |
| HC28        | EV-HC28-S-12008                                                                              | 5.5-6.0           | 10/25/00       | Gray-brown clay.                                                        |  |  |  |  |  |
| HC29        | EV-HC29-S-12009                                                                              | 0.9-1.2           | 10/25/00       | Location 200S/32W. Black loam topsoil.                                  |  |  |  |  |  |
| HC29        | EV-HC29-S-12010                                                                              | 5.5-6.0           | 10/25/00       | Light brown-gray clay.                                                  |  |  |  |  |  |
| HC30        | EV-HC30-S-12013                                                                              | 0.9-1.2           | 10/25/00       | Location 176S/68W. Black loam topsoil.                                  |  |  |  |  |  |
| HC30        | EV-HC30-S-12014                                                                              | 5.5-6.0           | 10/25/00       | Light gray-brown clay.                                                  |  |  |  |  |  |
| HC31        | EV-HC31-S-12015                                                                              | 0.9-1.2           | 10/25/00       | Location 150S/39W. Black loam topsoil.                                  |  |  |  |  |  |

| TABLE A.1 | (Cont.) |
|-----------|---------|
|-----------|---------|

| Location   | Sample                    | Depth<br>(ft BGL) | Sample<br>Date   | Sample Description                         |
|------------|---------------------------|-------------------|------------------|--------------------------------------------|
| Near-surfa | ce soil samples collected | in October 200    | 0 (first session | of Phase II work) (Cont.)                  |
| HC31       | EV-HC31-S-12016           | 5.5-6.0           | 10/25/00         | Light brown-gray clay.                     |
| HC32       | EV-HC32-S-12017           | 0.9-1.2           | 10/25/00         | Location 126S/68W. Black loam topsoil.     |
| HC32       | EV-HC32-S-12018           | 5.5-6.0           | 10/25/00         | Light brown-gray clay.                     |
| HC33       | EV-HC33-S-12019           | 0.9-1.2           | 10/25/00         | Location 80S/68W. Black loam topsoil.      |
| HC33       | EV-HC33-S-12020           | 5.5-6.0           | 10/25/00         | Light brown-gray clay.                     |
| HC34       | EV-HC34-S-12021           | 0.9-1.2           | 10/25/00         | Location 35S/68W. Black loam topsoil.      |
| HC34       | EV-HC34-S-12022           | 5.5-6.0           | 10/25/00         | Light brown-gray clay.                     |
| HC35       | EV-HC35-S-12023           | 0.9-1.2           | 10/25/00         | Location 240S/08W. Black loam topsoil.     |
| HC35       | EV-HC35-S-12024           | 5.5-6.0           | 10/25/00         | Color transition to medium dark clay.      |
| HC36       | EV-HC36-S-12025           | 0.9-1.2           | 10/25/00         | Location 184S/08W. Black loam topsoil.     |
| HC36       | EV-HC36-S-12026           | 5.5-6.0           | 10/25/00         | Color transition to light brown-gray clay. |
| HC37       | EV-HC37-S-12029           | 0.9-1.2           | 10/25/00         | Location 140S/08W. Black loam topsoil.     |
| HC37       | EV-HC37-S-12030           | 5.5-6.0           | 10/25/00         | Light gray-brown clay.                     |
| HC38       | EV-HC38-S-12033           | 0.8-1.2           | 10/25/00         | Location 90S/08W.                          |
| HC38       | EV-HC38-S-12034           | 5.5-6.0           | 10/25/00         | No description recorded.                   |

Subsurface soil samples collected in March-April 2001 (second session of Phase II work)

| SB23 | EVSB23-S-12770 | 1  | 3/19/01 | Very dark brown clayey silt, organic rich. Moisture from surface. (Detailed descriptions of subsurface soil samples are in Appendix B.) |
|------|----------------|----|---------|-----------------------------------------------------------------------------------------------------------------------------------------|
| SB23 | EVSB23-S-12771 | 3  | 3/19/01 | Grayish brown to yellowish brown clayey silt. Little moisture.                                                                          |
| SB23 | EVSB23-S-12772 | 5  | 3/19/01 | Yellowish brown to light brownish gray clayey silt. Dry.                                                                                |
| SB23 | EVSB23-S-12773 | 7  | 3/19/01 | Yellowish brown to light brownish gray clayey silt. Dry.                                                                                |
| SB23 | EVSB23-S-12774 | 9  | 3/19/01 | Yellowish brown to light brownish gray clayey silt. Dry.                                                                                |
| SB23 | EVSB23-S-12775 | 11 | 3/19/01 | Yellowish brown to light brownish gray clayey silt. Dry.                                                                                |
| SB23 | EVSB23-S-12776 | 13 | 3/19/01 | Light brownish gray to grayish brown clayey silt. Dry.                                                                                  |
| SB23 | EVSB23-S-12777 | 15 | 3/19/01 | Light brownish gray to grayish brown clayey silt. Dry.                                                                                  |
| SB23 | EVSB23-S-12778 | 17 | 3/19/01 | Light brownish gray to grayish brown clayey silt. Dry.                                                                                  |
| SB23 | EVSB23-S-12779 | 19 | 3/19/01 | Light brownish gray to grayish brown clayey silt. Dry.                                                                                  |
| SB23 | EVSB23-S-12780 | 21 | 3/19/01 | Light brownish gray to grayish brown clayey silt. Dry.                                                                                  |
| SB23 | EVSB23-S-12781 | 23 | 3/19/01 | Light brownish gray to grayish brown clayey silt. Dry.                                                                                  |

| TABLE A.1 | (Cont.) |
|-----------|---------|
|-----------|---------|

| Location   | Sample                                                                                          | Depth<br>(ft BGL) | Sample<br>Date | Sample Description                                                                                               |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------|-------------------|----------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Subsurface | Subsurface soil samples collected in March-April 2001 (second session of Phase II work) (Cont.) |                   |                |                                                                                                                  |  |  |  |  |  |  |
| SB23       | EVSB23-S-12782                                                                                  | 25                | 3/19/01        | Brown clayey silt. Dry.                                                                                          |  |  |  |  |  |  |
| SB23       | EVSB23-S-12783                                                                                  | 27                | 3/19/01        | Grayish brown clayey silt. Dry.                                                                                  |  |  |  |  |  |  |
| SB23       | EVSB23-S-12784                                                                                  | 29                | 3/19/01        | Grayish brown clayey silt. Dry.                                                                                  |  |  |  |  |  |  |
| SB23       | EVSB23-S-12785                                                                                  | 31                | 3/19/01        | Grayish brown clayey silt. Dry.                                                                                  |  |  |  |  |  |  |
| SB23       | EVSB23-S-12786                                                                                  | 33                | 3/19/01        | Grayish brown clayey silt. Dry.                                                                                  |  |  |  |  |  |  |
| SB23       | EVSB23-S-12787                                                                                  | 35                | 3/19/01        | Grayish brown clayey and sandy silt. Slight moisture.                                                            |  |  |  |  |  |  |
| SB23       | EVSB23-S-12788                                                                                  | 37                | 3/19/01        | Light gray to light brownish gray silt. Dry.                                                                     |  |  |  |  |  |  |
| SB23       | EVSB23-S-12789                                                                                  | 39                | 3/19/01        | Gray to white caliche zone.                                                                                      |  |  |  |  |  |  |
| SB23       | EVSB23-S-12790                                                                                  | 41                | 3/19/01        | Gray to white caliche zone.                                                                                      |  |  |  |  |  |  |
| SB23       | EVSB23-S-12791                                                                                  | 43                | 3/19/01        | Light yellowish brown, fine to medium grained sand. Moist.                                                       |  |  |  |  |  |  |
| SB24       | EVSB24-S-12082                                                                                  | 1                 | 3/14/01        | Very gray-brown organic clayey silt. Some moisture from surface.                                                 |  |  |  |  |  |  |
| SB24       | EVSB24-S-12083                                                                                  | 3                 | 3/14/01        | Dark grayish brown clayey silt. Slight moisture.                                                                 |  |  |  |  |  |  |
| SB24       | EVSB24-S-12084                                                                                  | 5                 | 3/14/01        | Yellow-brown to brown clayey silt. Little moisture.                                                              |  |  |  |  |  |  |
| SB24       | EVSB24-S-12085                                                                                  | 7                 | 3/14/01        | Yellow-brown to brown clayey silt. Little moisture.                                                              |  |  |  |  |  |  |
| SB24       | EVSB24-S-12086                                                                                  | 9                 | 3/14/01        | Light brownish gray to grayish brown clayey silt. Dry.                                                           |  |  |  |  |  |  |
| SB24       | EVSB24-S-12087                                                                                  | 11                | 3/14/01        | Light brownish gray to grayish brown clayey silt. Dry.                                                           |  |  |  |  |  |  |
| SB24       | EVSB24-S-12088                                                                                  | 13                | 3/14/01        | Light brownish gray to grayish brown clayey silt. Dry.                                                           |  |  |  |  |  |  |
| SB24       | EVSB24-S-12089                                                                                  | 15                | 3/14/01        | Light brownish gray to grayish brown clayey silt. Dry.                                                           |  |  |  |  |  |  |
| SB24       | EVSB24-S-12090                                                                                  | 17                | 3/14/01        | Light brownish gray to grayish brown clayey silt. Dry.                                                           |  |  |  |  |  |  |
| SB24       | EVSB24-S-12091                                                                                  | 19                | 3/14/01        | Light brownish gray to grayish brown clayey silt. Dry.                                                           |  |  |  |  |  |  |
| SB24       | EVSB24-S-12092                                                                                  | 21                | 3/14/01        | Light brownish gray to grayish brown clayey silt. Dry. Sample collected from new hole after tip did not release. |  |  |  |  |  |  |
| SB24       | EVSB24-S-12093                                                                                  | 23                | 3/14/01        | Light brownish gray to gravish brown clayey silt. Dry.                                                           |  |  |  |  |  |  |
| SB24       | EVSB24-S-12094                                                                                  | 25                | 3/14/01        | Mottled light brownish gray clayey silt. Dry.                                                                    |  |  |  |  |  |  |
| SB24       | EVSB24-S-12095                                                                                  | 27                | 3/14/01        | Mottled light brownish gray clayey silt. Dry.                                                                    |  |  |  |  |  |  |
| SB24       | EVSB24-S-12096                                                                                  | 29                | 3/14/01        | Mottled light brownish gray clayey silt. Dry.                                                                    |  |  |  |  |  |  |
| SB24       | EVSB24-S-12097                                                                                  | 31                | 3/14/01        | Mottled light brownish gray clayey silt. Dry.                                                                    |  |  |  |  |  |  |
| SB24       | EVSB24-S-12098                                                                                  | 33                | 3/14/01        | Mottled light brownish gray clayey silt. Dry.                                                                    |  |  |  |  |  |  |
| SB24       | EVSB24-S-12099                                                                                  | 35                | 3/14/01        | Light brownish gray sandy silt/clay. Dry.                                                                        |  |  |  |  |  |  |
| SB24       | EVSB24-S-12100                                                                                  | 37                | 3/14/01        | Pale brown to light yellowish brown sandy silt. Dry.                                                             |  |  |  |  |  |  |
| SB24       | EVSB24-S-12101                                                                                  | 39                | 3/14/01        | Pale brown to light yellowish brown sandy silt. Dry.                                                             |  |  |  |  |  |  |

| TABLE A.1 | (Cont.) |
|-----------|---------|
|-----------|---------|

| Location  | Sample                                                                                          | Depth<br>(ft BGL) | Sample<br>Date | Sample Description                                                                                                        |  |  |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------|-------------------|----------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Subsurfac | Subsurface soil samples collected in March-April 2001 (second session of Phase II work) (Cont.) |                   |                |                                                                                                                           |  |  |  |  |  |  |
| SB24      | EVSB24-S-12102                                                                                  | 41                | 3/14/01        | Light yellowish brown fine sand with silt. Wet.                                                                           |  |  |  |  |  |  |
| SB24      | EVSB24-S-12758                                                                                  | 43                | 3/14/01        | Sample collected at interface/change of lithology between oxidied wet silty clay and wet, very sandy clay to clayey sand. |  |  |  |  |  |  |
| SB24      | 12759 - no sample                                                                               | 45                | 3/14/01        | Sample not recovered.                                                                                                     |  |  |  |  |  |  |
| SB24      | 12760 - no sample                                                                               | 47                | 3/14/01        | Sample not recovered.                                                                                                     |  |  |  |  |  |  |
| SB34      | EVSB34-S-12818                                                                                  | 1                 | 3/27/01        | Very dark grayish brown silty clay.                                                                                       |  |  |  |  |  |  |
| SB34      | EVSB34-S-12819                                                                                  | 3                 | 3/27/01        | Grayish brown silty clay.                                                                                                 |  |  |  |  |  |  |
| SB34      | EVSB34-S-12820                                                                                  | 5                 | 3/27/01        | Grayish brown to yellowish brown silty clay.                                                                              |  |  |  |  |  |  |
| SB34      | EVSB34-S-12821                                                                                  | 7                 | 3/27/01        | Grayish brown to yellowish brown silty clay.                                                                              |  |  |  |  |  |  |
| SB34      | EVSB34-S-12822                                                                                  | 9                 | 3/27/01        | Grayish brown to yellowish brown silty clay.                                                                              |  |  |  |  |  |  |
| SB34      | EVSB34-S-12823                                                                                  | 11                | 3/27/01        | Grayish brown to yellowish brown silty clay.                                                                              |  |  |  |  |  |  |
| SB34      | EVSB34-S-12824                                                                                  | 13                | 3/27/01        | Grayish brown to yellowish brown silty clay.                                                                              |  |  |  |  |  |  |
| SB34      | EVSB34-S-12825                                                                                  | 15                | 3/27/01        | Gray to pale brown silty clay.                                                                                            |  |  |  |  |  |  |
| SB34      | EVSB34-S-12826                                                                                  | 17                | 3/27/01        | Gray to pale brown silty clay.                                                                                            |  |  |  |  |  |  |
| SB34      | EVSB34-S-12827                                                                                  | 19                | 3/27/01        | Gray to pale brown silty clay.                                                                                            |  |  |  |  |  |  |
| SB34      | EVSB34-S-12828                                                                                  | 21                | 3/27/01        | Gray to pale brown silty clay.                                                                                            |  |  |  |  |  |  |
| SB34      | EVSB34-S-12829                                                                                  | 23                | 3/27/01        | Gray to pale brown silty clay.                                                                                            |  |  |  |  |  |  |
| SB34      | EVSB34-S-12830                                                                                  | 25                | 3/27/01        | Light brown to pinkish gray silty clay.                                                                                   |  |  |  |  |  |  |
| SB34      | EVSB34-S-12831                                                                                  | 27                | 3/27/01        | Light brown to pinkish gray silty clay.                                                                                   |  |  |  |  |  |  |
| SB34      | EVSB34-S-12832                                                                                  | 29                | 3/27/01        | Light gray to grayish brown silty clay.                                                                                   |  |  |  |  |  |  |
| SB34      | EVSB34-S-12833                                                                                  | 31                | 3/27/01        | Light gray to grayish brown silty clay.                                                                                   |  |  |  |  |  |  |
| SB34      | EVSB34-S-12834                                                                                  | 33                | 3/27/01        | Light gray to grayish brown silty clay.                                                                                   |  |  |  |  |  |  |
| SB34      | EVSB34-S-12835                                                                                  | 35                | 3/27/01        | Light gray to grayish brown silty clay.                                                                                   |  |  |  |  |  |  |
| SB34      | EVSB34-S-12836                                                                                  | 37                | 3/27/01        | Light gray to grayish brown silty clay.                                                                                   |  |  |  |  |  |  |
| SB34      | EVSB34-S-12837                                                                                  | 39                | 3/27/01        | Light gray to grayish brown silty clay.                                                                                   |  |  |  |  |  |  |
| SB34      | EVSB34-S-12848                                                                                  | 41                | 3/27/01        | Pale brown to gray sandy silt.                                                                                            |  |  |  |  |  |  |
| SB34      | EVSB34-S-12849                                                                                  | 43                | 3/27/01        | Pale brown to gray sandy silt.                                                                                            |  |  |  |  |  |  |
| SB34      | EVSB34-S-12850                                                                                  | 45                | 3/27/01        | Collected at interface of dark grayish brown clay and light yellowish brown silty sand.                                   |  |  |  |  |  |  |
| SB34      | EVSB34-S-12851                                                                                  | 47                | 3/27/01        | Light yellowish brown fine to medium sand.                                                                                |  |  |  |  |  |  |

TABLE A.2 Results of organic analyses by the headspace and purge-and-trap methods on near-surface soil samples collected at the former CCC/USDA facility during the first session of the Phase II investigation at Everest, Kansas.

|          |                 |                   | Concentration (µg/kg)   |            |                         |             |  |
|----------|-----------------|-------------------|-------------------------|------------|-------------------------|-------------|--|
|          |                 |                   | Headspace               | e Results  | Purge-and-T             | rap Results |  |
| Location | Sample          | Depth<br>(ft BGL) | Carbon<br>Tetrachloride | Chloroform | Carbon<br>Tetrachloride | Chloroform  |  |
| HC01     | EV-HC01-S-11943 | 0.8-1.2           | ND <sup>a</sup>         | ND         | ND                      | ND          |  |
| HC01     | EV-HC01-S-11944 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC02     | EV-HC02-S-11945 | 0.8-1.2           | 1.34                    | ND         | ND                      | ND          |  |
| HC02     | EV-HC02-S-11946 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC03     | EV-HC03-S-11947 | 0.8-1.2           | 0.14                    | ND         | ND                      | ND          |  |
| HC03     | EV-HC03-S-11948 | 5.5-6.0           | 0.13                    | ND         | ND                      | ND          |  |
| HC04     | EV-HC04-S-11949 | 0.8-1.2           | ND                      | ND         | ND                      | ND          |  |
| HC04     | EV-HC04-S-11950 | 5.5-6.0           | 0.1                     | ND         | ND                      | ND          |  |
| HC05     | EV-HC05-S-11951 | 1.0-1.3           | ND                      | ND         | ND                      | ND          |  |
| HC05     | EV-HC05-S-11952 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC06     | EV-HC06-S-11953 | 0.9-1.2           | ND                      | ND         | ND                      | ND          |  |
| HC06     | EV-HC06-S-11954 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC07     | EV-HC07-S-11955 | 0.8-1.2           | ND                      | ND         | ND                      | ND          |  |
| HC07     | EV-HC07-S-11956 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC08     | EV-HC08-S-11957 | 0.8-1.2           | 1.38                    | 1.57       | ND                      | ND          |  |
| HC08     | EV-HC08-S-11958 | 5.5-6.0           | 0.71                    | ND         | ND                      | ND          |  |
| HC09     | EV-HC09-S-11959 | 0.8-1.2           | ND                      | ND         | ND                      | ND          |  |
| HC09     | EV-HC09-S-11960 | 5.5-6.0           | 0.68                    | ND         | ND                      | ND          |  |
| HC10     | EV-HC10-S-11961 | 0.9-1.2           | ND                      | ND         | ND                      | ND          |  |
| HC10     | EV-HC10-S-11962 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC11     | EV-HC11-S-11963 | 0.9-1.2           | ND                      | ND         | ND                      | ND          |  |
| HC11     | EV-HC11-S-11964 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC12     | EV-HC12-S-11965 | 0.9-1.2           | ND                      | ND         | ND                      | ND          |  |
| HC12     | EV-HC12-S-11966 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC13     | EV-HC13-S-11967 | 0.9-1.2           | ND                      | ND         | ND                      | ND          |  |
| HC13     | EV-HC13-S-11968 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC14     | EV-HC14-S-11969 | 0.9-1.2           | 0.24                    | ND         | ND                      | ND          |  |
| HC14     | EV-HC14-S-11970 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |

## TABLE A.2 (Cont.)

|          |                 |                   | Concentration (µg/kg)   |            |                         |             |  |
|----------|-----------------|-------------------|-------------------------|------------|-------------------------|-------------|--|
|          |                 |                   | Headspace               | e Results  | Purge-and-T             | rap Results |  |
| Location | Sample          | Depth<br>(ft BGL) | Carbon<br>Tetrachloride | Chloroform | Carbon<br>Tetrachloride | Chloroform  |  |
| HC15     | EV-HC15-S-11971 | 1.0-1.2           | ND                      | ND         | ND                      | ND          |  |
| HC15     | EV-HC15-S-11972 | 5.5-6.0           | 1.75                    | ND         | ND                      | ND          |  |
| HC16     | EV-HC16-S-11973 | 1.0-1.2           | ND                      | ND         | ND                      | ND          |  |
| HC16     | EV-HC16-S-11974 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC17     | EV-HC17-S-11975 | 0.9-1.2           | ND                      | ND         | ND                      | ND          |  |
| HC17     | EV-HC17-S-11976 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC18     | EV-HC18-S-11977 | 0.9-1.2           | 0.11                    | ND         | ND                      | ND          |  |
| HC18     | EV-HC18-S-11978 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC19     | EV-HC19-S-11979 | 0.9-1.2           | 0.37                    | ND         | ND                      | ND          |  |
| HC19     | EV-HC19-S-11980 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC20     | EV-HC20-S-11983 | 0.9-1.2           | ND                      | ND         | ND                      | ND          |  |
| HC20     | EV-HC20-S-11984 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC21     | EV-HC21-S-11993 | 0.9-1.2           | ND                      | ND         | ND                      | ND          |  |
| HC21     | EV-HC21-S-11994 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC22     | EV-HC22-S-11995 | 0.9-1.2           | 2.1                     | ND         | ND                      | ND          |  |
| HC22     | EV-HC22-S-11996 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC23     | EV-HC23-S-11997 | 0.9-1.2           | 0.22                    | ND         | ND                      | ND          |  |
| HC23     | EV-HC23-S-11998 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC24     | EV-HC24-S-11999 | 0.9-1.2           | 0.28                    | ND         | ND                      | ND          |  |
| HC24     | EV-HC24-S-12000 | 5.5-6.0           | ND                      | ND         | NA <sup>b</sup>         | NA          |  |
| HC25     | EV-HC25-S-12001 | 0.9-1.2           | 0.1                     | ND         | ND                      | ND          |  |
| HC25     | EV-HC25-S-12002 | 5.5-6.0           | 0.17                    | ND         | ND                      | ND          |  |
| HC26     | EV-HC26-S-12003 | 0.9-1.2           | ND                      | ND         | ND                      | ND          |  |
| HC26     | EV-HC26-S-12004 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC27     | EV-HC27-S-12005 | 1.4-1.6           | ND                      | ND         | ND                      | ND          |  |
| HC27     | EV-HC27-S-12006 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC28     | EV-HC28-S-12007 | 0.9-1.2           | ND                      | ND         | ND                      | ND          |  |
| HC28     | EV-HC28-S-12008 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |

## TABLE A.2 (Cont.)

|          |                 |                   | Concentration (µg/kg)   |            |                         |             |  |
|----------|-----------------|-------------------|-------------------------|------------|-------------------------|-------------|--|
|          |                 |                   | Headspace               | e Results  | Purge-and-T             | rap Results |  |
| Location | Sample          | Depth<br>(ft BGL) | Carbon<br>Tetrachloride | Chloroform | Carbon<br>Tetrachloride | Chloroform  |  |
| HC29     | EV-HC29-S-12009 | 0.9-1.2           | 0.33                    | ND         | ND                      | ND          |  |
| HC29     | EV-HC29-S-12010 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC30     | EV-HC30-S-12013 | 0.9-1.2           | 0.11                    | ND         | ND                      | ND          |  |
| HC30     | EV-HC30-S-12014 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC31     | EV-HC31-S-12015 | 0.9-1.2           | ND                      | ND         | ND                      | ND          |  |
| HC31     | EV-HC31-S-12016 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC32     | EV-HC32-S-12017 | 0.9-1.2           | 0.25                    | ND         | ND                      | ND          |  |
| HC32     | EV-HC32-S-12018 | 5.5-6.0           | 0.13                    | ND         | ND                      | ND          |  |
| HC33     | EV-HC33-S-12019 | 0.9-1.2           | 0.71                    | ND         | ND                      | ND          |  |
| HC33     | EV-HC33-S-12020 | 5.5-6.0           | 0.42                    | ND         | ND                      | ND          |  |
| HC34     | EV-HC34-S-12021 | 0.9-1.2           | ND                      | ND         | ND                      | ND          |  |
| HC34     | EV-HC34-S-12022 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC35     | EV-HC35-S-12023 | 0.9-1.2           | 0.46                    | ND         | ND                      | ND          |  |
| HC35     | EV-HC35-S-12024 | 5.5-6.0           | ND                      | ND         | ND                      | ND          |  |
| HC36     | EV-HC36-S-12025 | 0.9-1.2           | 0.25                    | ND         | ND                      | ND          |  |
| HC36     | EV-HC36-S-12026 | 5.5-6.0           | 1.36                    | ND         | ND                      | ND          |  |
| HC37     | EV-HC37-S-12029 | 0.9-1.2           | 2.19                    | ND         | ND                      | ND          |  |
| HC37     | EV-HC37-S-12030 | 5.5-6.0           | 0.14                    | ND         | ND                      | ND          |  |
| HC38     | EV-HC38-S-12033 | 0.8-1.2           | 0.67                    | ND         | ND                      | ND          |  |
| HC38     | EV-HC38-S-12034 | 5.5-6.0           | 0.2                     | ND         | ND                      | ND          |  |

<sup>a</sup> ND, contaminant not detected.

<sup>b</sup> NA, sample not analyzed by the purge-and-trap method.

|                              |                                                                       |                      | Concentrat                                                   | tion (μg/kg)                                               |
|------------------------------|-----------------------------------------------------------------------|----------------------|--------------------------------------------------------------|------------------------------------------------------------|
| Location                     | Sample                                                                | Depth<br>(ft BGL)    | Carbon<br>Tetrachloride                                      | Chloroform                                                 |
| SB23<br>SB23                 | EVSB23-S-12770<br>EVSB23-S-12771                                      | 1<br>3               | ND <sup>a</sup><br>ND                                        | < 10 (3.9 J <sup>b</sup> )<br>ND                           |
| SB23<br>SB23<br>SB23<br>SB23 | EVSB23-S-12772°<br>EVSB23-S-12773<br>EVSB23-S-12774<br>EVSB23-S-12775 | 5<br>7<br>9<br>11    |                                                              | ND<br>< 10 (3.2 J)<br>< 10 (4 J)                           |
| SB23<br>SB23<br>SB23<br>SB23 | EVSB23-S-12776<br>EVSB23-S-12777<br>EVSB23-S-12778                    | 13<br>15<br>17       | < 10 (4.8 J)<br>12<br>17                                     | < 10 (2.9 J)<br>< 10 (5.4 J)<br>10                         |
| SB23<br>SB23<br>SB23         | EVSB23-S-12779<br>EVSB23-S-12780<br>EVSB23-S-12781                    | 19<br>21<br>23       | 20<br>19<br>23                                               | < 10 (5.4 J)<br>< 10 (5.9 J)<br>11                         |
| SB23<br>SB23<br>SB23         | EVSB23-S-12782<br>EVSB23-S-12783<br>EVSB23-S-12784                    | 25<br>27<br>29       | < 10 (8.2 J)<br>< 10 (5 J)<br>ND                             | < 10 (6.8 J)<br>< 10 (3.1 J)<br>< 10 (2.1 J)               |
| SB23<br>SB23<br>SB23<br>SB23 | EVSB23-S-12785<br>EVSB23-S-12786<br>EVSB23-S-12787<br>EVSB23-S-12788  | 33<br>35<br>37       | < 10 (3.4 J)<br>< 10 (4.3 J)<br>< 10 (3.8 J)<br>< 10 (5.1 J) | < 10 (2.8 J)<br>< 10 (6 J)<br>< 10 (3.3 J)<br>< 10 (6.6 J) |
| SB23<br>SB23<br>SB23         | EVSB23-S-12789<br>EVSB23-S-12790<br>EVSB23-S-12791                    | 39<br>41<br>43       | < 10 (6.4 J)<br>< 10 (6.3 J)<br>66                           | < 10 (6.5 J)<br>< 10 (2.1 J)<br>< 10 (8.1 J)               |
| SB24<br>SB24<br>SB24         | EVSB24-S-12082<br>EVSB24-S-12083<br>EVSB24-S-12084                    | 1<br>3<br>5          | ND<br>ND                                                     | ND<br>ND                                                   |
| SB24<br>SB24<br>SB24<br>SB24 | EVSB24-S-12085<br>EVSB24-S-12086<br>EVSB24-S-12087                    | 7<br>9<br>11         | ND<br>ND<br>ND                                               | ND<br>ND<br>ND                                             |
| SB24<br>SB24<br>SB24         | EVSB24-S-12088<br>EVSB24-S-12089<br>EVSB24-S-12090                    | 13<br>15<br>17       | ND<br>ND<br>ND                                               | ND<br>ND<br>ND                                             |
| SB24<br>SB24<br>SB24<br>SB24 | EVSB24-S-12091<br>EVSB24-S-12092<br>EVSB24-S-12093                    | 19<br>21<br>23       | ND<br>ND<br>ND                                               | ND<br>ND<br>ND                                             |
| SB24<br>SB24<br>SB24<br>SB24 | EVSB24-S-12094<br>EVSB24-S-12095<br>EVSB24-S-12096<br>EVSB24-S-12097  | 25<br>27<br>29<br>31 |                                                              |                                                            |
| SB24<br>SB24<br>SB24<br>SB24 | EVSB24-S-12098<br>EVSB24-S-12099<br>EVSB24-S-12100                    | 33<br>35<br>37       | ND<br>ND<br>ND                                               | ND<br>ND<br>ND                                             |

TABLE A.3 Results of organic analyses by the purge-and-trap method on subsurface soil samples collected at the former CCC/USDA facility during the second session of the Phase II investigation at Everest, Kansas.

TABLE A.3 (Cont.)

|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                               | Concentrati                                                                                  | on (µg/kg)                                                                                                                                                                     |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location                                                                            | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Depth<br>(ft BGL)                                                                                                                             | Carbon<br>Tetrachloride                                                                      | Chloroform                                                                                                                                                                     |
| SB24<br>SB24<br>SB24<br>SB34<br>SB34<br>SB34<br>SB34<br>SB34<br>SB34<br>SB34<br>SB3 | EVSB24-S-12101<br>EVSB24-S-12102<br>EVSB24-S-12758<br>EVSB34-S-12818<br>EVSB34-S-12819<br>EVSB34-S-12819<br>EVSB34-S-12820<br>EVSB34-S-12821<br>EVSB34-S-12822<br>EVSB34-S-12823<br>EVSB34-S-12825<br>EVSB34-S-12825<br>EVSB34-S-12826<br>EVSB34-S-12827<br>EVSB34-S-12830<br>EVSB34-S-12831<br>EVSB34-S-12833<br>EVSB34-S-12833<br>EVSB34-S-12833<br>EVSB34-S-12835<br>EVSB34-S-12836<br>EVSB34-S-12848<br>EVSB34-S-12848<br>EVSB34-S-12849<br>EVSB34-S-12849<br>EVSB34-S-12850 | 39<br>41<br>43<br>1<br>3<br>5<br>7<br>9<br>11<br>13<br>15<br>17<br>19<br>21<br>23<br>25<br>27<br>29<br>31<br>33<br>35<br>37<br>39<br>41<br>43 | ND<br>ND<br>16<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>< 10 (3.8 J)<br>ND<br>ND<br>< 10 (2.9 J)<br>ND<br>< 10 (2.5 J)<br>ND<br>< 10 (2.5 J)<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND |
| SB34                                                                                | EVSB34-S-12851                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47                                                                                                                                            | 15                                                                                           | < 10 (3.5 J)                                                                                                                                                                   |

<sup>a</sup> ND, contaminant not detected.

 $^{b}\,$  J, estimated concentration below quantitation limit of 10  $\mu g/kg.$ 

<sup>c</sup> Surrogate recovery outside quality control range of 80-120%.

|                      |                                     |                      |                    |                     |                      |                      | Р                    | articles         | Passing              | g through          | n Sieve S        | Size (%)           |                    |                      |                      |                    |                    |                      |
|----------------------|-------------------------------------|----------------------|--------------------|---------------------|----------------------|----------------------|----------------------|------------------|----------------------|--------------------|------------------|--------------------|--------------------|----------------------|----------------------|--------------------|--------------------|----------------------|
| Location             | Depth<br>(ft BGL)                   | 3/4 in. <sup>a</sup> | 1/2 in.            | 3/8 in.             | #4                   | #10                  | #18                  | #20 <sup>a</sup> | #35                  | #40                | #50 <sup>a</sup> | #60                | #100               | #120 <sup>b</sup>    | #140                 | #200               | #230 <sup>b</sup>  | #270                 |
| SB20<br>SB20         | 56-58<br>62-63                      | 100                  | 96.1               | 95.5<br>100         | 91.5<br>98.9         | 83.8<br>96.4         | 75.2<br>90           | 73.4<br>87.9     | 64<br>71.7           | 58.9<br>63.8       | 47.7<br>49.4     | 42.7<br>44.2       | 31.7<br>33.4       |                      | 28.2<br>30.2         | 26.3<br>28.2       |                    | 24.9<br>26.3         |
| SB21<br>SB21         | 60-62<br>64-66                      | 100                  | 92.1               | 100<br>92.1         | 99.4<br>91.5         | 98.5<br>90           | 95.8<br>87.1         | 94.9<br>86       | 90.9<br>79.5         | 89<br>76           | 84.8<br>68.4     | 82.9<br>64.9       | 77.6<br>55.6       |                      | 75.9<br>51.7         | 74.8<br>49         |                    | 74.2<br>46.8         |
| SB33                 | 66-68                               |                      |                    | 100                 | 99.3                 | 97.6                 | 93.2                 | 91.5             | 80.2                 | 74.1               | 61.5             | 54.2               | 34.8               |                      | 30.6                 | 28.5               |                    | 27.4                 |
| SB38<br>SB38         | 55-57<br>70-72                      |                      | 100                | 100<br>98.3         | 98.8<br>94.5         | 96.7<br>86.8         | 90<br>71.4           | 87.7<br>68.7     | 71.7<br>57.7         | 62.1<br>53.9       | 43.9<br>44.9     | 35.4<br>40.4       | 20.3<br>28.2       |                      | 15.9<br>24.3         | 13.9<br>22.2       |                    | 12.7<br>20.9         |
| SB39                 | 70-72                               | 100                  | 98.2               | 98.2                | 97.5                 | 95                   | 87.2                 | 83.9             | 63.4                 | 51.9               | 31.4             | 24                 | 12.7               |                      | 10.1                 | 9.1                |                    | 8.9                  |
| SB41                 | 70-72                               |                      | 100                | 99.3                | 92.7                 | 80.9                 | 67.6                 | 65.4             | 52.4                 | 41.7               | 28.4             | 25.3               | 15.7               |                      | 12.6                 | 11.1               |                    | 10.4                 |
| SB49                 | 46-47.3                             |                      | 100                | 100                 | 99.7                 | 98.8                 | 96.7                 |                  | 79.9                 | 69.5               |                  | 32.7               | 15.3               | 13.7                 | 12.5                 | 11.1               | 10.7               | 10.2                 |
| SB50<br>SB50<br>SB50 | 49.8-50.8<br>50.8-51.8<br>52.3-52.6 |                      | 95.7<br>100<br>100 | 94.2<br>98.5<br>100 | 92.3<br>96.2<br>99.7 | 89.1<br>92.1<br>99.1 | 85.9<br>89.1<br>97.4 |                  | 77.2<br>85.2<br>95.6 | 71.8<br>83.3<br>95 |                  | 51.7<br>72<br>92.5 | 36<br>53.8<br>89.5 | 32.7<br>50.8<br>88.4 | 29.2<br>47.1<br>87.2 | 24.3<br>41.3<br>85 | 22.6<br>39.1<br>84 | 20.8<br>36.8<br>82.6 |
| SB53<br>SB53         | 22-23<br>26-28                      |                      | 100<br>98.1        | 100<br>98.1         | 100<br>96.7          | 99.8<br>95.4         | 99.6<br>93.6         |                  | 98.3<br>91.9         | 97<br>89.2         |                  | 87.7<br>83         | 75.2<br>75.3       | 71.3<br>73.4         | 65.7<br>71.3         | 56.1<br>67.3       | 50.7<br>65.5       | 43.6<br>63.3         |
| SB54                 | 23-25                               |                      | 98.3               | 94                  | 89.8                 | 75.2                 | 51.2                 |                  | 24.8                 | 20.5               |                  | 13.7               | 11.7               | 11.5                 | 11.2                 | 10.8               | 10.6               | 10.3                 |
| SB56                 | 23-25                               |                      | 100                | 98.1                | 93.2                 | 86.1                 | 73.8                 |                  | 56.7                 | 51.4               |                  | 36.9               | 25.7               | 23.4                 | 20.8                 | 17.2               | 15.8               | 14.4                 |

TABLE A.4 Results of soil particle size analyses on subsurface soils collected during the second and third sessions of the Phase II field investigation at Everest, Kansas.

<sup>a</sup> Sieve size used for March-April 2001 samples only (second session).

<sup>b</sup> Sieve size used for November 2002 samples only (third session).

|                      |                                     |                   | Composi            | tion (%)           |                     |
|----------------------|-------------------------------------|-------------------|--------------------|--------------------|---------------------|
| Location             | Depth<br>(ft BGL)                   | Gravel            | Sand               | Silt               | Clay                |
| SB20<br>SB20         | 56-58<br>62-63                      | 8.5<br>1.1        | 65.2<br>70.7       | 17.6<br>18.5       | 8.7<br>9.7          |
| SB21<br>SB21         | 60-62<br>64-66                      | 0.6<br>8.5        | 24.6<br>42.5       | 42.4<br>30.7       | 32.4<br>18.3        |
| SB33                 | 66-68                               | 0.7               | 70.8               | 16.9               | 11.6                |
| SB38<br>SB38         | 55-57<br>70-72                      | 1.2<br>5.5        | 84.9<br>72.3       | 6.2<br>15          | 7.7<br>7.2          |
| SB39                 | 70-72                               | 2.5               | 88.4               | 3.9                | 5.2                 |
| SB41                 | 70-72                               | 7.3               | 81.6               | 7.6                | 3.5                 |
| SB49                 | 46-47.3                             | 0.3               | 88.6               | 5.4                | 5.7                 |
| SB50<br>SB50<br>SB50 | 49.8-50.8<br>50.8-51.8<br>52.3-52.6 | 7.7<br>3.8<br>0.3 | 68<br>54.9<br>14.7 | 18<br>30.6<br>41.7 | 6.3<br>10.7<br>43.3 |
| SB53<br>SB53         | 22-23<br>26-28                      | 0<br>3.3          | 43.9<br>29.4       | 48.5<br>38.6       | 7.6<br>28.7         |
| SB54                 | 23-25                               | 10.2              | 79                 | 3.7                | 7.1                 |
| SB56                 | 23-25                               | 6.8               | 76                 | 12.6               | 4.6                 |

TABLE A.5 Compositions of soil samples collected during the second and third sessions of the Phase II field investigation at Everest, Kansas.

Appendix B:

## Core Logs and Cone Penetrometer Traces



|       |              | rgonne                                                                 | Project:                                        | Everest, KS                                                         | Boring ID: SB20                                          |                                                     |        |
|-------|--------------|------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|--------|
|       |              | National<br>Laboratory                                                 | Elevation:<br>Depth:<br>Geologist:<br>Location: | :1148.25 ft<br>79.9 ft<br>: LaFreniere/Barrett<br>2035021.63, 50029 | Log Date: 3/06/01<br>Plot Date: 5/09/01<br>11.45         | Rig: CPT<br>Driller: K. Spokas<br>Company: Argonne  |        |
| Depth | Wate<br>Samp |                                                                        |                                                 | Lithology                                                           |                                                          |                                                     | Elev.  |
|       |              | NO SAMPLE: (no S                                                       | ample from (                                    | 0 -40 ft)                                                           |                                                          |                                                     |        |
| -40 - |              | CLAY, SILTY: minor<br>Mn. Inclusions with o<br>stiff and dry.          | scattered s<br>concentratio                     | and. Pinkish gray to                                                | gray, slightly mottled witl<br>e associated porosity; no | h evidence of scattered<br>n-calcareous, moderately |        |
|       |              | CLAY, SILTY: clay t<br>above. Oxidation as                             | o silty clay, r<br>sociated with                | minor sand. Pinkish<br>h minor scattered M                          | gray to brown, generally<br>n; dry.                      | lighter in color than                               | - 1105 |
|       |              | CLAY: minor silt; ma calcareous; dry.                                  | irked undula                                    | atory contact with ov                                               | erlying unit; dark brown, ı                              | moderately plastic, non-                            |        |
| -45   |              | CLAY, SILTY: scatte<br>slightly plastic, scatt<br>concentration; trace | ered sands t<br>ered black N<br>cemented s      | hroughout, sand co<br>In grains, minor evi<br>and inclusions; dry.  | ntent increasing with dept<br>dence of oxidation associ  | h. Lt. brownish-gray, v.<br>ated with areas of Mn   | -      |
|       |              |                                                                        |                                                 |                                                                     |                                                          |                                                     | -      |
|       |              | CLAY, SILTY: slight plastic, dry.                                      | ly silty; dark                                  | brown, froming sha                                                  | rp contact with overlying                                | unit; non-calcareous,                               |        |
| -50   |              | CLAY, SILTY: scatte<br>appearance; slightly                            | ered sand; It<br>plastic, non                   | brownish-gray; blac<br>-calcareous, dry.                            | k Mn grains scattered thr                                | roughout; mottled                                   | -      |
|       |              |                                                                        |                                                 |                                                                     |                                                          |                                                     |        |

**SB20** p. 2

| Depth | W.S. | Lithology                                                                                                                                                                                                          | Elev.  |
|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| -     |      |                                                                                                                                                                                                                    |        |
| _     |      | CLAY, SILT AND SAND: with weathered light gray to white calcareous cemented sandy inslusions;<br>dry.                                                                                                              |        |
| -     |      | CLAY, SILT AND SAND: light brownish-gray, non-calcareous with porous zones associated with sandy lenses; lenses are cemented clayey sand to sandy clay in a calcareous clay matrix.                                | — 1095 |
| -55   |      |                                                                                                                                                                                                                    |        |
| -55   |      | CLAY, SILT AND SAND: Light brownish gray, calcareous, slightly plastic, generally dry.                                                                                                                             |        |
|       |      | CLAY AND SAND: sandy clay to clayey sand, very pale brown; as above with marked increase in sand content; highly calcareous; disaggregated sand from 55.75' -56'; dry.                                             |        |
|       |      | CLAY, SILTY: abrupt contact with overlying zone; dark brown, calcareous, highly plastic, wet.                                                                                                                      |        |
| -     |      | CLAY, SAND AND GRAVEL: small gravel; very poorly sorted, well-developed porosity and permeability; subrounded to angular predominately quartz grains; highly oxidized, highly calcareous, saturated.               | _      |
| -     |      | CLAY AND SAND: sandy clay to clayey sand with higher clay content than above; highly oxidized, highly calcareous, saturated.                                                                                       | - 1090 |
|       |      | CLAY, SAND AND GRAVEL: coarse sand to sandy clay with small gravel, granular gravels to 18mm in length; highly calcareous, saturated.                                                                              |        |
| -60   |      | SAND AND GRAVEL: unconsolidated, very poorly sorted sand, granular gravels to 20mm; sands medium to coarse grained, trace calcareous clay matrix; highly oxidized.                                                 |        |
| -00   |      | NO RECOVERY                                                                                                                                                                                                        |        |
|       |      | SAND: loose, highly oxidized, saturated.                                                                                                                                                                           |        |
|       |      | CLAY, SAND AND GRAVEL: high percentage of sand; highly oxidized, calcareous, wet to saturated.                                                                                                                     |        |
|       |      | CLAY, SAND AND GRAVEL: very sandy with granular gravels; highly oxidized and calcareous.                                                                                                                           |        |
|       |      | CLAY, SAND AND GRAVEL: highly oxidized with intercalated lenses of very poorly sorted, saturated, loose quartz sand, grain sizes ranging from fine to very coarse, minor granular gravels; highly calcareous, wet. |        |
|       |      | SAND: medium to coarse; highly oxidized. loose, highly calcareous, wet.                                                                                                                                            | — 1085 |
|       |      | NO RECOVERY: (presumed to be sand)                                                                                                                                                                                 |        |
|       |      | SAND: Sand to sandy clay. Highly oxidized, saturated, unconsolidated, slightly calcareous. Sand is poorly sorted; predominately medium to coarse grained quartz with varying clay content to pure sand.            |        |
| -65 — |      | CLAY, SILT AND SAND: Very silty clay with abundant scattered fine to medium grained sand. Clay is highly calcareous, highly oxidized and wet.                                                                      |        |
| -     |      | CLAY, SILT AND SAND: Very sandy silty clay, minor angular granular gravels. Highly calcareous with minute lenses with high sand and gravel content. Highly oxidized and wet.                                       |        |

**SB20** p. 3

| Depth | W.S. | Lithology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Elev.                                                                                       |
|-------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| -     |      | <ul> <li>CLAY, SILT AND SAND: Highly calcareous and oxidized, very sandy, silty clay. Marked increase in the lenses of light gray to white very fine to fine grained sand as above. Highly calcareous minor clay matrix. Sands becoming coarser grained with depth with some granular gravels present locally. Clays are fairly stiff, oxidized, yellowish-brown in color and damp to dry in moisture content.</li> <li>CLAY, SILTY: to silt, clayey with sand. Highly oxidized with very localized evidence of sand. Highly calcareous with minor evidence of granular gravels to 30 mm in length. Silt content increases with depth. Minor, scattered manganese inclusions throughout. Yellowish-brown, fairly stiff clay. Till sequence. Damp to dry.</li> <li>CLAY, SANDY: Probable slough. Wet.</li> </ul> | - 1080                                                                                      |
| 70    |      | SILT: Olive, dense, hard, friable. Calcareous and waxy in appearance. Top of Unit 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |
| -70 — |      | NO RECOVERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
| -75   |      | SILT: Olive, dense, hard, friable. Calcareous and waxy in appearance. Refusal at 79.9 ft. bgl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |



|       | $\frown$    | Argonne                                                              | Project:                                      | Everest, KS                                                             | Boring ID: SB21                                                                                        |                                                    |           |
|-------|-------------|----------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------|
|       |             | National<br>Laboratory                                               | Elevation<br>Depth:<br>Geologist<br>Location: | : 1152.18 ft<br>80.7 ft<br>:: LaFreniere/Barrett<br>2034651.18, 50062   | <b>Log Date:</b> 3/08/01<br><b>Plot Date:</b> 4/19/01<br>25.54                                         | Rig: CPT<br>Driller: K. Spokas<br>Company: Argonne |           |
| Depth | Wat<br>Samp |                                                                      |                                               | Lithology                                                               |                                                                                                        |                                                    | Elev.     |
| -40 - |             | NO SAMPLE: (No sa                                                    | ample recov                                   | ery from 0 to -41 ft).                                                  |                                                                                                        |                                                    | -         |
|       |             | CLAY: Dark brown; v                                                  | with trace of                                 | fe-oxide; medium ha                                                     | ardness, somewhat mois                                                                                 |                                                    |           |
|       |             | CLAY, SILTY: Mediu<br>subrounded fine pet                            | im gray to b<br>ble at 43.6'.                 | rownish gray with mi<br>laminated.                                      | nor silt, trace Fe-oxide; h                                                                            | ard, indurated, dry;                               | _         |
|       |             | CLAY: Dark brown s                                                   | imilar to 41.                                 | 0-42.5' interval; med                                                   | ium hardness, moist.                                                                                   |                                                    |           |
| -45 – |             | CLAY: Mixture of mo<br>moist.                                        | ostly very da                                 | rk brown clay (nearly                                                   | / black) with organic mate                                                                             | erial; medium hardness,                            |           |
|       |             | organic) material; ha                                                | zed to browr<br>Ird, dry, lami                | nish gray, minor Fe-c                                                   | ixide and very minor dark                                                                              | brown (probably                                    | -<br>1105 |
| 50    |             | CLAY, SILTY: Mediu<br>organics (black); ver                          | ım yellowish<br>y fine sand (                 | n - gray clay, silt cont<br>(up to 20% - also inc                       | ent increasing with depth<br>reases with depth), dry.                                                  | , trace Fe-oxide and                               | -         |
| -50 – |             |                                                                      |                                               |                                                                         |                                                                                                        |                                                    | -         |
|       |             | CLAY: Dark brown v<br>(moist); trace Fe-oxi<br>(Note: plant material | vith very dar<br>de; wood &<br>is just abov   | k brown (nearly blac<br>plant material (52.5 ·<br>e a sandy layer at 52 | <ul> <li>k) organic containing clay</li> <li>52.8') surrounded by ve</li> <li>2.8 - 52.9').</li> </ul> | /; medium hardness<br>ry dark brown clay.          | - 1100    |

**SB21** p. 2

| Depth | W.S. | Lithology                                                                                                                                                                                                                            | Elev. |
|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| -     |      | CLAY, SANDY: Some silt; amount of fine sand varies (20% to 75%); fairly hard (little moisture); medium yellowish-gray.                                                                                                               |       |
|       |      | CLAY, SILTY: Medium brownish gray with minor fine sand; trace Fe-oxide; hard (very little moisture).                                                                                                                                 |       |
| -55 — |      | CLAY, SILT AND SAND: Grayish brown; sand content (fine to medium grained) varies considerably through the unit; slightly moist                                                                                                       |       |
|       |      | SAND, CLAYEY: As above with a marked increase in sand and sandy clay, very poorly sorted, somewhat friable sand; dry.                                                                                                                |       |
|       |      | CLAY, SILTY: Lt grayish-brown with trace fine to very fine sand. Minor oxidation associated with minute manganese nodules. Abrupt contact with unit below; moist                                                                     |       |
|       |      | CLAY, SANDY: Grayish-brown clay as above with marked increase in sand content; very poorly sorted, very fine to fine with trace medium, grains.                                                                                      |       |
|       |      | CLAY: Dark brown similar to 44.0 - 44.5 ft; trace organic material at base; moist                                                                                                                                                    | 1095  |
| -     |      | CLAY, SILTY: Medium brownish gray with minor fine sand; trace Fe-oxide; few rounded to subrounded fine pebbles, moist                                                                                                                | _     |
|       |      | CLAV, CUTV: Modium brownigh group come colographic motorial (colighe), trace Fe ovide, dry                                                                                                                                           | _     |
|       |      | CLAY, SILTY: Medium brownish gray, some calcareous material (caliche), trace Fe-oxide, dry.                                                                                                                                          |       |
| -60 — |      | CALICHE: White, highly calcareous caliche zone; 20% of zone is silty clay similar to 58.7 - 59.3 interval. Contains some hard white pieces (caliche) and a few fine pebbles (subrounded); caliche partly altered to white clay, dry. |       |
|       |      | NO RECOVERY: No recovery (Note: 60.0 - 62.0' could have water).                                                                                                                                                                      | -     |
| -     |      | CLAY AND SAND: Medium and dark brown organic clay with light gray sand zones (containing silt); very moist and soft, calcareous                                                                                                      | _     |
| -     |      | CLAY: Medium gray with zones of hard white caliche; highly calcareous; traces Fe-oxide, moderate moisture.                                                                                                                           |       |
|       |      | CALICHE: White, hard caliche; calcareous, very dry, oxidized.                                                                                                                                                                        | -<br> |
| -     |      | CLAY, SILTY: Medium gray with sandy zones (62.9 - 63.0 ft); some caliche assoc. with sand; calcareous, oxidized, fairly dry.                                                                                                         |       |
| -65 — |      | CLAY, SILT AND SAND: Oxidized, with a few fine pebbles (largest at 64.2 ft - 1 3/8 in. in size);<br>amount of sand varies averaging 40-50%, calcareous, minor gravel, fairly moist.                                                  | -     |
| -     |      | CLAY, SILTY: Oxidized gray silty clay with caliche zones (containing nodules) at 66.7- 66.8 ft and 67.5 - 67.6 ft; moderate Fe-oxide, 10-20% sand, calcareous.                                                                       | 1085  |

**B-**8

| SB21 | р. |
|------|----|

|       |      | <b>SB21</b> p. 3                                                                                                                                                                                       |        |
|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Depth | W.S. | Lithology                                                                                                                                                                                              | Elev.  |
| -     |      | CLAY, SILT AND SAND: Oxidized, similar to 63.8 to 66.2 interval; minor gravel; moderately calcareous; minor caliche, some moisture.                                                                    | -      |
| -70 — |      | CLAY, SILTY: Oxidized, gray with some caliche; similar to interval 66.2 to 67.8 ft; 10-20% sand; quite dry/hard; calcareous.                                                                           | -      |
| -     |      | SAND, SILTY: Oxidized, gray, very moist and soft. Sand fine-grained, much silt. Slightly calcareous, wet.                                                                                              | - 1080 |
| -75 — |      | CLAY, SILTY: Oxidized, gray, similar to interval 63.8 - 66.2 ft, but drier; contains 40-50% sand, calcareous, minor gravel.                                                                            | -      |
| -     |      | CLAY, SILTY: Medium brownish to greenish gray, very silty. Hard, indurated and dry; moderately calcareous; partial recovery. Total Depth: 80.7' bgl in hard, indurated greenish-gray, very silty clay. | - 1075 |
| -80 — |      |                                                                                                                                                                                                        | -      |





**SB22** p. 2

Depth W.S. Lithology Elev. CLAY, SILT AND GRAVEL: Weathered rock pieces, (very fine grained, probably rhyolite); clay moisture low but increases slightly w/depth; few rounded to angular "fine pebbles"; moderate fe-oxide Ö. calcareous. -0 Ľ. 0 1095 0 -0 -55 CLAY, SILTY: Light gray, dry crumbly and hard, variable moisture, calcareous. CLAY, SILTY: Oxidized gray, trace fine pebbles (rounded to angular); moist 55.0-55.4 low moisture below 55.4 ft; silt and minor sand below 59.5 ft; much fe-oxide staining throughout; local dark brown and light gray clay. calcareous. \_\_\_\_ \_\_\_\_ \_\_\_ \_\_\_ \_\_\_ 1090 -60 SILT, SANDY: Oxidized brown sandy silt; sand content 40-50%, fine to med grained; wet. White \_\_\_\_ pebble (.7 in size) at 60.3 ft. Contains minor clay and few fine pebbles, non-calcareous. \_\_\_\_ -----CLAY, SILTY: Oxidized brown silty clay; some indurated light gray clay included; decrease in moisture from previous interval; calcareous. \_\_\_\_ CLAY, SILTY: Medium greenish gray silty clay with traces of fe-oxide. Very compact and dry; \_\_\_\_ calcareous. - -- -\_\_\_\_ \_\_\_\_ - 1085 \_\_\_\_ - -- -CLAY, SILTY: Greenish brownish gray; hard; dense; calcareous. \_\_\_\_ \_\_\_\_ -65 \_\_\_ - -- -\_\_\_

|            |                                                                 | SB22 | p. 3                     |
|------------|-----------------------------------------------------------------|------|--------------------------|
| Depth W.S. | Lithology                                                       |      | Elev.                    |
| -70 -      | (CLAY, SILTY: Greenish brownish gray; hard; dense; calcareous.) |      | -<br>1080<br>-<br>-<br>- |
| -75 -      |                                                                 |      | 1075<br>-<br>-<br>-      |



|       |      | Argonne<br>National<br>Laboratory                                   | Project: Ever<br>Elevation: 1128.5<br>Depth: 56 ft<br>Geologist: LaFren<br>Location: 20358 | r <b>est, KS</b><br>5 ft<br>niere/Barrett<br>03.12, 499573 | Boring ID: SB23<br>Log Date: 3/19/01<br>Plot Date: 4/23/01<br>3.58 | Rig: CPT<br>Driller: K. Spokas<br>Company: Argonne |                                 |
|-------|------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|---------------------------------|
| Depth | Wate |                                                                     | ı                                                                                          | _ithology                                                  |                                                                    |                                                    | Elev.                           |
| 0     |      | SILT, CLAYEY: Very surface (damp).                                  | dark brown clayey s                                                                        | silt, organic ric                                          | h; most plant material C                                           | .0-0.1 ft; moisture from                           | -                               |
| -     |      | moisture.                                                           | ISH Drown to yellowi                                                                       | SH DIOWH Clay                                              | ey siit, minor ie-oxide a                                          | in minor organics, inte                            | - 1125                          |
| -5 —  |      | SILT, CLAYEY: Slum<br>SILT, CLAYEY: Yello<br>manganese oxide (bl    | p very dark brown c<br>wish brown to light b<br>ack); dry.                                 | layey silt; dan                                            | np<br>clayey silt, oxidized (w/                                    | Fe-oxide) and                                      |                                 |
| -10 — |      |                                                                     |                                                                                            |                                                            |                                                                    |                                                    | - 1120<br>-<br>-                |
| -15 — |      | SILT, CLAYEY: Light<br>color and reduced ox<br>slump from 16.0-16.4 | brownish gray to gr<br>idation); dry; traces<br>ft and 20.0-20.2 ft.                       | ayish brown c<br>of Fe-oxide no                            | layey silt (similar to abc<br>odules up to 5/32"; high             | ve interval, but lighter<br>clay content. Note:    |                                 |
| -20 — |      |                                                                     |                                                                                            |                                                            |                                                                    |                                                    | -<br>-<br>- 1110<br>-<br>-<br>- |
| -25 — |      | SILT, CLAYEY: Brow                                                  | n; similar to 11.6-24                                                                      | .0 interval exc                                            | cept minor color change                                            | ; dry.                                             | 1105<br>                        |

**SB23** p. 2

Depth W.S. Lithology SILT, CLAYEY: Grayish brown clayey silt similar to 11.6-24.0 ft; dry. Note: Possible slough - zone of 1100 -30 1095 SILT, CLAY, AND SAND: Grayish brown clayey and sandy silt - contains up to 10% fine sand; caliche (35.8-36.0 ft) calcareous; slight moisture; only traces of Fe-oxide. -35 SILT, CLAY, AND SAND: Light gray to light brownish gray, very calcareous silt; traces of Fe-oxide; caliche zones (41.0-41.5 ft and 39.0-39.3 ft, gray to white). Sand content varies up to 10%; traces of Mn-oxide; dry and crumbly. 1090 -40 SAND: Light yellowish brown; mostly fine grained w/fine to medium grained; well sorted; Fe-oxide occurring as a nodules w/caliche (41.8-42.0 ft); moist. 1085 SAND: Light yellowish brown fine grained sand; well sorted; <10% is black sand; wet to saturated. -45 SAND, SILTY: Yellowish brown very fine grained sand mixed w/silt; wet-saturated; oxidized. 1080 -50 SAND AND GRAVEL: Yellowish brown to light yellowish brown medium grained, sand and gravel. 公 Matrix clayey silt that is moderate calcareous; damp. 1075 SILT, CLAYEY: Olive brown to olive yellow dry; moderate calcareous; contains Fe-oxide; transition zone. -55 SILT: Olive brown mostly mixed with very dark grayish brown silt; crumbly and dry; moderate calcareous; Note: Missing portion, probably from 55.2-56.0 ft.

B-16

Elev.


|       | $\square$ | Argonne                                                            | Project:                                             | Everest, KS                                                    | Boring ID: SB24                                              |                                                    |                          |
|-------|-----------|--------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|--------------------------|
|       |           | National<br>Laboratory                                             | Elevation:<br>Depth:<br>Geologist:<br>Location:      | 1126.83 ft<br>56 ft<br>LaFreniere/Barrett<br>2035667.88, 49966 | Log Date: 3/14/01<br>Plot Date: 4/23/01<br>1.97              | Rig: CPT<br>Driller: K. Spokas<br>Company: Argonne |                          |
| Depth | Wate      |                                                                    |                                                      | Lithology                                                      |                                                              |                                                    | Elev.                    |
| 0 —   |           | SILT, CLAYEY: Very                                                 | dark brown,                                          | organic rich, plant r                                          | naterial 0.0-0.7', some m                                    | bisture from surface.                              | - 1125                   |
|       |           | SILT, CLAYEY: Dark material. Slight mois                           | grayish brov<br>ture.                                | vn (upper part) to da                                          | rk brown, trace of oxidat                                    | ion; minor organic                                 |                          |
| -5 —  |           | SILT, CLAYEY: yello<br>laminated, little moist                     | w-brown to b<br>ture.                                | rown with some mir                                             | or black organics and mi                                     | nor Fe-Oxide,                                      | -<br>-<br>- 1120         |
|       |           | NO RECOVERY: SIL                                                   | Imp from 8.0-                                        | 8.2' interval.                                                 |                                                              |                                                    |                          |
| -10 — |           | NO DESCRIPTION:                                                    | Missing core                                         | above where samp                                               | e was taken.                                                 |                                                    |                          |
| -15 — |           | SILT, CLAYEY: Light<br>oxidation from 18-20                        | t brownish gra<br>'; dry.                            | ay to grayish brown                                            | with minor organics and                                      | Fe-oxides. Increased                               | -<br>1115<br>-<br>-<br>- |
| -20 — |           |                                                                    |                                                      | Duched southal                                                 |                                                              |                                                    | - 1110<br>-<br>-<br>-    |
|       |           | SILT, CLAYEY: (Tip<br>gray to grayish browi                        | did not releas                                       | se. Pushed new hole                                            | e for the 20.0-24.0 ft inter<br>des; similar to interval 8.9 | val.) Light brownish<br>9-20.0 (see above); dry.   | -<br>- 1105<br>-<br>-    |
| -25 — |           | SILT, CLAYEY: Brow<br>SILT, CLAYEY: Light<br>oxide, dry. Slump fro | vn, very little i<br>t brownish gra<br>m 28.0 - 28.5 | moisture.<br>ay with gray mottling<br>ft. Slump from 32.0      | g; locally light gray 29.0-3<br>- 32.5 ft.                   | 0 ft with minor Fe-                                | _/                       |

**SB24** p. 2

| Depth | W.S. | Lithology                                                                                                                                                                                                                        | Elev.                 |
|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| -30 — |      |                                                                                                                                                                                                                                  | -<br>-<br>1095<br>-   |
| -35 — |      | SILT, SANDY: Light brownish gray, some clay; sand is fine and varies from 10% to 50%; minor Fe-<br>oxide; dry.                                                                                                                   |                       |
| -     |      | SILT, SANDY: Pale brown to light yellowish brown, some clay, minor Fe-oxide; sand is 50%, mostly fine; dry.                                                                                                                      | - 1090<br>-<br>-      |
| -40 — |      | SAND, SILTY: Light yellowish brown fine sand with silt; wet 41.0-43.1 - moist 40.0-41.0'; some silty clay 40.0-41' may be slump.                                                                                                 | <br>_<br>1085         |
| -     |      | CLAY, SILTY: Yellowish brown to brownish yellow; oxidized, well-sorted; moist.<br>SAND, GRAVELLY: Yellowish brown (fine to medium grained), gravel 5-10%, with silt; wet.                                                        |                       |
| -45 — |      | SAND, SILTY: Yellowish brown; fine, well-sorted; wet; very fine sand 44.8-45.3'.<br>SAND, GRAVELLY: Yellowish brown sand (fine to coarse) with 10-15% gravel, contains silt; pebbles<br>(0.9") of cemented sand and gravel; wet. | - 1080                |
| -50 — |      | SAND AND GRAVEL: Yellowish brown with some silt and clay 50-51 ft; well sorted mostly fine sand 48-50'; poorly sorted 50-52' w/fine and medium pebbles; (approx. 51 ft). Very wet/saturated with round to subrounded pebbles.    | -<br>-<br>-<br>- 1075 |
| -     |      | SILT/CLAY/SAND/GRAVEL: Gray clayey silt with sand (fine) and gravel; sand and gravel 10-20%, gravel (fine to medium pebbles) 52.8-52.9'; moderately calcareous, moist.                                                           |                       |
| -55 — |      | SILT, CLAYEY: Dark gray; very hard and very dry; minor Fe-oxide; moderately calcareous.                                                                                                                                          |                       |
| -60   |      |                                                                                                                                                                                                                                  | - 1070<br>-<br>-      |



|       | nple                        | Argonne<br>National<br>Laboratory                                   | Project:<br>Elevation:<br>Depth:<br>Geologist<br>Location: | Everest, KS<br>1131.42 ft<br>66.25 ft<br>LaFreniere/Barrett<br>2035288.37, 49959 | Boring ID: SB25<br>Log Date: 3/12/01<br>Plot Date: 4/23/01<br>9.31               | Rig: CPT<br>Driller: K. Spokas<br>Company: Argonne   | _                     |
|-------|-----------------------------|---------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|-----------------------|
| Depth | San                         |                                                                     |                                                            | Lithology                                                                        |                                                                                  |                                                      | Elev.                 |
| -30 — |                             | NO SAMPLE: (No sa                                                   | mple from 0                                                | -30 ft)                                                                          |                                                                                  |                                                      |                       |
|       |                             | CLAY: Dark yellowish                                                | n brown w/m                                                | inor very dark browr                                                             | n (prob organic) clay; little                                                    | e moisture.                                          |                       |
|       |                             | CLAY, SILTY: Mediu<br>black blebs/lines (pro                        | m gray with<br>bably organ                                 | minor Fe-oxide whic<br>ic); dry and hard.                                        | h increases with depth (3                                                        | 32.0 to 36.1'); minor                                | 1100                  |
| -35 — |                             |                                                                     |                                                            |                                                                                  |                                                                                  |                                                      | _                     |
|       |                             | CLAY, SANDY: Yello<br>sand, 10% medium s                            | wish to gray<br>and); trace I                              | rish brown sandy cla<br>Fe-oxide as nodules                                      | y; poorly sorted w/ 30-40<br>1/4" in size; dry and hard<br>areas: some moisture. | % sand (20-30% is fine<br>d.                         | 1095                  |
| -40 — |                             | CLAY, SANDY: Pale<br>coarse sand; oxidized                          | brown, sand<br>d below 39.4                                | dy clay with silt; poor<br>l'; dry and hard.                                     | ly sorted w/30-40% fine s                                                        | sand, trace medium to                                | -<br>-<br>- 1090      |
|       |                             | CLAY: Medium brow                                                   | n; slightly mo                                             | oist.                                                                            |                                                                                  |                                                      |                       |
| -45 — |                             | CLAY, SANDY: Pale<br>sand; some visible m                           | brown, sand<br>oisture (moi                                | dy clay with silt; poor<br>st).                                                  | ly sorted w/40-50% fine s                                                        | sand, trace medium                                   |                       |
|       | 0.0000<br>0.0000<br>0.00000 | SAND AND GRAVEL<br>saturated.                                       | .: Light brow                                              | nish gray sand; grav                                                             | el (as fine pebbles up to                                                        | .08') at 46.0-46.4'                                  | - 1085<br>-<br>-<br>- |
| -50 — |                             | CLAY, SANDY: Yello<br>moist; calcareous.                            | wish brown                                                 | sandy clay with 40%                                                              | -50% sand; poorly sorte                                                          | d w/traces of gravel;                                |                       |
|       |                             | CLAY, SILT AND GR<br>limestone granules a<br>51.4'; very dry and ha | AVEL: Light<br>re up to .1";<br>ard. Very ha               | t yellowish brown to<br>very calcareous; cer<br>ard below 53.4 ft.               | ight brownish gray; graven nented sand and gravel                                | el increases w/depth,<br>'pebble" to .11" in size at |                       |
| -55 — |                             | CLAY, SILTY: Grayis very dry and hard.                              | sh brown to c                                              | dark grayish brown w                                                             | vith a greenish hue; calca                                                       | areous; trace Fe-oxide;                              |                       |
|       |                             | CLAY, SILTY: Partial description above.                             | recovery (o                                                | nly .8'). Same as inte                                                           | erval 54.0-55.5'; also cor                                                       | tains sand slough. See                               | - 1075                |

## **SB25** p. 2

| Depth | Depth W.S. |  | Lithology                                                                                                                                                                                                                          |                            |  |  |  |  |
|-------|------------|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|
|       | -          |  | CLAY, SILTY: Olive to olive gray, very silty clay; very calcareous; hard/indurated and dry; slight oxidation.                                                                                                                      |                            |  |  |  |  |
| -60 - | -          |  | CLAY, SILTY: Olive gray to dark gray very silty clay; very calcareous. Similar to above interval except darker in color; hard/indurated & dry; minor Fe-oxide. Extremely calcareous, light olive gray to white zone at 59.5-59.6'. | -<br>-<br>-<br>-<br>-<br>- |  |  |  |  |
| -65 - | -          |  | CLAY, SILTY: Dark olive gray very silty; very dense and hard, moderately calcareous; dry.                                                                                                                                          |                            |  |  |  |  |







|       | $\frown$  | Argonne                                                                                                                           | Project:                                                               | Everest, KS                                            | Boring ID: SB27                                       |                                                    |       |  |  |  |
|-------|-----------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------|--|--|--|
|       | ple       | National<br>Laboratory                                                                                                            | Elevation: 1 <sup>7</sup><br>Depth: 74<br>Geologist: L<br>Location: 20 | 151.88 ft<br>4.60 ft<br>.aFreniere<br>034834.08, 50046 | Log Date: 3/26/01<br>Plot Date: 6/06/01<br>58.24      | Rig: CPT<br>Driller: K. Spokas<br>Company: Argonne |       |  |  |  |
| Depth | Wa<br>Sam |                                                                                                                                   |                                                                        | Lithology                                              |                                                       |                                                    | Elev. |  |  |  |
|       |           | NO RECOVERY: No                                                                                                                   | recovery from (                                                        | 0 -55 ft                                               |                                                       |                                                    |       |  |  |  |
| -55 — |           | CLAY, SILTY: Dark t                                                                                                               | prown, plastic, n                                                      | ion-calcareous, v                                      | ery slightly moist.                                   |                                                    |       |  |  |  |
|       |           | CLAY, SILT AND SAND: Brownish-yellow, calcareous with limited plasticity. Inclusions of highly calcareous, white, fine sand. Dry. |                                                                        |                                                        |                                                       |                                                    |       |  |  |  |
|       |           | CLAY, SILT AND SA inclusions. Dry.                                                                                                | ND: As above v                                                         | with increase in sa                                    | and content and calcareo                              | us white sand                                      |       |  |  |  |
| -     |           | CLAY, SILT AND SA<br>from unit described a<br>Dry.                                                                                | ND: Brownish-y<br>bove. Mangane                                        | yellow, oxidized, o<br>ese disseminated                | calcareous clay. Increase<br>throughout. Minor calcar | in calcareous content eous sand inclusions.        | 1095  |  |  |  |
|       |           | CLAY, SILT AND SA than above.                                                                                                     | ND: to sandy cl                                                        | lay. Increase in n                                     | nanganese content and s                               | ightly darker in color                             |       |  |  |  |
|       |           | CLAY, SANDY: Calc                                                                                                                 | areous, oxidize                                                        | d, yellowish-brow                                      | n, very slighty plastic clay                          | , dry.                                             | _     |  |  |  |
|       |           | CLAY, SANDY: As a manganese, dry.                                                                                                 | bove with color                                                        | change to very d                                       | ark brown to black due to                             | concentrations of                                  |       |  |  |  |
| -60 — |           | CLAY, SILT AND SA                                                                                                                 | ND: Calcareous<br>inese, dry.                                          | s, with light yellow                                   | vish-brown oxidation asso                             | ciated with the                                    |       |  |  |  |
|       |           | CLAY, SAND AND G<br>diameter. Sand is po                                                                                          | RAVEL: Oxidiz<br>porly sorted. Da                                      | ed, brownish-yell<br>amp to moist.                     | ow with minor granular gr                             | avels to 1/2 inch in                               |       |  |  |  |
|       |           | CLAY,SILT,SAND & length. Till sequence                                                                                            | GRAVEL: Oxidi<br>. Slightly damp                                       | ized, brownish-ye<br>to dry.                           | llow, fairly plastic with col                         | obles to 1 inch in                                 | _     |  |  |  |
|       |           | SAND AND SILT: Co                                                                                                                 | ncentration of v                                                       | white, calcareous                                      | sand and black calcareou                              | us silt.                                           |       |  |  |  |
|       |           | CLAY, SILTY: Oxidiz<br>gravels (sligthly calca                                                                                    | ed, brownish-ye<br>areous). Moist.                                     | ellow, fairly plastic<br>Till sequence.                | c. As above with marked                               | reduction in granular                              |       |  |  |  |
|       |           | CLAY, SILT AND SA calcareous with dept                                                                                            | ND: Oxidized, f<br>h. Moist                                            | airly plastic with r                                   | ninor small granular grave                            | els. Increasingly                                  |       |  |  |  |

**SB27** p. 2

| Depth | W.S. | Lithology                                                                                 | Elev.  |
|-------|------|-------------------------------------------------------------------------------------------|--------|
| -65 — |      | CLAV SUTV Dry band alive brown in color and ways in appearance. Highly colored up. Tap of |        |
| -     |      | Unit 4.                                                                                   | - 1085 |
| -     |      | CLAY, SILTY: As described above becoming increasingly calcareous with depth.              | _      |
| -     |      |                                                                                           | _      |
| -70 — |      |                                                                                           |        |



|       |                | Argonne<br>National<br>Laboratory                                                               | Project:<br>Elevation:<br>Depth:<br>Geologist<br>Location:      | <b>Everest, KS</b><br>1147.01 ft<br>68 ft<br>LaFreniere/Barrett<br>2035033.58, 50007            | <b>Boring ID: SB28</b><br>Log Date: 3/22/01<br>Plot Date: 4/24/01<br>3.67                                 | Rig: CPT<br>Driller: K. Spokas<br>Company: Argonne               |                                |
|-------|----------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------|
| Depth | Sail<br>Samplı |                                                                                                 |                                                                 | Lithology                                                                                       |                                                                                                           |                                                                  | Elev                           |
| -40 — |                | NO SAMPLE: (No san<br>CLAY, SILTY: Pale broken<br>NO SAMPLE: Slump f                            | nple recovery<br>own with trac<br>rom above, b                  | / from 0 -40 ft)<br>ees of Fe-oxides and<br>prown clay.                                         | minor Mn-oxide, trace s                                                                                   | and; damp.                                                       |                                |
| -45 — |                | CLAY, SILTY: Light br<br>trace white clay; dry.                                                 | ownish gray                                                     | silty clay with 5-10%                                                                           | fine sand; minor Mn-oxi                                                                                   | de; trace Fe-oxide,                                              | <br><br><br><br>_ 1            |
| -50 — |                | CLAY, SILTY: Light br<br>fine sand; abundant ca<br>49.0'; dry.                                  | ownish gray<br>aliche; trace f                                  | to grayish brown with<br>Fe-oxide and minor M                                                   | n gray mottling (increasi<br>In-oxide, .07" pebble at                                                     | ng with depth), 5-10%<br>49.1', calcareous from                  | -   -<br>  -<br>  -<br>-   - 1 |
| -55 — |                | CLAY, SILTY: Very pa<br>color; highly calcareou                                                 | e; fine pebble<br>le brown with<br>s with calich                | h 10% fine sand; sim<br>e; Fe-oxide; slightly o                                                 | ilar to above interval but<br>lamp.                                                                       | oxidized and lighter in                                          | =                              |
| -60 — |                | SAND, SILT, CLAY Al<br>and clayey sand and g<br>moderately calcareous<br>63.5'; pebbles range u | ND GRAVEL:<br>gravel; abund<br>s; gravel mos<br>p to 1.0"; slig | : Yellowish brown to<br>lant fine grained sand<br>tly fine, some mediu<br>ghtly damp - possibly | brownish yellow, poorly<br>I, light gray; highly oxidi<br>n; mostly sand with son<br>wet from 63.0-66.7'. | sorted mixture of silty<br>zed (Fe-oxide),<br>ne clay from 62.0- | 1<br>- 1<br>-                  |
|       |                |                                                                                                 |                                                                 |                                                                                                 |                                                                                                           |                                                                  | -<br>  1<br> -                 |
| -65 — |                |                                                                                                 |                                                                 |                                                                                                 |                                                                                                           |                                                                  | _<br>_<br>1                    |



|       | $\square$ | Argonne                                                            | Project: Everest, KS                                                                                    | Boring ID: SB29                                      |                                                    |                  |
|-------|-----------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|------------------|
|       | e e       | National<br>Laboratory                                             | Elevation: 1141.04 ft<br>Depth: 70.9 ft<br>Geologist: LaFreniere/Barrett<br>Location: 2035397.08, 50030 | Log Date: NA<br>Plot Date: 4/19/01<br>9.4            | Rig: CPT<br>Driller: K. Spokas<br>Company: Argonne |                  |
| Depth | Sam       |                                                                    | Lithology                                                                                               |                                                      |                                                    | Elev.            |
|       |           | NO SAMPLE: (No sa                                                  | ample from 0 -45 ft)                                                                                    |                                                      |                                                    |                  |
| -45 – |           | CLAY, SILT AND SA<br>grained with traces of<br>Traces of Fe and Mn | AND: Pale brown to grayish-brown<br>of medium to coarse grained in a h<br>n oxide. Dry                  | , mottled. Sand compris<br>ighly calcareous clay ma  | es 15% to 20% fine<br>atrix with caliche.          | 1095<br>         |
| -50 — |           | CLAY, SANDY: Very calcareous with trace                            | y pale brown with 40% to 50% fine<br>es of Fe and Mn oxide. Dry                                         | sand with some mediur                                | n grained. Moderately                              | -<br>-<br>- 1090 |
|       |           | SAND, CLAYEY: Yell                                                 | ellowish-brown clayey sand with 60<br>ized with nodules of caliche up to                                | % to 70% sand in a silty<br>04' in length; appears " | clay. Moderately<br>clayey". Slightly moist.       |                  |
|       |           | CALICHE: Light gray                                                | y caliche with 10% to 20% clay. O                                                                       | xidized and highly calca                             | reous. Dry.                                        |                  |
|       |           | CLAY, SANDY: Yello evidence of caliche.                            | owish-brown with 10% very fine sa<br>Moist                                                              | and. Highly oxidized, cal                            | careous with some                                  |                  |
| -55 — |           | SILT, CLAY, AND SA calcareous, highly ox                           | AND: Yellowish-brown clayey silt v<br>xidized and wet                                                   | with 10% to 20% very fin                             | e sand. Non-                                       |                  |
|       |           | CLAY,SILT,SAND & in lenses of light gray                           | GRAVEL: Yellowish-brown, very<br>y fine sand. Minor gravel with peb                                     | calcareous with 15% to a bles to .04 feet in length  | 25% sand. Sand occurs<br>. Dry.                    | - 1085           |
|       |           | SAND, SILT, AND GI<br>Moist.                                       | GRAVEL: Yellowish-brown, fine to                                                                        | medium sand, oxidized a                              | and very calcareous.                               |                  |
|       |           | SILT, CLAY, AND SA oxidized. Damp.                                 | AND: Yellowish-brown clayey silt v                                                                      | with sand lenses, moder                              | ately calcareous, and                              |                  |

**SB29** p. 2

Elev. Depth W.S. Lithology SILT, SAND, CLAY & GRAVEL: Minor gravel with pebbles to .07' in length. Moderately calcareous, 0 oxidized, trace of Mn oxide below 60.0'; damp. 0 0 -60 0 SILT AND GRAVEL: Brownish-yellow, fine gravel. Oxidized, moderately calcareous and dry. - 1080 ⊾\_∕ SILT, CLAYEY: Olive, with minor FE oxide, moderately calcareous; very dry. SAND, SILT, AND GRAVEL: Olive-yellow with gravels to 1" in length. Weak to moderately calcareous, oxidized and wet to saturated. - - - -SILT, CLAYEY: Olive gray to dark gray, friable, moderately calcareous with minor Fe oxide. Very dry. -65 \_\_\_\_ \_\_\_\_ - 1075 \_\_\_\_ \_\_\_ \_\_\_ ---\_\_\_ \_\_\_\_\_ E -70 1070

B-32



| /     | $\bigcap$ |                                  | onne                                             | Project:                                         | Everest, KS                                                            | Boring ID: SB30                                                                      |                                                                            |                |
|-------|-----------|----------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------|
|       | er        | Na<br>L                          | tional<br>"aboratory                             | Elevation:<br>Depth:<br>Geologist:<br>Location:  | 1150.1 ft<br>78.6 ft<br>LaFreniere/Barrett<br>2034725.0, 500269        | Log Date: 3/21/01<br>Plot Date: 4/24/01<br>.64                                       | Rig: CPT<br>Driller: K. Spokas<br>Company: Argonne                         |                |
| Depth | Wat       | 30                               |                                                  |                                                  | Litho                                                                  | logy                                                                                 |                                                                            | Elev.          |
| -55 — |           |                                  | NO SAMPLE:                                       | (No sample                                       | recovered from 0-56                                                    | i ft)                                                                                |                                                                            | - 1095         |
|       |           |                                  | CLAY, SANDY<br>(largest .8") at                  | 7: Pale brown<br>58.5'.                          | n with silt; trace Fe a                                                | nd Mn oxide; fine sand 1                                                             | 5-25%; damp; few pebbles                                                   | _              |
|       | -         |                                  | CLAY, SANDY<br>calcareous, fer<br>incompletely a | ': Pale browr<br>w fine pebble<br>Itered biotite | n to very pale brown<br>es (<.5"); micaceous<br>or pyrite); not well s | with silt; Fe oxide (highly<br>-looking mineral associat<br>orted; sand 15-25% fine- | / oxidized), moderately<br>ted with Fe-oxide; (could be<br>-grained; damp. |                |
| -60 — | -         |                                  | SAND, CLAYE sorted; wet.                         | Y: Light yell                                    | owish brown, non-ca                                                    | alcareous; pebble at 60.2                                                            | ' is .08" otherwise fairly well                                            |                |
|       |           |                                  | CLAY, SANDY<br>(largest at 61.0                  | ': Pale browr<br>)' is .15"), mo                 | n (25-50% sand-mos<br>oderately calcareous                             | stly fine, some medium);<br>s; damp.                                                 | poorly sorted with fine pebbles                                            | _              |
|       | -         | 0.00.00.00<br>0.00.00<br>0.00.00 | SAND AND G<br>pebbles up to                      | RAVEL: Yello<br>.08", mostly :                   | owish brown with 10<br>sand (fine and medi                             | % clay clasts; moderatel<br>um grained) with 10-20%                                  | y calcareous, poorly sorted,<br>gravel; oxidized; damp.                    | -              |
| -65 — | -         |                                  | CLAY, SILTY:<br>calcareous, ox                   | Light browni<br>idized, trace                    | sh gray with gravel<br>Mn oxide; dry.                                  | (<10%) and sand (<10%)                                                               | ; poorly sorted, moderately                                                | -<br>1085<br>- |
|       |           |                                  | SAND: Minor g                                    | gravels. Yello                                   | owish brown, oxidize                                                   | d; moderately calcareou                                                              | s; damp.                                                                   |                |
|       |           |                                  | CLAY, SILTY: similar to interv                   | Light browni<br>val 64.4 to 67                   | sh gray with light gra<br>7.4'; moderately calo                        | ay fine sand lenses and r<br>careous; some Fe oxide;                                 | ninor gravel; sand <10%; very poorly sorted; dry.                          |                |

**SB30** p. 2





|       |               | Argonne                                                                                       | Project:                                                           | Everest, KS                                                                               | Boring ID: SB31                                                          |                                                    |                       |
|-------|---------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------|-----------------------|
|       |               | National<br>Laboratory                                                                        | Elevation:<br>Depth:<br>Geologist<br>Location:                     | 1142.76 ft<br>69.38 ft<br>: LaFreniere/Barrett<br>2035907.34, 49904                       | Log Date: 3/23/01<br>Plot Date: 4/27/01<br>5.2                           | Rig: CPT<br>Driller: K. Spokas<br>Company: Argonne |                       |
| Depth | Water<br>Samp |                                                                                               |                                                                    | Lithology                                                                                 |                                                                          |                                                    | Elev.                 |
| 10    |               | NO SAMPLE: (No sa                                                                             | nples recove                                                       | red from 0 -40 ft).                                                                       |                                                                          |                                                    |                       |
| -40 - |               | SILT, CLAYEY: Pale<br>caliche at 46.8'; calca                                                 | brown with gr<br>reous; dry.                                       | ay mottling, very cla                                                                     | yey; trace Mn oxide (bla                                                 | ck) and Fe oxide;                                  | _<br>_<br>_ 1100      |
| -45 - |               |                                                                                               |                                                                    |                                                                                           |                                                                          |                                                    | -                     |
| -50 - |               | SILT, CLAYEY: Pale<br>51.0-51.1', calcareou:                                                  | brown with gr<br>ه, trace Fe-ox                                    | ay mottling; white ca<br>ide; dry.                                                        | lliche throughout - abune                                                | lant @ 48.0-48.3' and                              | - 1099<br>-<br>-<br>- |
| -55 - |               | SAND, CLAYEY: Pale<br>30%; traces of Fe and                                                   | ∍ yellowish gr<br>d Mn oxides; s                                   | ay; caliche zone (ca<br>sand fine grained; sl                                             | lcareous) from 54.5-55.3<br>ightly moist.                                | '; clay content possibly                           | -<br>-<br>-<br>-      |
| -60 - | 8000000       | SAND AND GRAVEL<br>@ 59.0-59.7' and 60.9                                                      | : Light gray, r<br>5-61.6'; show                                   | nostly fine to mediur<br>ing gradations in tex                                            | n with some coarse grain<br>ture (saturated).                            | ned, fine gravel zones                             | - 1085<br>-<br>-<br>- |
| -65 - |               | SAND AND SILT: Pal<br>fine grained sandy sil<br>SAND: Light yellowish<br>trace medium and cos | e gray, extrer<br>;; moderately<br>1 brown fine a<br>arse sand; mo | mely fine grained sa<br>calcareous; wet.<br>and very fine grained<br>oderately calcareous | nd and silt layered with y<br>l; silt content <10%; oxid<br>; saturated. | ellowish brown, very<br>ized with Fe-oxide;        | <br>                  |
|       |               | SAND, CLAYEY: Train<br>highly calcareous; cla                                                 | nsitional zone<br>y content 40%                                    | e. Light yellowish bro<br>%-50%; gravel 10%;                                              | own with fine to medium<br>moist.                                        | pebbles (up to 1.0")                               | 1075                  |
|       | 1t            | CLAY, SILIY: Mediur                                                                           | n greenish gr<br>es (up to .9").                                   | ay, trace tine sand, a moist .                                                            | some ⊢e-oxide, moderat                                                   | ely calcareous;                                    | <u> </u>              |



|       | (     | 2    | Argonne<br>National<br>Laboratory                                                                        | Project:<br>Elevation:<br>Depth:<br>Geologist:<br>Location: | <b>Everest, KS</b><br>1121.71 ft<br>49 ft<br>LaFreniere/Barrett<br>2035507.69, 49930 | Boring ID: SB32<br>Log Date: 3/28/01<br>Plot Date: 4/19/01<br>9.65 | Rig: CPT<br>Driller: K. Spokas<br>Company: Argonne |                                                                                                                                           |  |  |
|-------|-------|------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Depth | Water | Samp |                                                                                                          |                                                             | Lithology                                                                            |                                                                    |                                                    | Elev.                                                                                                                                     |  |  |
|       |       |      | NO SAMPLE: (No sa                                                                                        | mple recover                                                | red from 0 -25 ft)                                                                   |                                                                    |                                                    |                                                                                                                                           |  |  |
| -25 - | -     |      | CLAY, SILTY: Pale brown (with brownish gray motling) with up to 10% fine sand; slightly calcareous; dry. |                                                             |                                                                                      |                                                                    |                                                    |                                                                                                                                           |  |  |
| -30 - |       |      | CLAY, SILTY: Pale bi<br>zones (white) and cal                                                            | rown with <5<br>iche through                                | % fine sand; modera<br>out; minor Fe and M                                           | anganese oxide; slightly                                           | hly calcareous caliche<br>damp.                    | - 109<br>-<br>-<br>-<br>-<br>-<br>-<br>109<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |  |  |
| -35 - | -     |      | SAND, SILTY: Light y<br>caliche (possibly from                                                           | rellowish brov<br>above); moi                               | wn with approximate                                                                  | ly 25% silt; slightly calca                                        | reous with minor                                   | =                                                                                                                                         |  |  |
|       |       |      | SAND: Light yellowis                                                                                     | h brown with                                                | <10% silt; non-calca                                                                 | areous; moist.                                                     |                                                    | - 108                                                                                                                                     |  |  |
|       | -     |      | SAND: Light brown ve                                                                                     | ery fine grain                                              | ed sand with minor                                                                   | silt; saturated.                                                   |                                                    |                                                                                                                                           |  |  |
| -40 - | -     |      | NO SAMPLE: Missing<br>run was saturated (m                                                               | g core; Samp<br>uch water)                                  | ble ran out of tube - c                                                              | nly a bit of very fine san                                         | d was recovered the                                |                                                                                                                                           |  |  |
|       | -     |      | CLAY, SAND AND G<br>gravel - large .11" pel                                                              | RAVEL: yello<br>oble at -42.8'                              | owish-brown, contair<br>; oxidized, moderate                                         | ns 30-50% sand, mostly t<br>ly calcareous, wet.                    | fine and medium, 10%                               | 108                                                                                                                                       |  |  |
| -45 - | -     |      | SILT, SANDY: Minor<br>transitional zone from<br>SILT, GRAVEL AND                                         | clay and fine<br>sandy clay t<br>CLAY: Olive                | e gravel; pale brown,<br>to silt; poorly sorted;<br>with clay and gravel             | oxidized with Fe-oxide,<br>damp.<br>; caliche (calcareous), ha     | moderately calcareous;<br>ard, indurated, dry.     |                                                                                                                                           |  |  |
|       | -     |      | SILT, SAND, CLAY &<br>sorted with very fine t<br>(Transitional unit to u                                 | GRAVEL: V<br>o coarse gra<br>nderlying Un                   | /ery pale brown, friab<br>ined sand, and grave<br>it 4)                              | ble sand and gravel with<br>el to .5" in length. Calcar            | silt matrix. Poorly eous and dry.                  |                                                                                                                                           |  |  |
|       | -     |      | SILT, CLAYEY: Olive silt, and very thin laye                                                             | -gray with mi<br>ers of oxidize                             | inor evidence of fine<br>d very fine sand to s                                       | laminations resulting fro<br>ilt; dry. (Unit 4)                    | m alternating clayey                               |                                                                                                                                           |  |  |



|       |                 | Argonne                                     | Project: Ev                                                         | verest, KS                                          | Boring ID: SB33                         |                                                    |        |
|-------|-----------------|---------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|----------------------------------------------------|--------|
|       |                 | National<br>Laboratory                      | Elevation: 1150<br>Depth: 72 fr<br>Geologist: LaF<br>Location: 2035 | 0.64 ft<br>t<br>Treniere/Barrett<br>5241.91, 500652 | Log Date: 3/29/01<br>Plot Date: 4/27/01 | Rig: CPT<br>Driller: K. Spokas<br>Company: Argonne |        |
| Depth | Water<br>Sample |                                             |                                                                     | Lithology                                           |                                         |                                                    | Elev.  |
| -60 – |                 | NO SAMPLE: (No sar                          | nple recovered fro                                                  | om 0 -60.3 ft).                                     |                                         |                                                    |        |
|       |                 | SAND, CLAYEY: Ligh                          | t brownish gray, 3                                                  | 30-40% fine sand                                    | l; Fe oxide @ 61.2-61.3                 | 3'; slightly moist/damp.                           | - 1090 |
|       |                 | SAND, CLAYEY: Ligh calcareous; sand is fir  | t yellowish brown<br>ne grained; wet.                               | to yellowish bro                                    | wn, highly oxidized, me                 | dium to slightly                                   | _      |
|       |                 | SAND AND CLAY: Lig<br>(30-10%); non-calcare | ght brownish gray<br>eous; moist.                                   | fine sand with a                                    | clay matrix; clay conter                | nt decreases with depth                            | _      |
| -65 – | -               |                                             | ecovery, probabi                                                    | y ngint yenowish h                                  |                                         | Sanu.                                              | - 1085 |
|       |                 | SAND, SILTY: Light y                        | ellowish brown, si                                                  | ilty, fine sand; co                                 | ntains .08" angular peb                 | ble at 66.5'; saturated.                           |        |
|       |                 | SAND, CLAYEY: Pale<br>in size; wet.         | brown and yellow                                                    | wish brown, oxid                                    | ized; minor gravel with t               | fine pebbles up to .05"                            |        |
|       |                 | CLAY: Olive to olive g                      | ray, mottled appe                                                   | e, minor mediur<br>arance; trace Fe                 | n and trace coarse sand                 | d; saturated.<br>bus; moist.                       |        |
| -70 – |                 | CLAY: Olive gray with                       | light yellowish br                                                  | own zones with                                      | Fe-oxide, moderately ca                 | alcareous; moist.                                  |        |
|       |                 | CLAY: Dark gray, high                       | nly calcareous; so                                                  | me Fe-oxide, dry                                    | Ι.                                      |                                                    | - 1080 |
|       |                 | L                                           |                                                                     |                                                     |                                         |                                                    |        |





| Depth | W.S. | Lithology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Elev.                                             |
|-------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| -30 — |      | CLAY, SILTY: Light gray to grayish brown with dark gray mottling; contains minor sand (<5%).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                 |
| -35 — |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 1100<br>-<br>-<br>-<br>-<br>-<br>-<br>1095<br>- |
| -40   |      | SILT, SANDY: Pale brown to gray; contains 30% fine to very fine sand; traces of Fe- and Mn-oxides;<br>noncalcareous. Note: Some slough from 40.0-40.3 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -<br>-<br>-<br>- 1090                             |
| -45 — |      | CLAY: Dark grayish brown, locally very dark grayish brown; contains minor silt, traces of organic<br>material; noncalcareous.<br>SAND, SILTY: Light yellowish-brown (mostly fine to very fine with minor medium sand) held together<br>with minor silt; unconsolidated; slightly calcareous.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |
| -50 — |      | <ul> <li>SAND: Light yellowish-brown; mostly fine to very fine with minor medium sand; loose, unconsolidated (probably was wet); very slightly calcareous.</li> <li>SAND, GRAVELLY: Light yellowish brown to light brownish gray, loose unconsolidated sand mixed with fine gravel (up to .09 in.); sand is mostly fine to medium grained, but ranges from very fine to coarse; gravel is 20% (50.0-51.0 ft) and 5-10% (51.0-52.6 ft); slightly calcareous.</li> </ul>                                                                                                                                                                                                                                                                        | - 1085<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-    |
| -55 — |      | <ul> <li>SAND, CLAYEY AND GRAVELLY: Light yellowish brown; 40-50% sand and 20% gravel combined with 30-40% clay; local bleb of dark brown silt-like material (probably from oxidation or weathering) at 52.8 ft; oxidation is obvious with yellowish brown color; gravel pebbles are up to .08 in.; slightly calcareous. (Note: This interval is a Transition Zone)</li> <li>CLAY: Light olive brown to light yellowish brown; minor silt; appears more moist from 53.0-54.0 ft.; hard, dry, and compact below 54.0 ft; Fe-oxide traces, mostly from 53.0-54.0 ft; slightly calcareous from 53.0-54.0 ft.; hard, dry, and compact below 54.0 ft; Fe-oxide traces, mostly from 53.0-54.0 ft; slightly calcareous from 54.0-58.0 ft.</li> </ul> | -<br>-<br>-<br>1075                               |
| -     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ] [                                               |



|       |                | Argonne                                                           | Project:                                       | Everest, KS                                                     | Boring ID: SB35                                            |                                                    |                  |
|-------|----------------|-------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|------------------|
|       | <u>•</u>       | National<br>Laboratory                                            | Elevation:<br>Depth:<br>Geologist<br>Location: | 1138.05 ft<br>67 ft<br>: LaFreniere/Barrett<br>2035843.42, 5001 | Log Date: 3/31/01<br>Plot Date: 4/27/01<br>19.57           | Rig: CPT<br>Driller: K. Spokas<br>Company: Argonne |                  |
| Depth | Water<br>Sampl |                                                                   |                                                | Lithology                                                       |                                                            |                                                    | Elev.            |
|       |                | NO SAMPLE: (No sar                                                | nple recovery                                  | r from 0 -40 ft).                                               |                                                            |                                                    |                  |
| -40 — |                | CLAY, SANDY: Grayi<br>throughout; 5-10% fin                       | sh brown with<br>e sand; Fe-ox                 | a scattered caliche (<br>ide staining; dry.                     | white, calcareous), dark                                   | gray mottling                                      |                  |
| -45 – |                | CLAY, SANDY: Mediu                                                | um gray with d                                 | oxidized zones (Fe-                                             | oxides); 10-15% fine san                                   | d; slightly calcareous                             | — 1095<br>-<br>- |
|       |                | with minor caliche, mi                                            | nor fine grave                                 | el; dry.                                                        |                                                            |                                                    |                  |
|       |                | CLAY: Mixture of light<br>fine gravel (up to .02")                | gray and ver                                   | y pale yellowish gra<br>Fe-oxide; highly ca                     | ay clay, less than 10% fin<br>alcareous; damp.             | e sand and medium                                  | 7                |
|       |                | CLAY, SAND AND GI<br>fine (up to .03"); Fe ox                     | RAVEL: Pale<br>kide, especial                  | gray, highly calcare<br>ly @ 48.0-48.4', poo                    | ous, with caliche; sand c<br>orly sorted, dry.             | ontent <10%; gravel is                             | í                |
|       |                | GRAVEL: Brownish g<br>minor Fe-oxide coatin                       | ray cobbles o<br>g; dry.                       | f limestone; gravel                                             | pieces vary in size to .13                                 | ; highly calcareous;                               |                  |
|       |                | CLAY, SANDY: Light                                                | gray, <10% fi                                  | ne sand; oxidized, l                                            | nighly calcareous; oxidize                                 | ed areas are silty; dry.                           | ΆΙ               |
| -50 — |                | SAND, SILT, AND CL<br>cohesive due to clay-s<br>calcareous; damp. | AY: Light gra                                  | y very fine sand wit<br>inor Fe-oxide (oxidi                    | h 10% clayey silt as matr<br>zed areas are brownish y      | ix. Somewhat<br>/ellow); moderately                |                  |
|       |                | SAND, SILT, AND CL<br>similar to 49.25-49.45                      | AY: Light gra<br>' interval; min               | y, very fine sand wi<br>or Fe-oxide from 49                     | th <10% clay and silt as r<br>0.75-50.3', much Fe-oxide    | matrix, cohesive<br>e 50.3 to 50.8'; moist.        |                  |
|       |                | CLAY, SILT AND SAM                                                | ND: Light yello<br>and and grave               | owish brown, sandy<br>el; gravel is fine, up                    | , silty clay with <10% fine<br>to .02"; oxidized, highly ( | e sand plus trace<br>calcareous; dry.              |                  |
|       |                | SAND, SILT, AND CL<br>similar to 49.75-50.8                       | .AY: Light gra<br>ft; moderate F               | y, very fine sand w<br>Fe-oxide;highly calc                     | ith <10% clay and silt as areous; damp.                    | matrix; cohesive                                   | - 1085           |

| SB35 | p. 2 |
|------|------|
|------|------|

| Depth | W.S. | Lithology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Elev.               |
|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| -55 — |      | CLAY, SILT AND SAND: Light yellowish brown with 5-10% fine sand, light gray lenses of fine sand throughout; moderately calcareous; trace medium and coarse sand and gravel (fine and medium); gravel measured .06"; oxidized; dry.                                                                                                                                                                                                                                                                                                                                                                                                                   | -                   |
| -60   |      | CLAY, SILTY: Light yellowish brown, with 5% fine sand: moderate to highly calcareous; oxidized;<br>moist.<br>SAND, SILTY: Yellowish brown silty, very fine sand with 25% silt; oxidized; moderately calcareous; wet .<br>CLAY, SILTY: Light yellowish brown with less than 10% sand (fine/medium/coarse) and fine gravel<br>moderately calcareous, oxidized; gravel from .03" to .05"; dry.<br>;<br>SAND, SILT, CLAY AND GRAVEL: Light brown sandy, silty, gravelly clay with <10% fine sand, 5%<br>medium/coarse sand, and <5% fine gravel (up to .05in); highly calcareous clay with some caliche;<br>trace of Fe-oxide; poorly sorted; dry, hard. | -<br>1080<br>-<br>- |
| -65 — |      | NO RECOVERY<br>SAND, SILTY: Yellowish brown, sand is very fine; oxidized, with Fe-oxide; highly calcareous; damp.<br>CLAY, SILTY: Olive, with minor Fe-oxide (staining); moderately calcareous; hard, dry.                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 1075<br>-<br>-    |
| -     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 1070              |



| ,     | 🖳 Argo  | onne                                            | Project:                                        | Everest, KS                                                      | Boring ID: SB3                                   | 6                                                              |                      |
|-------|---------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|----------------------|
|       | Na<br>I | itional<br>∠aboratory                           | Elevation:<br>Depth:<br>Geologist:<br>Location: | 1140.26 ft<br>55.5 ft<br>LaFreniere/Barrett<br>2035642.63, 50068 | Log Date: 3/29/01<br>Plot Date: 4/27/07<br>35.23 | Rig: CPT<br>Driller: K. Spokas<br>1 Company: Argonne           |                      |
| Depth | Wate    |                                                 |                                                 | Litho                                                            | logy                                             |                                                                | Elev.                |
|       |         | NO SAMPLE:                                      | (No sample i                                    | recovered from 0 -4                                              | 5 ft).                                           |                                                                | -                    |
| -45 – |         | CLAY: Brown.                                    | Possible slu                                    | mp from above: da                                                | mp.                                              |                                                                | — 1095               |
|       |         | CLAY, SANDY<br>40%; trace Fe                    | ': Grayish bro                                  | own (45.8 to 46.4')                                              | to light brownish gray t                         | to light gray; sand varies from 2                              | -                    |
| -50 – |         | CLAY, SANDY<br>caliche, moder<br>and zones of F | ': Light gray<br>ately to high<br>e oxide; poo  | with 30-40% sand<br>ly calcareous, oxidi<br>rly sorted; dry;     | (mostly fine) and fine o                         | gravel (<5%); contains white<br>oxidation below 50') with nodu | les –<br>–<br>– 1090 |

## **SB36** p. 2

| Depth | W.S. | Lithology                                                                                                                                                                                    | Elev. |
|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|       |      | <u>a</u>                                                                                                                                                                                     | ļŀ    |
| _     |      | SILT: Pale brown and brownish yellow, mottled, moderately calcareous, oxidized, with Fe-oxide;                                                                                               |       |
|       |      | <ul> <li>CLAY: Yellowish brown, poorly sorted, sandy and gravelly, 10% fine sand, some in lenses; 10% fine gravel; moderately calcareous; pebbles up to .04"; oxidized, dry;</li> </ul>      |       |
| -     |      | SILT, SANDY: Yellowish brown, with 20% fine to very fine sand and minor clay; oxidized; very calcareous, dry.                                                                                |       |
|       |      | SILT, CLAY, AND SAND: Grayish brown to yellowish brown; minor very fine sand lenses and minor caliche in patches; oxidized; moderate to highly calcareous; damp to 53.6', dry 53.6 to 53.9'. |       |
| -     |      | CLAY AND GRAVEL: Yellowish brown with 20% gravel of fine to coarse size; cobble .17" (at 54.2') is angular and very calcareous; wet.                                                         |       |
|       |      | SILT, CLAY, AND SAND: Light olive brown, sandy and clayey silt; highly calcareous; 10-20% fine to medium sand; trace of Fe oxide; dry.                                                       |       |
| -55 — |      | SILT, CLAY, AND SAND: Light olive brown, (similar to above interval but much more compact with 10-15% fine sand and more clay than above); highly calcareous, minor Fe oxide; dry.           |       |
|       |      | NO RECOVERY: Incomplete recovery.                                                                                                                                                            | 1005  |
|       |      | CLAY, SILTY: Light yellowish brown with <10% fine sand, minor Fe-oxide, highly calcareous, dry.                                                                                              | 1085  |

**B-50** 




|       | $\frown$     | Argonne                                                                                      | Project:                                                 | Everest, KS                                                         | Boring ID: SB38                                                  |                                                      |                  |
|-------|--------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------|------------------|
|       |              | National<br>Laboratory                                                                       | Elevation:<br>Depth:<br>Geologist<br>Location:           | : 1153.43 ft<br>83.4 ft<br>: R. Barrett<br>2034662.46, 5009         | Log Date: 3/30/01<br>Plot Date: 6/11/01<br>16.48                 | Rig: CPT<br>Driller: K. Spokas<br>Company: Argonne   |                  |
| Depth | Wate<br>Samp |                                                                                              |                                                          | Lithology                                                           |                                                                  |                                                      | Elev.            |
|       |              | NO SAMPLE: No Sa                                                                             | mple from 0                                              | - 50.2 ft.                                                          |                                                                  |                                                      | _                |
| -50 – |              | SAND, SILT, AND C<br>60% sand (medium t<br>and clay; noncalcare                              | LAY: Light br<br>o fine grained<br>ous; unoxidiz         | rownish-gray to gra<br>d); 5% fine gravel v<br>zed.                 | yish-brown silty and claye<br>iith pebbles up to .03 in.; :      | y sand; contains 50-<br>35-45% mixture of silt       |                  |
|       |              | SAND, SILTY: Light grained with minor fir                                                    | yellowish-bro<br>ne and coars                            | own with minor clay<br>e sand; noncalcare                           | and traces of gravel; sand ous; unoxidized.                      | d is mostly medium                                   | - 1100           |
| -55 - |              | SAND: Light gray to<br>medium grained; gra                                                   | light brownisl<br>vel size up to                         | h-gray sand with m<br>o .01 in.; unoxidized                         | nor silt and traces of grav<br>. (Note: some core missi          | el; sand is fine to<br>ng from 54.2 to 56.0 ft).     | -                |
| -60 – |              | SILT, SANDY: Grayis<br>(40% sand from 58.2                                                   | sh-brown to t<br>to 58.6 ft); g                          | prown sandy silt wit<br>pravel pebbles up to                        | h traces of gravel; approx<br>.02 in.; very compact, un          | imately 25-35% sand<br>oxidized.                     | — 1095<br>-<br>- |
|       |              | SAND: Probably slou<br>to interval 54.2-58.2<br>SILT, SANDY: Browr<br>to 1.1 in.); moderatel | igh from abor<br>ft).<br>n silt with 10-<br>y calcareous | ve. Light gray to lig<br>20% fine to mediur<br>from 62.9 ft to 65.2 | ht brownish gray, fine to n<br>n grained sand and 5-10%<br>? ft. | nedium grained (similar<br>5 gravel (mostly fine, up |                  |
| -65 - |              |                                                                                              |                                                          |                                                                     |                                                                  |                                                      |                  |

#### **SB38** p. 2

| Depth | W.S. |                    | Lithology                                                                                                                                                                                                                                                                                                                                    | Elev.       |
|-------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| _     |      |                    | CALICHE: White to yellowish brown, with minor (10%) fine to medium grained sand and 5% fine gravel; oxidized with some Fe-oxide, highly calcareous.                                                                                                                                                                                          | _           |
| -     |      | 00000              | SAND, GRAVELLY: Yellowish brown fine to coarse sand mixed with fine gravel (pebbles up to .05 in.); sand to gravel, approximately 70%:30%; silt 5-10%; loose and poorly sorted; oxidized with Fe-oxide; highly calcareous.                                                                                                                   | _           |
| -     |      | >00000<br>>00000   | SAND, GRAVELLY: Yellowish brown to brown fine to coarse sand mixed with fine gravel pebbles up to .06 in.; sand to gravel approximately 70%:20%; silt 10%, very poorly sorted; oxidized with Fe-oxide; highly calcareous.                                                                                                                    | -<br>1085   |
| -     |      |                    |                                                                                                                                                                                                                                                                                                                                              |             |
|       |      |                    | NO RECOVERY                                                                                                                                                                                                                                                                                                                                  |             |
| -70 — |      |                    | SAND: Loose, yellowish brown sand with minor fine gravel(<10% with pebbles up to .05 in.)and minor silt (<10%); sand is mostly fine to medium grained, minor coarse sand; oxidized with Fe-oxide; moderately calcareous.                                                                                                                     | -           |
| -     |      |                    | SILT, SAND, CLAY & GRAVEL: Yellowish brown to brown gravelly and sandy silt mixed with clay (mostly at 71.1-71.9ft); gravel (10-15%) is fine (up to .04in size); sand (10-20%) is fine to medium grained; more compact and indurated with depth, below 71.9 ft to 73.9 ft; oxidized with Fe-oxide; moderately calcareous.                    | -           |
| -     |      |                    |                                                                                                                                                                                                                                                                                                                                              | — 1080      |
| -75 — |      | 0000000<br>0000000 | coarse sand, 20-30% fine gravel (up to .05 in.); oxidized with Fe-oxide; highly calcareous.                                                                                                                                                                                                                                                  | _           |
| -     |      |                    | SILT, SAND, CLAY & GRAVEL: Yellowish brown; 10% gravel is rounded and fine (up to 0.9 in.); 10-20% sand is fine to medium grained (sand lens at 77.0 ft); moderately compact to broken; oxidized with Fe-oxide; obvious caliche below 77.0 ft; moderate to highly calcareous depending on amounts of clay and caliche; clay <25%; silt >45%. | -           |
| -80 — |      |                    |                                                                                                                                                                                                                                                                                                                                              | — 1075<br>_ |
| -     |      |                    | SILT: Dark gray to brown with minor sand (<5%) and minor gravel (<5%); minor oxidation with Fe-<br>oxide; moderately calcareous.                                                                                                                                                                                                             | _           |
| -     |      |                    | SILT: Olive gray to dark gray, minor clay; somewhat friable; slightly to moderately calcareous; unoxidized to possibly locally oxidized (below 83.0 ft has traces of Fe-oxide).                                                                                                                                                              |             |





**SB39** p. 2

| Depth | W.S. | Lithology                                                                                                                                                                      | Elev.  |
|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|       |      | SAND, CLAYEY: Some evidence of selective oxidation along with minor amounts of caliche.<br>Calcareous and very slightly moist. Very pale brown.                                |        |
| -65 — |      | SAND, CLAYEY: Highly calcareous, moist to damp, plastic, poorly sorted, fine to medium grained sand. Sand content increases with depth.                                        | - 1090 |
| -     |      | SAND, CLAYEY: Highly calcareous, damp, crumbly, fine to coarse grained sand. Minor evidence of caliche present. Very pale brown.                                               |        |
| -     |      | SAND, SILT, AND CLAY: Highly calcareous, crumbly, predominately very fine to coarse grained.                                                                                   |        |
|       |      | SAND, CLAYEY: Trace of selective oxidation, highly calcareous, very pale brown. Moist.                                                                                         | 71     |
| -     |      | SAND, SILT, AND CLAY: Increase in evidence of oxidation. Very highly calcareous and light                                                                                      |        |
|       |      | SAND, SILTY: Very poorly sorted, sand fine to medium grained. Calcareous, oxidized, yellowish-<br>brown. Wet. At 72' contact with sand and gravel in an upward-fining sequence | - 1085 |
| -70 — |      |                                                                                                                                                                                |        |
|       | <br> |                                                                                                                                                                                |        |
| -     |      |                                                                                                                                                                                |        |
|       |      |                                                                                                                                                                                |        |
| -     |      | CLAY, SILTY: Light olive-brown, calcareous, dense and hard with waxy appearance. Dry.                                                                                          |        |
| -     |      |                                                                                                                                                                                | _      |
|       |      |                                                                                                                                                                                |        |
|       |      |                                                                                                                                                                                | - 1080 |
| -75 — |      |                                                                                                                                                                                |        |
|       |      |                                                                                                                                                                                |        |
| -     |      | CLAY, SILTY: Very dark gravish-brown, highly calcareous with a waxy appearance. Dry.                                                                                           |        |
|       |      |                                                                                                                                                                                |        |
| -     |      |                                                                                                                                                                                | _      |
| -     |      |                                                                                                                                                                                |        |
|       |      |                                                                                                                                                                                |        |
| -     |      |                                                                                                                                                                                |        |
|       |      |                                                                                                                                                                                | - 1075 |
| -80 — |      | +L                                                                                                                                                                             |        |







| 1         | Arg    | onne                             | Project:                                        | Everest, KS                                               | Boring ID: S                                   | SB41                 |                                                        |     |
|-----------|--------|----------------------------------|-------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|----------------------|--------------------------------------------------------|-----|
| [4        |        | ational<br>Gaboratory            | Elevation:<br>Depth:<br>Geologist:<br>Location: | 1153.04 ft<br>78.4 ft<br>L. LaFreniere<br>2035239.9,50091 | Log Date: 4/0<br>Plot Date: 4/1<br>6.7         | 2/01<br>8/01         | Rig: CPT<br>Driller: K. Spokas<br>Company: Argonne     |     |
| bth Mater | am ple |                                  |                                                 | Lith                                                      | logy                                           |                      |                                                        | Ele |
| ĺ         |        | No Sample: (N                    | lo Sample fr                                    | om 0 -60 ft)                                              |                                                |                      |                                                        |     |
|           |        | CLAY, SILTY: F                   | ale brown, f                                    | highly calcareous v                                       | ery sandy silty clay.                          | . Dry.               |                                                        |     |
| -         |        | CLAY, SANDY:<br>generally very 1 | Highly calca<br>îne to fine gi                  | areous, moist, crur<br>rained with trace of               | nbly in part with evid<br>cemented sand in     | dence of<br>the form | fwhite caliche. Sand<br>n of granular gravels.         |     |
|           |        | SAND, CLAYE`<br>light yellowish- | Y: Moist, fine<br>brown.                        | to very fine sand v                                       | rith minor evidence                            | ofselec              | tive oxidation. Calcareous,                            |     |
| -         |        | CLAY, SANDY:<br>grained sand.    | Yellowish-b                                     | rown, calcareous :                                        | sandy clay with san                            | id conter            | nt ~30%. Very fine to fine                             |     |
|           |        | SAND, CLAYE<br>coarse grained    | Y: Calcareou<br>3 sand, pred                    | us, yellowish-browi<br>ominately quartz, c                | n, crumbly and poro<br>alcareous.              | ous in pa            | rt. Poorly sorted, very fine to                        |     |
|           |        | CLAY, SANDY:                     | Yellowish-b                                     | rown, calcareous;                                         | sand content 25%-                              | 30%.                 |                                                        |     |
| 35 _      |        | CLAY, SANDY:<br>scattered throu  | Moist, yellov<br>ughout with a                  | wish-brown, slightl<br>associated selectiv                | y plastic calcareou:<br>e oxidation.           | s, with m            | inor tiny manganese nodules                            | 3   |
|           |        | CLAY, SANDY:<br>plastic with so  | Damp, calc<br>me evidence                       | areous with minor<br>e of oxidation.  San                 | tiny white calcareou<br>d is very fine to fine | us nodul<br>grained, | les throughout. Moderately<br>, light brownish-yellow. |     |
| -         |        | SAND, CLAYE`<br>grained sand.    | Y: Light yello                                  | wish-brown, damp                                          | to slightly wet, slig                          | ihtly calc           | areous with very fine to fine                          |     |
|           |        | SILT, CLAYEY:                    | Oxidized, ye                                    | llowish-brown, mo                                         | ist, very plastic with                         | n clasts (           | of sucrosic sand present.                              |     |
|           |        | CLAY, SILTY: S                   | ightly calca                                    | reous, oxidized, ye                                       | llowish-brown, very                            | / plastic.           | Moist to damp.                                         |     |
|           |        | SAND, SILTY: (                   | Oxidized, dai                                   | mp to wet, very fine                                      | to medium grained                              | d.                   |                                                        |     |
|           | 00     | SAND AND GF<br>sorted fine to n  | AVEL: Oxidi:<br>nedium grai                     | zed, minor granula<br>ned sand.                           | r gravels to 10 cm i                           | in length            | . Damp to wet with poorly                              |     |
|           |        | NO RECOVER<br>no recovery)       | Y: Interval or                                  | nly partially recover                                     | ed due to sand con                             | ntent. (As           | ssuming interval 68.0 -70 is                           |     |
|           |        |                                  |                                                 |                                                           |                                                |                      |                                                        |     |

|       |     |                                                                           | <b>SB41</b> p. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
|-------|-----|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Depth | w.s |                                                                           | Lithology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Elev.            |
| -     |     |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                |
|       |     |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|       |     |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|       |     |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| -70 — |     | 1.01.0                                                                    | SAND AND GRAVEL: Saturated fine sand with minor small granular gravel. Loose, unconsolidated,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11               |
|       |     | $\left  \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|       |     |                                                                           | SAND: Unconsolidated, wet , oxidized, with rounded to sub-rounded quartz grains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|       |     | 1010                                                                      | SAND AND GRAVEL: Unconsolidated, wet to saturated, coarse to very coarse sand with granular<br>gravel. Gravels to 1" in length some composed of comparised sandstone. Mixed lithology for sands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                |
|       |     | <u>E</u> ø <u>ö</u> ø                                                     | and gravels. Oxidized and highly calcareous.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
|       |     | 00                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|       |     |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| ÷     |     |                                                                           | SAND, CLAYEY: Slightly clayey sand, loose, oxidized, calcareous and wet. Predominately fine grained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ┨┠               |
|       |     | 00                                                                        | with minor medium grained sand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                |
|       |     | ===                                                                       | Calcareous and yellow-brown in color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /                |
|       |     | 222                                                                       | SAND, SILTY: Minor granular gravels associated with the sands. Highly calcareous, damp to moist,<br>oxidized and yellowish-brown in color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
|       |     |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|       |     | EII                                                                       | CLAY, SILTY: Clay, silty to sandy with trace of gravels. Gravels include granite granules to ? in length.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                |
|       |     | E== 1                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|       |     |                                                                           | CLAY_SANDY: Till ovidized dense bard sandy clay till with minor gravel. Calcareous dry and dark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|       |     |                                                                           | brown in color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|       |     | <u> </u>                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|       |     |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| -75 — |     |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|       |     |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|       |     |                                                                           | OLAY OU TRANSPORT and December of the debictory of a state of the second state of the | _                |
|       |     |                                                                           | brown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Л                |
|       |     |                                                                           | SAND, SILT, AND CLAY: Very silty, calcareous, oxidized sand with clay. Yellowish-brown. Dry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
|       |     | E== 1                                                                     | CLAY, SILTY: Dark brown, highly calcareous till with very thin lenses of light gray, sucrosic sand. Dry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
|       |     |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|       |     |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|       |     |                                                                           | SAND, SILTY: Loose, oxidized, highly calcareous. Wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\left  \right $ |
|       |     |                                                                           | CLAY, SILTY: Probable transitional zone to Unit 4. Dense, hard, highly calcareous. Distinguished by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|       |     |                                                                           | rip-up clasts of sucrosic, light brownish-gray sand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| -     |     | E==1                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1075             |
|       |     | F 1                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |







| National<br>Laboratory       Elevation:       1153.22 ft<br>Depth:       Log Date:       4/05/01<br>Geologist:       L.         Depth       -80.84 ft<br>Geologist:       L. LaFreniere<br>2034642.64,500768.73       Plot Date:       4/19/01<br>Location:       2034642.64,500768.73         Depth       Image: State of the sta | Rig: CPT<br>Driller: K. Spokas<br>Company: Argonne<br>ains comprising ~5% of<br>th minute manganese nodules<br>sand occurs in lenses and<br>present. | Elev.                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Depth       Lithology         -45       No Sample: (No Sample from 0 - 45 ft)         -45       CLAY, SILTY: Light brown, non-calcareous, dry to slightly moist. Sand grassample scattered throughout. Slight evidence of oxidation associated with Dense and hard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ains comprising ~5% of<br>th minute manganese nodules<br>sand occurs in lenses and<br>present.<br>ly moist with 5% to 10% sand                       | Elev.                                 |
| -45 - CLAY, SILTY: Light brown, non-calcareous, dry to slightly moist. Sand gra<br>sample scattered throughout. Slight evidence of oxidation associated wit<br>Dense and hard.<br>CLAY, SILTY: Light brown, non-calcareous with increase in sand content,<br>forms areas of porosity development. Dense and hard with manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ains comprising ~5% of<br>th minute manganese nodules<br>sand occurs in lenses and<br>present.<br>Ily moist with 5% to 10% sand                      | -<br>-<br>-                           |
| -45 - CLAY, SILTY: Light brown, non-calcareous, dry to slightly moist. Sand grassample scattered throughout. Slight evidence of oxidation associated with Dense and hard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ains comprising ~5% of<br>th minute manganese nodules<br>sand occurs in lenses and<br>present.                                                       | -<br>;                                |
| CLAY SILTY Yellowish-brown non-calcareous dense bard dryto slight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tly moist with 5% to 10% sand                                                                                                                        |                                       |
| CLAY, SILTY: Non-calcareous, yellowish-brown as described above with<br>manganese nodules<br>CLAY, SILTY: Contact zone with a change in lithology to reddish-brown; no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a marked increase in<br>on-calcareous, slightly plastic                                                                                              | <br> -<br> - 110:<br>-<br>-           |
| -50 - CLAY, SILTY: Non-calcareous with ~5%-10% sand content. Reddish-bromoist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | wn, dense, hard and slightly<br>throughout the matrix and<br>. Matrix sands fine to medium<br>.m grained matrix sands.<br>Icareous,sand content      | · · · · · · · · · · · · · · · · · · · |
| SAND, CLAYEY: Contact zone. Very poorly sorted, non-calcareous, fine to<br>trace very coarse sand<br>NO RECOVERY: Sample assumed to be a continuation of the unit descri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o coarse grained sand with a bed below.                                                                                                              | -<br>110                              |

SB44 p. 2

| Depth | W.S.             | Lithology                                                                                                                                                                                                                         |                  |  |  |  |  |
|-------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|
|       |                  | SAND: Unconsolidated, loose, very poorly sorted, fine to coarse grained, predominately quartz.<br>Subangular quartz grains. Dry to slightly moist becoming damp. Light yellowish-brown,<br>non-calcareous                         | -                |  |  |  |  |
| .55 — |                  | SAND: Loose and unconsolidated, non-calcareous light yellowish-brown, damp to wet, fine to very coarse grained, very poorly sorted. Soil moisture increases with depth.                                                           | -                |  |  |  |  |
|       |                  | SAND, CLAYEY: Damp, non-calcareous, light yellowish-brown. Sand predominately very fine to<br>medium with a trace coarse grains                                                                                                   |                  |  |  |  |  |
|       |                  | CLAY AND SAND: Marked lithologic change transitional from overlying sand. Damp to wet, very plastic with increase in moisture content in sandier areas. Non-calcareous and generally, very fine to medium A grained               | ł                |  |  |  |  |
|       |                  | CLAY, SILTY: With sand. Marked lithologic change transitional from overlying sand. Damp to wet, very<br>plastic with increase in moisture content in sandier areas. Non-calcareous and generally very fine to<br>medium grained   |                  |  |  |  |  |
| 60 —  | = == :<br>= == : |                                                                                                                                                                                                                                   | - 109            |  |  |  |  |
|       |                  |                                                                                                                                                                                                                                   |                  |  |  |  |  |
|       |                  | CLAY, SANDY: Crumbly, dry to damp with areas of sand concentration and caliche associated with<br>minor evidence of oxidation. Highly calcareous, hard, non-plastic, pale brown to brown. Sand is<br>generally very fine grained. | -                |  |  |  |  |
|       |                  | SAND, CLAYEY: Trace small granular gravel. Highly calcareous, crumbly, marked increase in<br>oxidation, tiny white caliche nodules present throughout, dry.                                                                       | -                |  |  |  |  |
| -     |                  | SAND: Trace granular gravel. Saturated, fine to coarse (minor) grained, very poorly sorted, loose and unconsolidated, non-calcareous, very pale brown.                                                                            | -                |  |  |  |  |
| -     |                  | SAND: Fine to medium grained, loose, unconsolidated, very pale brown, wet.                                                                                                                                                        | $\left  \right $ |  |  |  |  |
|       |                  | CLAY, SILTY: Highly calcareous, moist with 10% sand. Tiny manganese nodules present. Some<br>evidence of selective oxidation associated with the manganese. Generally, light yellowish-brown with<br>evidence of caliche          | - 109            |  |  |  |  |
|       |                  | CLAY, SILTY: Thin lenses or pods of fine sand in silty clay with a sand matrix. Calcareous, light<br>yellowish-brown, slightly plastic and crumbly in part. Slightly moist.                                                       |                  |  |  |  |  |
|       |                  | SAND AND GRAVEL: Clayey. Gravel to .75" in length. Highly calcareous, highly oxidized, dry to very<br>slightly moist and crumbly in areas of sand concentration. Till sequence.                                                   |                  |  |  |  |  |
|       |                  | SAND, CLAYEY: Oxidized, brownish-yellow, loose, wet with highly calcareous, large silty clay clasts to 2" in length. Sand is fine to very coarse grained, very poorly sorted.                                                     |                  |  |  |  |  |

SB44 p. 3



|            | SB44                                                                                                                                                                              | p. 4  |        |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|
| Depth W.S. | Lithology                                                                                                                                                                         |       | Elev.  |
|            | CLAY, SILTY: Olive, dry, dense, hard, calcareous with a waxy appearance. Moderately silty.                                                                                        |       | -      |
|            | CLAY, SILTY: Dry, hard, very dense, calcareous, waxy in appearance, dark olive to very dark gray<br>Moderately silty                                                              | r.    | - 1075 |
|            | CLAY: Some sitt. Dry, waxy in appearance, with inclusions of very highly oxidized, bright rust col<br>equivery thin sitt stringers. Matrix is calcareous and dark olive in color. | orea, |        |











#### B-74

| <b>Argor</b><br>Project:<br>Geologist | Eve          | Na<br>erest<br>Sediv | tiona<br>Phase 3<br>y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I Laboratory Well ID: SB49<br>2 Elevation: 1132.9 ft Log Date: 11/4/2002 Rig: 40-Ton/Crawler<br>Depth: 59.45 ft Driller: Craig Drilling Company: Argonne<br>Cored Interval: -46 to -51.5 ft                                                                                                                                                                                                                                                                                                                                                                                                               |                 |  |  |  |
|---------------------------------------|--------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|
| Depth<br>ft BGL                       | Water Sample | cci4                 | % Kecovery<br>Lithology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LITHOLOGY DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Elev<br>ft AMSL |  |  |  |
| n ġGL<br>-45 → r<br>-                 | Witte        | C04                  | Image: second | NOT CORED: 0 - 46 ft not cored. SAND: Silty-clayey. >50% sand, silt to medium sand w/some clay, sand subangular to rounded<br>quart_light olive brown, 2.5YR 5/3. Moist black, dense clayey silt lens, ~25mm across at very<br>top of core. SAND: Medium to very coarse; >80% sand, well sorted, loose, subangular to rounded quartz<br>fining upward. Few well-rounded pebbles to 7mm, 47-47.3 moist to wet, non calcareous minor<br>dark igneous grains. Light olive brown 2.5YR 5/3.                                                                                                                   | nt AMISL        |  |  |  |
|                                       |              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAND: Silty-clayey, >50% sand, silt to med. sand w/some clay quartz, sub-angular to rounded,<br>non-calareous to slightly calcareous, minor dark igneous grains, reddish yellow 7.5YR 6/8 to<br>yellowish brown 10 YR 5/8, mottled Fe staining, moist, 51-51.5. Cutting mouth jammed by<br>several sub-angular, calcareous-cemented silt/fine sandstone pebbles to 2-2.5cm.<br>SAND: Gravelly, poorly sorted medium to coarse sand w/quartz pebbles and calcareous<br>cemented silt-sand fragments to 2-2.5cm. >50% sand, 10-20% granules and pebbles, damp,<br>10YR 4/6 dark yellowish brown calcareous. |                 |  |  |  |





|         | -            |       |    | SB50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pg. 2                                                                                            |      |
|---------|--------------|-------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------|
| Depth 🚊 | - CC<br>- CT | %<br> | Ĕ. | LITHOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | Elev |
| Depth % | CC4          | %     |    | LITHOLOGY<br>SAND, SILTY: Sand ~80% fine grained, oxidized, brownish-yellow (10 YR), highly calc<br>sub-rounded, fairly well sorted, trace of inclusions of loose, medium grained sand, I<br>yellowish-brown (10 YR). Wet.<br>SAND, GRAVEL AND CLAY: Very thin stringer of sand and gravel at base of overlying<br>80%, trace granular gravel, highly calcareous, dark yellowish-brown (10 YR). Fine sa<br>SAND, SILTY: Poorly sorted, very fine - fine grained, inclusions of medium to coarse of<br>sub-rounded to sub-angular, highly calcareous, wet, brownish-yellow (10 YR) sand.<br>SAND, SILT, AND GRAVEL: Abrupt contact. Sand 85%, gravel 5%. Sand fine to mediu<br>grained, sub-rounded to rounded, moderately well sorted, highly calcareous, yellowi<br>(10 YR), wet. Angular gravel to 3 cm in length.<br>SAND AND GRAVEL: Silty minor clay in matrix. Sand 85%, gravel 5%. Very poorly sort<br>oxidized, medium- coarse grained, sub-rounded to sub-angular. Grain size increasil<br>depth. Wet to saturated, highly calcareous, yellowish-brown (10 YR) becoming dark<br>yellowish-brown (10 YR) for basal 2 inch at basal contact. Wet. | Pg. 2<br>careous,<br>ight<br>unit. Sand<br>and, wet.<br>grained,<br>msh-brown<br>red,<br>ng with | Elev |
|         | ND           |       |    | GRAVEL: Thin zone angular, broken gravel. Gravel (100%). Calcareous cemented sa<br>gravel to 3.5 cm in length.<br>SAND AND GRAVEL: Silly with minor clay content. Sand 85%, gravel 5-10%. Moist. Hi<br>calcareous. Sand fine to medium grained, vellowish-brown (10 YR). Gravel ranges i<br>granular to cobbles 4.5 cm in length. Gravel angular chert and sandy limestone with<br>indeterminate fossil debris.<br>CLAY, SILTY: with sand and gravel. Sand 5-10%. Highly calcareous. Sand and granu<br>occur as thin, discontinuous lenses in the clay. Scattered, minor, white weathering c<br>nodules. Sand fine to medium grained throughout matrix. Damp. Medium plasticity. I<br>YR).<br>SAND, GRAVEL AND CLAY: Medium to very coarse grained, damp, non-plastic, highl<br>calcareous. Sand very poorly sorted 85%, angular gravel <5% to 2 cm in length. San<br>sub-angular to sub-rounded.<br>CLAY, SILTY: As described in above zone 51.9-52.9 feet.                                                                                                                                                                                             | indstone<br>ighly<br>n size from<br>trace of<br>lar gravel<br>arbonate<br>Brown (10              |      |







| Argon                  | ne           | Na           | atio       | nal                          | Laboratory We                                                                   | II ID: SI                        | B54                            |                                        |                        |
|------------------------|--------------|--------------|------------|------------------------------|---------------------------------------------------------------------------------|----------------------------------|--------------------------------|----------------------------------------|------------------------|
| Project:<br>Geologist: | Eve<br>E.`   | erest<br>Yan | t Ph       | ase 2                        | Elevation: 1095.79 ft Log<br>Depth: 30 ft Dril<br>Cored Interval: -15 to -30 ft | Date: 11-6<br>ler:               | -02                            | Rig: Geoprobe<br>Drilling Company: ANL |                        |
| Depth<br>ft BGL        | Water Sample | CCI4         | % Recovery | Lithology                    | LITHOLOGY DE                                                                    | SCRIPTION                        |                                |                                        | Elev<br>ft AMSL        |
| -15 -                  |              |              |            |                              | NO RECOVERY                                                                     | 1 nlastic 10-2                   | 20% sand sra                   | attered in clay matrix Moist           |                        |
| -                      |              |              |            |                              | non-calcareous. Light brownish gray                                             | (2.5YR 6/2)                      |                                |                                        | - 1080                 |
| -                      |              |              |            |                              | SAND: Coarse sand - granules ≻85'<br>4/6)                                       | %, sub-angula                    | ar, non calcarı                | eous. Wet. Strong brown (7.5Y          | R _                    |
| -20 -                  |              | ND           |            |                              | SAND: Coarse sand - granules >85'<br>4/6)                                       | %, sub-angula                    | ar, non calcar                 | eous. Wet. Strong brown (7.5Y          | R                      |
| -                      |              |              |            |                              | SAND, GRAVELLY: Coarse sand - g<br>2cm. Non calcareous. Dark grayish            | ranules with a<br>brown (10YR    | a few gravels.<br>4/2)         | Sand, subrounded. Gravel up            | — 1075<br>to<br>-<br>- |
| -                      |              | ND           |            |                              | SAND, GRAVELLY: Coarse sand - g<br>2cm. Non calcareous. Dark grayish            | ranules with a<br>brown at the l | a few gravels.<br>base (10YR 4 | Sand, subrounded. Gravel up<br>(2).    | to _                   |
| -25 -                  |              |              |            |                              | SAND: Fine well sorted, rounded, cla<br>Gray (2.5YR 5/1)                        | ay contents in                   | crease w/dep                   | th. Saturated, non calcareous.         | - 1070                 |
| -30                    |              |              |            | <u>404040404040540405405</u> | TILL: Sandy silt, silt > 70% with sand<br>Calcareous, dry. Dark grayish browr   | l patches. Gra<br>(10YR 4/2)     | wels scattere                  | d throughout silt matrix.              | -                      |












Appendix C:

Survey Coordinates

|              | Horizontal L | ocation <sup>a</sup> (ft) | Elevation <sup>b</sup> (f        | t AMSL)   |
|--------------|--------------|---------------------------|----------------------------------|-----------|
| Location     | Easting      | Northing                  | Representative<br>Ground Surface | Reference |
|              |              |                           |                                  |           |
| SB20         | 2035021.63   | 500291.45                 | 1148.30                          | 1148.30   |
| SB21         | 2034651.18   | 500625.54                 | 1152.20                          | 1152.20   |
| SB22         | 2036116.87   | 500456.09                 | 1148.30                          | 1147.87   |
| SB23         | 2035803.12   | 499573.58                 | 1128.60                          | 1128.60   |
| SB24         | 2035667.88   | 499661.97                 | 1126.80                          | 1126.80   |
| SB25         | 2035288.37   | 499599.31                 | 1131.40                          | 1131.63   |
| SB26         | 2034664.67   | 500266.54                 | 1149.70                          | 1149.70   |
| SB27         | 2034834.08   | 500468.24                 | 1151.90                          | 1151.90   |
| SB28         | 2035033.58   | 500073.67                 | 1147.00                          | 1147.00   |
| SB29         | 2035397.08   | 500309.40                 | 1141.00                          | 1141.00   |
| SB30         | 2034725.00   | 500269 64                 | 1150 10                          | 1150 10   |
| SB31         | 2035907 34   | 499045 20                 | 1142 76                          | 1142.26   |
| SB32         | 2035507.04   | 400300 65                 | 1121 70                          | 1121 70   |
| SD32<br>SD32 | 2035307.03   | 499309.03<br>500652.01    | 1121.70                          | 1121.70   |
| SB34         | 2035807.43   | 499722.40                 | 1132.10                          | 1131.73   |
| 0005         | 0005040 40   | 500440 57                 | 4400.00                          | 4400.00   |
| SB35         | 2035843.42   | 500119.57                 | 1138.00                          | 1138.00   |
| SB36         | 2035642.63   | 500685.23                 | 1140.30                          | 1140.30   |
| SB37         | 2035086.76   | 501162.83                 | 1154.00                          | 1154.00   |
| SB38         | 2034662.46   | 500916.48                 | 1153.40                          | 1153.40   |
| SB39         | 2034940.12   | 500906.45                 | 1154.40                          | 1154.40   |
| SB40         | 2034484.05   | 500904.76                 | 1153.50                          | 1153.50   |
| SB41         | 2035239.86   | 500916.71                 | 1153.00                          | 1153.00   |
| SB42         | 2034632.57   | 501156.60                 | 1150.90                          | 1150.90   |
| SB43         | 2034447.02   | 501920.62                 | 1129.70                          | 1129.70   |
| SB44         | 2034642.64   | 500768.73                 | 1153.20                          | 1153.20   |
| SB45         | 2034462.87   | 501520.73                 | 1142.40                          | 1142.40   |
| SB46         | 2034841.01   | 501426.58                 | 1144.90                          | 1144.90   |
| SB47         | 2035139.36   | 501437.73                 | 1149.70                          | 1149.70   |
| SB48         | 2034584.56   | 501050.57                 | 1151.88                          | 1151.88   |
| SB49         | 2034020.21   | 501391.11                 | 1132.90                          | 1132.48   |
| SB50         | 2033812 50   | 500697 68                 | 1130 10                          | 1130 10   |
| SB51         | 2034072 18   | 500940 25                 | 1142 09                          | 1142 09   |
| SB52         | 2033537 77   | 501174 58                 | 1134 35                          | 1134 35   |
| SB53         | 2032589 64   | 501183 78                 | 1107.00                          | 1107.00   |
| SB54         | 2002003.04   | 500324 28                 | 1095 79                          | 1095 79   |

# TABLE C.1 Measured survey coordinates for Phase II sample locations at Everest, Kansas.

|       | $\mathbf{C}$ | $( \cap \circ \circ + )$ |  |
|-------|--------------|--------------------------|--|
| IABLE |              | (CONT)                   |  |
|       | <b>U</b>     | (001111)                 |  |

|              |               |                           | Elevation <sup>b</sup> (f        | t AMSL)   |
|--------------|---------------|---------------------------|----------------------------------|-----------|
|              | Horizontal Lo | ocation <sup>a</sup> (ft) |                                  |           |
| Location     | Easting       | Northing                  | Representative<br>Ground Surface | Reference |
| SB55         | 2033370.52    | 501805.63                 | 1108.33                          | 1108.33   |
| SB56         | 2032506.49    | 500772.81                 | 1099.27                          | 1099.27   |
| SB57         | 2033460.57    | 500879.48                 | 1120.57                          | 1120.57   |
| 5B58<br>6B50 | 2033134.70    | 500998.80                 | 1118.21                          | 1118.21   |
| 2009         | 2034440.50    | 500674.45                 | 1101.07                          | 1151.67   |
| SB60         | 2034114.37    | 500935.00                 | 1144.44                          | 1144.11   |
| SB61         | 2033470.95    | 501322.58                 | 1131.51                          | 1131.51   |
| SB62         | 2033142.86    | 500977.68                 | 1118.92                          | 1121.22   |
| SB63         | 2032572.84    | 501171.69                 | 1102.37                          | 1104.75   |
| SB64         | 2032210.26    | 500310.85                 | 1095.98                          | 1098.36   |
| Stroom       | 2022556.26    | 501299 62                 | 4007 400                         |           |
| ONICO        | 2032550.50    | 501200.02                 | 1087.42°                         |           |
| 50012        | 2032122.06    | 500339.73                 | 1088.23                          |           |
|              |               |                           |                                  |           |

<sup>a</sup> Horizontal coordinates of target location centers are shown, not points selected to represent ground elevations or to provide reference elevations. Northings and Eastings are Kansas State Plane Coordinates. Horizontal datum is converted North American Datum (NAD) 83.

- <sup>b</sup> Vertical datum is National Geodetic Vertical Datum (NGVD) 83.
- <sup>c</sup> Elevation of stream bed at 120th Road.

Appendix D:

Water Level Data

|          |           |             |       | April 1, 2001                  |                        |                 | April 4, 2001     | l <u> </u>             |      | April 5, 2002     | 1                      |
|----------|-----------|-------------|-------|--------------------------------|------------------------|-----------------|-------------------|------------------------|------|-------------------|------------------------|
|          |           |             |       | Water                          | Level                  |                 | Water             | Level                  |      | Water             | Level                  |
|          | Elevatior | n (ft AMSL) |       |                                | -                      |                 |                   | -                      |      |                   | _                      |
| Location | Ground    | Reference   | Time  | Depth TOC <sup>a</sup><br>(ft) | Elevation<br>(ft AMSL) | Time            | Depth TOC<br>(ft) | Elevation<br>(ft AMSL) | Time | Depth TOC<br>(ft) | Elevation<br>(ft AMSL) |
| SB25     | 1131.40   | 1131.63     | 16:46 | 15.99                          | 1115.64                | NM <sup>b</sup> | NM                | NM                     | NM   | NM                | NM                     |
| SB30     | 1150.13   | 1150.13     | 7:30  | 47.45                          | 1102.68                | NM              | NM                | NM                     | NM   | NM                | NM                     |
| SB35     | 1138.05   | 1138.05     | 16:04 | 23.30                          | 1114.75                | 13:30           | 23.35             | 1114.70                | NM   | NM                | NM                     |
| SB36     | 1140.26   | 1140.26     | 16:20 | 33.40                          | 1106.86                | 13:40           | 33.52             | 1106.74                | NM   | NM                | NM                     |
| SB37     | 1153.97   | 1153.97     | NM    | NM                             | NM                     | 12:50           | 52.30             | 1101.67                | NM   | NM                | NM                     |
| SB38     | 1153.43   | 1153.43     | 17:24 | 53.84                          | 1099.59                | 13:05           | 53.94             | 1099.49                | NM   | NM                | NM                     |
| SB41     | 1153.05   | 1153.05     | NM    | NM                             | NM                     | 13:15           | 50.85             | 1102.20                | NM   | NM                | NM                     |
| SB42     | 1150.91   | 1150.91     | NM    | NM                             | NM                     | 12:58           | 51.80             | 1099.11                | NM   | NM                | NM                     |
| SB44     | 1153.22   | 1153.22     | NM    | NM                             | NM                     | NM              | NM                | NM                     | 9:00 | 53.90             | 1099.32                |

TABLE D.1 Hand-measured water levels in temporary piezometers in April 2001 (second session of Phase II) and November 2002 (third session of Phase II).

|          |           |                         |                |       | November 6, 20    | )02 <sup>c</sup>       |       | November 9, 20    | )02 <sup>d</sup>       | I     | November 12, 2    | 002 <sup>d</sup>       |
|----------|-----------|-------------------------|----------------|-------|-------------------|------------------------|-------|-------------------|------------------------|-------|-------------------|------------------------|
|          | Elevatior | n (ft AMSL)             | Chieluur       |       | Water             | Level                  |       | Water             | Level                  |       | Water             | Level                  |
| Location | Ground    | Calculated<br>Reference | Height<br>(ft) | Time  | Depth TOC<br>(ft) | Elevation<br>(ft AMSL) | Time  | Depth BGL<br>(ft) | Elevation<br>(ft AMSL) | Time  | Depth BGL<br>(ft) | Elevation<br>(ft AMSL) |
| SB49t    | 1133.14   | 1134.14                 | 1.00           | 15:06 | 44.59             | 1089.55                | 15:28 | 42.85             | 1090.29                | 17:16 | 43.79             | 1089.35                |
| SB50t    | 1130.10   | 1131.44                 | 1.34           | 15:44 | 41.93             | 1089.51                | 15:15 | 39.85             | 1090.25                | 17:08 | 40.79             | 1089.31                |
| SB51t    | 1142.08   | 1142.08                 | 0.00           | NM    | NM                | NM                     | 15:18 | 51.30             | 1090.78                | 17:12 | 52.24             | 1089.84                |
| SB52t    | 1134.35   | 1135.56                 | 1.21           | 15:41 | 46.62             | 1088.94                | 15:27 | 44.95             | 1089.40                | 16:26 | 45.53             | 1088.82                |
| SB53t    | 1102.44   | 1104.53                 | 2.09           | 15:51 | 20.62             | 1083.91                | 15:05 | 17.90             | 1084.54                | 16:53 | 18.36             | 1084.08                |
| SB54t    | 1095.79   | 1098.09                 | 2.30           | 15:54 | 21.16             | 1076.93                | 15:10 | 18.65             | 1077.14                | 16:58 | 18.84             | 1076.95                |

<sup>a</sup> Depth TOC, depth below top of casing.

<sup>b</sup> NM, not measured.

<sup>c</sup> Water levels measured from the top of the temporary outer stickup casing.

<sup>d</sup> Water levels measured from ground level.

|               |              |           |       | April 1, 200      | 1                      |                 | April 4, 200      | 1                      | 1     | November 6, 2     | 002                    | November 9, 2002 |                   |                        |
|---------------|--------------|-----------|-------|-------------------|------------------------|-----------------|-------------------|------------------------|-------|-------------------|------------------------|------------------|-------------------|------------------------|
|               | Flowetion (f |           |       | Water             | Level                  |                 | Water             | Level                  |       | Water             | Level                  |                  | Water             | Level                  |
| Location      | Ground       | Reference | Time  | Depth TOC<br>(ft) | Elevation<br>(ft AMSL) | Time            | Depth TOC<br>(ft) | Elevation<br>(ft AMSL) | Time  | Depth TOC<br>(ft) | Elevation<br>(ft AMSL) | Time             | Depth TOC<br>(ft) | Elevation<br>(ft AMSL) |
| SB01          | 1129.55      | 1129.12   | 16:35 | 12.89             | 1116.23                | NМ <sup>а</sup> | NM                | NM                     | 15:30 | 18.28             | 1110.84                | 14:16            | 18.23             | 1110.89                |
| SB09          | 1139.40      | 1138.94   | 16:50 | 27.51             | 1111.43                | NM              | NM                | NM                     | 14:31 | 31.32             | 1107.62                | 14:26            | 31.12             | 1107.82                |
| SB16          | 1141.50      | 1141.17   | 17:12 | 37.19             | 1103.98                | NM              | NM                | NM                     | 15:19 | 39.44             | 1101.73                | 14:31            | 39.00             | 1102.17                |
| SB18          | 1154.50      | 1153.97   | 14:01 | 49.93             | 1104.04                | 12:40           | 50.08             | 1103.89                | 15:07 | 51.12             | 1102.85                | 13:57            | 50.51             | 1103.46                |
| SB19          | 1132.50      | 1131.98   | 17:08 | 26.50             | 1105.48                | NM              | NM                | NM                     | 15:52 | 32.23             | 1099.75                | 14:35            | 32.12             | 1099.86                |
| SB22          | 1148.30      | 1147.87   | 16:16 | 36.00             | 1111.87                | NM              | NM                | NM                     | 15:42 | 39.69             | 1108.18                | 14:06            | 39.31             | 1108.56                |
| SB31          | 1142.76      | 1142.26   | 16:29 | 26.10             | 1116.16                | NM              | NM                | NM                     | 15:37 | 31.46             | 1110.80                | 14:11            | 31.42             | 1110.84                |
| SB34          | 1132.10      | 1131.73   | 16:40 | 15.69             | 1116.04                | 13:53           | 15.70             | 1116.03                | 15:46 | 21.11             | 1110.62                | 14:23            | 21.07             | 1110.66                |
| SB49          | 1132.90      | 1132.48   | NM    | NM                | NM                     | NM              | NM                | NM                     | NM    | NM                | NM                     | NM               | NM                | NM                     |
| SB60          | 1144.44      | 1144.11   | NM    | NM                | NM                     | NM              | NM                | NM                     | NM    | NM                | NM                     | NM               | NM                | NM                     |
| SB62          | 1118.92      | 1121.22   | NM    | NM                | NM                     | NM              | NM                | NM                     | NM    | NM                | NM                     | NM               | NM                | NM                     |
| SB63          | 1102.37      | 1104.75   | NM    | NM                | NM                     | NM              | NM                | NM                     | NM    | NM                | NM                     | NM               | NM                | NM                     |
| SB64          | 1095.98      | 1098.36   | NM    | NM                | NM                     | NM              | NM                | NM                     | NM    | NM                | NM                     | NM               | NM                | NM                     |
| DW06          | 1151.70      | 1152.26   | 17:17 | 55.07             | 1097.19                | NM              | NM                | NM                     | 13:00 | 54.09             | 1098.17                | NM               | NM                | NM                     |
|               |              |           | N     | lovember 12, 2    | 2002                   | ١               | November 21, 2    | 2002                   |       | January 17, 20    | 003                    |                  |                   |                        |
|               |              |           |       | Water             | Level                  |                 | Water             | Level                  |       | Water             | Level                  |                  |                   |                        |
|               |              |           |       | Depth TOC         | Elevation              |                 | Depth TOC         | Elevation              |       | Depth TOC         | Elevation              |                  |                   |                        |
|               |              |           | Time  | (ft)              | (ft AMSL)              | Time            | (ft)              | (ft AMSL)              | Time  | (ft)              | (ft AMSL)              |                  |                   |                        |
| SB01          | 1129.55      | 1129.12   | 15:49 | 18.51             | 1110.61                | 14:46           | 18.91             | 1110.21                | 12:15 | 21.28             | 1107.84                |                  |                   |                        |
| SB09          | 1139.40      | 1138.94   | 15:58 | 31.64             | 1107.30                | 13:51           | 31.84             | 1107.10                | 11:40 | 33.88             | 1105.06                |                  |                   |                        |
| SB16          | 1141.50      | 1141.17   | 16:04 | 39.68             | 1101.49                | 14:15           | 39.83             | 1101.34                | 11:20 | 41.36             | 1099.81                |                  |                   |                        |
| SB18          | 1154.50      | 1153.97   | 16:22 | 51.46             | 1102.51                | 15:05           | 51.58             | 1102.39                | 11:50 | 52.67             | 1101.30                |                  |                   |                        |
| SB19          | 1132.50      | 1131.98   | 16:10 | 32.91             | 1099.07                | 14:37           | 32.69             | 1099.29                | 11:44 | 33.78             | 1098.20                |                  |                   |                        |
| SB22          | 1148.30      | 1147.87   | 15:31 | 38.94             | 1108.93                | 14:57           | 40.02             | 1107.85                | 12:02 | 42.02             | 1105.85                |                  |                   |                        |
| SB31          | 1142.76      | 1142.26   | 15:37 | 31.72             | 1110.54                | 14:50           | 32.12             | 1110.14                | 12:08 | 34.39             | 1107.87                |                  |                   |                        |
| 5B34          | 1132.10      | 1131.73   | 15:44 | 21.35             | 1110.38                | 14:42           | 21.75             | 1109.98                | 12:22 | 24.12             | 1107.61                |                  |                   |                        |
| 5B49          | 1132.90      | 1132.48   | INIVI | NIVI              | NIVI                   | 10:33           | 43.07             | 1089.41                | 10:50 | 43.64             | 1088.84                |                  |                   |                        |
| 2000<br>2000  | 1144.44      | 1144.11   | INIVI |                   |                        | 13:24           | 54.00             | 1090.11                | 11:00 | 54.62             | 1089.49                |                  |                   |                        |
| 3002<br>6063  | 1118.92      | 1121.22   |       |                   |                        | 13:00           | 33.25             | 1087.97                | 10:30 | 33.02             | 1087.00                |                  |                   |                        |
| 3003<br>SD64  | 1005.00      | 1104.75   |       |                   |                        | 11:22           | 21.11             | 1083.64                | 10:10 | 21.49             | 1083.20                |                  |                   |                        |
| 3004<br>DW/06 | 1095.98      | 1098.30   |       |                   |                        | 12:20           | 21.70             | 10/0.00                | 10:20 | 21.94             | 10/6.42                |                  |                   |                        |
| 0000          | 1151.70      | 1152.20   | INIVI | INIVI             | INIVI                  | 13.47           | 54.30             | 1097.00                | 11.10 | 55.30             | 1090.90                |                  |                   |                        |

TABLE D.2 Hand-measured water levels in permanent piezometers in April 2001 (second session of Phase II), November 2002 (third session of Phase II), and January 2003.

<sup>a</sup> NM, not measured.

TABLE D.3 Water level depths (ft BGL) in piezometers and DW06 for the period of automated monitoring from August 16, 2000, to June 11, 2001.

|         | DW06  |        |         | SB01  |        |         | SB09  |        |         | SB16  |         |         | SB18  |         |         | SB19  |         |
|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|---------|---------|-------|---------|---------|-------|---------|
| Date    | Time  | Depth   | Date    | Time  | Depth   | Date    | Time  | Depth   |
| 8/16/00 | 13:15 | 55.456 | 8/16/00 | 14:48 | 19.849 | 8/16/00 | 15:01 | 33.009 | 8/16/00 | 15:11 | 40.8465 | 8/16/00 | 13:29 | 53.3694 | 8/16/00 | 12:23 | 32.8511 |
| 8/16/00 | 17:15 | 55.407 | 8/16/00 | 18:48 | 19.852 | 8/16/00 | 19:01 | 32.982 | 8/16/00 | 19:11 | 40.8071 | 8/16/00 | 17:29 | 53.2907 | 8/16/00 | 16:23 | 32.8346 |
| 8/16/00 | 21:15 | 55.351 | 8/16/00 | 22:48 | 19.862 | 8/16/00 | 23:01 | 32.976 | 8/16/00 | 23:11 | 40.794  | 8/16/00 | 21:29 | 53.248  | 8/16/00 | 20:23 | 32.8314 |
| 8/17/00 | 1:15  | 55.338 | 8/17/00 | 2:48  | 19.872 | 8/17/00 | 3:01  | 32.969 | 8/17/00 | 3:11  | 40.7743 | 8/17/00 | 1:29  | 53.2251 | 8/17/00 | 0:23  | 32.8478 |
| 8/17/00 | 5:15  | 55.315 | 8/17/00 | 6:48  | 19.879 | 8/17/00 | 7:01  | 32.959 | 8/17/00 | 7:11  | 40.7546 | 8/17/00 | 5:29  | 53.1955 | 8/17/00 | 4:23  | 32.8445 |
| 8/17/00 | 9:15  | 55.299 | 8/17/00 | 10:48 | 19.895 | 8/17/00 | 11:01 | 32.969 | 8/17/00 | 11:11 | 40.7644 | 8/17/00 | 9:29  | 53.1955 | 8/17/00 | 8:23  | 32.8511 |
| 8/17/00 | 13:15 | 55.331 | 8/17/00 | 14:48 | 19.915 | 8/17/00 | 15:01 | 32.995 | 8/17/00 | 15:11 | 40.7874 | 8/17/00 | 13:29 | 53.2579 | 8/17/00 | 12:23 | 32.8806 |
| 8/17/00 | 17:15 | 55.374 | 8/17/00 | 18:48 | 19.928 | 8/17/00 | 19:01 | 33.005 | 8/17/00 | 19:11 | 40.8071 | 8/17/00 | 17:29 | 53.2776 | 8/17/00 | 16:23 | 32.9003 |
| 8/17/00 | 21:15 | 55.404 | 8/17/00 | 22:48 | 19.941 | 8/17/00 | 23:01 | 33.035 | 8/17/00 | 23:11 | 40.8333 | 8/17/00 | 21:29 | 53.3235 | 8/17/00 | 20:23 | 32.9134 |
| 8/18/00 | 1:15  | 55.443 | 8/18/00 | 2:48  | 19.957 | 8/18/00 | 3:01  | 33.054 | 8/18/00 | 3:11  | 40.8563 | 8/18/00 | 1:29  | 53.3596 | 8/18/00 | 0:23  | 32.9331 |
| 8/18/00 | 5:15  | 55.466 | 8/18/00 | 6:48  | 19.974 | 8/18/00 | 7:01  | 33.081 | 8/18/00 | 7:11  | 40.8891 | 8/18/00 | 5:29  | 53.3858 | 8/18/00 | 4:23  | 32.9429 |
| 8/18/00 | 9:15  | 55.509 | 8/18/00 | 10:48 | 19.993 | 8/18/00 | 11:01 | 33.110 | 8/18/00 | 11:11 | 40.9252 | 8/18/00 | 9:29  | 53.4383 | 8/18/00 | 8:23  | 32.9528 |
| 8/18/00 | 13:15 | 55.535 | 8/18/00 | 14:48 | 20.010 | 8/18/00 | 15:01 | 33.127 | 8/18/00 | 15:11 | 40.9383 | 8/18/00 | 13:29 | 53.458  | 8/18/00 | 12:23 | 32.9659 |
| 8/18/00 | 17:15 | 55.518 | 8/18/00 | 18:48 | 20.020 | 8/18/00 | 19:01 | 33.133 | 8/18/00 | 19:11 | 40.9383 | 8/18/00 | 17:29 | 53.4318 | 8/18/00 | 16:23 | 32.9593 |
| 8/18/00 | 21:15 | 55.502 | 8/18/00 | 22:48 | 20.030 | 8/18/00 | 23:01 | 33.140 | 8/18/00 | 23:11 | 40.9416 | 8/18/00 | 21:29 | 53.4186 | 8/18/00 | 20:23 | 32.956  |
| 8/19/00 | 1:15  | 55.502 | 8/19/00 | 2:48  | 20.046 | 8/19/00 | 3:01  | 33.150 | 8/19/00 | 3:11  | 40.9482 | 8/19/00 | 1:29  | 53.4219 | 8/19/00 | 0:23  | 32.9692 |
| 8/19/00 | 5:15  | 55.486 | 8/19/00 | 6:48  | 20.046 | 8/19/00 | 7:01  | 33.143 | 8/19/00 | 7:11  | 40.935  | 8/19/00 | 5:29  | 53.4186 | 8/19/00 | 4:23  | 32.9724 |
| 8/19/00 | 9:15  | 55.489 | 8/19/00 | 10:48 | 20.036 | 8/19/00 | 11:01 | 33.130 | 8/19/00 | 11:11 | 40.9219 | 8/19/00 | 9:29  | 53.4121 | 8/19/00 | 8:23  | 32.9724 |
| 8/19/00 | 13:15 | 55.518 | 8/19/00 | 14:48 | 20.030 | 8/19/00 | 15:01 | 33.127 | 8/19/00 | 15:11 | 40.9121 | 8/19/00 | 13:29 | 53.4318 | 8/19/00 | 12:23 | 32.9331 |
| 8/19/00 | 17:15 | 55.436 | 8/19/00 | 18:48 | 20.039 | 8/19/00 | 19:01 | 33.107 | 8/19/00 | 19:11 | 40.8825 | 8/19/00 | 17:29 | 53.3137 | 8/19/00 | 16:23 | 32.9167 |
| 8/19/00 | 21:15 | 55.427 | 8/19/00 | 22:48 | 19.993 | 8/19/00 | 23:01 | 33.051 | 8/19/00 | 23:11 | 40.8268 | 8/19/00 | 21:29 | 53.248  | 8/19/00 | 20:23 | 32.9068 |
| 8/20/00 | 1:15  | 55.394 | 8/20/00 | 2:48  | 19.997 | 8/20/00 | 3:01  | 33.051 | 8/20/00 | 3:11  | 40.8268 | 8/20/00 | 1:29  | 53.2349 | 8/20/00 | 0:23  | 32.8642 |
| 8/20/00 | 5:15  | 55.364 | 8/20/00 | 6:48  | 19.997 | 8/20/00 | 7:01  | 33.061 | 8/20/00 | 7:11  | 40.8333 | 8/20/00 | 5:29  | 53.248  | 8/20/00 | 4:23  | 32.8609 |
| 8/20/00 | 9:15  | 55.377 | 8/20/00 | 10:48 | 19.997 | 8/20/00 | 11:01 | 33.071 | 8/20/00 | 11:11 | 40.8399 | 8/20/00 | 9:29  | 53.2677 | 8/20/00 | 8:23  | 32.8576 |
| 8/20/00 | 13:15 | 55.371 | 8/20/00 | 14:48 | 19.997 | 8/20/00 | 15:01 | 33.064 | 8/20/00 | 15:11 | 40.8333 | 8/20/00 | 13:29 | 53.2579 | 8/20/00 | 12:23 | 32.8478 |
| 8/20/00 | 17:15 | 55.341 | 8/20/00 | 18:48 | 19.990 | 8/20/00 | 19:01 | 33.054 | 8/20/00 | 19:11 | 40.8169 | 8/20/00 | 17:29 | 53.2087 | 8/20/00 | 16:23 | 32.8445 |
| 8/20/00 | 21:15 | 55.328 | 8/20/00 | 22:48 | 19.987 | 8/20/00 | 23:01 | 33.054 | 8/20/00 | 23:11 | 40.8136 | 8/20/00 | 21:29 | 53.2021 | 8/20/00 | 20:23 | 32.8576 |
| 8/21/00 | 1:15  | 55.335 | 8/21/00 | 2:48  | 19.990 | 8/21/00 | 3:01  | 33.061 | 8/21/00 | 3:11  | 40.8268 | 8/21/00 | 1:29  | 53.2251 | 8/21/00 | 0:23  | 32.8707 |
| 8/21/00 | 5:15  | 55.348 | 8/21/00 | 6:48  | 19.993 | 8/21/00 | 7:01  | 33.071 | 8/21/00 | 7:11  | 40.8366 | 8/21/00 | 5:29  | 53.2382 | 8/21/00 | 4:23  | 32.8773 |
| 8/21/00 | 9:15  | 55.374 | 8/21/00 | 10:48 | 19.990 | 8/21/00 | 11:01 | 33.081 | 8/21/00 | 11:11 | 40.8465 | 8/21/00 | 9:29  | 53.2776 | 8/21/00 | 8:23  | 32.8937 |
| 8/21/00 | 13:15 | 55.407 | 8/21/00 | 14:48 | 19.997 | 8/21/00 | 15:01 | 33.094 | 8/21/00 | 15:11 | 40.8629 | 8/21/00 | 13:29 | 53.3005 | 8/21/00 | 12:23 | 32.9035 |
| 8/21/00 | 17:15 | 55.390 | 8/21/00 | 18:48 | 20.003 | 8/21/00 | 19:01 | 33.087 | 8/21/00 | 19:11 | 40.8596 | 8/21/00 | 17:29 | 53.2677 | 8/21/00 | 16:23 | 32.897  |
| 8/21/00 | 17:15 | 55.390 | 8/21/00 | 18:48 | 20.003 | 8/21/00 | 19:01 | 33.087 | 8/21/00 | 19:11 | 40.8596 | 8/21/00 | 17:29 | 53.2677 | 8/21/00 | 16:23 | 32.897  |
| 8/21/00 | 21:15 | 55.377 | 8/21/00 | 22:48 | 20.003 | 8/21/00 | 23:01 | 33.087 | 8/21/00 | 23:11 | 40.8694 | 8/21/00 | 21:29 | 53.2612 | 8/21/00 | 20:23 | 32.9101 |
| 8/22/00 | 1:15  | 55.397 | 8/22/00 | 2:48  | 20.003 | 8/22/00 | 3:01  | 33.097 | 8/22/00 | 3:11  | 40.8793 | 8/22/00 | 1:29  | 53.294  | 8/22/00 | 0:23  | 32.9331 |
| 8/22/00 | 5:15  | 55.397 | 8/22/00 | 6:48  | 20.013 | 8/22/00 | 7:01  | 33.107 | 8/22/00 | 7:11  | 40.8825 | 8/22/00 | 5:29  | 53.2776 | 8/22/00 | 4:23  | 32.9396 |

|         | DW06         |        | SB01    |       |        | SB09    |       |        | SB16    |       |         | SB18    |       |         | SB19    |       |         |
|---------|--------------|--------|---------|-------|--------|---------|-------|--------|---------|-------|---------|---------|-------|---------|---------|-------|---------|
| Date    | Time         | Depth  | Date    | Time  | Depth  | Date    | Time  | Depth  | Date    | Time  | Depth   | Date    | Time  | Depth   | Date    | Time  | Depth   |
| 8/22/00 | <u>9</u> .15 | 55 420 | 8/22/00 | 10.48 | 20.020 | 8/22/00 | 11.01 | 33 117 | 8/22/00 | 11.11 | 40 8957 | 8/22/00 | 9.29  | 53 3235 | 8/22/00 | 8.23  | 32 956  |
| 8/22/00 | 13.15        | 55 427 | 8/22/00 | 14.48 | 20.026 | 8/22/00 | 15:01 | 33 117 | 8/22/00 | 15.11 | 40 8891 | 8/22/00 | 13.29 | 53 3169 | 8/22/00 | 12.23 | 32 9528 |
| 8/22/00 | 17:15        | 55.407 | 8/22/00 | 18:48 | 20.033 | 8/22/00 | 19:01 | 33,107 | 8/22/00 | 19:11 | 40.8825 | 8/22/00 | 17:29 | 53,294  | 8/22/00 | 16:23 | 32,9593 |
| 8/22/00 | 21:15        | 55.387 | 8/22/00 | 22:48 | 20.036 | 8/22/00 | 23:01 | 33.110 | 8/22/00 | 23:11 | 40.8858 | 8/22/00 | 21:29 | 53.2776 | 8/22/00 | 20:23 | 32.9724 |
| 8/23/00 | 1:15         | 55.394 | 8/23/00 | 2:48  | 20.039 | 8/23/00 | 3:01  | 33.117 | 8/23/00 | 3:11  | 40.8957 | 8/23/00 | 1:29  | 53.2841 | 8/23/00 | 0:23  | 32,9856 |
| 8/23/00 | 5:15         | 55.407 | 8/23/00 | 6:48  | 20.052 | 8/23/00 | 7:01  | 33.133 | 8/23/00 | 7:11  | 40.9121 | 8/23/00 | 5:29  | 53.3202 | 8/23/00 | 4:23  | 32.9987 |
| 8/23/00 | 9:15         | 55.436 | 8/23/00 | 10:48 | 20.062 | 8/23/00 | 11:01 | 33.146 | 8/23/00 | 11:11 | 40.9186 | 8/23/00 | 9:29  | 53.3497 | 8/23/00 | 8:23  | 33.0151 |
| 8/23/00 | 13:15        | 55.440 | 8/23/00 | 14:48 | 20.072 | 8/23/00 | 15:01 | 33.150 | 8/23/00 | 15:11 | 40.9252 | 8/23/00 | 13:29 | 53.353  | 8/23/00 | 12:23 | 33.0118 |
| 8/23/00 | 17:15        | 55.417 | 8/23/00 | 18:48 | 20.079 | 8/23/00 | 19:01 | 33.140 | 8/23/00 | 19:11 | 40.9088 | 8/23/00 | 17:29 | 53.3005 | 8/23/00 | 16:23 | 33.0085 |
| 8/23/00 | 21:15        | 55.417 | 8/23/00 | 22:48 | 20.085 | 8/23/00 | 23:01 | 33.146 | 8/23/00 | 23:11 | 40.9121 | 8/23/00 | 21:29 | 53.3301 | 8/23/00 | 20:23 | 33.0315 |
| 8/24/00 | 1:15         | 55.427 | 8/24/00 | 2:48  | 20.095 | 8/24/00 | 3:01  | 33.156 | 8/24/00 | 3:11  | 40.9252 | 8/24/00 | 1:29  | 53.3432 | 8/24/00 | 0:23  | 33.0413 |
| 8/24/00 | 5:15         | 55.433 | 8/24/00 | 6:48  | 20.102 | 8/24/00 | 7:01  | 33.163 | 8/24/00 | 7:11  | 40.9318 | 8/24/00 | 5:29  | 53.353  | 8/24/00 | 4:23  | 33.0413 |
| 8/24/00 | 9:15         | 55.436 | 8/24/00 | 10:48 | 20.112 | 8/24/00 | 11:01 | 33.176 | 8/24/00 | 11:11 | 40.9449 | 8/24/00 | 9:29  | 53.3497 | 8/24/00 | 8:23  | 33.0512 |
| 8/24/00 | 13:15        | 55.456 | 8/24/00 | 14:48 | 20.121 | 8/24/00 | 15:01 | 33.182 | 8/24/00 | 15:11 | 40.9514 | 8/24/00 | 13:29 | 53.3629 | 8/24/00 | 12:23 | 33.0577 |
| 8/24/00 | 17:15        | 55.446 | 8/24/00 | 18:48 | 20.128 | 8/24/00 | 19:01 | 33.182 | 8/24/00 | 19:11 | 40.9449 | 8/24/00 | 17:29 | 53.3465 | 8/24/00 | 16:23 | 33.0577 |
| 8/24/00 | 21:15        | 55.440 | 8/24/00 | 22:48 | 20.138 | 8/24/00 | 23:01 | 33.189 | 8/24/00 | 23:11 | 40.9547 | 8/24/00 | 21:29 | 53.3563 | 8/24/00 | 20:23 | 33.0741 |
| 8/25/00 | 1:15         | 55.453 | 8/25/00 | 2:48  | 20.144 | 8/25/00 | 3:01  | 33.192 | 8/25/00 | 3:11  | 40.9547 | 8/25/00 | 1:29  | 53.353  | 8/25/00 | 0:23  | 33.0774 |
| 8/25/00 | 5:15         | 55.440 | 8/25/00 | 6:48  | 20.154 | 8/25/00 | 7:01  | 33.192 | 8/25/00 | 7:11  | 40.9514 | 8/25/00 | 5:29  | 53.3333 | 8/25/00 | 4:23  | 33.0741 |
| 8/25/00 | 9:15         | 55.440 | 8/25/00 | 10:48 | 20.164 | 8/25/00 | 11:01 | 33.199 | 8/25/00 | 11:11 | 40.9514 | 8/25/00 | 9:29  | 53.3399 | 8/25/00 | 8:23  | 33.0774 |
| 8/25/00 | 13:15        | 55.433 | 8/25/00 | 14:48 | 20.167 | 8/25/00 | 15:01 | 33.182 | 8/25/00 | 15:11 | 40.9088 | 8/25/00 | 13:29 | 53.3169 | 8/25/00 | 12:23 | 33.0709 |
| 8/25/00 | 17:15        | 55.384 | 8/25/00 | 18:48 | 20.167 | 8/25/00 | 19:01 | 33.146 | 8/25/00 | 19:11 | 40.8596 | 8/25/00 | 17:29 | 53.2415 | 8/25/00 | 16:23 | 33.0512 |
| 8/25/00 | 21:15        | 55.335 | 8/25/00 | 22:48 | 20.171 | 8/25/00 | 23:01 | 33.133 | 8/25/00 | 23:11 | 40.8497 | 8/25/00 | 21:29 | 53.2087 | 8/25/00 | 20:23 | 33.0479 |
| 8/26/00 | 1:15         | 55.335 | 8/26/00 | 2:48  | 20.177 | 8/26/00 | 3:01  | 33.140 | 8/26/00 | 3:11  | 40.8497 | 8/26/00 | 1:29  | 53.2218 | 8/26/00 | 0:23  | 33.0741 |
| 8/26/00 | 5:15         | 55.322 | 8/26/00 | 6:48  | 20.180 | 8/26/00 | 7:01  | 33.130 | 8/26/00 | 7:11  | 40.8432 | 8/26/00 | 5:29  | 53.1759 | 8/26/00 | 4:23  | 33.061  |
| 8/26/00 | 9:15         | 55.302 | 8/26/00 | 10:48 | 20.194 | 8/26/00 | 11:01 | 33.140 | 8/26/00 | 11:11 | 40.8465 | 8/26/00 | 9:29  | 53.1791 | 8/26/00 | 8:23  | 33.0643 |
| 8/26/00 | 13:15        | 55.302 | 8/26/00 | 14:48 | 20.200 | 8/26/00 | 15:01 | 33.133 | 8/26/00 | 15:11 | 40.8333 | 8/26/00 | 13:29 | 53.2251 | 8/26/00 | 12:23 | 33.0774 |
| 8/26/00 | 17:15        | 55.282 | 8/26/00 | 18:48 | 20.203 | 8/26/00 | 19:01 | 33.123 | 8/26/00 | 19:11 | 40.8136 | 8/26/00 | 17:29 | 53.1529 | 8/26/00 | 16:23 | 33.0741 |
| 8/26/00 | 21:15        | 55.269 | 8/26/00 | 22:48 | 20.213 | 8/26/00 | 23:01 | 33.127 | 8/26/00 | 23:11 | 40.8202 | 8/26/00 | 21:29 | 53.166  | 8/26/00 | 20:23 | 33.0807 |
| 8/27/00 | 1:15         | 55.272 | 8/27/00 | 2:48  | 20.217 | 8/27/00 | 3:01  | 33.130 | 8/27/00 | 3:11  | 40.8202 | 8/27/00 | 1:29  | 53.1496 | 8/27/00 | 0:23  | 33.0971 |
| 8/27/00 | 5:15         | 55.269 | 8/27/00 | 6:48  | 20.223 | 8/27/00 | 7:01  | 33.130 | 8/27/00 | 7:11  | 40.8136 | 8/27/00 | 5:29  | 53.1627 | 8/27/00 | 4:23  | 33.0938 |
| 8/27/00 | 9:15         | 55.266 | 8/27/00 | 10:48 | 20.233 | 8/27/00 | 11:01 | 33.136 | 8/27/00 | 11:11 | 40.8202 | 8/27/00 | 9:29  | 53.1595 | 8/27/00 | 8:23  | 33.1004 |
| 8/27/00 | 13:15        | 55.266 | 8/27/00 | 14:48 | 20.240 | 8/27/00 | 15:01 | 33.130 | 8/27/00 | 15:11 | 40.8038 | 8/27/00 | 13:29 | 53.1595 | 8/27/00 | 12:23 | 33.1004 |
| 8/27/00 | 17:15        | 55.243 | 8/27/00 | 18:48 | 20.246 | 8/27/00 | 19:01 | 33.120 | 8/27/00 | 19:11 | 40.7874 | 8/27/00 | 17:29 | 53.1135 | 8/27/00 | 16:23 | 33.1004 |
| 8/27/00 | 21:15        | 55.223 | 8/27/00 | 22:48 | 20.256 | 8/27/00 | 23:01 | 33.133 | 8/27/00 | 23:11 | 40.8005 | 8/27/00 | 21:29 | 53.1234 | 8/27/00 | 20:23 | 33.1102 |
| 8/28/00 | 1:15         | 55.253 | 8/28/00 | 2:48  | 20.262 | 8/28/00 | 3:01  | 33.146 | 8/28/00 | 3:11  | 40.8136 | 8/28/00 | 1:29  | 53.1463 | 8/28/00 | 0:23  | 33.1299 |
| 8/28/00 | 5:15         | 55.269 | 8/28/00 | 6:48  | 20.272 | 8/28/00 | 7:01  | 33.159 | 8/28/00 | 7:11  | 40.8333 | 8/28/00 | 5:29  | 53.166  | 8/28/00 | 4:23  | 33.1365 |
| 8/28/00 | 9:15         | 55.295 | 8/28/00 | 10:48 | 20.289 | 8/28/00 | 11:01 | 33.189 | 8/28/00 | 11:11 | 40.853  | 8/28/00 | 9:29  | 53.2119 | 8/28/00 | 8:23  | 33.1496 |
| 8/28/00 | 13:15        | 55.308 | 8/28/00 | 14:48 | 20.295 | 8/28/00 | 15:01 | 33.186 | 8/28/00 | 15:11 | 40.8596 | 8/28/00 | 13:29 | 53.2021 | 8/28/00 | 12:23 | 33.1594 |

| TABLE | D.3 | (Cont.) |
|-------|-----|---------|
|-------|-----|---------|

|           | DW06  | DW06 SB01 |         | SB09  |        |           | SB16  |        | SB18      |       |         |         |       |         |         |       |         |
|-----------|-------|-----------|---------|-------|--------|-----------|-------|--------|-----------|-------|---------|---------|-------|---------|---------|-------|---------|
| Date      | Time  | Depth     | Date    | Time  | Depth  | Date      | Time  | Depth  | Date      | Time  | Depth   | Date    | Time  | Depth   | Date    | Time  | Depth   |
| 0.100.100 | 17.15 | 55 005    | 0/00/00 | 10.10 |        | 0.000.000 | 10.01 | 00.470 | 0.000.000 | 10.14 | 40.0407 | 0/00/00 | 47.00 | 50.400  | 0/00/00 | 40.00 | 00.4500 |
| 8/28/00   | 17:15 | 55.295    | 8/28/00 | 18:48 | 20.299 | 8/28/00   | 19:01 | 33.179 | 8/28/00   | 19:11 | 40.8497 | 8/28/00 | 17:29 | 53.189  | 8/28/00 | 16:23 | 33.1562 |
| 8/28/00   | 21:15 | 55.302    | 8/28/00 | 22:48 | 20.312 | 8/28/00   | 23:01 | 33.199 | 8/28/00   | 23:11 | 40.8727 | 8/28/00 | 21:29 | 53.2185 | 8/28/00 | 20:23 | 33.1693 |
| 8/29/00   | 1:15  | 55.341    | 8/29/00 | 2:48  | 20.322 | 8/29/00   | 3:01  | 33.222 | 8/29/00   | 3:11  | 40.899  | 8/29/00 | 1:29  | 53.2546 | 8/29/00 | 0:23  | 33.1955 |
| 8/29/00   | 5:15  | 55.384    | 8/29/00 | 6:48  | 20.331 | 8/29/00   | 7:01  | 33.251 | 8/29/00   | 7:11  | 40.9285 | 8/29/00 | 5:29  | 53.3202 | 8/29/00 | 4:23  | 33.2119 |
| 8/29/00   | 9:15  | 55.436    | 8/29/00 | 10:48 | 20.348 | 8/29/00   | 11:01 | 33.291 | 8/29/00   | 11:11 | 40.9711 | 8/29/00 | 9:29  | 53.376  | 8/29/00 | 8:23  | 33.2283 |
| 8/29/00   | 13:15 | 55.479    | 8/29/00 | 14:48 | 20.361 | 8/29/00   | 15:01 | 33.307 | 8/29/00   | 15:11 | 40.9875 | 8/29/00 | 13:29 | 53.4088 | 8/29/00 | 12:23 | 33.2382 |
| 8/29/00   | 17:15 | 55.456    | 8/29/00 | 18:48 | 20.361 | 8/29/00   | 19:01 | 33.294 | 8/29/00   | 19:11 | 40.9777 | 8/29/00 | 17:29 | 53.3694 | 8/29/00 | 16:23 | 33.2218 |
| 8/29/00   | 21:15 | 55.440    | 8/29/00 | 22:48 | 20.371 | 8/29/00   | 23:01 | 33.297 | 8/29/00   | 23:11 | 40.9908 | 8/29/00 | 21:29 | 53.3465 | 8/29/00 | 20:23 | 33.2218 |
| 8/30/00   | 1:15  | 55.443    | 8/30/00 | 2:48  | 20.381 | 8/30/00   | 3:01  | 33.310 | 8/30/00   | 3:11  | 41.0007 | 8/30/00 | 1:29  | 53.3727 | 8/30/00 | 0:23  | 33.2349 |
| 8/30/00   | 5:15  | 55.443    | 8/30/00 | 6:48  | 20.390 | 8/30/00   | 7:01  | 33.314 | 8/30/00   | /:11  | 40.9974 | 8/30/00 | 5:29  | 53.3793 | 8/30/00 | 4:23  | 33.2349 |
| 8/30/00   | 9:15  | 55.449    | 8/30/00 | 10:48 | 20.404 | 8/30/00   | 11:01 | 33.330 | 8/30/00   | 11:11 | 41.0171 | 8/30/00 | 9:29  | 53.3957 | 8/30/00 | 8:23  | 33.2382 |
| 8/30/00   | 13:15 | 55.446    | 8/30/00 | 14:48 | 20.410 | 8/30/00   | 15:01 | 33.310 | 8/30/00   | 15:11 | 40.981  | 8/30/00 | 13:29 | 53.3629 | 8/30/00 | 12:23 | 33.2415 |
| 8/30/00   | 17:15 | 55.387    | 8/30/00 | 18:48 | 20.410 | 8/30/00   | 19:01 | 33.281 | 8/30/00   | 19:11 | 40.9482 | 8/30/00 | 17:29 | 53.2874 | 8/30/00 | 16:23 | 33.2251 |
| 8/30/00   | 21:15 | 55.371    | 8/30/00 | 22:48 | 20.417 | 8/30/00   | 23:01 | 33.291 | 8/30/00   | 23:11 | 40.9547 | 8/30/00 | 21:29 | 53.294  | 8/30/00 | 20:23 | 33.2316 |
| 8/31/00   | 1:15  | 55.374    | 8/31/00 | 2:48  | 20.423 | 8/31/00   | 3:01  | 33.291 | 8/31/00   | 3:11  | 40.9547 | 8/31/00 | 1:29  | 53.3005 | 8/31/00 | 0:23  | 33.248  |
| 8/31/00   | 5:15  | 55.374    | 8/31/00 | 6:48  | 20.430 | 8/31/00   | 7:01  | 33.291 | 8/31/00   | 7:11  | 40.9514 | 8/31/00 | 5:29  | 53.2874 | 8/31/00 | 4:23  | 33.248  |
| 8/31/00   | 9:15  | 55.377    | 8/31/00 | 10:48 | 20.440 | 8/31/00   | 11:01 | 33.307 | 8/31/00   | 11:11 | 40.9646 | 8/31/00 | 9:29  | 53.2972 | 8/31/00 | 8:23  | 33.2546 |
| 8/31/00   | 13:15 | 55.377    | 8/31/00 | 14:48 | 20.449 | 8/31/00   | 15:01 | 33.307 | 8/31/00   | 15:11 | 40.958  | 8/31/00 | 13:29 | 53.3038 | 8/31/00 | 12:23 | 33.2644 |
| 8/31/00   | 17:15 | 55.354    | 8/31/00 | 18:48 | 20.449 | 8/31/00   | 19:01 | 33.297 | 8/31/00   | 19:11 | 40.9449 | 8/31/00 | 17:29 | 53.271  | 8/31/00 | 16:23 | 33.2579 |
| 8/31/00   | 21:15 | 55.367    | 8/31/00 | 22:48 | 20.463 | 8/31/00   | 23:01 | 33.323 | 8/31/00   | 23:11 | 40.9711 | 8/31/00 | 21:29 | 53.3005 | 8/31/00 | 20:23 | 33.2776 |
| 9/1/00    | 1:15  | 55.413    | 9/1/00  | 2:48  | 20.476 | 9/1/00    | 3:01  | 33.343 | 9/1/00    | 3:11  | 40.9941 | 9/1/00  | 1:29  | 53.3366 | 9/1/00  | 0:23  | 33.3038 |
| 9/1/00    | 5:15  | 55.440    | 9/1/00  | 6:48  | 20.489 | 9/1/00    | 7:01  | 33.363 | 9/1/00    | /:11  | 41.01/1 | 9/1/00  | 5:29  | 53.3793 | 9/1/00  | 4:23  | 33.3104 |
| 9/1/00    | 9:15  | 55.469    | 9/1/00  | 10:48 | 20.502 | 9/1/00    | 11:01 | 33.392 | 9/1/00    | 11:11 | 41.0466 | 9/1/00  | 9:29  | 53.4055 | 9/1/00  | 8:23  | 33.3169 |
| 9/1/00    | 13:15 | 55.492    | 9/1/00  | 14:48 | 20.509 | 9/1/00    | 15:01 | 33.396 | 9/1/00    | 15:11 | 41.0532 | 9/1/00  | 13:29 | 53.4383 | 9/1/00  | 12:23 | 33.3235 |
| 9/1/00    | 1/:15 | 55.466    | 9/1/00  | 18:48 | 20.512 | 9/1/00    | 19:01 | 33.386 | 9/1/00    | 19:11 | 41.0367 | 9/1/00  | 17:29 | 53.376  | 9/1/00  | 16:23 | 33.3104 |
| 9/1/00    | 21:15 | 55.453    | 9/1/00  | 22:48 | 20.522 | 9/1/00    | 23:01 | 33.396 | 9/1/00    | 23:11 | 41.0532 | 9/1/00  | 21:29 | 53.3825 | 9/1/00  | 20:23 | 33.3136 |
| 9/2/00    | 1:15  | 55.456    | 9/2/00  | 2:48  | 20.531 | 9/2/00    | 3:01  | 33.399 | 9/2/00    | 3:11  | 41.0564 | 9/2/00  | 1:29  | 53.3924 | 9/2/00  | 0:23  | 33.3301 |
| 9/2/00    | 5:15  | 55.456    | 9/2/00  | 6:48  | 20.538 | 9/2/00    | 7:01  | 33.396 | 9/2/00    | /:11  | 41.0499 | 9/2/00  | 5:29  | 53.3793 | 9/2/00  | 4:23  | 33.3301 |
| 9/2/00    | 9:15  | 55.456    | 9/2/00  | 10:48 | 20.548 | 9/2/00    | 11:01 | 33.409 | 9/2/00    | 11:11 | 41.0564 | 9/2/00  | 9:29  | 53.376  | 9/2/00  | 8:23  | 33.3301 |
| 9/2/00    | 13:15 | 55.453    | 9/2/00  | 14:48 | 20.554 | 9/2/00    | 15:01 | 33.399 | 9/2/00    | 15:11 | 41.0269 | 9/2/00  | 13:29 | 53.376  | 9/2/00  | 12:23 | 33.3333 |
| 9/2/00    | 17:15 | 55.390    | 9/2/00  | 18:48 | 20.554 | 9/2/00    | 19:01 | 33.379 | 9/2/00    | 19:11 | 41.0007 | 9/2/00  | 17:29 | 53.3169 | 9/2/00  | 16:23 | 33.3235 |
| 9/2/00    | 21:15 | 55.381    | 9/2/00  | 22:48 | 20.561 | 9/2/00    | 23:01 | 33.386 | 9/2/00    | 23:11 | 41.0105 | 9/2/00  | 21:29 | 53.3235 | 9/2/00  | 20:23 | 33.3268 |
| 9/3/00    | 1:15  | 55.394    | 9/3/00  | 2:48  | 20.571 | 9/3/00    | 3:01  | 33.399 | 9/3/00    | 3:11  | 41.0269 | 9/3/00  | 1:29  | 53.3137 | 9/3/00  | 0:23  | 33.3432 |
| 9/3/00    | 5:15  | 55.420    | 9/3/00  | 6:48  | 20.581 | 9/3/00    | 7:01  | 33.412 | 9/3/00    | 7:11  | 41.04   | 9/3/00  | 5:29  | 53.3465 | 9/3/00  | 4:23  | 33.3629 |
| 9/3/00    | 9:15  | 55.453    | 9/3/00  | 10:48 | 20.597 | 9/3/00    | 11:01 | 33.438 | 9/3/00    | 11:11 | 41.0663 | 9/3/00  | 9:29  | 53.3924 | 9/3/00  | 8:23  | 33.3793 |
| 9/3/00    | 13:15 | 55.472    | 9/3/00  | 14:48 | 20.600 | 9/3/00    | 15:01 | 33.445 | 9/3/00    | 15:11 | 41.0728 | 9/3/00  | 13:29 | 53.4055 | 9/3/00  | 12:23 | 33.3825 |
| 9/3/00    | 17:15 | 55.446    | 9/3/00  | 18:48 | 20.610 | 9/3/00    | 19:01 | 33.442 | 9/3/00    | 19:11 | 41.0696 | 9/3/00  | 17:29 | 53.3858 | 9/3/00  | 16:23 | 33.376  |
| 9/3/00    | 21:15 | 55.459    | 9/3/00  | 22:48 | 20.620 | 9/3/00    | 23:01 | 33.461 | 9/3/00    | 23:11 | 41.0892 | 9/3/00  | 21:29 | 53.4022 | 9/3/00  | 20:23 | 33.3891 |

| TABLE D.3 | (Cont.) |
|-----------|---------|
|-----------|---------|

|         | DW06  |        |         | SB01  |        |         | SB09  |        |         | SB16  |         |         | SB18  |         |         | SB19  |         |
|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|---------|---------|-------|---------|---------|-------|---------|
| Date    | Time  | Depth   | Date    | Time  | Depth   | Date    | Time  | Depth   |
| 9/4/00  | 1:15  | 55,495 | 9/4/00  | 2:48  | 20.636 | 9/4/00  | 3.01  | 33,491 | 9/4/00  | 3:11  | 41,1253 | 9/4/00  | 1:29  | 53,4416 | 9/4/00  | 0:23  | 33,4154 |
| 9/4/00  | 5.15  | 55 525 | 9/4/00  | 6:48  | 20.604 | 9/4/00  | 7.01  | 33 481 | 9/4/00  | 7.11  | 41 122  | 9/4/00  | 5.29  | 53 4908 | 9/4/00  | 4.23  | 33 4252 |
| 9/4/00  | 9:15  | 55.558 | 9/4/00  | 10:48 | 20.623 | 9/4/00  | 11:01 | 33.514 | 9/4/00  | 11:11 | 41.1549 | 9/4/00  | 9:29  | 53.5236 | 9/4/00  | 8:23  | 33.4055 |
| 9/4/00  | 13:15 | 55.587 | 9/4/00  | 14:48 | 20.636 | 9/4/00  | 15:01 | 33.537 | 9/4/00  | 15:11 | 41.1778 | 9/4/00  | 13:29 | 53.5564 | 9/4/00  | 12:23 | 33.4219 |
| 9/4/00  | 17:15 | 55.594 | 9/4/00  | 18:48 | 20.650 | 9/4/00  | 19:01 | 33.553 | 9/4/00  | 19:11 | 41.2008 | 9/4/00  | 17:29 | 53.5564 | 9/4/00  | 16:23 | 33.4252 |
| 9/4/00  | 21:15 | 55.614 | 9/4/00  | 22:48 | 20.656 | 9/4/00  | 23:01 | 33.583 | 9/4/00  | 23:11 | 41.2336 | 9/4/00  | 21:29 | 53.6155 | 9/4/00  | 20:23 | 33.4416 |
| 9/5/00  | 1:15  | 55.653 | 9/5/00  | 2:48  | 20.666 | 9/5/00  | 3:01  | 33.599 | 9/5/00  | 3:11  | 41.2631 | 9/5/00  | 1:29  | 53.6253 | 9/5/00  | 0:23  | 33.4613 |
| 9/5/00  | 5:15  | 55.673 | 9/5/00  | 6:48  | 20.682 | 9/5/00  | 7:01  | 33.625 | 9/5/00  | 7:11  | 41.2927 | 9/5/00  | 5:29  | 53.6549 | 9/5/00  | 4:23  | 33.4613 |
| 9/5/00  | 9:15  | 55.702 | 9/5/00  | 10:48 | 20.689 | 9/5/00  | 11:01 | 33.645 | 9/5/00  | 11:11 | 41.3156 | 9/5/00  | 9:29  | 53.7008 | 9/5/00  | 8:23  | 33.4744 |
| 9/5/00  | 13:15 | 55.712 | 9/5/00  | 14:48 | 20.692 | 9/5/00  | 15:01 | 33.645 | 9/5/00  | 15:11 | 41.3156 | 9/5/00  | 13:29 | 53.7041 | 9/5/00  | 12:23 | 33.4613 |
| 9/5/00  | 17:15 | 55.682 | 9/5/00  | 18:48 | 20.699 | 9/5/00  | 19:01 | 33.635 | 9/5/00  | 19:11 | 41.3025 | 9/5/00  | 17:29 | 53.6483 | 9/5/00  | 16:23 | 33.4449 |
| 9/5/00  | 21:15 | 55.663 | 9/5/00  | 22:48 | 20.705 | 9/5/00  | 23:01 | 33.635 | 9/5/00  | 23:11 | 41.3058 | 9/5/00  | 21:29 | 53.6385 | 9/5/00  | 20:23 | 33.4514 |
| 9/6/00  | 1:15  | 55.666 | 9/6/00  | 2:48  | 20.712 | 9/6/00  | 3:01  | 33.645 | 9/6/00  | 3:11  | 41.3123 | 9/6/00  | 1:29  | 53.6286 | 9/6/00  | 0:23  | 33.4613 |
| 9/6/00  | 5:15  | 55.663 | 9/6/00  | 6:48  | 20.722 | 9/6/00  | 7:01  | 33.645 | 9/6/00  | 7:11  | 41.3156 | 9/6/00  | 5:29  | 53.622  | 9/6/00  | 4:23  | 33.4613 |
| 9/6/00  | 9:15  | 55.673 | 9/6/00  | 10:48 | 20.728 | 9/6/00  | 11:01 | 33.655 | 9/6/00  | 11:11 | 41.3222 | 9/6/00  | 9:29  | 53.6385 | 9/6/00  | 8:23  | 33.4711 |
| 9/6/00  | 13:15 | 55.663 | 9/6/00  | 14:48 | 20.728 | 9/6/00  | 15:01 | 33.629 | 9/6/00  | 15:11 | 41.2664 | 9/6/00  | 13:29 | 53.6122 | 9/6/00  | 12:23 | 33.4613 |
| 9/6/00  | 17:15 | 55.604 | 9/6/00  | 18:48 | 20.728 | 9/6/00  | 19:01 | 33.586 | 9/6/00  | 19:11 | 41.2139 | 9/6/00  | 17:29 | 53.5171 | 9/6/00  | 16:23 | 33.4383 |
| 9/6/00  | 21:15 | 55.551 | 9/6/00  | 22:48 | 20.732 | 9/6/00  | 23:01 | 33.583 | 9/6/00  | 23:11 | 41.2074 | 9/6/00  | 21:29 | 53.4941 | 9/6/00  | 20:23 | 33.4383 |
| 9/7/00  | 1:15  | 55.541 | 9/7/00  | 2:48  | 20.738 | 9/7/00  | 3:01  | 33.589 | 9/7/00  | 3:11  | 41.2041 | 9/7/00  | 1:29  | 53.481  | 9/7/00  | 0:23  | 33.4514 |
| 9/7/00  | 5:15  | 55.538 | 9/7/00  | 6:48  | 20.745 | 9/7/00  | 7:01  | 33.596 | 9/7/00  | 7:11  | 41.2205 | 9/7/00  | 5:29  | 53.481  | 9/7/00  | 4:23  | 33.4547 |
| 9/7/00  | 9:15  | 55.571 | 9/7/00  | 10:48 | 20.755 | 9/7/00  | 11:01 | 33.615 | 9/7/00  | 11:11 | 41.2369 | 9/7/00  | 9:29  | 53.5203 | 9/7/00  | 8:23  | 33.481  |
| 9/7/00  | 13:15 | 55.584 | 9/7/00  | 14:48 | 20.755 | 9/7/00  | 15:01 | 33.615 | 9/7/00  | 15:11 | 41.227  | 9/7/00  | 13:29 | 53.5105 | 9/7/00  | 12:23 | 33.481  |
| 9/7/00  | 17:15 | 55.558 | 9/7/00  | 18:48 | 20.761 | 9/7/00  | 19:01 | 33.602 | 9/7/00  | 19:11 | 41.2139 | 9/7/00  | 17:29 | 53.4908 | 9/7/00  | 16:23 | 33.4711 |
| 9/7/00  | 21:15 | 55.548 | 9/7/00  | 22:48 | 20.771 | 9/7/00  | 23:01 | 33.609 | 9/7/00  | 23:11 | 41.2205 | 9/7/00  | 21:29 | 53.4974 | 9/7/00  | 20:23 | 33.4843 |
| 9/8/00  | 1:15  | 55.551 | 9/8/00  | 2:48  | 20.771 | 9/8/00  | 3:01  | 33.609 | 9/8/00  | 3:11  | 41.2139 | 9/8/00  | 1:29  | 53.4908 | 9/8/00  | 0:23  | 33.4941 |
| 9/8/00  | 5:15  | 55.545 | 9/8/00  | 6:48  | 20.781 | 9/8/00  | 7:01  | 33.612 | 9/8/00  | 7:11  | 41.2205 | 9/8/00  | 5:29  | 53.4974 | 9/8/00  | 4:23  | 33.4941 |
| 9/8/00  | 9:15  | 55.551 | 9/8/00  | 10:48 | 20.787 | 9/8/00  | 11:01 | 33.622 | 9/8/00  | 11:11 | 41.227  | 9/8/00  | 9:29  | 53.4974 | 9/8/00  | 8:23  | 33.5007 |
| 9/8/00  | 13:15 | 55.548 | 9/8/00  | 14:48 | 20.787 | 9/8/00  | 15:01 | 33.599 | 9/8/00  | 15:11 | 41.1844 | 9/8/00  | 13:29 | 53.481  | 9/8/00  | 12:23 | 33.4974 |
| 9/8/00  | 17:15 | 55.499 | 9/8/00  | 18:48 | 20.781 | 9/8/00  | 19:01 | 33.570 | 9/8/00  | 19:11 | 41.145  | 9/8/00  | 17:29 | 53.4022 | 9/8/00  | 16:23 | 33.4744 |
| 9/8/00  | 21:15 | 55.459 | 9/8/00  | 22:48 | 20.787 | 9/8/00  | 23:01 | 33.573 | 9/8/00  | 23:11 | 41.1483 | 9/8/00  | 21:29 | 53.3924 | 9/8/00  | 20:23 | 33.4777 |
| 9/9/00  | 1:15  | 55.469 | 9/9/00  | 2:48  | 20.791 | 9/9/00  | 3:01  | 33.583 | 9/9/00  | 3:11  | 41.1516 | 9/9/00  | 1:29  | 53.399  | 9/9/00  | 0:23  | 33.5007 |
| 9/9/00  | 5:15  | 55.459 | 9/9/00  | 6:48  | 20.794 | 9/9/00  | 7:01  | 33.576 | 9/9/00  | 7:11  | 41.145  | 9/9/00  | 5:29  | 53.3727 | 9/9/00  | 4:23  | 33.4974 |
| 9/9/00  | 9:15  | 55.449 | 9/9/00  | 10:48 | 20.804 | 9/9/00  | 11:01 | 33.579 | 9/9/00  | 11:11 | 41.1483 | 9/9/00  | 9:29  | 53.4022 | 9/9/00  | 8:23  | 33.5039 |
| 9/9/00  | 13:15 | 55.443 | 9/9/00  | 14:48 | 20.801 | 9/9/00  | 15:01 | 33.553 | 9/9/00  | 15:11 | 41.1089 | 9/9/00  | 13:29 | 53.3596 | 9/9/00  | 12:23 | 33.4974 |
| 9/9/00  | 17:15 | 55.400 | 9/9/00  | 18:48 | 20.801 | 9/9/00  | 19:01 | 33.537 | 9/9/00  | 19:11 | 41.0892 | 9/9/00  | 17:29 | 53.3235 | 9/9/00  | 16:23 | 33.481  |
| 9/9/00  | 21:15 | 55.394 | 9/9/00  | 22:48 | 20.810 | 9/9/00  | 23:01 | 33.563 | 9/9/00  | 23:11 | 41.1056 | 9/9/00  | 21:29 | 53.3071 | 9/9/00  | 20:23 | 33.4974 |
| 9/10/00 | 1:15  | 55.417 | 9/10/00 | 2:48  | 20.814 | 9/10/00 | 3:01  | 33.579 | 9/10/00 | 3:11  | 41.1155 | 9/10/00 | 1:29  | 53.3596 | 9/10/00 | 0:23  | 33.5236 |
| 9/10/00 | 5:15  | 55.423 | 9/10/00 | 6:48  | 20.827 | 9/10/00 | 7:01  | 33.589 | 9/10/00 | 7:11  | 41.1352 | 9/10/00 | 5:29  | 53.3727 | 9/10/00 | 4:23  | 33.5302 |

|         | DW06         |        |         | SB01  |        |         | SB09         |                   |         | SB16         |         |         | SB18  |          |         | SB19  |          |
|---------|--------------|--------|---------|-------|--------|---------|--------------|-------------------|---------|--------------|---------|---------|-------|----------|---------|-------|----------|
| Date    | Time         | Depth  | Date    | Time  | Depth  | Date    | Time         | Depth             | Date    | Time         | Depth   | Date    | Time  | Depth    | Date    | Time  | Depth    |
| 0/10/00 | 0.15         | EE 4E0 | 0/10/00 | 10.49 | 20.027 | 0/10/00 | 11.01        | 22,600            | 0/10/00 | 11.11        | 44 4504 | 0/10/00 | 0.20  | ED 44E4  | 0/10/00 | 0.00  | 22 5466  |
| 9/10/00 | 9.10         | 55.459 | 9/10/00 | 10.40 | 20.037 | 9/10/00 | 15.01        | 33.609            | 9/10/00 | 11.11        | 41.1001 | 9/10/00 | 9.29  | 53.4154  | 9/10/00 | 10.23 | 33.5400  |
| 9/10/00 | 13.13        | 55,400 | 9/10/00 | 14.40 | 20.037 | 9/10/00 | 10:01        | 33.309            | 9/10/00 | 10.11        | 41.1203 | 9/10/00 | 13.29 | 52 2269  | 9/10/00 | 12:23 | 33.3433  |
| 9/10/00 | 21.15        | 55.420 | 9/10/00 | 22.49 | 20.037 | 9/10/00 | 19.01        | 33.503            | 9/10/00 | 22.11        | 41.0991 | 9/10/00 | 21.29 | 52 2201  | 9/10/00 | 20.23 | 22 5225  |
| 9/10/00 | 21.10        | 55.400 | 9/10/00 | 22.40 | 20.043 | 9/10/00 | 23.01        | 22 500            | 9/10/00 | 23.11        | 41.1100 | 9/10/00 | 21.29 | 52 2620  | 9/10/00 | 20.23 | 22 5522  |
| 9/11/00 | 1.10<br>E:1E | 55.413 | 9/11/00 | 2.40  | 20.650 | 9/11/00 | 3.01         | 33.369            | 9/11/00 | 3.11         | 41.122  | 9/11/00 | 5.20  | 53.3029  | 9/11/00 | 0.23  | 33.5532  |
| 9/11/00 | 0.15         | 55 417 | 9/11/00 | 0.40  | 20.000 | 9/11/00 | 11.01        | 22 506            | 9/11/00 | 11.11        | 41.122  | 9/11/00 | 0.29  | 52 2407  | 9/11/00 | 4.20  | 33.0032  |
| 9/11/00 | 9.10         | 55.413 | 9/11/00 | 10.40 | 20.003 | 9/11/00 | 15.01        | 33.590            | 9/11/00 | 11.11        | 41.1100 | 9/11/00 | 9.29  | 53.3497  | 9/11/00 | 10.20 | 33.0032  |
| 9/11/00 | 13:15        | 55.397 | 9/11/00 | 14:48 | 20.863 | 9/11/00 | 15:01        | 33.563            | 9/11/00 | 10:11        | 41.0761 | 9/11/00 | 13:29 | 53.3169  | 9/11/00 | 12:23 | 33.5532  |
| 9/11/00 | 17:15        | 55.301 | 9/11/00 | 10.40 | 20.003 | 9/11/00 | 19.01        | 33.550            | 9/11/00 | 19.11        | 41.003  | 9/11/00 | 17.29 | 53.2077  | 9/11/00 | 10.23 | 33.5367  |
| 9/11/00 | 21:15        | 55.364 | 9/11/00 | 22:48 | 20.879 | 9/11/00 | 23:01        | 33.593            | 9/11/00 | 23:11        | 41.122  | 9/11/00 | 21:29 | 53.3432  | 9/11/00 | 20:23 | 33.503   |
| 9/12/00 | 1.10<br>5:15 | 55.409 | 9/12/00 | 2.40  | 20.090 | 9/12/00 | 3.01         | 33.033            | 9/12/00 | 3.11         | 41.1713 | 9/12/00 | 5:20  | 52 5260  | 9/12/00 | 0.23  | 33.0100  |
| 9/12/00 | 0.15         | 55.000 | 9/12/00 | 0.40  | 20.912 | 9/12/00 | 11.01        | 33.073            | 9/12/00 | 11.11        | 41.227  | 9/12/00 | 5.29  | 53.5209  | 9/12/00 | 4.23  | 33.045   |
| 9/12/00 | 9.10         | 55.030 | 9/12/00 | 10.40 | 20.920 | 9/12/00 | 15.01        | 33.717            | 9/12/00 | 11.11        | 41.2097 | 9/12/00 | 9.29  | 53.5794  | 9/12/00 | 10.23 | 33.0001  |
| 9/12/00 | 13.13        | 55.003 | 9/12/00 | 14.40 | 20.935 | 9/12/00 | 10.01        | 33.734            | 9/12/00 | 10.11        | 41.2001 | 9/12/00 | 13.29 | 53.6024  | 9/12/00 | 12:23 | 33.6614  |
| 9/12/00 | 21:15        | 55.640 | 9/12/00 | 10.40 | 20.942 | 9/12/00 | 19.01        | 33.747            | 9/12/00 | 19.11        | 41.2094 | 9/12/00 | 21.29 | 53.5925  | 9/12/00 | 10.23 | 33.045   |
| 9/12/00 | 21.10        | 55.043 | 9/12/00 | 22.40 | 20.955 | 9/12/00 | 23.01        | 33.703            | 9/12/00 | 23.11        | 41.3222 | 9/12/00 | 21.29 | 53.022   | 9/12/00 | 20.23 | 33.0349  |
| 9/13/00 | 1.10<br>5.15 | 55.003 | 9/13/00 | 2.40  | 20.901 | 9/13/00 | 3.01<br>7:01 | 22 702            | 9/13/00 | J.11<br>7.11 | 41.3300 | 9/13/00 | 5.20  | 52 6540  | 9/13/00 | 0.23  | 33.0713  |
| 9/13/00 | 0.15         | 55.673 | 9/13/00 | 0.40  | 20.971 | 9/13/00 | 11.01        | 22 000            | 9/13/00 | 11.11        | 41.300  | 9/13/00 | 0.29  | 52 6614  | 9/13/00 | 4.20  | 33.000   |
| 9/13/00 | 9.10         | 55.079 | 9/13/00 | 10.40 | 20.904 | 9/13/00 | 15:01        | 22 702            | 9/13/00 | 15.11        | 41.3001 | 9/13/00 | 9.29  | 52 6252  | 9/13/00 | 12:22 | 22 66 47 |
| 9/13/00 | 13.13        | 55.055 | 9/13/00 | 14.40 | 20.900 | 9/13/00 | 10.01        | 22 747            | 9/13/00 | 10.11        | 41.3317 | 9/13/00 | 13.29 | 53.0203  | 9/13/00 | 12.23 | 33.0047  |
| 9/13/00 | 01.15        | 55.004 | 9/13/00 | 10.40 | 20.904 | 9/13/00 | 19.01        | 33.747            | 9/13/00 | 19.11        | 41.3030 | 9/13/00 | 21.29 | 53.5400  | 9/13/00 | 10.23 | 33.0417  |
| 9/13/00 | 21.15        | 55.504 | 9/13/00 | 22.40 | 20.966 | 9/13/00 | 23.01        | 33.740            | 9/13/00 | 23.11        | 41.2992 | 9/13/00 | 21.29 | 53.5105  | 9/13/00 | 20.23 | 33.645   |
| 9/14/00 | 1.10<br>5:15 | 55.554 | 9/14/00 | 2.40  | 20.997 | 9/14/00 | 3.01         | 33.740            | 9/14/00 | 3.11         | 41.2094 | 9/14/00 | 5:20  | 52 5120  | 9/14/00 | 0.23  | 33.0301  |
| 9/14/00 | 0.15         | 55.545 | 9/14/00 | 0.40  | 21.004 | 9/14/00 | 11.01        | 33.750            | 9/14/00 | 11.11        | 41.3023 | 9/14/00 | 5.29  | 53.5130  | 9/14/00 | 4.23  | 33.0014  |
| 9/14/00 | 9.10         | 55.604 | 9/14/00 | 10.40 | 21.020 | 9/14/00 | 15:01        | 33.790            | 9/14/00 | 15.11        | 41.300  | 9/14/00 | 9.29  | 52 6745  | 9/14/00 | 12:22 | 33.09/3  |
| 9/14/00 | 13.13        | 55.002 | 9/14/00 | 14.40 | 21.037 | 9/14/00 | 10:01        | 33.029<br>22.045  | 9/14/00 | 10.11        | 41.3911 | 9/14/00 | 13.29 | 52 6770  | 9/14/00 | 12:23 | 33.7303  |
| 9/14/00 | 21.15        | 55 722 | 9/14/00 | 22.49 | 21.043 | 9/14/00 | 19.01        | 22 975            | 9/14/00 | 22.11        | 41.4075 | 9/14/00 | 21.29 | 52 7172  | 9/14/00 | 20.23 | 22 7/2/  |
| 9/14/00 | 21.15        | 55.722 | 9/14/00 | 22.40 | 21.000 | 9/14/00 | 23.01        | 22 001            | 9/14/00 | 23.11        | 41.4430 | 9/14/00 | 1.29  | 52 7664  | 9/14/00 | 20.23 | 33.7434  |
| 9/15/00 | 1.10<br>5.15 | 55.755 | 9/15/00 | 2.40  | 21.070 | 9/15/00 | 3.01<br>7:01 | 22 017            | 9/15/00 | J.11<br>7.11 | 41.4704 | 9/15/00 | 5.20  | 52 7004  | 9/15/00 | 0.23  | 33.7031  |
| 9/15/00 | 0.15         | 55.704 | 9/15/00 | 0.40  | 21.079 | 9/15/00 | 11.01        | 22 040            | 9/15/00 | 11.11        | 41.5020 | 9/15/00 | 0.29  | 52 0122  | 9/15/00 | 4.20  | 33.7004  |
| 9/15/00 | 9.15         | 55.004 | 9/15/00 | 14.40 | 21.095 | 9/15/00 | 15:01        | 22 040            | 9/15/00 | 15.11        | 41.5250 | 9/15/00 | 12.20 | 52 0025  | 9/15/00 | 12:22 | 33.7097  |
| 9/15/00 | 13.15        | 55.010 | 9/15/00 | 14.40 | 21.090 | 9/15/00 | 10:01        | 22 024            | 9/15/00 | 10.11        | 41.0209 | 9/15/00 | 13:29 | 52 772   | 9/15/00 | 12:23 | 33.1091  |
| 9/15/00 | 21.10        | 55.774 | 9/15/00 | 10.40 | 21.090 | 9/15/00 | 19.01        | ୦୦.୭∠ I<br>୦୦.୦୦4 | 9/15/00 | 19.11        | 41.5020 | 9/15/00 | 21.29 | 52 7 124 | 9/15/00 | 20.23 | 22 7424  |
| 9/15/00 | 21.10        | 55 741 | 9/15/00 | 22.48 | 21.100 | 9/15/00 | 23.01        | 22 027            | 9/15/00 | 23.11        | 41.3020 | 9/15/00 | 21.29 | 52 7522  | 9/15/00 | 20.23 | 33.7434  |
| 9/10/00 | 1.10<br>5.1E | 55 751 | 9/10/00 | 2.48  | 21.115 | 9/10/00 | 3.01         | 33.9∠1<br>22.024  | 9/10/00 | 7.14         | 41.3125 | 9/10/00 | 5:20  | 52 7522  | 9/10/00 | 0.23  | 33.1398  |
| 9/10/00 | 0:45         | 55.751 | 9/10/00 | 0:48  | 21.122 | 9/10/00 | 11:01        | 33.934            | 9/10/00 | /:11         | 41.0107 | 9/10/00 | 5:29  | 53.7533  | 9/10/00 | 4:23  | 33.7004  |
| 9/16/00 | 9:15         | 55.755 | 9/16/00 | 10:48 | 21.129 | 9/16/00 | 11:01        | 33.947            | 9/16/00 | 11:11        | 41.5289 | 9/16/00 | 9:29  | 53.7566  | 9/16/00 | 8:23  | 33.113   |
| 9/16/00 | 13:15        | 55.758 | 9/16/00 | 14:48 | 21.135 | 9/16/00 | 15:01        | 33.927            | 9/16/00 | 15:11        | 41.5026 | 9/16/00 | 13:29 | 53.7467  | 9/16/00 | 12:23 | 33.773   |

|         | DW06  |        |         | SB01  |        |         | SB09  |        |         | SB16  |         |         | SB18  |         |         | SB19  |         |
|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|---------|---------|-------|---------|---------|-------|---------|
| Date    | Time  | Depth   | Date    | Time  | Depth   | Date    | Time  | Depth   |
| 9/16/00 | 17:15 | 55.705 | 9/16/00 | 18:48 | 21.135 | 9/16/00 | 19:01 | 33.907 | 9/16/00 | 19:11 | 41.4731 | 9/16/00 | 17:29 | 53.6909 | 9/16/00 | 16:23 | 33.7566 |
| 9/16/00 | 21:15 | 55,696 | 9/16/00 | 22:48 | 21.142 | 9/16/00 | 23:01 | 33,917 | 9/16/00 | 23:11 | 41,4698 | 9/16/00 | 21:29 | 53,6811 | 9/16/00 | 20:23 | 33,7664 |
| 9/17/00 | 1:15  | 55.696 | 9/17/00 | 2:48  | 21.145 | 9/17/00 | 3:01  | 33.917 | 9/17/00 | 3:11  | 41.4764 | 9/17/00 | 1:29  | 53.6745 | 9/17/00 | 0:23  | 33.7795 |
| 9/17/00 | 5:15  | 55.692 | 9/17/00 | 6:48  | 21.152 | 9/17/00 | 7:01  | 33.924 | 9/17/00 | 7:11  | 41.4764 | 9/17/00 | 5:29  | 53.668  | 9/17/00 | 4:23  | 33.7795 |
| 9/17/00 | 9:15  | 55.705 | 9/17/00 | 10:48 | 21.158 | 9/17/00 | 11:01 | 33.937 | 9/17/00 | 11:11 | 41.4895 | 9/17/00 | 9:29  | 53.6975 | 9/17/00 | 8:23  | 33.7959 |
| 9/17/00 | 13:15 | 55.705 | 9/17/00 | 14:48 | 21.165 | 9/17/00 | 15:01 | 33.921 | 9/17/00 | 15:11 | 41.46   | 9/17/00 | 13:29 | 53.6909 | 9/17/00 | 12:23 | 33.7927 |
| 9/17/00 | 17:15 | 55.659 | 9/17/00 | 18:48 | 21.161 | 9/17/00 | 19:01 | 33.891 | 9/17/00 | 19:11 | 41.4206 | 9/17/00 | 17:29 | 53.6122 | 9/17/00 | 16:23 | 33.7762 |
| 9/17/00 | 21:15 | 55.627 | 9/17/00 | 22:48 | 21.165 | 9/17/00 | 23:01 | 33.891 | 9/17/00 | 23:11 | 41.4206 | 9/17/00 | 21:29 | 53.5991 | 9/17/00 | 20:23 | 33.7795 |
| 9/18/00 | 1:15  | 55.623 | 9/18/00 | 2:48  | 21.171 | 9/18/00 | 3:01  | 33.891 | 9/18/00 | 3:11  | 41.4173 | 9/18/00 | 1:29  | 53.6089 | 9/18/00 | 0:23  | 33.7959 |
| 9/18/00 | 5:15  | 55.614 | 9/18/00 | 6:48  | 21.175 | 9/18/00 | 7:01  | 33.885 | 9/18/00 | 7:11  | 41.4042 | 9/18/00 | 5:29  | 53.5958 | 9/18/00 | 4:23  | 33.7927 |
| 9/18/00 | 9:15  | 55.597 | 9/18/00 | 10:48 | 21.175 | 9/18/00 | 11:01 | 33.871 | 9/18/00 | 11:11 | 41.3747 | 9/18/00 | 9:29  | 53.5564 | 9/18/00 | 8:23  | 33.7894 |
| 9/18/00 | 13:15 | 55.561 | 9/18/00 | 14:48 | 21.168 | 9/18/00 | 15:01 | 33.825 | 9/18/00 | 15:11 | 41.3058 | 9/18/00 | 13:29 | 53.5039 | 9/18/00 | 12:23 | 33.7697 |
| 9/18/00 | 17:15 | 55.489 | 9/18/00 | 18:48 | 21.158 | 9/18/00 | 19:01 | 33.789 | 9/18/00 | 19:11 | 41.2533 | 9/18/00 | 17:29 | 53.3957 | 9/18/00 | 16:23 | 33.7434 |
| 9/18/00 | 21:15 | 55.436 | 9/18/00 | 22:48 | 21.158 | 9/18/00 | 23:01 | 33.773 | 9/18/00 | 23:11 | 41.2402 | 9/18/00 | 21:29 | 53.3825 | 9/18/00 | 20:23 | 33.7402 |
| 9/19/00 | 1:15  | 55.400 | 9/19/00 | 2:48  | 21.155 | 9/19/00 | 3:01  | 33.753 | 9/19/00 | 3:11  | 41.2041 | 9/19/00 | 1:29  | 53.3432 | 9/19/00 | 0:23  | 33.7467 |
| 9/19/00 | 5:15  | 55.364 | 9/19/00 | 6:48  | 21.155 | 9/19/00 | 7:01  | 33.734 | 9/19/00 | 7:11  | 41.1778 | 9/19/00 | 5:29  | 53.2972 | 9/19/00 | 4:23  | 33.7369 |
| 9/19/00 | 9:15  | 55.338 | 9/19/00 | 10:48 | 21.148 | 9/19/00 | 11:01 | 33.737 | 9/19/00 | 11:11 | 41.1745 | 9/19/00 | 9:29  | 53.294  | 9/19/00 | 8:23  | 33.7369 |
| 9/19/00 | 13:15 | 55.331 | 9/19/00 | 14:48 | 21.155 | 9/19/00 | 15:01 | 33.740 | 9/19/00 | 15:11 | 41.1713 | 9/19/00 | 13:29 | 53.2907 | 9/19/00 | 12:23 | 33.7467 |
| 9/19/00 | 17:15 | 55.338 | 9/19/00 | 18:48 | 21.161 | 9/19/00 | 19:01 | 33.757 | 9/19/00 | 19:11 | 41.1909 | 9/19/00 | 17:29 | 53.3104 | 9/19/00 | 16:23 | 33.7566 |
| 9/19/00 | 21:15 | 55.387 | 9/19/00 | 22:48 | 21.171 | 9/19/00 | 23:01 | 33.780 | 9/19/00 | 23:11 | 41.2139 | 9/19/00 | 21:29 | 53.3694 | 9/19/00 | 20:23 | 33.7992 |
| 9/20/00 | 1:15  | 55.413 | 9/20/00 | 2:48  | 21.181 | 9/20/00 | 3:01  | 33.806 | 9/20/00 | 3:11  | 41.2467 | 9/20/00 | 1:29  | 53.4055 | 9/20/00 | 0:23  | 33.8091 |
| 9/20/00 | 5:15  | 55.459 | 9/20/00 | 6:48  | 21.178 | 9/20/00 | 7:01  | 33.819 | 9/20/00 | 7:11  | 41.2566 | 9/20/00 | 5:29  | 53.4514 | 9/20/00 | 4:23  | 33.8255 |
| 9/20/00 | 9:15  | 55.420 | 9/20/00 | 10:48 | 21.171 | 9/20/00 | 11:01 | 33.839 | 9/20/00 | 11:11 | 41.2894 | 9/20/00 | 9:29  | 53.4678 | 9/20/00 | 8:23  | 33.8222 |
| 9/20/00 | 13:15 | 55.554 | 9/20/00 | 14:48 | 21.188 | 9/20/00 | 15:01 | 33.868 | 9/20/00 | 15:11 | 41.3255 | 9/20/00 | 13:29 | 53.5597 | 9/20/00 | 12:23 | 33.832  |
| 9/20/00 | 17:15 | 55.587 | 9/20/00 | 18:48 | 21.201 | 9/20/00 | 19:01 | 33.898 | 9/20/00 | 19:11 | 41.3583 | 9/20/00 | 17:29 | 53.6024 | 9/20/00 | 16:23 | 33.8353 |
| 9/20/00 | 21:15 | 55.574 | 9/20/00 | 22:48 | 21.214 | 9/20/00 | 23:01 | 33.927 | 9/20/00 | 23:11 | 41.3944 | 9/20/00 | 21:29 | 53.645  | 9/20/00 | 20:23 | 33.855  |
| 9/21/00 | 1:15  | 55.679 | 9/21/00 | 2:48  | 21.220 | 9/21/00 | 3:01  | 33.947 | 9/21/00 | 3:11  | 41.4206 | 9/21/00 | 1:29  | 53.6975 | 9/21/00 | 0:23  | 33.8747 |
| 9/21/00 | 5:15  | 55.696 | 9/21/00 | 6:48  | 21.234 | 9/21/00 | 7:01  | 33.967 | 9/21/00 | 7:11  | 41.4469 | 9/21/00 | 5:29  | 53.7074 | 9/21/00 | 4:23  | 33.8681 |
| 9/21/00 | 9:15  | 55.705 | 9/21/00 | 10:48 | 21.243 | 9/21/00 | 11:01 | 33.983 | 9/21/00 | 11:11 | 41.4665 | 9/21/00 | 9:29  | 53.7139 | 9/21/00 | 8:23  | 33.8714 |
| 9/21/00 | 13:15 | 55.696 | 9/21/00 | 14:48 | 21.243 | 9/21/00 | 15:01 | 33.950 | 9/21/00 | 15:11 | 41.437  | 9/21/00 | 13:29 | 53.6909 | 9/21/00 | 12:23 | 33.8615 |
| 9/21/00 | 17:15 | 55.623 | 9/21/00 | 18:48 | 21.237 | 9/21/00 | 19:01 | 33.911 | 9/21/00 | 19:11 | 41.3976 | 9/21/00 | 17:29 | 53.5597 | 9/21/00 | 16:23 | 33.8255 |
| 9/21/00 | 21:15 | 55.571 | 9/21/00 | 22:48 | 21.243 | 9/21/00 | 23:01 | 33.901 | 9/21/00 | 23:11 | 41.3845 | 9/21/00 | 21:29 | 53.5335 | 9/21/00 | 20:23 | 33.8255 |
| 9/22/00 | 1:15  | 55.548 | 9/22/00 | 2:48  | 21.237 | 9/22/00 | 3:01  | 33.871 | 9/22/00 | 3:11  | 41.3287 | 9/22/00 | 1:29  | 53.5072 | 9/22/00 | 0:23  | 33.832  |
| 9/22/00 | 5:15  | 55.482 | 9/22/00 | 6:48  | 21.230 | 9/22/00 | 7:01  | 33.819 | 9/22/00 | 7:11  | 41.2598 | 9/22/00 | 5:29  | 53.4285 | 9/22/00 | 4:23  | 33.7992 |
| 9/22/00 | 9:15  | 55.410 | 9/22/00 | 10:48 | 21.227 | 9/22/00 | 11:01 | 33.809 | 9/22/00 | 11:11 | 41.2467 | 9/22/00 | 9:29  | 53.3858 | 9/22/00 | 8:23  | 33.7861 |
| 9/22/00 | 13:15 | 55.387 | 9/22/00 | 14:48 | 21.227 | 9/22/00 | 15:01 | 33.799 | 9/22/00 | 15:11 | 41.2369 | 9/22/00 | 13:29 | 53.376  | 9/22/00 | 12:23 | 33.7927 |
| 9/22/00 | 17:15 | 55.374 | 9/22/00 | 18:48 | 21.227 | 9/22/00 | 19:01 | 33.806 | 9/22/00 | 19:11 | 41.2402 | 9/22/00 | 17:29 | 53.3301 | 9/22/00 | 16:23 | 33.7927 |
| 9/22/00 | 21:15 | 55.407 | 9/22/00 | 22:48 | 21.237 | 9/22/00 | 23:01 | 33.839 | 9/22/00 | 23:11 | 41.2697 | 9/22/00 | 21:29 | 53.4154 | 9/22/00 | 20:23 | 33.8353 |

| Date     Time     Depth     Date                                              |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 9/23/00     1:15     55.384     9/23/00     2:48     21.220     9/23/00     3:01     33.845     9/23/00     3:11     41.2894     9/23/00     1:29     53.4514     9/23/00     0:23     33       9/23/00     5:15     55.417     9/23/00     6:48     21.188     9/23/00     7:01     33.855     9/23/00     7:11     41.3058     9/23/00     5:29     53.4285     9/23/00     4:23     33       9/23/00     9:15     55.417     9/23/00     10:48     21.201     9/23/00     11:01     33.891     9/23/00     11:11     41.3583     9/23/00     9:29     53.481     9/23/00     8:23     33       9/23/00     13:15     55.472     9/23/00     14:48     21.191     9/23/00     15:01     33.907     9/23/00     15:11     41.3747     9/23/00     13:29     53.6647     9/23/00     12:23     33       9/23/00     17:15     55.406     9/23/00     18:48     21.188     9/23/00     13:01     33.927     9/23/00     13 | epth  |
| 9/23/00   1:15   55.384   9/23/00   2:48   21.220   9/23/00   3:01   33.845   9/23/00   3:11   41.2894   9/23/00   1:29   53.4514   9/23/00   0:23   33     9/23/00   5:15   55.417   9/23/00   6:48   21.188   9/23/00   7:01   33.855   9/23/00   7:11   41.3058   9/23/00   5:29   53.4285   9/23/00   4:23   33     9/23/00   9:15   55.417   9/23/00   10:48   21.201   9/23/00   11:01   33.891   9/23/00   11:11   41.3583   9/23/00   9:29   53.481   9/23/00   8:23   33     9/23/00   13:15   55.472   9/23/00   14:48   21.191   9/23/00   15:01   33.907   9/23/00   15:11   41.3747   9/23/00   13:29   53.6647   9/23/00   12:23   33     9/23/00   17:15   55.486   9/23/00   18:48   21.188   9/23/00   19:01   33.927   9/23/00   19:11   41.414   9/23/00   11:23   33     9/23/00   21:15                                                                                                              |       |
| 9/23/00   5:15   55.417   9/23/00   6:48   21.188   9/23/00   7:01   33.855   9/23/00   7:11   41.3058   9/23/00   5:29   53.4285   9/23/00   4:23   33     9/23/00   9:15   55.417   9/23/00   10:48   21.201   9/23/00   11:01   33.891   9/23/00   11:11   41.3058   9/23/00   9:29   53.481   9/23/00   8:23   33     9/23/00   13:15   55.472   9/23/00   14:48   21.191   9/23/00   15:01   33.907   9/23/00   15:11   41.3747   9/23/00   13:29   53.6647   9/23/00   12:23   33     9/23/00   17:15   55.486   9/23/00   18:48   21.188   9/23/00   19:01   33.927   9/23/00   19:11   41.414   9/23/00   17:29   53.6188   9/23/00   16:23   33     9/23/00   21:15   55.407   9/23/00   22:48   21.161   9/23/00   23:01   33.927   9/23/00   23:11   41.4108   9/23/00   21:29   53.5499   9/23/00   20:23 <t< td=""><td>.8681</td></t<>                                                                       | .8681 |
| 9/23/00   9:15   55.417   9/23/00   10:48   21.201   9/23/00   11:01   33.891   9/23/00   11:11   41.3583   9/23/00   9:29   53.481   9/23/00   8:23   33     9/23/00   13:15   55.472   9/23/00   14:48   21.191   9/23/00   15:01   33.907   9/23/00   15:11   41.3747   9/23/00   13:29   53.6647   9/23/00   12:23   33     9/23/00   17:15   55.486   9/23/00   18:48   21.188   9/23/00   19:01   33.927   9/23/00   19:11   41.414   9/23/00   17:29   53.6188   9/23/00   16:23   33     9/23/00   21:15   55.407   9/23/00   22:48   21.161   9/23/00   23:01   33.927   9/23/00   23:11   41.4108   9/23/00   21:29   53.5499   9/23/00   20:23   33     9/24/00   1:15   55.410   9/24/00   2:48   21.155   9/24/00   3:01   33.950   9/24/00   3:11   41.4501   9/24/00   1:29   53.5794   9/24/00   0:23 <t< td=""><td>.8419</td></t<>                                                                       | .8419 |
| 9/23/00   13:15   55.472   9/23/00   14:48   21.191   9/23/00   15:01   33.907   9/23/00   15:11   41.3747   9/23/00   13:29   53.6647   9/23/00   12:23   33     9/23/00   17:15   55.486   9/23/00   18:48   21.188   9/23/00   19:01   33.927   9/23/00   19:11   41.414   9/23/00   17:29   53.6188   9/23/00   16:23   33     9/23/00   21:15   55.407   9/23/00   22:48   21.161   9/23/00   23:01   33.927   9/23/00   23:11   41.4108   9/23/00   21:29   53.5499   9/23/00   20:23   33     9/24/00   1:15   55.410   9/24/00   2:48   21.155   9/24/00   3:01   33.950   9/24/00   3:11   41.4501   9/24/00   1:29   53.5794   9/24/00   0:23   33     9/24/00   5:15   55.404   9/24/00   6:48   21.145   9/24/00   7:01   33.967   9/24/00   7:11   41.4731   9/24/00   1:29   53.5794   9/24/00   0:23                                                                                                       | .8091 |
| 9/23/00   17:15   55.486   9/23/00   18:48   21.188   9/23/00   19:01   33.927   9/23/00   19:11   41.414   9/23/00   17:29   53.6188   9/23/00   16:23   33     9/23/00   21:15   55.407   9/23/00   22:48   21.161   9/23/00   23:01   33.927   9/23/00   23:11   41.414   9/23/00   21:29   53.5499   9/23/00   20:23   33     9/24/00   1:15   55.410   9/24/00   2:48   21.155   9/24/00   3:01   33.950   9/24/00   3:11   41.4501   9/24/00   1:29   53.5794   9/24/00   0:23   33     9/24/00   5:15   55.404   9/24/00   6:48   21.145   9/24/00   7:01   33.967   9/24/00   7:11   41.4731   9/24/00   5:29   53.7566   9/24/00   4:23   33     9/24/00   5:15   55.404   9/24/00   6:48   21.145   9/24/00   7:01   33.967   9/24/00   7:11   41.4731   9/24/00   5:29   53.7566   9/24/00   4:23   33                                                                                                         | .855  |
| 9/23/00   21:15   55.407   9/23/00   22:48   21.161   9/23/00   23:01   33.927   9/23/00   23:11   41.4108   9/23/00   21:29   53.5499   9/23/00   20:23   33     9/24/00   1:15   55.410   9/24/00   2:48   21.155   9/24/00   3:01   33.950   9/24/00   3:11   41.4501   9/24/00   1:29   53.5794   9/24/00   0:23   33     9/24/00   5:15   55.404   9/24/00   6:48   21.145   9/24/00   7:01   33.967   9/24/00   7:11   41.4731   9/24/00   5:29   53.7566   9/24/00   4:23   33     9/24/00   5:15   55.404   9/24/00   6:48   21.145   9/24/00   7:01   33.967   9/24/00   7:11   41.4731   9/24/00   5:29   53.7566   9/24/00   4:23   33                                                                                                                                                                                                                                                                         | .7959 |
| 9/24/00 1:15 55.410 9/24/00 2:48 21.155 9/24/00 3:01 33.950 9/24/00 3:11 41.4501 9/24/00 1:29 53.5794 9/24/00 0:23 33<br>9/24/00 5:15 55.404 9/24/00 6:48 21.145 9/24/00 7:01 33.967 9/24/00 7:11 41.4731 9/24/00 5:29 53.7566 9/24/00 4:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .7861 |
| 9/24/00 5:15 55 404 9/24/00 6:48 21 145 9/24/00 7:01 33 967 9/24/00 7:11 41 4731 9/24/00 5:29 53 7566 9/24/00 4:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .7533 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .7205 |
| 9/24/00 9:15 55.387 9/24/00 10:48 21.132 9/24/00 11:01 33.980 9/24/00 11:11 41.4961 9/24/00 9:29 53.7566 9/24/00 8:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .7106 |
| 9/24/00 13:15 55.387 9/24/00 14:48 21.119 9/24/00 15:01 33.983 9/24/00 15:11 41.5026 9/24/00 13:29 53.8058 9/24/00 12:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .7106 |
| 9/24/00 17:15 55.427 9/24/00 18:48 21.086 9/24/00 19:01 33.983 9/24/00 19:11 41.5092 9/24/00 17:29 53.7533 9/24/00 16:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .645  |
| 9/24/00 21:15 55.374 9/24/00 22:48 21.076 9/24/00 23:01 33.996 9/24/00 23:11 41.542 9/24/00 21:29 53.6253 9/24/00 20:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .6155 |
| 9/25/00 1:15 55.410 9/25/00 2:48 21.047 9/25/00 3:01 33.993 9/25/00 3:11 41.5551 9/25/00 1:29 53.54 9/25/00 0:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .6155 |
| 9/25/00 5:15 55.453 9/25/00 6:48 21.024 9/25/00 7:01 33.999 9/25/00 7:11 41.5781 9/25/00 5:29 53.5269 9/25/00 4:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .6056 |
| 9/25/00 9:15 55.430 9/25/00 10:48 21.014 9/25/00 11:01 34.012 9/25/00 11:11 41.6076 9/25/00 9:29 53.7894 9/25/00 8:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .5892 |
| 9/25/00 13:15 55.545 9/25/00 14:48 20.997 9/25/00 15:01 34.012 9/25/00 15:11 41.6109 9/25/00 13:29 53.9304 9/25/00 12:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .5728 |
| 9/25/00 17:15 55.636 9/25/00 18:48 20.971 9/25/00 19:01 34.009 9/25/00 19:11 41.6076 9/25/00 17:29 53.878 9/25/00 16:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .5335 |
| 9/25/00 21:15 55.581 9/25/00 22:48 20.958 9/25/00 23:01 34.009 9/25/00 23:11 41.6175 9/25/00 21:29 53.8845 9/25/00 20:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .5269 |
| 9/26/00 1:15 55.545 9/26/00 2:48 20.942 9/26/00 3:01 34.003 9/26/00 3:11 41.6109 9/26/00 1:29 53.8812 9/26/00 0:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .5203 |
| 9/26/00 5:15 55.525 9/26/00 6:48 20.928 9/26/00 7:01 33.993 9/26/00 7:11 41.6175 9/26/00 5:29 53.8812 9/26/00 4:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .5072 |
| 9/26/00 9:15 55.509 9/26/00 10:48 20.919 9/26/00 11:01 33.993 9/26/00 11:11 41.6306 9/26/00 9:29 53.8944 9/26/00 8:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .5072 |
| 9/26/00 13:15 55.663 9/26/00 14:48 20.906 9/26/00 15:01 33.983 9/26/00 15:11 41.6109 9/26/00 13:29 53.8812 9/26/00 12:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .5039 |
| 9/26/00 17:15 55.725 9/26/00 18:48 20.892 9/26/00 19:01 33.963 9/26/00 19:11 41.5912 9/26/00 17:29 53.8091 9/26/00 16:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .481  |
| 9/26/00 21:15 55.623 9/26/00 22:48 20.886 9/26/00 23:01 33.957 9/26/00 23:11 41.5978 9/26/00 21:29 53.8091 9/26/00 20:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .4843 |
| 9/27/00 1:15 55.607 9/27/00 2:48 20.879 9/27/00 3:01 33.950 9/27/00 3:11 41.5945 9/27/00 1:29 53.8287 9/27/00 0:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .4974 |
| 9/27/00 5:15 55.571 9/27/00 6:48 20.873 9/27/00 7:01 33.940 9/27/00 7:11 41.5912 9/27/00 5:29 53.8255 9/27/00 4:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .5007 |
| 9/27/00 9:15 55.554 9/27/00 10:48 20.876 9/27/00 11:01 33.950 9/27/00 11:11 41.6109 9/27/00 9:29 53.8353 9/27/00 8:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .5072 |
| 9/27/00 13:15 55.692 9/27/00 14:48 20.869 9/27/00 15:01 33.947 9/27/00 15:11 41.6011 9/27/00 13:29 53.8386 9/27/00 12:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .5171 |
| 9/27/00 17:15 55.745 9/27/00 18:48 20.863 9/27/00 19:01 33.937 9/27/00 19:11 41.5879 9/27/00 17:29 53.8222 9/27/00 16:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .5072 |
| 9/27/00 21:15 55 640 9/27/00 22:48 20 866 9/27/00 23:01 33 944 9/27/00 23:11 41 6076 9/27/00 21:29 53 8222 9/27/00 20:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5269  |
| 9/28/00 1:15 55 623 9/28/00 2:48 20 866 9/28/00 3:01 33 944 9/28/00 3:11 41 6109 9/28/00 1:29 53 8484 9/28/00 0:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5433  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5499  |
| 9/28/00 9:15 55.558 9/28/00 10:48 20.869 9/28/00 11:01 33.957 9/28/00 11:11 41.6273 9/28/00 9:29 53.8747 9/28/00 8:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5564  |
| 9/28/00 13:15 55 689 9/28/00 14:48 20 873 9/28/00 15:01 33 953 9/28/00 15:11 41 6273 9/28/00 13:29 53 9042 9/28/00 12:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5696  |
| 9/28/00 17:15 55 745 9/28/00 18:48 20.869 9/28/00 19:01 33.947 9/28/00 19:11 41.6142 9/28/00 17:29 53.8583 9/28/00 16:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5564  |
| 9/28/00 21:15 55 659 9/28/00 22:48 20 876 9/28/00 23:01 33 947 9/28/00 23:11 41 6109 9/28/00 21:29 53 8386 9/28/00 20:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 563   |
| <u>9/29/00 1.15 55 623 9/29/00 2.48 20 879 9/29/00 3.01 33 940 9/20/00 3.11 41 6076 9/20/00 1.20 53 8410 9/20/00 2023 33</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5794  |
| 9/29/00 5:15 55 614 9/29/00 6:48 20 876 9/29/00 7:01 33 934 9/29/00 7:11 41 5945 9/29/00 5:29 53 832 9/29/00 4:23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5761  |

| TABLE D.3 | (Cont.) |
|-----------|---------|
|-----------|---------|

|         | DW06  |        |         | SB01  |        |         | SB09  |        |         | SB16  |         |         | SB18  |         |         | SB19  |         |
|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|---------|---------|-------|---------|---------|-------|---------|
| Date    | Time  | Depth   | Date    | Time  | Depth   | Date    | Time  | Depth   |
|         |       |        |         |       |        |         |       |        |         |       |         |         |       |         |         |       |         |
| 9/29/00 | 9:15  | 55.623 | 9/29/00 | 10:48 | 20.876 | 9/29/00 | 11:01 | 33.934 | 9/29/00 | 11:11 | 41.5879 | 9/29/00 | 9:29  | 53.8189 | 9/29/00 | 8:23  | 33.5728 |
| 9/29/00 | 13:15 | 55.787 | 9/29/00 | 14:48 | 20.879 | 9/29/00 | 15:01 | 33.911 | 9/29/00 | 15:11 | 41.5551 | 9/29/00 | 13:29 | 53.7762 | 9/29/00 | 12:23 | 33.5696 |
| 9/29/00 | 17:15 | 55.817 | 9/29/00 | 18:48 | 20.873 | 9/29/00 | 19:01 | 33.885 | 9/29/00 | 19:11 | 41.5092 | 9/29/00 | 17:29 | 53.7172 | 9/29/00 | 16:23 | 33.5532 |
| 9/29/00 | 21:15 | 55.735 | 9/29/00 | 22:48 | 20.876 | 9/29/00 | 23:01 | 33.868 | 9/29/00 | 23:11 | 41.4928 | 9/29/00 | 21:29 | 53.6778 | 9/29/00 | 20:23 | 33.563  |
| 9/30/00 | 1:15  | 55.725 | 9/30/00 | 2:48  | 20.879 | 9/30/00 | 3:01  | 33.855 | 9/30/00 | 3:11  | 41.4698 | 9/30/00 | 1:29  | 53.645  | 9/30/00 | 0:23  | 33.5728 |
| 9/30/00 | 5:15  | 55.745 | 9/30/00 | 6:48  | 20.873 | 9/30/00 | 7:01  | 33.835 | 9/30/00 | 7:11  | 41.4403 | 9/30/00 | 5:29  | 53.6089 | 9/30/00 | 4:23  | 33.563  |
| 9/30/00 | 9:15  | 55.758 | 9/30/00 | 10:48 | 20.876 | 9/30/00 | 11:01 | 33.819 | 9/30/00 | 11:11 | 41.414  | 9/30/00 | 9:29  | 53.5761 | 9/30/00 | 8:23  | 33.5696 |
| 9/30/00 | 13:15 | 55.807 | 9/30/00 | 14:48 | 20.876 | 9/30/00 | 15:01 | 33.793 | 9/30/00 | 15:11 | 41.378  | 9/30/00 | 13:29 | 53.5499 | 9/30/00 | 12:23 | 33.5597 |
| 9/30/00 | 17:15 | 55.807 | 9/30/00 | 18:48 | 20.876 | 9/30/00 | 19:01 | 33.780 | 9/30/00 | 19:11 | 41.3583 | 9/30/00 | 17:29 | 53.4974 | 9/30/00 | 16:23 | 33.5564 |
| 9/30/00 | 21:15 | 55.748 | 9/30/00 | 22:48 | 20.879 | 9/30/00 | 23:01 | 33.776 | 9/30/00 | 23:11 | 41.3484 | 9/30/00 | 21:29 | 53.5138 | 9/30/00 | 20:23 | 33.5728 |
| 10/1/00 | 1:15  | 55.741 | 10/1/00 | 2:48  | 20.886 | 10/1/00 | 3:01  | 33.766 | 10/1/00 | 3:11  | 41.3353 | 10/1/00 | 1:29  | 53.4908 | 10/1/00 | 0:23  | 33.5827 |
| 10/1/00 | 5:15  | 55.738 | 10/1/00 | 6:48  | 20.883 | 10/1/00 | 7:01  | 33.757 | 10/1/00 | 7:11  | 41.3123 | 10/1/00 | 5:29  | 53.4678 | 10/1/00 | 4:23  | 33.5794 |
| 10/1/00 | 9:15  | 55.725 | 10/1/00 | 10:48 | 20.886 | 10/1/00 | 11:01 | 33.753 | 10/1/00 | 11:11 | 41.3058 | 10/1/00 | 9:29  | 53.4547 | 10/1/00 | 8:23  | 33.5827 |
| 10/1/00 | 13:15 | 55.850 | 10/1/00 | 14:48 | 20.886 | 10/1/00 | 15:01 | 33.724 | 10/1/00 | 15:11 | 41.2566 | 10/1/00 | 13:29 | 53.4318 | 10/1/00 | 12:23 | 33.5827 |
| 10/1/00 | 17:15 | 55.866 | 10/1/00 | 18:48 | 20.889 | 10/1/00 | 19:01 | 33.711 | 10/1/00 | 19:11 | 41.2434 | 10/1/00 | 17:29 | 53.376  | 10/1/00 | 16:23 | 33.5728 |
| 10/1/00 | 21:15 | 55.745 | 10/1/00 | 22:48 | 20.896 | 10/1/00 | 23:01 | 33.720 | 10/1/00 | 23:11 | 41.2533 | 10/1/00 | 21:29 | 53.3924 | 10/1/00 | 20:23 | 33.5991 |
| 10/2/00 | 1:15  | 55.738 | 10/2/00 | 2:48  | 20.899 | 10/2/00 | 3:01  | 33.727 | 10/2/00 | 3:11  | 41.2533 | 10/2/00 | 1:29  | 53.4219 | 10/2/00 | 0:23  | 33.6188 |
| 10/2/00 | 5:15  | 55.640 | 10/2/00 | 6:48  | 20.912 | 10/2/00 | 7:01  | 33.737 | 10/2/00 | 7:11  | 41.273  | 10/2/00 | 5:29  | 53.4449 | 10/2/00 | 4:23  | 33.6286 |
| 10/2/00 | 9:15  | 55.636 | 10/2/00 | 10:48 | 20.919 | 10/2/00 | 11:01 | 33.763 | 10/2/00 | 11:11 | 41.2894 | 10/2/00 | 9:29  | 53.4974 | 10/2/00 | 8:23  | 33.645  |
| 10/2/00 | 13:15 | 55.705 | 10/2/00 | 14:48 | 20.932 | 10/2/00 | 15:01 | 33.776 | 10/2/00 | 15:11 | 41.3025 | 10/2/00 | 13:29 | 53.5302 | 10/2/00 | 12:23 | 33.6614 |
| 10/2/00 | 17:15 | 55.705 | 10/2/00 | 18:48 | 20.942 | 10/2/00 | 19:01 | 33.793 | 10/2/00 | 19:11 | 41.3255 | 10/2/00 | 17:29 | 53.5663 | 10/2/00 | 16:23 | 33.6713 |
| 10/2/00 | 21:15 | 55.623 | 10/2/00 | 22:48 | 20.951 | 10/2/00 | 23:01 | 33.812 | 10/2/00 | 23:11 | 41.3451 | 10/2/00 | 21:29 | 53.5892 | 10/2/00 | 20:23 | 33.6942 |
| 10/3/00 | 1:15  | 55.623 | 10/3/00 | 2:48  | 20.961 | 10/3/00 | 3:01  | 33.829 | 10/3/00 | 3:11  | 41.3648 | 10/3/00 | 1:29  | 53.6253 | 10/3/00 | 0:23  | 33.7041 |
| 10/3/00 | 5:15  | 55.594 | 10/3/00 | 6:48  | 20.971 | 10/3/00 | 7:01  | 33.845 | 10/3/00 | 7:11  | 41.378  | 10/3/00 | 5:29  | 53.6483 | 10/3/00 | 4:23  | 33.7106 |
| 10/3/00 | 9:15  | 55.614 | 10/3/00 | 10:48 | 20.974 | 10/3/00 | 11:01 | 33.852 | 10/3/00 | 11:11 | 41.3812 | 10/3/00 | 9:29  | 53.6417 | 10/3/00 | 8:23  | 33.7106 |
| 10/3/00 | 13:15 | 55.787 | 10/3/00 | 14:48 | 20.981 | 10/3/00 | 15:01 | 33.829 | 10/3/00 | 15:11 | 41.3615 | 10/3/00 | 13:29 | 53.5892 | 10/3/00 | 12:23 | 33.6942 |
| 10/3/00 | 17:15 | 55.778 | 10/3/00 | 18:48 | 20.988 | 10/3/00 | 19:01 | 33.822 | 10/3/00 | 19:11 | 41.3615 | 10/3/00 | 17:29 | 53.5564 | 10/3/00 | 16:23 | 33.6877 |
| 10/3/00 | 21:15 | 55.627 | 10/3/00 | 22:48 | 21.004 | 10/3/00 | 23:01 | 33.845 | 10/3/00 | 23:11 | 41.3911 | 10/3/00 | 21:29 | 53.5958 | 10/3/00 | 20:23 | 33.7205 |
| 10/4/00 | 1:15  | 55.531 | 10/4/00 | 2:48  | 21.020 | 10/4/00 | 3:01  | 33.881 | 10/4/00 | 3:11  | 41.4304 | 10/4/00 | 1:29  | 53.6778 | 10/4/00 | 0:23  | 33.7631 |
| 10/4/00 | 5:15  | 55.486 | 10/4/00 | 6:48  | 21.033 | 10/4/00 | 7:01  | 33.904 | 10/4/00 | 7:11  | 41.4633 | 10/4/00 | 5:29  | 53.7434 | 10/4/00 | 4:23  | 33.7762 |
| 10/4/00 | 9:15  | 55.515 | 10/4/00 | 10:48 | 21.047 | 10/4/00 | 11:01 | 33.927 | 10/4/00 | 11:11 | 41.4895 | 10/4/00 | 9:29  | 53.7762 | 10/4/00 | 8:23  | 33.7861 |
| 10/4/00 | 13:15 | 55.666 | 10/4/00 | 14:48 | 21.053 | 10/4/00 | 15:01 | 33.934 | 10/4/00 | 15:11 | 41.4829 | 10/4/00 | 13:29 | 53.7795 | 10/4/00 | 12:23 | 33.7795 |
| 10/4/00 | 17:15 | 55.633 | 10/4/00 | 18:48 | 21.056 | 10/4/00 | 19:01 | 33.940 | 10/4/00 | 19:11 | 41.4928 | 10/4/00 | 17:29 | 53.7762 | 10/4/00 | 16:23 | 33.773  |
| 10/4/00 | 21:15 | 55.623 | 10/4/00 | 22:48 | 21.066 | 10/4/00 | 23:01 | 33.947 | 10/4/00 | 23:11 | 41.4993 | 10/4/00 | 21:29 | 53.7303 | 10/4/00 | 20:23 | 33.773  |
| 10/5/00 | 1:15  | 55.512 | 10/5/00 | 2:48  | 21.014 | 10/5/00 | 3:01  | 33.881 | 10/5/00 | 3:11  | 41.4304 | 10/5/00 | 1:29  | 53.75   | 10/5/00 | 0:23  | 33.7598 |
| 10/5/00 | 5:15  | 55.453 | 10/5/00 | 6:48  | 20.994 | 10/5/00 | 7:01  | 33.871 | 10/5/00 | 7:11  | 41.4206 | 10/5/00 | 5:29  | 53.7074 | 10/5/00 | 4:23  | 33.7008 |
| 10/5/00 | 9:15  | 55.436 | 10/5/00 | 10:48 | 20.981 | 10/5/00 | 11:01 | 33.878 | 10/5/00 | 11:11 | 41.437  | 10/5/00 | 9:29  | 53.6975 | 10/5/00 | 8:23  | 33.6549 |
| 10/5/00 | 13:15 | 55.371 | 10/5/00 | 14:48 | 20.971 | 10/5/00 | 15:01 | 33.904 | 10/5/00 | 15:11 | 41.4797 | 10/5/00 | 13:29 | 53.7434 | 10/5/00 | 12:23 | 33.6122 |

|          | DW06  |        |          | SB01  |        |          | SB09  |        |          | SB16  |         |          | SB18  |         |          | SB19  |         |
|----------|-------|--------|----------|-------|--------|----------|-------|--------|----------|-------|---------|----------|-------|---------|----------|-------|---------|
| Date     | Time  | Depth   | Date     | Time  | Depth   | Date     | Time  | Depth   |
|          |       |        |          |       |        |          |       |        |          |       |         |          |       |         |          |       |         |
| 10/5/00  | 17:15 | 55.325 | 10/5/00  | 18:48 | 20.961 | 10/5/00  | 19:01 | 33.940 | 10/5/00  | 19:11 | 41.542  | 10/5/00  | 17:29 | 53.8156 | 10/5/00  | 16:23 | 33.6056 |
| 10/5/00  | 21:15 | 55.240 | 10/5/00  | 22:48 | 20.955 | 10/5/00  | 23:01 | 33.983 | 10/5/00  | 23:11 | 41.6109 | 10/5/00  | 21:29 | 53.9272 | 10/5/00  | 20:23 | 33.5991 |
| 10/6/00  | 1:15  | 55.164 | 10/6/00  | 2:48  | 20.938 | 10/6/00  | 3:01  | 34.009 | 10/6/00  | 3:11  | 41.6535 | 10/6/00  | 1:29  | 53.9961 | 10/6/00  | 0:23  | 33.5991 |
| 10/6/00  | 5:15  | 55.121 | 10/6/00  | 6:48  | 20.928 | 10/6/00  | 7:01  | 34.032 | 10/6/00  | 7:11  | 41.6896 | 10/6/00  | 5:29  | 54.0584 | 10/6/00  | 4:23  | 33.5794 |
| 10/6/00  | 9:15  | 55.456 | 10/6/00  | 10:48 | 20.919 | 10/6/00  | 11:01 | 34.055 | 10/6/00  | 11:11 | 41.7421 | 10/6/00  | 9:29  | 54.1043 | 10/6/00  | 8:23  | 33.5696 |
| 10/6/00  | 13:15 | 55.646 | 10/6/00  | 14:48 | 20.902 | 10/6/00  | 15:01 | 34.055 | 10/6/00  | 15:11 | 41.7487 | 10/6/00  | 13:29 | 54.1273 | 10/6/00  | 12:23 | 33.563  |
| 10/6/00  | 17:15 | 56.073 | 10/6/00  | 18:48 | 20.896 | 10/6/00  | 19:01 | 34.062 | 10/6/00  | 19:11 | 41.7651 | 10/6/00  | 17:29 | 54.1109 | 10/6/00  | 16:23 | 33.5236 |
| 10/6/00  | 21:15 | 56.086 | 10/6/00  | 22:48 | 20.886 | 10/6/00  | 23:01 | 34.075 | 10/6/00  | 23:11 | 41.7979 | 10/6/00  | 21:29 | 54.1437 | 10/6/00  | 20:23 | 33.5236 |
| 10/7/00  | 1:15  | 56.115 | 10/7/00  | 2:48  | 20.886 | 10/7/00  | 3:01  | 34.085 | 10/7/00  | 3:11  | 41.8176 | 10/7/00  | 1:29  | 54.1995 | 10/7/00  | 0:23  | 33.5302 |
| 10/7/00  | 5:15  | 56.142 | 10/7/00  | 6:48  | 20.879 | 10/7/00  | 7:01  | 34.094 | 10/7/00  | 7:11  | 41.8406 | 10/7/00  | 5:29  | 54.1896 | 10/7/00  | 4:23  | 33.5236 |
| 10/7/00  | 9:15  | 56.168 | 10/7/00  | 10:48 | 20.879 | 10/7/00  | 11:01 | 34.111 | 10/7/00  | 11:11 | 41.8668 | 10/7/00  | 9:29  | 54.2126 | 10/7/00  | 8:23  | 33.5269 |
| 10/7/00  | 13:15 | 56.207 | 10/7/00  | 14:48 | 20.869 | 10/7/00  | 15:01 | 34.108 | 10/7/00  | 15:11 | 41.8734 | 10/7/00  | 13:29 | 54.2224 | 10/7/00  | 12:23 | 33.5236 |
| 10/7/00  | 17:15 | 56.188 | 10/7/00  | 18:48 | 20.869 | 10/7/00  | 19:01 | 34.104 | 10/7/00  | 19:11 | 41.8799 | 10/7/00  | 17:29 | 54.2224 | 10/7/00  | 16:23 | 33.5072 |
| 10/7/00  | 21:15 | 56.194 | 10/7/00  | 22:48 | 20.869 | 10/7/00  | 23:01 | 34.114 | 10/7/00  | 23:11 | 41.8963 | 10/7/00  | 21:29 | 54.2323 | 10/7/00  | 20:23 | 33.5105 |
| 10/8/00  | 1:15  | 56.211 | 10/8/00  | 2:48  | 20.863 | 10/8/00  | 3:01  | 34.114 | 10/8/00  | 3:11  | 41.9029 | 10/8/00  | 1:29  | 54.229  | 10/8/00  | 0:23  | 33.5138 |
| 10/8/00  | 5:15  | 56.217 | 10/8/00  | 6:48  | 20.863 | 10/8/00  | 7:01  | 34.117 | 10/8/00  | 7:11  | 41.916  | 10/8/00  | 5:29  | 54.252  | 10/8/00  | 4:23  | 33.5072 |
| 10/8/00  | 9:15  | 56.230 | 10/8/00  | 10:48 | 20.866 | 10/8/00  | 11:01 | 34.127 | 10/8/00  | 11:11 | 41.9357 | 10/8/00  | 9:29  | 54.2749 | 10/8/00  | 8:23  | 33.5171 |
| 10/8/00  | 13:15 | 56.240 | 10/8/00  | 14:48 | 20.860 | 10/8/00  | 15:01 | 34.114 | 10/8/00  | 15:11 | 41.916  | 10/8/00  | 13:29 | 54.2487 | 10/8/00  | 12:23 | 33.5171 |
| 10/8/00  | 17:15 | 56.204 | 10/8/00  | 18:48 | 20.853 | 10/8/00  | 19:01 | 34.101 | 10/8/00  | 19:11 | 41.893  | 10/8/00  | 17:29 | 54.1831 | 10/8/00  | 16:23 | 33.4875 |
| 10/8/00  | 21:15 | 56.168 | 10/8/00  | 22:48 | 20.850 | 10/8/00  | 23:01 | 34.098 | 10/8/00  | 23:11 | 41.8865 | 10/8/00  | 21:29 | 54.1601 | 10/8/00  | 20:23 | 33.481  |
| 10/9/00  | 1:15  | 56.158 | 10/9/00  | 2:48  | 20.846 | 10/9/00  | 3:01  | 34.091 | 10/9/00  | 3:11  | 41.8734 | 10/9/00  | 1:29  | 54.147  | 10/9/00  | 0:23  | 33.481  |
| 10/9/00  | 5:15  | 56.138 | 10/9/00  | 6:48  | 20.843 | 10/9/00  | 7:01  | 34.078 | 10/9/00  | 7:11  | 41.8635 | 10/9/00  | 5:29  | 54.1207 | 10/9/00  | 4:23  | 33.4711 |
| 10/9/00  | 9:15  | 56.132 | 10/9/00  | 10:48 | 20.840 | 10/9/00  | 11:01 | 34.075 | 10/9/00  | 11:11 | 41.8635 | 10/9/00  | 9:29  | 54.1306 | 10/9/00  | 8:23  | 33.4711 |
| 10/9/00  | 13:15 | 56.119 | 10/9/00  | 14:48 | 20.833 | 10/9/00  | 15:01 | 34.055 | 10/9/00  | 15:11 | 41.8209 | 10/9/00  | 13:29 | 54.1043 | 10/9/00  | 12:23 | 33.4678 |
| 10/9/00  | 17:15 | 56.050 | 10/9/00  | 18:48 | 20.820 | 10/9/00  | 19:01 | 34.019 | 10/9/00  | 19:11 | 41.7749 | 10/9/00  | 17:29 | 54.0092 | 10/9/00  | 16:23 | 33.4285 |
| 10/9/00  | 21:15 | 55.991 | 10/9/00  | 22:48 | 20.820 | 10/9/00  | 23:01 | 34.006 | 10/9/00  | 23:11 | 41.7487 | 10/9/00  | 21:29 | 53.9534 | 10/9/00  | 20:23 | 33.4154 |
| 10/10/00 | 1:15  | 55.948 | 10/10/00 | 2:48  | 20.810 | 10/10/00 | 3:01  | 33.990 | 10/10/00 | 3:11  | 41.7159 | 10/10/00 | 1:29  | 53.9436 | 10/10/00 | 0:23  | 33.4154 |
| 10/10/00 | 5:15  | 55.912 | 10/10/00 | 6:48  | 20.807 | 10/10/00 | 7:01  | 33.973 | 10/10/00 | 7:11  | 41.6962 | 10/10/00 | 5:29  | 53.8878 | 10/10/00 | 4:23  | 33.5236 |
| 10/10/00 | 9:15  | 55.896 | 10/10/00 | 10:48 | 20.810 | 10/10/00 | 11:01 | 33.973 | 10/10/00 | 11:11 | 41.6864 | 10/10/00 | 9:29  | 53.8944 | 10/10/00 | 8:23  | 33.5269 |
| 10/10/00 | 13:15 | 55.873 | 10/10/00 | 14:48 | 20.797 | 10/10/00 | 15:01 | 33.953 | 10/10/00 | 15:11 | 41.6437 | 10/10/00 | 13:29 | 53.8517 | 10/10/00 | 12:23 | 33.5269 |
| 10/10/00 | 17:15 | 55.827 | 10/10/00 | 18:48 | 20.794 | 10/10/00 | 19:01 | 33.930 | 10/10/00 | 19:11 | 41.6142 | 10/10/00 | 17:29 | 53.8222 | 10/10/00 | 16:23 | 33.5039 |
| 10/10/00 | 21:15 | 55.810 | 10/10/00 | 22:48 | 20.794 | 10/10/00 | 23:01 | 33.924 | 10/10/00 | 23:11 | 41.6076 | 10/10/00 | 21:29 | 53.8287 | 10/10/00 | 20:23 | 33.5138 |
| 10/11/00 | 1:15  | 55.804 | 10/11/00 | 2:48  | 20.794 | 10/11/00 | 3:01  | 33.917 | 10/11/00 | 3:11  | 41.5945 | 10/11/00 | 1:29  | 53.8189 | 10/11/00 | 0:23  | 33.5203 |
| 10/11/00 | 5:15  | 55.801 | 10/11/00 | 6:48  | 20.794 | 10/11/00 | 7:01  | 33.911 | 10/11/00 | 7:11  | 41.5879 | 10/11/00 | 5:29  | 53.8189 | 10/11/00 | 4:23  | 33.5203 |
| 10/11/00 | 9:15  | 55.804 | 10/11/00 | 10:48 | 20.794 | 10/11/00 | 11:01 | 33.917 | 10/11/00 | 11:11 | 41.5912 | 10/11/00 | 9:29  | 53.8386 | 10/11/00 | 8:23  | 33.5302 |
| 10/11/00 | 13:15 | 55.794 | 10/11/00 | 14:48 | 20.794 | 10/11/00 | 15:01 | 33.898 | 10/11/00 | 15:11 | 41.565  | 10/11/00 | 13:29 | 53.8222 | 10/11/00 | 12:23 | 33.5302 |
| 10/11/00 | 17:15 | 55.751 | 10/11/00 | 18:48 | 20.787 | 10/11/00 | 19:01 | 33.881 | 10/11/00 | 19:11 | 41.5354 | 10/11/00 | 17:29 | 53.7697 | 10/11/00 | 16:23 | 33.5072 |
| 10/11/00 | 21:15 | 55.732 | 10/11/00 | 22:48 | 20.794 | 10/11/00 | 23:01 | 33.878 | 10/11/00 | 23:11 | 41.5256 | 10/11/00 | 21:29 | 53.7697 | 10/11/00 | 20:23 | 33.5171 |

|          | DW06  |        |          | SB01  |        |          | SB09  |        |          | SB16  |         |          | SB18  |         |          | SB19  |         |
|----------|-------|--------|----------|-------|--------|----------|-------|--------|----------|-------|---------|----------|-------|---------|----------|-------|---------|
| Date     | Time  | Depth   | Date     | Time  | Depth   | Date     | Time  | Depth   |
|          |       |        |          |       |        |          |       |        |          |       |         |          |       |         |          |       |         |
| 10/12/00 | 1:15  | 55.728 | 10/12/00 | 2:48  | 20.794 | 10/12/00 | 3:01  | 33.875 | 10/12/00 | 3:11  | 41.5157 | 10/12/00 | 1:29  | 53.7861 | 10/12/00 | 0:23  | 33.5269 |
| 10/12/00 | 5:15  | 55.728 | 10/12/00 | 6:48  | 20.794 | 10/12/00 | 7:01  | 33.868 | 10/12/00 | 7:11  | 41.5092 | 10/12/00 | 5:29  | 53.7697 | 10/12/00 | 4:23  | 33.5302 |
| 10/12/00 | 9:15  | 55.728 | 10/12/00 | 10:48 | 20.801 | 10/12/00 | 11:01 | 33.871 | 10/12/00 | 11:11 | 41.5059 | 10/12/00 | 9:29  | 53.7697 | 10/12/00 | 8:23  | 33.5367 |
| 10/12/00 | 13:15 | 55.722 | 10/12/00 | 14:48 | 20.801 | 10/12/00 | 15:01 | 33.858 | 10/12/00 | 15:11 | 41.4829 | 10/12/00 | 13:29 | 53.75   | 10/12/00 | 12:23 | 33.54   |
| 10/12/00 | 17:15 | 55.679 | 10/12/00 | 18:48 | 20.794 | 10/12/00 | 19:01 | 33.832 | 10/12/00 | 19:11 | 41.4501 | 10/12/00 | 17:29 | 53.6844 | 10/12/00 | 16:23 | 33.5171 |
| 10/12/00 | 21:15 | 55.653 | 10/12/00 | 22:48 | 20.801 | 10/12/00 | 23:01 | 33.829 | 10/12/00 | 23:11 | 41.4436 | 10/12/00 | 21:29 | 53.6745 | 10/12/00 | 20:23 | 33.5269 |
| 10/13/00 | 1:15  | 55.643 | 10/13/00 | 2:48  | 20.804 | 10/13/00 | 3:01  | 33.825 | 10/13/00 | 3:11  | 41.4304 | 10/13/00 | 1:29  | 53.6778 | 10/13/00 | 0:23  | 33.54   |
| 10/13/00 | 5:15  | 55.636 | 10/13/00 | 6:48  | 20.804 | 10/13/00 | 7:01  | 33.812 | 10/13/00 | 7:11  | 41.414  | 10/13/00 | 5:29  | 53.6516 | 10/13/00 | 4:23  | 33.5367 |
| 10/13/00 | 9:15  | 55.623 | 10/13/00 | 10:48 | 20.807 | 10/13/00 | 11:01 | 33.816 | 10/13/00 | 11:11 | 41.4108 | 10/13/00 | 9:29  | 53.6483 | 10/13/00 | 8:23  | 33.5367 |
| 10/13/00 | 13:15 | 55.614 | 10/13/00 | 14:48 | 20.810 | 10/13/00 | 15:01 | 33.796 | 10/13/00 | 15:11 | 41.3845 | 10/13/00 | 13:29 | 53.6286 | 10/13/00 | 12:23 | 33.5433 |
| 10/13/00 | 17:15 | 55.587 | 10/13/00 | 18:48 | 20.807 | 10/13/00 | 19:01 | 33.773 | 10/13/00 | 19:11 | 41.355  | 10/13/00 | 17:29 | 53.5794 | 10/13/00 | 16:23 | 33.5335 |
| 10/13/00 | 21:15 | 55.571 | 10/13/00 | 22:48 | 20.787 | 10/13/00 | 23:01 | 33.753 | 10/13/00 | 23:11 | 41.332  | 10/13/00 | 21:29 | 53.5892 | 10/13/00 | 20:23 | 33.54   |
| 10/14/00 | 1:15  | 55.594 | 10/14/00 | 2:48  | 20.784 | 10/14/00 | 3:01  | 33.753 | 10/14/00 | 3:11  | 41.332  | 10/14/00 | 1:29  | 53.6024 | 10/14/00 | 0:23  | 33.54   |
| 10/14/00 | 5:15  | 55.568 | 10/14/00 | 6:48  | 20.778 | 10/14/00 | 7:01  | 33.753 | 10/14/00 | 7:11  | 41.3386 | 10/14/00 | 5:29  | 53.6188 | 10/14/00 | 4:23  | 33.5269 |
| 10/14/00 | 9:15  | 55.525 | 10/14/00 | 10:48 | 20.778 | 10/14/00 | 11:01 | 33.773 | 10/14/00 | 11:11 | 41.3648 | 10/14/00 | 9:29  | 53.6581 | 10/14/00 | 8:23  | 33.5203 |
| 10/14/00 | 13:15 | 55.627 | 10/14/00 | 14:48 | 20.764 | 10/14/00 | 15:01 | 33.760 | 10/14/00 | 15:11 | 41.3386 | 10/14/00 | 13:29 | 53.6483 | 10/14/00 | 12:23 | 33.5105 |
| 10/14/00 | 17:15 | 55.643 | 10/14/00 | 18:48 | 20.702 | 10/14/00 | 19:01 | 33.691 | 10/14/00 | 19:11 | 41.2762 | 10/14/00 | 17:29 | 53.6024 | 10/14/00 | 16:23 | 33.4875 |
| 10/14/00 | 21:15 | 55.594 | 10/14/00 | 22:48 | 20.669 | 10/14/00 | 23:01 | 33.704 | 10/14/00 | 23:11 | 41.3025 | 10/14/00 | 21:29 | 53.4547 | 10/14/00 | 20:23 | 33.3694 |
| 10/15/00 | 1:15  | 55.584 | 10/15/00 | 2:48  | 20.643 | 10/15/00 | 3:01  | 33.711 | 10/15/00 | 3:11  | 41.3287 | 10/15/00 | 1:29  | 53.4285 | 10/15/00 | 0:23  | 33.3891 |
| 10/15/00 | 5:15  | 55.564 | 10/15/00 | 6:48  | 20.604 | 10/15/00 | 7:01  | 33.714 | 10/15/00 | 7:11  | 41.3419 | 10/15/00 | 5:29  | 53.4449 | 10/15/00 | 4:23  | 33.3432 |
| 10/15/00 | 9:15  | 55.492 | 10/15/00 | 10:48 | 20.574 | 10/15/00 | 11:01 | 33.720 | 10/15/00 | 11:11 | 41.3747 | 10/15/00 | 9:29  | 53.727  | 10/15/00 | 8:23  | 33.3268 |
| 10/15/00 | 13:15 | 55.600 | 10/15/00 | 14:48 | 20.541 | 10/15/00 | 15:01 | 33.717 | 10/15/00 | 15:11 | 41.3845 | 10/15/00 | 13:29 | 53.7631 | 10/15/00 | 12:23 | 33.3038 |
| 10/15/00 | 17:15 | 55.636 | 10/15/00 | 18:48 | 20.509 | 10/15/00 | 19:01 | 33.707 | 10/15/00 | 19:11 | 41.3845 | 10/15/00 | 17:29 | 53.7467 | 10/15/00 | 16:23 | 33.2579 |
| 10/15/00 | 21:15 | 55.561 | 10/15/00 | 22:48 | 20.479 | 10/15/00 | 23:01 | 33.704 | 10/15/00 | 23:11 | 41.3976 | 10/15/00 | 21:29 | 53.7697 | 10/15/00 | 20:23 | 33.2316 |
| 10/16/00 | 1:15  | 55.531 | 10/16/00 | 2:48  | 20.453 | 10/16/00 | 3:01  | 33.694 | 10/16/00 | 3:11  | 41.4042 | 10/16/00 | 1:29  | 53.7861 | 10/16/00 | 0:23  | 33.2119 |
| 10/16/00 | 5:15  | 55.535 | 10/16/00 | 6:48  | 20.427 | 10/16/00 | 7:01  | 33.681 | 10/16/00 | 7:11  | 41.4009 | 10/16/00 | 5:29  | 53.7697 | 10/16/00 | 4:23  | 33.1857 |
| 10/16/00 | 9:15  | 55.522 | 10/16/00 | 10:48 | 20.404 | 10/16/00 | 11:01 | 33.671 | 10/16/00 | 11:11 | 41.4075 | 10/16/00 | 9:29  | 53.7795 | 10/16/00 | 8:23  | 33.1627 |
| 10/16/00 | 13:15 | 55.614 | 10/16/00 | 14:48 | 20.387 | 10/16/00 | 15:01 | 33.658 | 10/16/00 | 15:11 | 41.4075 | 10/16/00 | 13:29 | 53.7762 | 10/16/00 | 12:23 | 33.1529 |
| 10/16/00 | 17:15 | 55.627 | 10/16/00 | 18:48 | 20.364 | 10/16/00 | 19:01 | 33.645 | 10/16/00 | 19:11 | 41.4042 | 10/16/00 | 17:29 | 53.7697 | 10/16/00 | 16:23 | 33.1332 |
| 10/16/00 | 21:15 | 55.525 | 10/16/00 | 22:48 | 20.358 | 10/16/00 | 23:01 | 33.645 | 10/16/00 | 23:11 | 41.4108 | 10/16/00 | 21:29 | 53.773  | 10/16/00 | 20:23 | 33.1266 |
| 10/17/00 | 1:15  | 55.509 | 10/17/00 | 2:48  | 20.344 | 10/17/00 | 3:01  | 33.635 | 10/17/00 | 3:11  | 41.4173 | 10/17/00 | 1:29  | 53.773  | 10/17/00 | 0:23  | 33.1201 |
| 10/17/00 | 5:15  | 55.472 | 10/17/00 | 6:48  | 20.335 | 10/17/00 | 7:01  | 33.629 | 10/17/00 | 7:11  | 41.4206 | 10/17/00 | 5:29  | 53.7828 | 10/17/00 | 4:23  | 33.1168 |
| 10/17/00 | 9:15  | 55.449 | 10/17/00 | 10:48 | 20.325 | 10/17/00 | 11:01 | 33.632 | 10/17/00 | 11:11 | 41.4304 | 10/17/00 | 9:29  | 53.8123 | 10/17/00 | 8:23  | 33.1168 |
| 10/17/00 | 13:15 | 55.607 | 10/17/00 | 14:48 | 20.318 | 10/17/00 | 15:01 | 33.619 | 10/17/00 | 15:11 | 41.4239 | 10/17/00 | 13:29 | 53.8058 | 10/17/00 | 12:23 | 33.1102 |
| 10/17/00 | 17:15 | 55.620 | 10/17/00 | 18:48 | 20.312 | 10/17/00 | 19:01 | 33.615 | 10/17/00 | 19:11 | 41.4272 | 10/17/00 | 17:29 | 53.7828 | 10/17/00 | 16:23 | 33.0906 |
| 10/17/00 | 21:15 | 55.535 | 10/17/00 | 22:48 | 20.305 | 10/17/00 | 23:01 | 33.615 | 10/17/00 | 23:11 | 41.4337 | 10/17/00 | 21:29 | 53.8123 | 10/17/00 | 20:23 | 33.1004 |
| 10/18/00 | 1:15  | 55.522 | 10/18/00 | 2:48  | 20.302 | 10/18/00 | 3:01  | 33.609 | 10/18/00 | 3:11  | 41.4403 | 10/18/00 | 1:29  | 53.8123 | 10/18/00 | 0:23  | 33.1004 |
| 10/18/00 | 5:15  | 55.486 | 10/18/00 | 6:48  | 20.299 | 10/18/00 | 7:01  | 33.606 | 10/18/00 | 7:11  | 41.4337 | 10/18/00 | 5:29  | 53.8058 | 10/18/00 | 4:23  | 33.0938 |

| TABLE | D.3 | (Cont.) |
|-------|-----|---------|
|-------|-----|---------|

| Date     Time     Depth     Date     Time     Depth     Date     Time     Depth     Date     Time     Depth       10/1800     9:15     55.509     10/1800     10:4800     11:01     33.686     10/1800     11:11     41.437     10/1800     9:28     53.8156     10/1800     12:28     33.0086       10/1800     15:15     55.556     10/1800     12:40     33.576     10/1800     11:11     41.3276     10/18000     12:28     33.0065       10/1800     15:15     55.554     10/1800     22:278     10/1800     33.670     10/18000     31:14     41.3976     10/18000     21:28     53.7462     10/1900     23:30.0761       10/1900     51:5     55.556     10/1900     64.4     20.276     10/1900     11:11     41.3976     10/1900     22:28     37.037     10/1900     22:28     37.037     10/1900     22:28     37.037     10/1900     22:28     37.037     10/1900     22:28     37.037     10/1900     22:28     37.037 <th></th> <th>DW06</th> <th></th> <th></th> <th>SB01</th> <th></th> <th></th> <th>SB09</th> <th></th> <th></th> <th>SB16</th> <th></th> <th></th> <th>SB18</th> <th></th> <th></th> <th>SB19</th> <th></th>                                                                                                                    |          | DW06  |        |          | SB01          |        |          | SB09  |        |          | SB16  |         |          | SB18  |         |          | SB19  |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|--------|----------|---------------|--------|----------|-------|--------|----------|-------|---------|----------|-------|---------|----------|-------|---------|
| 1/18/00     1/18/00     1/18/00     1/18/00     1/18/00     1/11/18/00     1/11/18/00     1/11/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/12/18/00     1/11/11     1/13/18/00     1/11/11     1/13/18/00     1/11/11     1/13/18/00     1/11/11     1/13/18/00     1/11/11     1/13/18/00     1/11/11     1/13/18/00     1/11/11     1/13/18/00     1/11/11     1/13/18/00     1/11/11     1/13/18/00     1/11/11     1/13/18/00     1/11/11     1/13/18/00     1/11/11     1/13/18/00     1/11/11     1/13/18/00     1/11/11     1/13/18/00     1/11/11     1/13/18/00     1/11/11     1/13/18/00     1/11/11     1/13/18/00     1/11/11     1/13/18/00     1/11/11                                                                                                                                                                           | Date     | Time  | Depth  | Date     | Time          | Depth  | Date     | Time  | Depth  | Date     | Time  | Depth   | Date     | Time  | Depth   | Date     | Time  | Depth   |
| 10/18/00     9:15     55.509     10/18/00     1:01     33.606     10/18/00     1:11     41.437     10/18/00     1:23     53.8156     10/18/00     2:23     33.0986       10/18/00     17:15     55.656     10/18/00     18.48     20.229     10/18/00     19:11     41.4376     10/18/00     17:23     53.753     10/18/00     2:23     33.0986       10/18/00     17:15     55.561     10/18/00     2:24     2:27     10/18/00     33.673     10/18/00     7:11     41.3976     10/18/00     2:25     53.753     10/19/00     2:23     33.0780       10/19/00     1:15     55.570     10/19/00     1:44     20.226     10/19/00     1:511     41.3461     10/19/00     1:23     53.632     10/19/00     2:23     33.0741       10/19/00     1:15     55.702     10/19/00     1:44     20.226     10/19/00     1:23     33.643     10/19/00     1:23     35.632     10/19/00     1:23     33.643     10/19/00     1:23     33.643     10/19/00                                                                                                                                                                                                                                                                                                                     |          |       |        |          |               |        |          |       |        |          |       |         |          |       |         |          |       |         |
| 101800     13:15     55.565     1017800     14:22     33.0967       101800     11:15     55.594     1017800     22:28     33.0767     1017800     23:17     41.3976     1017800     12:29     53.733     101800     12:23     33.0676       1017800     21:15     55.564     1017800     22:24     20.279     1017800     23:17     41.3976     101800     12:29     53.733     101900     22:33     33.0673       1017900     51:5     55.565     1017900     64.84     20.226     101900     7:11     41.3976     101900     12:29     53.733     101900     22:3     33.0741       101900     7:15     55.565     101900     16:44     20.266     101900     15:01     33.527     101900     17:11     41.3841     101900     17:29     53.682     101900     12:23     33.0445       101900     17:16     55.558     102000     12:48     23.0457     101900     12:29     53.6481     100200     22:3     33.0467                                                                                                                                                                                                                                                                                                                                             | 10/18/00 | 9:15  | 55.509 | 10/18/00 | 10:48         | 20.295 | 10/18/00 | 11:01 | 33.606 | 10/18/00 | 11:11 | 41.437  | 10/18/00 | 9:29  | 53.8156 | 10/18/00 | 8:23  | 33.0938 |
| 10/18/00     17.15     55.692     10/18/00     16.23     33.076     10/18/00     21.41     41.3976     10/18/00     12.29     53.783     10/18/00     22.3     33.076       10/19/00     1.15     55.564     10/19/00     2.44     20.276     10/19/00     33.67     10/19/00     51.43     53.783     10/19/00     52.3     53.746     10/19/00     42.3     33.0709       10/19/00     51.5     55.55.26     10/19/00     10/19/00     71.14     41.3944     10/19/00     52.3     53.7463     10/19/00     42.3     33.0709       10/19/00     51.5     55.55.2     10/19/00     14.44     20.266     10/19/00     13.3577     10/19/00     11.41     41.3451     10/19/00     12.29     53.6483     10/19/00     42.2     20.266     10/19/00     33.577     10/19/00     11.41     43.3451     10/19/00     12.29     53.6483     10/19/00     42.2     33.0643       10/20/00     1.5     55.526     10/20/00     1.42     20.266     10/20/00                                                                                                                                                                                                                                                                                                               | 10/18/00 | 13:15 | 55.656 | 10/18/00 | 14:48         | 20.289 | 10/18/00 | 15:01 | 33.589 | 10/18/00 | 15:11 | 41.4239 | 10/18/00 | 13:29 | 53.8058 | 10/18/00 | 12:23 | 33.0906 |
| 10/18/00     21:15     55.541     10/18/00     22:48     20.279     10/18/00     23:17     41.3976     10/18/00     21:29     53.7467     10/18/00     20:23     33.0643       10/19/00     51:15     55.555     10/19/00     4:48     20.276     10/19/00     7:01     33.663     10/19/00     7:11     41.3976     10/19/00     5:29     53.753     10/19/00     4:23     33.0709       10/19/00     13:15     55.702     10/19/00     14:48     20.266     10/19/00     15:11     41.3441     10/19/00     17:29     53.6532     10/19/00     16:23     33.0443       10/19/00     11:15     55.558     10/20/00     2:48     20.266     10/19/00     33.517     10/19/00     31.14     41.33451     10/19/00     17:29     53.6541     10/20/00     2:23     33.0443       10/20/00     11:15     55.558     10/20/00     2:44     20.266     10/20/00     31.517     10/20/00     31.41     41.33541     10/20/00     1:29     53.6454     10/20/00                                                                                                                                                                                                                                                                                                           | 10/18/00 | 17:15 | 55.692 | 10/18/00 | 18:48         | 20.282 | 10/18/00 | 19:01 | 33.576 | 10/18/00 | 19:11 | 41.3976 | 10/18/00 | 17:29 | 53.7533 | 10/18/00 | 16:23 | 33.0676 |
| 10/19/00     1:15     55.561     10/19/00     2:48     20.276     10/19/00     3:163     10/19/00     3:163     10/19/00     1:29     53.733     10/19/00     2:33     33.0799       10/19/00     1:51     55.555     10/19/00     1:48     20.272     10/19/00     1:01     41.3941     10/19/00     9:29     53.733     10/19/00     1:23     33.0799       10/19/00     1:51     55.576     10/19/00     1:48     20.266     10/19/00     1:01     41.3941     10/19/00     1:29     53.633     10/19/00     1:23     33.0441       10/19/00     1:15     55.558     10/20/00     1:84     20.266     10/19/00     1:31     1:3381     10/20/00     1:14     41.3385     10/20/00     1:29     53.6731     10/20/00     2:28     53.6741     10/20/00     2:33.0443       10/20/00     1:51     55.525     10/20/00     1:44     2:28     10/20/00     1:41     41.3385     10/20/00     1:29     53.6441     10/20/00     2:33.30443                                                                                                                                                                                                                                                                                                                           | 10/18/00 | 21:15 | 55.594 | 10/18/00 | 22:48         | 20.279 | 10/18/00 | 23:01 | 33.570 | 10/18/00 | 23:11 | 41.3976 | 10/18/00 | 21:29 | 53.7467 | 10/18/00 | 20:23 | 33.0643 |
| 10/19/00     5:15     55.525     10/19/00     6:48     20.276     10/19/00     7:01     33.563     10/19/00     7:11     41.3944     10/19/00     5:29     53.7432     10/19/00     4:23     33.0741       10/19/00     13:15     55.702     10/19/00     14:48     20.266     10/19/00     11:01     33.537     10/19/00     11:14     14.3416     10/19/00     12:28     53.733     10/19/00     12:23     33.0441       10/19/00     11:15     55.556     10/19/00     21:16     55.556     10/20/00     2:48     20.266     10/20/00     33.517     10/20/00     31:11     41.3386     10/20/00     5:29     53.6749     10/20/00     4:23     33.0643       10/20/00     5:15     55.525     10/20/00     14:33<57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10/19/00 | 1:15  | 55.561 | 10/19/00 | 2:48          | 20.276 | 10/19/00 | 3:01  | 33.563 | 10/19/00 | 3:11  | 41.3976 | 10/19/00 | 1:29  | 53.7533 | 10/19/00 | 0:23  | 33.0709 |
| 10/19/00   9:15   55.548   10/19/00   14:48   20.272   10/19/00   11:01   33.556   10/19/00   11:11   14.3911   10/19/00   9:29   53.753   10/19/00   12:23   33.0643     10/19/00   17:15   55.754   10/19/00   14:48   20.266   10/19/00   13:01   33.527   10/19/00   11:11   41.3461   10/19/00   17:29   53.6352   10/19/00   16:23   33.0445     10/20/00   1:15   55.556   10/20/00   2:48   20.262   10/20/00   31:1   41.3366   10/20/00   1:29   53.6549   10/20/00   4:23   33.0445     10/20/00   1:15   55.556   10/20/00   2:48   20.262   10/20/00   7:11   33.517   10/20/00   1:11   41.3361   10/20/00   1:29   53.6471   10/20/00   4:23   33.0643     10/20/00   1:315   55.755   10/20/00   1:4:48   20.266   10/20/00   1:11   41.3361   10/20/00   1:29   53.6471   10/20/00   1:23   33.0643     10/20/00   1:15   5                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/19/00 | 5:15  | 55.525 | 10/19/00 | 6:48          | 20.276 | 10/19/00 | 7:01  | 33.563 | 10/19/00 | 7:11  | 41.3944 | 10/19/00 | 5:29  | 53.7402 | 10/19/00 | 4:23  | 33.0709 |
| 10/19/00     13:15     55.702     10/19/00     14:48     20.266     10/19/00     15:11     41.3648     10/19/00     17:29     53.3632     10/19/00     16:23     33.0443       10/19/00     11:15     55.558     10/20/00     22:48     20.266     10/19/00     23:11     41.349     10/19/00     21:29     53.6473     10/20/00     6:23     33.0443       10/20/00     11:15     55.558     10/20/00     6:48     20.266     10/20/00     7:11     41.3353     10/20/00     5:29     53.6749     10/20/00     4:23     33.0643       10/20/00     11:45     55.755     10/20/00     11:48     20.266     10/20/00     15:01     33.507     10/20/00     11:14     41.3353     10/20/00     12:29     53.6447     10/20/00     12:29     53.6447     10/20/00     12:29     53.6447     10/20/00     12:29     53.6475     10/20/00     12:21     13.0643     10/20/00     12:29     53.6483     10/21/00     12:21     13.0643     10/21/00     12:29     53.6483<                                                                                                                                                                                                                                                                                               | 10/19/00 | 9:15  | 55.548 | 10/19/00 | 10:48         | 20.272 | 10/19/00 | 11:01 | 33.556 | 10/19/00 | 11:11 | 41.3911 | 10/19/00 | 9:29  | 53.7533 | 10/19/00 | 8:23  | 33.0741 |
| 10/19/00     17:15     55.715     10/19/00     12:48     20.266     10/19/00     23:11     41.3451     10/19/00     17:29     53.6832     10/19/00     16:23     33.0413       10/19/00     11:15     55.558     10/20/00     2:48     20.266     10/19/00     23:11     41.3445     10/20/00     1:29     53.6713     10/20/00     -2:33     33.0451       10/20/00     5:15     55.555     10/20/00     6:48     20.269     10/20/00     7:11     41.3353     10/20/00     5:29     53.6745     10/20/00     4:23     33.0643       10/20/00     17:15     55.709     10/20/00     14:84     20.269     10/20/00     13:11     41.3051     10/20/00     12:29     53.6447     10/20/00     12:23     33.0643       10/20/00     17:15     55.709     10/21/00     14:48     20.269     10/20/00     23:11     41.3051     10/21/00     12:29     53.6443     10/21/00     12:23     33.0471       10/21/00     17:15     55.736     10/21/00                                                                                                                                                                                                                                                                                                                     | 10/19/00 | 13:15 | 55.702 | 10/19/00 | 14:48         | 20.266 | 10/19/00 | 15:01 | 33.537 | 10/19/00 | 15:11 | 41.3648 | 10/19/00 | 13:29 | 53.7238 | 10/19/00 | 12:23 | 33.0643 |
| 10/19/00     21:15     55.584     10/19/00     22:24     23.6471     10/19/00     21:24     53.6433     10/19/00     20:23     33.0446       10/20/00     1:15     55.555     10/20/00     6:48     20.262     10/20/00     3:11     11/3361     10/20/00     5:29     53.6743     10/20/00     4:23     33.0571       10/20/00     9:15     55.55     10/20/00     1:48     20.266     10/20/00     1:11     11.3356     10/20/00     1:23     53.6474     10/20/00     4:23     33.0643       10/20/00     1:15     55.750     10/20/00     14:48     20.266     10/20/00     1:11     11.3356     10/20/00     1:23     53.6471     10/20/00     1:23     53.6483     10/21/00     1:23     53.6483     10/21/00     1:23     53.6483     10/21/00     1:23     53.6483     10/21/00     1:33.507     10/21/00     1:31     1:3021     1:3123     10/21/00     1:29     53.6483     10/21/00     1:23     53.6483     10/21/00     1:31     1:3021     <                                                                                                                                                                                                                                                                                                        | 10/19/00 | 17:15 | 55.715 | 10/19/00 | 18:48         | 20.266 | 10/19/00 | 19:01 | 33.527 | 10/19/00 | 19:11 | 41.3451 | 10/19/00 | 17:29 | 53.6352 | 10/19/00 | 16:23 | 33.0413 |
| 10/2000   1:16   55.58   10/20/00   2:48   20.262   10/20/00   7:01   33.517   10/20/00   7:11   41.3386   10/20/00   5:29   53.6674   10/20/00   4:23   33.0545     10/20/00   9:15   55.525   10/20/00   10:48   20.269   10/20/00   11:11   41.3353   10/20/00   13:29   53.6647   10/20/00   4:23   33.0545     10/20/00   13:15   55.755   10/20/00   18:48   20.266   10/20/00   19:11   41.3358   10/20/00   13:29   53.6647   10/20/00   12:23   33.0643     10/20/00   11:15   55.709   10/21/00   18:48   20.269   10/20/00   23:01   33.507   10/21/00   21:14   41.3136   10/21/00   1:29   53.6483   10/21/00   2:23   33.0676     10/21/00   1:16   55.756   10/21/00   6:48   20.279   10/21/00   7:11   41.3156   10/21/00   1:29   53.6483   10/21/00   2:23   33.0676     10/21/00   1:16   55.756   10/21/00   1:48   20.                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/19/00 | 21:15 | 55.594 | 10/19/00 | 22:48         | 20.266 | 10/19/00 | 23:01 | 33.527 | 10/19/00 | 23:11 | 41.3419 | 10/19/00 | 21:29 | 53.6483 | 10/19/00 | 20:23 | 33.0446 |
| 10/20/00     5:15     55.25     10/20/00     6:48     20.269     10/20/00     7:01     33.517     10/20/00     7:11     41.3353     10/20/00     5:29     53.6549     10/20/00     4:23     33.0577       10/20/00     13:15     55.735     10/20/00     14:48     20.266     10/20/00     15:01     33.507     10/20/00     15:16     10/20/00     13:29     53.6647     10/20/00     12:23     33.0643       10/20/00     17:15     55.799     10/20/00     12:48     20.266     10/20/00     13:3507     10/20/00     11:41     41.3351     10/20/00     12:23     33.0677       10/21/00     1:15     55.799     10/21/00     2:48     20.272     10/21/00     33.507     10/21/00     1:11     41.3356     10/21/00     1:23     33.0676       10/21/00     1:15     55.725     10/21/00     1:44     20.228     10/21/00     1:11     41.3156     10/21/00     1:23     33.0741       10/21/00     1:15     55.764     10/21/00     1:44<                                                                                                                                                                                                                                                                                                                    | 10/20/00 | 1:15  | 55.558 | 10/20/00 | 2:48          | 20.262 | 10/20/00 | 3:01  | 33.517 | 10/20/00 | 3:11  | 41.3386 | 10/20/00 | 1:29  | 53.6713 | 10/20/00 | 0:23  | 33.0545 |
| 10/20/00     9:15     55.25     10/20/00     14:48     20.266     10/20/00     11:11     41.3353     10/20/00     9:29     53.6745     10/20/00     12:23     33.0643       10/20/00     17:15     55.755     10/20/00     18:48     20.266     10/20/00     19:01     33.507     10/20/00     17:14     41.3058     10/20/00     17:29     53.6447     10/20/00     16:23     33.0672       10/20/00     17:15     55.795     10/20/00     2:48     20.269     10/20/00     23:01     33.507     10/20/00     21:14     41.3123     10/21/00     17:29     53.6443     10/21/00     16:23     33.0676       10/21/00     51:15     55.735     10/21/00     6:48     20.279     10/21/00     7:01     33.507     10/21/00     11:11     41.3361     10/21/00     5:29     53.6549     10/21/00     4:23     33.0641       10/21/00     13:15     55.738     10/21/00     14:48     20.285     10/21/00     15:11     41.3287     10/21/00     12:29                                                                                                                                                                                                                                                                                                                | 10/20/00 | 5:15  | 55.525 | 10/20/00 | 6:48          | 20.269 | 10/20/00 | 7:01  | 33.517 | 10/20/00 | 7:11  | 41.3353 | 10/20/00 | 5:29  | 53.6549 | 10/20/00 | 4:23  | 33.0577 |
| 10/2000   13:15   55.735   10/20/00   14:48   20.266   10/20/00   15:01   33.507   10/20/00   17:14   13.156   10/20/00   17:29   53.6447   10/20/00   12:23   33.0643     10/20/00   21:15   55.699   10/20/00   22:48   20.266   10/20/00   19:01   33.507   10/20/00   11:41   13.123   10/20/00   12:29   53.6443   10/20/00   22:33   33.0571     10/21/00   1:15   55.799   10/21/00   22:48   20.279   10/21/00   7:01   33.507   10/21/00   11:14   13.1521   10/21/00   5:29   53.6483   10/21/00   2:23   33.0676     10/21/00   515   55.754   10/21/00   10:48   20.285   10/21/00   7:01   33.507   10/21/00   11:14   13.156   10/21/00   5:29   53.6949   10/21/00   4:23   33.071     10/21/00   13:15   55.745   10/21/00   10:44   20.285   10/21/00   13:14   13:256   10/21/00   12:29   53.708   10/21/00   12:23   33.0741   <                                                                                                                                                                                                                                                                                                                                                                                                               | 10/20/00 | 9:15  | 55.525 | 10/20/00 | 10:48         | 20.269 | 10/20/00 | 11:01 | 33.517 | 10/20/00 | 11:11 | 41.3353 | 10/20/00 | 9:29  | 53.6745 | 10/20/00 | 8:23  | 33.0643 |
| 10/20/00   17:15   55.709   10/20/00   18:48   20.266   10/20/00   23:01   33.507   10/20/00   23:11   41.3058   10/20/00   12:12   53.6483   10/20/00   20:23   33.0577     10/21/00   1:15   55.709   10/21/00   2:48   20.272   10/21/00   33.507   10/21/00   1:14   41.3123   10/20/00   1:29   53.6483   10/21/00   2:23   33.0577     10/21/00   5:15   55.725   10/21/00   6:48   20.279   10/21/00   7:01   33.507   10/21/00   7:11   41.3156   10/21/00   5:29   53.6483   10/21/00   4:23   33.071     10/21/00   17:15   55.738   10/21/00   14:48   20.285   10/21/00   15:01   33.517   10/21/00   15:11   41.3156   10/21/00   13:23   33.084     10/21/00   17:15   55.745   10/21/00   18:48   20.289   10/21/00   13:357   10/21/00   13:14   41.3255   10/21/00   17:29   53.6745   10/21/00   16:23   33.0741     10/21/00                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/20/00 | 13:15 | 55.735 | 10/20/00 | 14:48         | 20.266 | 10/20/00 | 15:01 | 33.507 | 10/20/00 | 15:11 | 41.3156 | 10/20/00 | 13:29 | 53.6647 | 10/20/00 | 12:23 | 33.0643 |
| 10/20/00   21:15   55.699   10/20/00   22:48   20.299   10/21/00   33.507   10/21/00   21:14   13.1316   10/21/00   1:29   53.6483   10/21/00   2:23   33.0771     10/21/00   5:15   55.725   10/21/00   6:48   20.272   10/21/00   7:01   33.507   10/21/00   7:11   41.3051   10/21/00   1:29   53.6483   10/21/00   4:23   33.0741     10/21/00   9:15   55.738   10/21/00   10:48   20.285   10/21/00   11:01   33.527   10/21/00   11:11   41.3156   10/21/00   13:29   53.7008   10/21/00   8:23   33.0946     10/21/00   13:15   55.764   10/21/00   14:48   20.289   10/21/00   13:51   10/21/00   13:29   53.7088   10/21/00   12:23   33.0741     10/21/00   13:15   55.755   10/21/00   14:48   20.292   10/21/00   33.527   10/21/00   13:11   41.3255   10/21/00   12:29   53.7238   10/21/00   22:23   33.0741     10/22/00   1:15                                                                                                                                                                                                                                                                                                                                                                                                                   | 10/20/00 | 17:15 | 55.709 | 10/20/00 | 18:48         | 20.266 | 10/20/00 | 19:01 | 33.507 | 10/20/00 | 19:11 | 41.3058 | 10/20/00 | 17:29 | 53.6417 | 10/20/00 | 16:23 | 33.0512 |
| 10/21/00   1:15   55.709   10/21/00   2:48   20.272   10/21/00   33.507   10/21/00   3:11   41.3091   10/21/00   1:29   53.6483   10/21/00   0:23   33.0676     10/21/00   5:15   55.728   10/21/00   6:48   20.279   10/21/00   7:01   33.507   10/21/00   11:11   41.3156   10/21/00   5:29   53.6549   10/21/00   8:23   33.0741     10/21/00   13:15   55.738   10/21/00   14:48   20.285   10/21/00   15:01   33.517   10/21/00   15:11   41.356   10/21/00   13:29   53.7088   10/21/00   12:23   33.0976     10/21/00   17:15   55.738   10/21/00   18:48   20.289   10/21/00   23:01   33.527   10/21/00   23:11   41.3256   10/21/00   1:29   53.738   10/21/00   20:23   33.0971     10/22/00   1:15   55.778   10/22/00   1:48   20.392   10/22/00   3:11   41.3326   10/22/00   1:29   53.738   10/22/00   4:23   33.1037     10                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/20/00 | 21:15 | 55.699 | 10/20/00 | 22:48         | 20.269 | 10/20/00 | 23:01 | 33.507 | 10/20/00 | 23:11 | 41.3123 | 10/20/00 | 21:29 | 53.6483 | 10/20/00 | 20:23 | 33.0577 |
| 10/21/00   5:15   55.725   10/21/00   6:48   20.279   10/21/00   7:01   33.507   10/21/00   7:11   41.3156   10/21/00   5:29   53.6549   10/21/00   4:23   33.0741     10/21/00   9:15   55.784   10/21/00   14:48   20.285   10/21/00   15:01   33.517   10/21/00   11:11   41.3156   10/21/00   13:29   53.699   10/21/00   12:23   33.0961     10/21/00   17:15   55.764   10/21/00   14:48   20.289   10/21/00   13:14   11.3156   10/21/00   17:29   53.6745   10/21/00   12:23   33.09741     10/21/00   21:15   55.7754   10/21/00   22:48   20.292   10/21/00   23:01   33.527   10/21/00   23:11   41.322   10/21/00   21:29   53.6745   10/21/00   22:23   33.0873     10/22/00   1:15   55.778   10/22/00   2:48   20.302   10/22/00   7:01   33.537   10/22/00   11:11   41.3361   10/22/00   5:29   53.738   10/22/00   4:23   33.1037                                                                                                                                                                                                                                                                                                                                                                                                                | 10/21/00 | 1:15  | 55.709 | 10/21/00 | 2:48          | 20.272 | 10/21/00 | 3:01  | 33.507 | 10/21/00 | 3:11  | 41.3091 | 10/21/00 | 1:29  | 53.6483 | 10/21/00 | 0:23  | 33.0676 |
| 10/21/00   9:15   55.738   10/21/00   10:48   20.285   10/21/00   11:01   33.520   10/21/00   11:11   41.3287   10/21/00   9:29   53.6909   10/21/00   8:23   33.084     10/21/00   13:15   55.738   10/21/00   18:48   20.285   10/21/00   13:01   33.517   10/21/00   15:11   41.3156   10/21/00   13:29   53.708   10/21/00   12:23   33.0906     10/21/00   21:15   55.7745   10/21/00   22:48   20.292   10/21/00   23:01   33.527   10/21/00   23:11   41.3255   10/21/00   1:29   53.738   10/22/00   2:23   33.1044     10/22/00   515   55.776   10/22/00   6:48   20.302   10/22/00   33.537   10/22/00   1:11   41.3326   10/22/00   1:29   53.738   10/22/00   4:23   33.1034     10/22/00   515   55.778   10/22/00   1:48   20.292   10/22/00   1:11   41.3517   10/22/00   1:29   53.738   10/22/00   1:2:3   33.1037     10/                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/21/00 | 5:15  | 55.725 | 10/21/00 | 6:48          | 20.279 | 10/21/00 | 7:01  | 33.507 | 10/21/00 | 7:11  | 41.3156 | 10/21/00 | 5:29  | 53.6549 | 10/21/00 | 4:23  | 33.0741 |
| 10/21/00   13:15   55.764   10/21/00   14:48   20.285   10/21/00   15:01   33.517   10/21/00   15:11   41.3156   10/21/00   13:29   53.7008   10/21/00   12:23   33.0906     10/21/00   17:15   55.764   10/21/00   22:48   20.289   10/21/00   19:01   33.514   10/21/00   23:11   41.3255   10/21/00   21:29   53.6745   10/21/00   20:23   33.0873     10/22/00   1:15   55.764   10/22/00   2:48   20.292   10/21/00   33.527   10/22/00   3:11   41.3325   10/22/00   12:9   53.6942   10/21/00   20:33   30.0873     10/22/00   1:15   55.778   10/22/00   6:48   20.302   10/22/00   7:01   33.537   10/22/00   1:11   41.3326   10/22/00   5:29   53.736   10/22/00   4:23   33.1037     10/22/00   13:15   55.877   10/22/00   14:48   20.295   10/22/00   15:11   41.3511   10/22/00   12:29   53.7402   10/22/00   4:23   33.1037                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/21/00 | 9:15  | 55.738 | 10/21/00 | 10:48         | 20.285 | 10/21/00 | 11:01 | 33.520 | 10/21/00 | 11:11 | 41.3287 | 10/21/00 | 9:29  | 53.6909 | 10/21/00 | 8:23  | 33.084  |
| 10/21/00     17:15     55.738     10/21/00     18:48     20.289     10/21/00     13:514     10/21/00     19:11     41.3156     10/21/00     17:29     53.6745     10/21/00     16:23     33.0741       10/21/00     21:15     55.745     10/21/00     22:48     20.292     10/21/00     23:01     33.520     10/21/00     23:11     41.3325     10/21/00     21:29     53.6442     10/21/00     20:23     33.0873       10/22/00     15:15     55.778     10/22/00     2:48     20.302     10/22/00     7:11     41.3326     10/22/00     5:29     53.7336     10/22/00     4:23     33.1037       10/22/00     515     55.778     10/22/00     10:48     20.292     10/22/00     11:11     41.3517     10/22/00     5:29     53.773     10/22/00     8:23     33.1135       10/22/00     13:15     55.877     10/22/00     18:01     33.553     10/22/00     13:14     41.3911     10/22/00     13:29     53.773     10/22/00     12:23     33.1037 </td <td>10/21/00</td> <td>13:15</td> <td>55.764</td> <td>10/21/00</td> <td>14:48</td> <td>20.285</td> <td>10/21/00</td> <td>15:01</td> <td>33.517</td> <td>10/21/00</td> <td>15:11</td> <td>41.3156</td> <td>10/21/00</td> <td>13:29</td> <td>53.7008</td> <td>10/21/00</td> <td>12:23</td> <td>33.0906</td> | 10/21/00 | 13:15 | 55.764 | 10/21/00 | 14:48         | 20.285 | 10/21/00 | 15:01 | 33.517 | 10/21/00 | 15:11 | 41.3156 | 10/21/00 | 13:29 | 53.7008 | 10/21/00 | 12:23 | 33.0906 |
| 10/21/00   21:15   55.745   10/21/00   22:48   20.292   10/21/00   23:01   33.520   10/21/00   23:11   41.3255   10/21/00   21:29   53.6942   10/21/00   20:23   33.0873     10/22/00   1:15   55.764   10/22/00   2:48   20.302   10/22/00   30:1   33.527   10/22/00   31:1   41.322   10/22/00   1:29   53.7238   10/22/00   4:23   33.1037     10/22/00   9:15   55.778   10/22/00   10:48   20.292   10/22/00   11:01   33.537   10/22/00   11:11   41.3517   10/22/00   9:29   53.7736   10/22/00   8:23   33.1135     10/22/00   13:15   55.837   10/22/00   14:48   20.299   10/22/00   15:01   33.557   10/22/00   15:11   41.3517   10/22/00   17:29   53.784   10/22/00   12:23   33.1037     10/22/00   17:15   55.840   10/22/00   18:48   20.299   10/22/00   23:01   33.563   10/22/00   23:11   41.3911   10/22/00   12:29   53.8081                                                                                                                                                                                                                                                                                                                                                                                                               | 10/21/00 | 17:15 | 55.738 | 10/21/00 | 18:48         | 20.289 | 10/21/00 | 19:01 | 33.514 | 10/21/00 | 19:11 | 41.3156 | 10/21/00 | 17:29 | 53.6745 | 10/21/00 | 16:23 | 33.0741 |
| 10/22/00   1:15   55.764   10/22/00   2:48   20.302   10/22/00   3:01   33.527   10/22/00   3:11   41.332   10/22/00   1:29   53.7238   10/22/00   0:23   33.1004     10/22/00   5:15   55.778   10/22/00   6:48   20.302   10/22/00   7:01   33.537   10/22/00   7:11   41.3386   10/22/00   5:29   53.7336   10/22/00   4:23   33.1037     10/22/00   9:15   55.778   10/22/00   10:48   20.292   10/22/00   11:01   33.533   10/22/00   11:11   41.3419   10/22/00   9:29   53.7402   10/22/00   8:23   33.1135     10/22/00   17:15   55.840   10/22/00   14:48   20.299   10/22/00   13:15   10/22/00   17:29   53.7784   10/22/00   12:23   33.1037     10/22/00   21:15   55.797   10/22/00   22:48   20.302   10/22/00   33.613   10/22/00   21:14   13.861   10/22/00   12:9   53.894   10/22/00   22:33   33.1168   10/23/00   1:14                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/21/00 | 21:15 | 55.745 | 10/21/00 | 22:48         | 20.292 | 10/21/00 | 23:01 | 33.520 | 10/21/00 | 23:11 | 41.3255 | 10/21/00 | 21:29 | 53.6942 | 10/21/00 | 20:23 | 33.0873 |
| 10/22/00     5:15     55.778     10/22/00     6:48     20.302     10/22/00     7:01     33.537     10/22/00     7:11     41.3386     10/22/00     5:29     53.7336     10/22/00     4:23     33.1037       10/22/00     9:15     55.778     10/22/00     10:48     20.292     10/22/00     11:01     33.533     10/22/00     11:11     41.3419     10/22/00     9:29     53.7402     10/22/00     8:23     33.1135       10/22/00     13:15     55.837     10/22/00     14:48     20.295     10/22/00     15:11     41.3517     10/22/00     13:29     53.773     10/22/00     12:23     33.1037       10/22/00     13:15     55.797     10/22/00     14:48     20.299     10/22/00     3:01     33.557     10/22/00     2:129     53.894     10/22/00     16:23     33.1037       10/23/00     1:15     55.797     10/23/00     2:48     20.299     10/23/00     3:01     33.567     10/23/00     1:14     41.3911     10/23/00     1:29     53.85                                                                                                                                                                                                                                                                                                                | 10/22/00 | 1:15  | 55.764 | 10/22/00 | 2:48          | 20.302 | 10/22/00 | 3:01  | 33.527 | 10/22/00 | 3:11  | 41.332  | 10/22/00 | 1:29  | 53.7238 | 10/22/00 | 0:23  | 33.1004 |
| 10/22/00     9:15     55.778     10/22/00     10:48     20.292     10/22/00     11:01     33.533     10/22/00     11:11     41.3419     10/22/00     9:29     53.7402     10/22/00     8:23     33.1135       10/22/00     13:15     55.837     10/22/00     14:48     20.295     10/22/00     15:01     33.537     10/22/00     15:11     41.3517     10/22/00     13:29     53.773     10/22/00     12:23     33.1037       10/22/00     17:15     55.840     10/22/00     18:48     20.299     10/22/00     23:01     33.550     10/22/00     23:11     41.3911     10/22/00     21:29     53.894     10/22/00     20:23     33.1135       10/23/00     1:15     55.791     10/23/00     2:48     20.299     10/23/00     30:1     33.573     10/23/00     3:11     41.4042     10/23/00     1:29     53.8583     10/23/00     2:23     33.1108       10/23/00     51:5     55.791     10/23/00     10:48     20.292     10/23/00     7:01     3                                                                                                                                                                                                                                                                                                                | 10/22/00 | 5:15  | 55.778 | 10/22/00 | 6:48          | 20.302 | 10/22/00 | 7:01  | 33.537 | 10/22/00 | 7:11  | 41.3386 | 10/22/00 | 5:29  | 53.7336 | 10/22/00 | 4:23  | 33.1037 |
| 10/22/0013:1555.83710/22/0014:4820.29510/22/0015:0133.53710/22/0015:1141.351710/22/0013:2953.77310/22/0012:2333.120110/22/0017:1555.84010/22/0018:4820.29910/22/0019:0133.55010/22/0019:1141.368110/22/0017:2953.789410/22/0016:2333.103710/22/0021:1555.79710/22/0022:4820.30210/22/0023:0133.56310/22/0023:1141.391110/22/0021:2953.809110/22/0020:2333.113510/23/001:1555.79110/23/002:4820.29910/23/003:0133.57310/23/003:1141.404210/23/001:2953.858310/23/000:2333.116810/23/005:1555.79110/23/006:4820.29210/23/007:0133.57610/23/007:1141.41410/23/005:2953.858310/23/004:2333.103710/23/009:1555.75110/23/0010:4820.29210/23/0015:0133.59310/23/0015:1141.443610/23/0013:2953.897610/23/0012:2333.103710/23/0013:1555.81010/23/0018:4820.27610/23/0015:0133.59910/23/0015:1141.443610/23/0013:2953.897610/23/0012:2333.103710/23/0013:15 <t< td=""><td>10/22/00</td><td>9:15</td><td>55.778</td><td>10/22/00</td><td>10:48</td><td>20.292</td><td>10/22/00</td><td>11:01</td><td>33.533</td><td>10/22/00</td><td>11:11</td><td>41.3419</td><td>10/22/00</td><td>9:29</td><td>53.7402</td><td>10/22/00</td><td>8:23</td><td>33.1135</td></t<>                                                                                                              | 10/22/00 | 9:15  | 55.778 | 10/22/00 | 10:48         | 20.292 | 10/22/00 | 11:01 | 33.533 | 10/22/00 | 11:11 | 41.3419 | 10/22/00 | 9:29  | 53.7402 | 10/22/00 | 8:23  | 33.1135 |
| 10/22/0017:1555.84010/22/0018:4820.29910/22/0019:0133.55010/22/0019:1141.368110/22/0017:2953.789410/22/0016:2333.103710/22/0021:1555.79710/22/0022:4820.30210/22/0023:0133.56310/22/0023:1141.391110/22/0021:2953.809110/22/0020:2333.113510/23/001:1555.79110/23/002:4820.29910/23/003:0133.57310/23/003:1141.404210/23/001:2953.853310/23/000:2333.116810/23/005:1555.79110/23/006:4820.29210/23/007:0133.57610/23/007:1141.41410/23/005:2953.858310/23/004:2333.103710/23/009:1555.75110/23/0010:4820.29210/23/0015:0133.59610/23/0011:1141.443610/23/009:2953.851710/23/008:2333.103710/23/0013:1555.81010/23/0014:4820.28510/23/0015:0133.59910/23/0015:1141.443610/23/0013:2953.920610/23/0012:2333.103710/23/0017:1555.83010/23/0018:4820.27610/23/0023:0133.60210/23/0023:1141.466510/23/0017:2953.927210/23/0020:2333.103710/23/0021:15 <td< td=""><td>10/22/00</td><td>13:15</td><td>55.837</td><td>10/22/00</td><td>14:48</td><td>20.295</td><td>10/22/00</td><td>15:01</td><td>33.537</td><td>10/22/00</td><td>15:11</td><td>41.3517</td><td>10/22/00</td><td>13:29</td><td>53.773</td><td>10/22/00</td><td>12:23</td><td>33.1201</td></td<>                                                                                                           | 10/22/00 | 13:15 | 55.837 | 10/22/00 | 14:48         | 20.295 | 10/22/00 | 15:01 | 33.537 | 10/22/00 | 15:11 | 41.3517 | 10/22/00 | 13:29 | 53.773  | 10/22/00 | 12:23 | 33.1201 |
| 10/22/0021:1555.79710/22/0022:4820.30210/22/0023:0133.56310/22/0023:1141.391110/22/0021:2953.809110/22/0020:2333.113510/23/001:1555.79110/23/002:4820.29910/23/003:0133.57310/23/003:1141.404210/23/001:2953.835310/23/000:2333.116810/23/005:1555.79110/23/006:4820.29210/23/007:0133.57610/23/007:1141.41410/23/005:2953.858310/23/004:2333.120110/23/009:1555.75110/23/0010:4820.29210/23/0011:0133.59310/23/0011:1141.443610/23/009:2953.851710/23/008:2333.103710/23/0013:1555.81010/23/0014:4820.28510/23/0015:0133.59810/23/0015:1141.443610/23/0013:2953.920610/23/0012:2333.103710/23/0017:1555.83010/23/0018:4820.27910/23/0019:0133.59910/23/0019:1141.450110/23/0017:2953.897610/23/0016:2333.103710/23/0021:1555.78410/23/0022:4820.27610/23/0023:0133.69210/23/0023:1141.465310/23/0021:2953.927210/23/0020:2333.103710/24/001:15                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/22/00 | 17:15 | 55.840 | 10/22/00 | 18:48         | 20.299 | 10/22/00 | 19:01 | 33.550 | 10/22/00 | 19:11 | 41.3681 | 10/22/00 | 17:29 | 53.7894 | 10/22/00 | 16:23 | 33.1037 |
| 10/23/001:1555.79110/23/002:4820.29910/23/003:0133.57310/23/003:1141.404210/23/001:2953.835310/23/000:2333.116810/23/005:1555.79110/23/006:4820.29210/23/007:0133.57610/23/007:1141.41410/23/005:2953.858310/23/004:2333.120110/23/009:1555.75110/23/0010:4820.29210/23/0011:0133.59310/23/0011:1141.443610/23/009:2953.851710/23/008:2333.103710/23/0013:1555.81010/23/0014:4820.28510/23/0015:0133.59610/23/0015:1141.443610/23/0013:2953.920610/23/0012:2333.103710/23/0017:1555.83010/23/0018:4820.27910/23/0019:0133.59910/23/0019:1141.450110/23/0017:2953.897610/23/0016:2333.103710/23/0021:1555.78410/23/0022:4820.27610/23/0023:0133.60210/23/0023:1141.465510/23/0021:2953.927210/23/0020:2333.110210/24/001:1555.76110/24/002:4820.26610/24/003:0133.59910/24/003:1141.465310/24/001:2953.927210/24/000:2333.110210/24/0051555.761<                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/22/00 | 21:15 | 55.797 | 10/22/00 | 22:48         | 20.302 | 10/22/00 | 23:01 | 33.563 | 10/22/00 | 23:11 | 41.3911 | 10/22/00 | 21:29 | 53.8091 | 10/22/00 | 20:23 | 33.1135 |
| 10/23/005:1555.79110/23/006:4820.29210/23/007:0133.57610/23/007:1141.41410/23/005:2953.858310/23/004:2333.120110/23/009:1555.75110/23/0010:4820.29210/23/0011:0133.59310/23/0011:1141.443610/23/009:2953.851710/23/008:2333.103710/23/0013:1555.81010/23/0014:4820.28510/23/0015:0133.59610/23/0015:1141.443610/23/0013:2953.920610/23/0012:2333.120110/23/0017:1555.83010/23/0018:4820.27910/23/0019:0133.59910/23/0019:1141.450110/23/0017:2953.897610/23/0016:2333.103710/23/0021:1555.78410/23/0022:4820.27610/23/0023:0133.60210/23/0023:1141.465510/23/0021:2953.927210/23/0020:2333.103710/24/001:1555.77410/24/002:4820.26610/24/003:0133.59910/24/003:1141.465310/24/001:2953.927210/24/000:2333.110210/24/005:1555.76110/24/006:4820.25610/24/007:0133.59610/24/007:1141.465510/24/005:2953.927210/24/004:2333.097110/24/005:1555.755                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/23/00 | 1:15  | 55.791 | 10/23/00 | 2:48          | 20.299 | 10/23/00 | 3:01  | 33.573 | 10/23/00 | 3:11  | 41.4042 | 10/23/00 | 1:29  | 53.8353 | 10/23/00 | 0:23  | 33.1168 |
| 10/23/009:1555.75110/23/0010:4820.29210/23/0011:0133.59310/23/0011:1141.443610/23/009:2953.851710/23/008:2333.103710/23/0013:1555.81010/23/0014:4820.28510/23/0015:0133.59610/23/0015:1141.443610/23/0013:2953.920610/23/0012:2333.120110/23/0017:1555.83010/23/0018:4820.27910/23/0019:0133.59910/23/0019:1141.450110/23/0017:2953.897610/23/0016:2333.103710/23/0021:1555.78410/23/0022:4820.27610/23/0023:0133.60210/23/0023:1141.466510/23/0021:2953.927210/23/0020:2333.103710/24/001:1555.77410/24/002:4820.26610/24/003:0133.59910/24/003:1141.465310/24/001:2953.927210/24/000:2333.110210/24/005:1555.76110/24/006:4820.25610/24/007:0133.59610/24/007:1141.465510/24/005:2953.927210/24/004:2333.097110/24/005:1555.76110/24/006:4820.25610/24/007:0133.59610/24/007:1141.465810/24/005:2953.927210/24/004:2333.097110/24/009:1555.75                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/23/00 | 5:15  | 55.791 | 10/23/00 | 6:48          | 20.292 | 10/23/00 | 7:01  | 33.576 | 10/23/00 | 7:11  | 41.414  | 10/23/00 | 5:29  | 53.8583 | 10/23/00 | 4:23  | 33.1201 |
| 10/23/0013:1555.81010/23/0014:4820.28510/23/0015:0133.59610/23/0015:1141.443610/23/0013:2953.920610/23/0012:2333.120110/23/0017:1555.83010/23/0018:4820.27910/23/0019:0133.59910/23/0019:1141.450110/23/0017:2953.897610/23/0016:2333.103710/23/0021:1555.78410/23/0022:4820.27610/23/0023:0133.60210/23/0023:1141.466510/23/0021:2953.927210/23/0020:2333.103710/24/001:1555.77410/24/002:4820.26610/24/003:0133.59910/24/003:1141.463310/24/001:2953.927210/24/000:2333.110210/24/005:1555.76110/24/006:4820.25610/24/007:0133.59610/24/007:1141.465510/24/005:2953.927210/24/004:2333.097110/24/009:1555.75510/24/0010:4820.25310/24/0011:0133.59610/24/0011:1141.469810/24/009:2953.950110/24/008:2333.0906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/23/00 | 9:15  | 55.751 | 10/23/00 | 10:48         | 20.292 | 10/23/00 | 11:01 | 33.593 | 10/23/00 | 11:11 | 41.4436 | 10/23/00 | 9:29  | 53.8517 | 10/23/00 | 8:23  | 33.1037 |
| 10/23/0017:1555.83010/23/0018:4820.27910/23/0019:0133.59910/23/0019:1141.450110/23/0017:2953.897610/23/0016:2333.103710/23/0021:1555.78410/23/0022:4820.27610/23/0023:0133.60210/23/0023:1141.466510/23/0021:2953.927210/23/0020:2333.103710/24/001:1555.77410/24/002:4820.26610/24/003:0133.59910/24/003:1141.463310/24/001:2953.927210/24/000:2333.110210/24/005:1555.76110/24/006:4820.25610/24/007:0133.59610/24/007:1141.466510/24/005:2953.927210/24/004:2333.097110/24/009:1555.75510/24/0010:4820.25310/24/0011:0133.59610/24/0011:1141.469810/24/009:2953.950110/24/008:2333.0906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10/23/00 | 13:15 | 55.810 | 10/23/00 | 14:48         | 20.285 | 10/23/00 | 15:01 | 33.596 | 10/23/00 | 15:11 | 41.4436 | 10/23/00 | 13:29 | 53.9206 | 10/23/00 | 12:23 | 33.1201 |
| 10/23/00   21:15   55.784   10/23/00   22:48   20.276   10/23/00   23:01   33.602   10/23/00   23:11   41.4665   10/23/00   21:29   53.9272   10/23/00   20:23   33.1037     10/24/00   1:15   55.774   10/24/00   2:48   20.266   10/24/00   3:01   33.599   10/24/00   3:11   41.4633   10/24/00   1:29   53.9272   10/24/00   0:23   33.1037     10/24/00   5:15   55.761   10/24/00   2:48   20.256   10/24/00   7:01   33.596   10/24/00   7:11   41.4655   10/24/00   5:29   53.9272   10/24/00   0:23   33.1037     10/24/00   5:15   55.761   10/24/00   6:48   20.256   10/24/00   7:01   33.596   10/24/00   7:11   41.4655   10/24/00   5:29   53.9272   10/24/00   4:23   33.0971     10/24/00   9:15   55.755   10/24/00   10:48   20.253   10/24/00   11:01   33.596   10/24/00   11:11   41.4698   10/24/00   9:29   53.9501   10                                                                                                                                                                                                                                                                                                                                                                                                                   | 10/23/00 | 17:15 | 55.830 | 10/23/00 | 18:48         | 20.279 | 10/23/00 | 19:01 | 33.599 | 10/23/00 | 19:11 | 41.4501 | 10/23/00 | 17:29 | 53.8976 | 10/23/00 | 16:23 | 33.1037 |
| 10/24/00     1:15     55.774     10/24/00     2:48     20.266     10/24/00     3:01     33.599     10/24/00     3:11     41.4633     10/24/00     1:29     53.9272     10/24/00     0:23     33.1102       10/24/00     5:15     55.761     10/24/00     6:48     20.256     10/24/00     7:01     33.596     10/24/00     7:11     41.4655     10/24/00     5:29     53.9272     10/24/00     4:23     33.0971       10/24/00     9:15     55.755     10/24/00     10:48     20.253     10/24/00     11:01     33.596     10/24/00     11:11     41.4698     10/24/00     9:29     53.9501     10/24/00     8:23     33.0906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/23/00 | 21:15 | 55.784 | 10/23/00 | 22:48         | 20.276 | 10/23/00 | 23:01 | 33.602 | 10/23/00 | 23:11 | 41.4665 | 10/23/00 | 21:29 | 53.9272 | 10/23/00 | 20:23 | 33.1037 |
| 10/24/00     5:15     55.761     10/24/00     6:48     20.256     10/24/00     7:01     33.596     10/24/00     7:11     41.4665     10/24/00     5:29     53.9272     10/24/00     4:23     33.0971       10/24/00     9:15     55.755     10/24/00     10:48     20.253     10/24/00     11:01     33.596     10/24/00     11:11     41.4698     10/24/00     9:29     53.9501     10/24/00     8:23     33.0906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10/24/00 | 1:15  | 55.774 | 10/24/00 | 2:48          | 20.266 | 10/24/00 | 3:01  | 33.599 | 10/24/00 | 3:11  | 41.4633 | 10/24/00 | 1:29  | 53.9272 | 10/24/00 | 0:23  | 33.1102 |
| 10/24/00 9:15 55.755 10/24/00 10:48 20.253 10/24/00 11:01 33.596 10/24/00 11:11 41.4698 10/24/00 9:29 53.9501 10/24/00 8:23 33.0906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/24/00 | 5:15  | 55.761 | 10/24/00 | 6:48          | 20.256 | 10/24/00 | 7:01  | 33.596 | 10/24/00 | 7:11  | 41.4665 | 10/24/00 | 5:29  | 53.9272 | 10/24/00 | 4:23  | 33.0971 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/24/00 | 9:15  | 55.755 | 10/24/00 | 10:48         | 20.253 | 10/24/00 | 11:01 | 33.596 | 10/24/00 | 11:11 | 41.4698 | 10/24/00 | 9:29  | 53.9501 | 10/24/00 | 8:23  | 33.0906 |
| 10/24/00 13:15 55.840 10/24/00 14:48 20.236 10/24/00 15:01 33.579 10/24/00 15:11 41.4436 10/24/00 13:29 53.9272 10/24/00 12:23 33.0873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/24/00 | 13:15 | 55.840 | 10/24/00 | <u>14</u> :48 | 20.236 | 10/24/00 | 15:01 | 33.579 | 10/24/00 | 15:11 | 41.4436 | 10/24/00 | 13:29 | 53.9272 | 10/24/00 | 12:23 | 33.0873 |

|          | DW06  |        |          | SB01  |        |          | SB09  |        |          | SB16  |         |          | SB18  |         |          | SB19  |         |
|----------|-------|--------|----------|-------|--------|----------|-------|--------|----------|-------|---------|----------|-------|---------|----------|-------|---------|
| Date     | Time  | Depth   | Date     | Time  | Depth   | Date     | Time  | Depth   |
|          |       |        |          |       |        |          |       |        |          |       |         |          |       |         |          |       |         |
| 10/24/00 | 17:15 | 55.886 | 10/24/00 | 18:48 | 20.220 | 10/24/00 | 19:01 | 33.560 | 10/24/00 | 19:11 | 41.4272 | 10/24/00 | 17:29 | 53.8451 | 10/24/00 | 16:23 | 33.0545 |
| 10/24/00 | 21:15 | 55.830 | 10/24/00 | 22:48 | 20.217 | 10/24/00 | 23:01 | 33.553 | 10/24/00 | 23:11 | 41.414  | 10/24/00 | 21:29 | 53.7992 | 10/24/00 | 20:23 | 33.0479 |
| 10/25/00 | 1:15  | 55.833 | 10/25/00 | 2:48  | 20.203 | 10/25/00 | 3:01  | 33.533 | 10/25/00 | 3:11  | 41.3976 | 10/25/00 | 1:29  | 53.7927 | 10/25/00 | 0:23  | 33.0381 |
| 10/25/00 | 5:15  | 55.840 | 10/25/00 | 6:48  | 20.194 | 10/25/00 | 7:01  | 33.517 | 10/25/00 | 7:11  | 41.3747 | 10/25/00 | 5:29  | 53.7533 | 10/25/00 | 4:23  | 33.0184 |
| 10/25/00 | 9:15  | 55.814 | 10/25/00 | 10:48 | 20.184 | 10/25/00 | 11:01 | 33.504 | 10/25/00 | 11:11 | 41.3583 | 10/25/00 | 9:29  | 53.7566 | 10/25/00 | 8:23  | 33.0184 |
| 10/25/00 | 13:15 | 55.876 | 10/25/00 | 14:48 | 20.167 | 10/25/00 | 15:01 | 33.481 | 10/25/00 | 15:11 | 41.3255 | 10/25/00 | 13:29 | 53.773  | 10/25/00 | 12:23 | 33.061  |
| 10/25/00 | 17:15 | 55.840 | 10/25/00 | 18:48 | 20.154 | 10/25/00 | 19:01 | 33.455 | 10/25/00 | 19:11 | 41.2959 | 10/25/00 | 17:29 | 53.6352 | 10/25/00 | 16:23 | 32.9724 |
| 10/25/00 | 21:15 | 55.778 | 10/25/00 | 22:48 | 20.151 | 10/25/00 | 23:01 | 33.445 | 10/25/00 | 23:11 | 41.2861 | 10/25/00 | 21:29 | 53.5991 | 10/25/00 | 20:23 | 32.9724 |
| 10/26/00 | 1:15  | 55.768 | 10/26/00 | 2:48  | 20.144 | 10/26/00 | 3:01  | 33.442 | 10/26/00 | 3:11  | 41.2697 | 10/26/00 | 1:29  | 53.5958 | 10/26/00 | 0:23  | 32.9823 |
| 10/26/00 | 5:15  | 55.738 | 10/26/00 | 6:48  | 20.141 | 10/26/00 | 7:01  | 33.432 | 10/26/00 | 7:11  | 41.2598 | 10/26/00 | 5:29  | 53.6122 | 10/26/00 | 4:23  | 32.9757 |
| 10/26/00 | 9:15  | 55.722 | 10/26/00 | 10:48 | 20.138 | 10/26/00 | 11:01 | 33.438 | 10/26/00 | 11:11 | 41.2598 | 10/26/00 | 9:29  | 53.6319 | 10/26/00 | 8:23  | 32.9823 |
| 10/26/00 | 13:15 | 55.778 | 10/26/00 | 14:48 | 20.135 | 10/26/00 | 15:01 | 33.422 | 10/26/00 | 15:11 | 41.2533 | 10/26/00 | 13:29 | 53.645  | 10/26/00 | 12:23 | 32.9823 |
| 10/26/00 | 17:15 | 55.801 | 10/26/00 | 18:48 | 20.131 | 10/26/00 | 19:01 | 33.425 | 10/26/00 | 19:11 | 41.2533 | 10/26/00 | 17:29 | 53.6155 | 10/26/00 | 16:23 | 32.979  |
| 10/26/00 | 21:15 | 55.719 | 10/26/00 | 22:48 | 20.135 | 10/26/00 | 23:01 | 33.438 | 10/26/00 | 23:11 | 41.2664 | 10/26/00 | 21:29 | 53.6417 | 10/26/00 | 20:23 | 32.9954 |
| 10/27/00 | 1:15  | 55.682 | 10/27/00 | 2:48  | 20.135 | 10/27/00 | 3:01  | 33.435 | 10/27/00 | 3:11  | 41.2762 | 10/27/00 | 1:29  | 53.6778 | 10/27/00 | 0:23  | 33.0085 |
| 10/27/00 | 5:15  | 55.666 | 10/27/00 | 6:48  | 20.138 | 10/27/00 | 7:01  | 33.445 | 10/27/00 | 7:11  | 41.2828 | 10/27/00 | 5:29  | 53.7205 | 10/27/00 | 4:23  | 33.0151 |
| 10/27/00 | 9:15  | 55.636 | 10/27/00 | 10:48 | 20.141 | 10/27/00 | 11:01 | 33.458 | 10/27/00 | 11:11 | 41.3091 | 10/27/00 | 9:29  | 53.7467 | 10/27/00 | 8:23  | 33.0315 |
| 10/27/00 | 13:15 | 55.705 | 10/27/00 | 14:48 | 20.148 | 10/27/00 | 15:01 | 33.461 | 10/27/00 | 15:11 | 41.3123 | 10/27/00 | 13:29 | 53.7992 | 10/27/00 | 12:23 | 33.0446 |
| 10/27/00 | 17:15 | 55.728 | 10/27/00 | 18:48 | 20.151 | 10/27/00 | 19:01 | 33.468 | 10/27/00 | 19:11 | 41.3156 | 10/27/00 | 17:29 | 53.7894 | 10/27/00 | 16:23 | 33.0413 |
| 10/27/00 | 21:15 | 55.663 | 10/27/00 | 22:48 | 20.157 | 10/27/00 | 23:01 | 33.481 | 10/27/00 | 23:11 | 41.3386 | 10/27/00 | 21:29 | 53.8123 | 10/27/00 | 20:23 | 33.0512 |
| 10/28/00 | 1:15  | 55.614 | 10/28/00 | 2:48  | 20.161 | 10/28/00 | 3:01  | 33.491 | 10/28/00 | 3:11  | 41.3517 | 10/28/00 | 1:29  | 53.8287 | 10/28/00 | 0:23  | 33.061  |
| 10/28/00 | 5:15  | 55.587 | 10/28/00 | 6:48  | 20.164 | 10/28/00 | 7:01  | 33.494 | 10/28/00 | 7:11  | 41.3583 | 10/28/00 | 5:29  | 53.8583 | 10/28/00 | 4:23  | 33.0709 |
| 10/28/00 | 9:15  | 55.577 | 10/28/00 | 10:48 | 20.174 | 10/28/00 | 11:01 | 33.501 | 10/28/00 | 11:11 | 41.3681 | 10/28/00 | 9:29  | 53.8517 | 10/28/00 | 8:23  | 33.0741 |
| 10/28/00 | 13:15 | 55.696 | 10/28/00 | 14:48 | 20.167 | 10/28/00 | 15:01 | 33.491 | 10/28/00 | 15:11 | 41.3517 | 10/28/00 | 13:29 | 53.8386 | 10/28/00 | 12:23 | 33.0741 |
| 10/28/00 | 17:15 | 55.728 | 10/28/00 | 18:48 | 20.164 | 10/28/00 | 19:01 | 33.484 | 10/28/00 | 19:11 | 41.3386 | 10/28/00 | 17:29 | 53.7927 | 10/28/00 | 16:23 | 33.0512 |
| 10/28/00 | 21:15 | 55.663 | 10/28/00 | 22:48 | 20.167 | 10/28/00 | 23:01 | 33.481 | 10/28/00 | 23:11 | 41.3353 | 10/28/00 | 21:29 | 53.7927 | 10/28/00 | 20:23 | 33.0479 |
| 10/29/00 | 1:15  | 55.656 | 10/29/00 | 2:48  | 20.167 | 10/29/00 | 3:01  | 33.471 | 10/29/00 | 3:11  | 41.3123 | 10/29/00 | 1:29  | 53.7566 | 10/29/00 | 0:23  | 33.0446 |
| 10/29/00 | 5:15  | 55.679 | 10/29/00 | 6:48  | 20.161 | 10/29/00 | 7:01  | 33.455 | 10/29/00 | 7:11  | 41.2861 | 10/29/00 | 5:29  | 53.6942 | 10/29/00 | 4:23  | 33.0282 |
| 10/29/00 | 9:15  | 55.696 | 10/29/00 | 10:48 | 20.161 | 10/29/00 | 11:01 | 33.442 | 10/29/00 | 11:11 | 41.2697 | 10/29/00 | 9:29  | 53.6713 | 10/29/00 | 8:23  | 33.0184 |
| 10/29/00 | 13:15 | 55.768 | 10/29/00 | 14:48 | 20.154 | 10/29/00 | 15:01 | 33.425 | 10/29/00 | 15:11 | 41.2434 | 10/29/00 | 13:29 | 53.6352 | 10/29/00 | 12:23 | 33.0118 |
| 10/29/00 | 17:15 | 55.801 | 10/29/00 | 18:48 | 20.151 | 10/29/00 | 19:01 | 33.406 | 10/29/00 | 19:11 | 41.2139 | 10/29/00 | 17:29 | 53.5728 | 10/29/00 | 16:23 | 32.9921 |
| 10/29/00 | 21:15 | 55.735 | 10/29/00 | 22:48 | 20.151 | 10/29/00 | 23:01 | 33.399 | 10/29/00 | 23:11 | 41.2041 | 10/29/00 | 21:29 | 53.5499 | 10/29/00 | 20:23 | 32.9921 |
| 10/30/00 | 1:15  | 55.692 | 10/30/00 | 2:48  | 20.157 | 10/30/00 | 3:01  | 33.406 | 10/30/00 | 3:11  | 41.2074 | 10/30/00 | 1:29  | 53.4908 | 10/30/00 | 0:23  | 33.0053 |
| 10/30/00 | 5:15  | 55.636 | 10/30/00 | 6:48  | 20.161 | 10/30/00 | 7:01  | 33.412 | 10/30/00 | 7:11  | 41.2205 | 10/30/00 | 5:29  | 53.4022 | 10/30/00 | 4:23  | 32.9823 |
| 10/30/00 | 9:15  | 55.627 | 10/30/00 | 10:48 | 20.164 | 10/30/00 | 11:01 | 33.428 | 10/30/00 | 11:11 | 41.2434 | 10/30/00 | 9:29  | 53.3333 | 10/30/00 | 8:23  | 33.0085 |
| 10/30/00 | 13:15 | 55.768 | 10/30/00 | 14:48 | 20.167 | 10/30/00 | 15:01 | 33.428 | 10/30/00 | 15:11 | 41.2434 | 10/30/00 | 13:29 | 53.7139 | 10/30/00 | 12:23 | 33.0413 |
| 10/30/00 | 17:15 | 55.771 | 10/30/00 | 18:48 | 20.167 | 10/30/00 | 19:01 | 33.435 | 10/30/00 | 19:11 | 41.2467 | 10/30/00 | 17:29 | 53.6844 | 10/30/00 | 16:23 | 33.0315 |
| 10/30/00 | 21:15 | 55.778 | 10/30/00 | 22:48 | 20.167 | 10/30/00 | 23:01 | 33.442 | 10/30/00 | 23:11 | 41.2533 | 10/30/00 | 21:29 | 53.7303 | 10/30/00 | 20:23 | 33.0381 |

| TABLE | D.3 | (Cont.) |
|-------|-----|---------|
|-------|-----|---------|

|          | DW06  |        |          | SB01  |        |          | SB09  |        |          | SB16  |         |          | SB18  |         |          | SB19  |         |
|----------|-------|--------|----------|-------|--------|----------|-------|--------|----------|-------|---------|----------|-------|---------|----------|-------|---------|
| Date     | Time  | Depth   | Date     | Time  | Depth   | Date     | Time  | Depth   |
|          |       |        |          |       |        |          |       |        |          |       |         |          |       |         |          |       |         |
| 10/31/00 | 1:15  | 55.787 | 10/31/00 | 2:48  | 20.171 | 10/31/00 | 3:01  | 33.442 | 10/31/00 | 3:11  | 41.2598 | 10/31/00 | 1:29  | 53.7172 | 10/31/00 | 0:23  | 33.0446 |
| 10/31/00 | 5:15  | 55.787 | 10/31/00 | 6:48  | 20.167 | 10/31/00 | 7:01  | 33.442 | 10/31/00 | 7:11  | 41.2566 | 10/31/00 | 5:29  | 53.7238 | 10/31/00 | 4:23  | 33.0413 |
| 10/31/00 | 9:15  | 55.787 | 10/31/00 | 10:48 | 20.174 | 10/31/00 | 11:01 | 33.445 | 10/31/00 | 11:11 | 41.2631 | 10/31/00 | 9:29  | 53.7172 | 10/31/00 | 8:23  | 33.0413 |
| 10/31/00 | 13:15 | 55.781 | 10/31/00 | 14:48 | 20.167 | 10/31/00 | 15:01 | 33.442 | 10/31/00 | 15:11 | 41.2533 | 10/31/00 | 13:29 | 53.7205 | 10/31/00 | 12:23 | 33.0446 |
| 10/31/00 | 17:15 | 55.758 | 10/31/00 | 18:48 | 20.167 | 10/31/00 | 19:01 | 33.432 | 10/31/00 | 19:11 | 41.2336 | 10/31/00 | 17:29 | 53.6483 | 10/31/00 | 16:23 | 33.0282 |
| 10/31/00 | 21:15 | 55.725 | 10/31/00 | 22:48 | 20.167 | 10/31/00 | 23:01 | 33.425 | 10/31/00 | 23:11 | 41.2205 | 10/31/00 | 21:29 | 53.6417 | 10/31/00 | 20:23 | 33.0217 |
| 11/1/00  | 1:15  | 55.709 | 11/1/00  | 2:48  | 20.167 | 11/1/00  | 3:01  | 33.415 | 11/1/00  | 3:11  | 41.2106 | 11/1/00  | 1:29  | 53.6122 | 11/1/00  | 0:23  | 33.0184 |
| 11/1/00  | 5:15  | 55.676 | 11/1/00  | 6:48  | 20.151 | 11/1/00  | 7:01  | 33.389 | 11/1/00  | 7:11  | 41.1745 | 11/1/00  | 5:29  | 53.5827 | 11/1/00  | 4:23  | 33.0085 |
| 11/1/00  | 9:15  | 55.646 | 11/1/00  | 10:48 | 20.154 | 11/1/00  | 11:01 | 33.376 | 11/1/00  | 11:11 | 41.1516 | 11/1/00  | 9:29  | 53.6122 | 11/1/00  | 8:23  | 33.002  |
| 11/1/00  | 13:15 | 55.617 | 11/1/00  | 14:48 | 20.092 | 11/1/00  | 15:01 | 33.307 | 11/1/00  | 15:11 | 41.0827 | 11/1/00  | 13:29 | 53.4777 | 11/1/00  | 12:23 | 32.9921 |
| 11/1/00  | 17:15 | 55.574 | 11/1/00  | 18:48 | 20.069 | 11/1/00  | 19:01 | 33.294 | 11/1/00  | 19:11 | 41.0761 | 11/1/00  | 17:29 | 53.4186 | 11/1/00  | 16:23 | 32.9167 |
| 11/1/00  | 21:15 | 55.587 | 11/1/00  | 22:48 | 20.046 | 11/1/00  | 23:01 | 33.314 | 11/1/00  | 23:11 | 41.1089 | 11/1/00  | 21:29 | 53.4777 | 11/1/00  | 20:23 | 32.8773 |
| 11/2/00  | 1:15  | 55.656 | 11/2/00  | 2:48  | 20.013 | 11/2/00  | 3:01  | 33.330 | 11/2/00  | 3:11  | 41.145  | 11/2/00  | 1:29  | 53.5794 | 11/2/00  | 0:23  | 32.8609 |
| 11/2/00  | 5:15  | 55.719 | 11/2/00  | 6:48  | 19.977 | 11/2/00  | 7:01  | 33.333 | 11/2/00  | 7:11  | 41.1778 | 11/2/00  | 5:29  | 53.6483 | 11/2/00  | 4:23  | 32.8314 |
| 11/2/00  | 9:15  | 55.781 | 11/2/00  | 10:48 | 19.938 | 11/2/00  | 11:01 | 33.343 | 11/2/00  | 11:11 | 41.2139 | 11/2/00  | 9:29  | 53.7172 | 11/2/00  | 8:23  | 32.8018 |
| 11/2/00  | 13:15 | 55.837 | 11/2/00  | 14:48 | 19.902 | 11/2/00  | 15:01 | 33.337 | 11/2/00  | 15:11 | 41.2303 | 11/2/00  | 13:29 | 53.7762 | 11/2/00  | 12:23 | 32.7723 |
| 11/2/00  | 17:15 | 55.860 | 11/2/00  | 18:48 | 19.875 | 11/2/00  | 19:01 | 33.337 | 11/2/00  | 19:11 | 41.2533 | 11/2/00  | 17:29 | 53.773  | 11/2/00  | 16:23 | 32.7395 |
| 11/2/00  | 21:15 | 55.896 | 11/2/00  | 22:48 | 19.849 | 11/2/00  | 23:01 | 33.343 | 11/2/00  | 23:11 | 41.2861 | 11/2/00  | 21:29 | 53.8025 | 11/2/00  | 20:23 | 32.7231 |
| 11/3/00  | 1:15  | 55.945 | 11/3/00  | 2:48  | 19.826 | 11/3/00  | 3:01  | 33.353 | 11/3/00  | 3:11  | 41.3189 | 11/3/00  | 1:29  | 53.8484 | 11/3/00  | 0:23  | 32.7165 |
| 11/3/00  | 5:15  | 55.988 | 11/3/00  | 6:48  | 19.810 | 11/3/00  | 7:01  | 33.356 | 11/3/00  | 7:11  | 41.3419 | 11/3/00  | 5:29  | 53.8944 | 11/3/00  | 4:23  | 32.7067 |
| 11/3/00  | 9:15  | 56.027 | 11/3/00  | 10:48 | 19.797 | 11/3/00  | 11:01 | 33.366 | 11/3/00  | 11:11 | 41.3845 | 11/3/00  | 9:29  | 53.9567 | 11/3/00  | 8:23  | 32.6969 |
| 11/3/00  | 13:15 | 56.060 | 11/3/00  | 14:48 | 19.774 | 11/3/00  | 15:01 | 33.353 | 11/3/00  | 15:11 | 41.3747 | 11/3/00  | 13:29 | 53.9436 | 11/3/00  | 12:23 | 32.6936 |
| 11/3/00  | 17:15 | 56.047 | 11/3/00  | 18:48 | 19.754 | 11/3/00  | 19:01 | 33.330 | 11/3/00  | 19:11 | 41.3714 | 11/3/00  | 17:29 | 53.9206 | 11/3/00  | 16:23 | 32.6509 |
| 11/3/00  | 21:15 | 56.040 | 11/3/00  | 22:48 | 19.734 | 11/3/00  | 23:01 | 33.310 | 11/3/00  | 23:11 | 41.3648 | 11/3/00  | 21:29 | 53.9042 | 11/3/00  | 20:23 | 32.6312 |
| 11/4/00  | 1:15  | 56.020 | 11/4/00  | 2:48  | 19.718 | 11/4/00  | 3:01  | 33.294 | 11/4/00  | 3:11  | 41.3517 | 11/4/00  | 1:29  | 53.8648 | 11/4/00  | 0:23  | 32.6115 |
| 11/4/00  | 5:15  | 56.004 | 11/4/00  | 6:48  | 19.698 | 11/4/00  | 7:01  | 33.268 | 11/4/00  | 7:11  | 41.3287 | 11/4/00  | 5:29  | 53.8419 | 11/4/00  | 4:23  | 32.582  |
| 11/4/00  | 9:15  | 55.981 | 11/4/00  | 10:48 | 19.685 | 11/4/00  | 11:01 | 33.251 | 11/4/00  | 11:11 | 41.3222 | 11/4/00  | 9:29  | 53.8091 | 11/4/00  | 8:23  | 32.5689 |
| 11/4/00  | 13:15 | 55.955 | 11/4/00  | 14:48 | 19.659 | 11/4/00  | 15:01 | 33.215 | 11/4/00  | 15:11 | 41.2762 | 11/4/00  | 13:29 | 53.7566 | 11/4/00  | 12:23 | 32.5459 |
| 11/4/00  | 17:15 | 55.886 | 11/4/00  | 18:48 | 19.642 | 11/4/00  | 19:01 | 33.179 | 11/4/00  | 19:11 | 41.2402 | 11/4/00  | 17:29 | 53.7008 | 11/4/00  | 16:23 | 32.5033 |
| 11/4/00  | 21:15 | 55.833 | 11/4/00  | 22:48 | 19.623 | 11/4/00  | 23:01 | 33.150 | 11/4/00  | 23:11 | 41.2106 | 11/4/00  | 21:29 | 53.6483 | 11/4/00  | 20:23 | 32.4803 |
| 11/5/00  | 1:15  | 55.791 | 11/5/00  | 2:48  | 19.600 | 11/5/00  | 3:01  | 33.117 | 11/5/00  | 3:11  | 41.1713 | 11/5/00  | 1:29  | 53.6122 | 11/5/00  | 0:23  | 32.4606 |
| 11/5/00  | 5:15  | 55.728 | 11/5/00  | 6:48  | 19.583 | 11/5/00  | 7:01  | 33.077 | 11/5/00  | 7:11  | 41.1286 | 11/5/00  | 5:29  | 53.563  | 11/5/00  | 4:23  | 32.4344 |
| 11/5/00  | 9:15  | 55.673 | 11/5/00  | 10:48 | 19.567 | 11/5/00  | 11:01 | 33.051 | 11/5/00  | 11:11 | 41.0827 | 11/5/00  | 9:29  | 53.5007 | 11/5/00  | 8:23  | 32.4081 |
| 11/5/00  | 13:15 | 55.617 | 11/5/00  | 14:48 | 19.544 | 11/5/00  | 15:01 | 32.999 | 11/5/00  | 15:11 | 41.0236 | 11/5/00  | 13:29 | 53.4219 | 11/5/00  | 12:23 | 32.3852 |
| 11/5/00  | 17:15 | 55.538 | 11/5/00  | 18:48 | 19.521 | 11/5/00  | 19:01 | 32.959 | 11/5/00  | 19:11 | 40.9613 | 11/5/00  | 17:29 | 53.3235 | 11/5/00  | 16:23 | 32.3425 |
| 11/5/00  | 21:15 | 55.538 | 11/5/00  | 22:48 | 19.491 | 11/5/00  | 23:01 | 32.913 | 11/5/00  | 23:11 | 40.9055 | 11/5/00  | 21:29 | 53.3169 | 11/5/00  | 20:23 | 32.3556 |
| 11/6/00  | 1:15  | 55.535 | 11/6/00  | 2:48  | 19.459 | 11/6/00  | 3:01  | 32.874 | 11/6/00  | 3:11  | 40.8563 | 11/6/00  | 1:29  | 53.353  | 11/6/00  | 0:23  | 32.3196 |
| 11/6/00  | 5:15  | 55.561 | 11/6/00  | 6:48  | 19.409 | 11/6/00  | 7:01  | 32.815 | 11/6/00  | 7:11  | 40.7874 | 11/6/00  | 5:29  | 53.3858 | 11/6/00  | 4:23  | 32.2867 |

|          | DW06  |        |          | SB01  |        |          | SB09  |        |          | SB16  |         |          | SB18  |         |          | SB19  |         |
|----------|-------|--------|----------|-------|--------|----------|-------|--------|----------|-------|---------|----------|-------|---------|----------|-------|---------|
| Date     | Time  | Depth   | Date     | Time  | Depth   | Date     | Time  | Depth   |
|          |       |        |          |       |        |          |       |        |          |       |         |          |       |         |          |       |         |
| 11/6/00  | 9:15  | 55.472 | 11/6/00  | 10:48 | 19.334 | 11/6/00  | 11:01 | 32.759 | 11/6/00  | 11:11 | 40.7316 | 11/6/00  | 9:29  | 53.2382 | 11/6/00  | 8:23  | 32.1129 |
| 11/6/00  | 13:15 | 55.404 | 11/6/00  | 14:48 | 19.275 | 11/6/00  | 15:01 | 32.736 | 11/6/00  | 15:11 | 40.7119 | 11/6/00  | 13:29 | 53.0545 | 11/6/00  | 12:23 | 31.8602 |
| 11/6/00  | 17:15 | 55.285 | 11/6/00  | 18:48 | 19.213 | 11/6/00  | 19:01 | 32.733 | 11/6/00  | 19:11 | 40.7513 | 11/6/00  | 17:29 | 53.1693 | 11/6/00  | 16:23 | 32.0505 |
| 11/6/00  | 21:15 | 55.240 | 11/6/00  | 22:48 | 19.160 | 11/6/00  | 23:01 | 32.746 | 11/6/00  | 23:11 | 40.7972 | 11/6/00  | 21:29 | 53.2119 | 11/6/00  | 20:23 | 31.916  |
| 11/7/00  | 1:15  | 55.148 | 11/7/00  | 2:48  | 19.104 | 11/7/00  | 3:01  | 32.753 | 11/7/00  | 3:11  | 40.8432 | 11/7/00  | 1:29  | 53.294  | 11/7/00  | 0:23  | 31.9554 |
| 11/7/00  | 5:15  | 55.138 | 11/7/00  | 6:48  | 19.049 | 11/7/00  | 7:01  | 32.759 | 11/7/00  | 7:11  | 40.8793 | 11/7/00  | 5:29  | 53.3924 | 11/7/00  | 4:23  | 31.916  |
| 11/7/00  | 9:15  | 55.075 | 11/7/00  | 10:48 | 19.003 | 11/7/00  | 11:01 | 32.769 | 11/7/00  | 11:11 | 40.9285 | 11/7/00  | 9:29  | 53.4678 | 11/7/00  | 8:23  | 31.8832 |
| 11/7/00  | 13:15 | 55.135 | 11/7/00  | 14:48 | 18.960 | 11/7/00  | 15:01 | 32.769 | 11/7/00  | 15:11 | 40.9514 | 11/7/00  | 13:29 | 53.5203 | 11/7/00  | 12:23 | 31.8602 |
| 11/7/00  | 17:15 | 55.148 | 11/7/00  | 18:48 | 18.917 | 11/7/00  | 19:01 | 32.769 | 11/7/00  | 19:11 | 40.9777 | 11/7/00  | 17:29 | 53.5663 | 11/7/00  | 16:23 | 31.8241 |
| 11/7/00  | 21:15 | 55.128 | 11/7/00  | 22:48 | 18.878 | 11/7/00  | 23:01 | 32.759 | 11/7/00  | 23:11 | 40.9974 | 11/7/00  | 21:29 | 53.5794 | 11/7/00  | 20:23 | 31.7979 |
| 11/8/00  | 1:15  | 55.154 | 11/8/00  | 2:48  | 18.842 | 11/8/00  | 3:01  | 32.749 | 11/8/00  | 3:11  | 41.0138 | 11/8/00  | 1:29  | 53.622  | 11/8/00  | 0:23  | 31.7684 |
| 11/8/00  | 5:15  | 55.154 | 11/8/00  | 6:48  | 18.802 | 11/8/00  | 7:01  | 32.723 | 11/8/00  | 7:11  | 41.0138 | 11/8/00  | 5:29  | 53.6056 | 11/8/00  | 4:23  | 31.7224 |
| 11/8/00  | 9:15  | 55.151 | 11/8/00  | 10:48 | 18.773 | 11/8/00  | 11:01 | 32.710 | 11/8/00  | 11:11 | 41.0138 | 11/8/00  | 9:29  | 53.5892 | 11/8/00  | 8:23  | 31.6864 |
| 11/8/00  | 13:15 | 55.866 | 11/8/00  | 14:48 | 18.734 | 11/8/00  | 15:01 | 32.671 | 11/8/00  | 15:11 | 40.9875 | 11/8/00  | 13:29 | 53.5663 | 11/8/00  | 12:23 | 31.6503 |
| 11/8/00  | 17:15 | 55.876 | 11/8/00  | 18:48 | 18.698 | 11/8/00  | 19:01 | 32.628 | 11/8/00  | 19:11 | 40.958  | 11/8/00  | 17:29 | 53.5138 | 11/8/00  | 16:23 | 31.5945 |
| 11/8/00  | 21:15 | 55.810 | 11/8/00  | 22:48 | 18.665 | 11/8/00  | 23:01 | 32.589 | 11/8/00  | 23:11 | 40.935  | 11/8/00  | 21:29 | 53.4777 | 11/8/00  | 20:23 | 31.5551 |
| 11/9/00  | 1:15  | 55.784 | 11/9/00  | 2:48  | 18.629 | 11/9/00  | 3:01  | 32.539 | 11/9/00  | 3:11  | 40.8957 | 11/9/00  | 1:29  | 53.435  | 11/9/00  | 0:23  | 31.5157 |
| 11/9/00  | 5:15  | 55.728 | 11/9/00  | 6:48  | 18.596 | 11/9/00  | 7:01  | 32.503 | 11/9/00  | 7:11  | 40.8629 | 11/9/00  | 5:29  | 53.3563 | 11/9/00  | 4:23  | 31.4665 |
| 11/9/00  | 9:15  | 55.699 | 11/9/00  | 10:48 | 18.573 | 11/9/00  | 11:01 | 32.484 | 11/9/00  | 11:11 | 40.8661 | 11/9/00  | 9:29  | 53.3661 | 11/9/00  | 8:23  | 31.4469 |
| 11/9/00  | 13:15 | 55.741 | 11/9/00  | 14:48 | 18.556 | 11/9/00  | 15:01 | 32.474 | 11/9/00  | 15:11 | 40.8596 | 11/9/00  | 13:29 | 53.3924 | 11/9/00  | 12:23 | 31.4501 |
| 11/9/00  | 17:15 | 55.709 | 11/9/00  | 18:48 | 18.540 | 11/9/00  | 19:01 | 32.474 | 11/9/00  | 19:11 | 40.876  | 11/9/00  | 17:29 | 53.3924 | 11/9/00  | 16:23 | 31.4436 |
| 11/9/00  | 21:15 | 55.636 | 11/9/00  | 22:48 | 18.540 | 11/9/00  | 23:01 | 32.487 | 11/9/00  | 23:11 | 40.9121 | 11/9/00  | 21:29 | 53.458  | 11/9/00  | 20:23 | 31.4633 |
| 11/10/00 | 1:15  | 55.591 | 11/10/00 | 2:48  | 18.533 | 11/10/00 | 3:01  | 32.503 | 11/10/00 | 3:11  | 40.9416 | 11/10/00 | 1:29  | 53.5269 | 11/10/00 | 0:23  | 31.4829 |
| 11/10/00 | 5:15  | 55.571 | 11/10/00 | 6:48  | 18.530 | 11/10/00 | 7:01  | 32.513 | 11/10/00 | 7:11  | 40.9678 | 11/10/00 | 5:29  | 53.5564 | 11/10/00 | 4:23  | 31.4993 |
| 11/10/00 | 9:15  | 55.535 | 11/10/00 | 10:48 | 18.537 | 11/10/00 | 11:01 | 32.526 | 11/10/00 | 11:11 | 41.0039 | 11/10/00 | 9:29  | 53.6024 | 11/10/00 | 8:23  | 31.5157 |
| 11/10/00 | 13:15 | 55.604 | 11/10/00 | 14:48 | 18.530 | 11/10/00 | 15:01 | 32.523 | 11/10/00 | 15:11 | 41.0007 | 11/10/00 | 13:29 | 53.622  | 11/10/00 | 12:23 | 31.5354 |
| 11/10/00 | 17:15 | 55.623 | 11/10/00 | 18:48 | 18.524 | 11/10/00 | 19:01 | 32.507 | 11/10/00 | 19:11 | 40.9941 | 11/10/00 | 17:29 | 53.5925 | 11/10/00 | 16:23 | 31.5125 |
| 11/10/00 | 21:15 | 55.597 | 11/10/00 | 22:48 | 18.524 | 11/10/00 | 23:01 | 32.500 | 11/10/00 | 23:11 | 40.9941 | 11/10/00 | 21:29 | 53.5892 | 11/10/00 | 20:23 | 31.5125 |
| 11/11/00 | 1:15  | 55.554 | 11/11/00 | 2:48  | 18.520 | 11/11/00 | 3:01  | 32.490 | 11/11/00 | 3:11  | 40.9941 | 11/11/00 | 1:29  | 53.5761 | 11/11/00 | 0:23  | 31.5125 |
| 11/11/00 | 5:15  | 55.568 | 11/11/00 | 6:48  | 18.514 | 11/11/00 | 7:01  | 32.477 | 11/11/00 | 7:11  | 40.9744 | 11/11/00 | 5:29  | 53.5827 | 11/11/00 | 4:23  | 31.5059 |
| 11/11/00 | 9:15  | 55.584 | 11/11/00 | 10:48 | 18.510 | 11/11/00 | 11:01 | 32.457 | 11/11/00 | 11:11 | 40.958  | 11/11/00 | 9:29  | 53.5302 | 11/11/00 | 8:23  | 31.4928 |
| 11/11/00 | 13:15 | 55.640 | 11/11/00 | 14:48 | 18.497 | 11/11/00 | 15:01 | 32.425 | 11/11/00 | 15:11 | 40.9186 | 11/11/00 | 13:29 | 53.4843 | 11/11/00 | 12:23 | 31.4731 |
| 11/11/00 | 17:15 | 55.699 | 11/11/00 | 18:48 | 18.488 | 11/11/00 | 19:01 | 32.388 | 11/11/00 | 19:11 | 40.8825 | 11/11/00 | 17:29 | 53.399  | 11/11/00 | 16:23 | 31.437  |
| 11/11/00 | 21:15 | 55.659 | 11/11/00 | 22:48 | 18.474 | 11/11/00 | 23:01 | 32.356 | 11/11/00 | 23:11 | 40.8432 | 11/11/00 | 21:29 | 53.3563 | 11/11/00 | 20:23 | 31.4173 |
| 11/12/00 | 1:15  | 55.709 | 11/12/00 | 2:48  | 18.458 | 11/12/00 | 3:01  | 32.320 | 11/12/00 | 3:11  | 40.8071 | 11/12/00 | 1:29  | 53.3038 | 11/12/00 | 0:23  | 31.4009 |
| 11/12/00 | 5:15  | 55.709 | 11/12/00 | 6:48  | 18.445 | 11/12/00 | 7:01  | 32.300 | 11/12/00 | 7:11  | 40.7808 | 11/12/00 | 5:29  | 53.3924 | 11/12/00 | 4:23  | 31.4206 |
| 11/12/00 | 9:15  | 55.607 | 11/12/00 | 10:48 | 18.445 | 11/12/00 | 11:01 | 32.303 | 11/12/00 | 11:11 | 40.794  | 11/12/00 | 9:29  | 53.3038 | 11/12/00 | 8:23  | 31.3419 |
| 11/12/00 | 13:15 | 55.719 | 11/12/00 | 14:48 | 18.442 | 11/12/00 | 15:01 | 32.293 | 11/12/00 | 15:11 | 40.7841 | 11/12/00 | 13:29 | 53.3333 | 11/12/00 | 12:23 | 31.4108 |

|          | DW06  |        |          | SB01  |        |          | SB09  |        |          | SB16  |         |          | SB18  |         |          | SB19  |         |
|----------|-------|--------|----------|-------|--------|----------|-------|--------|----------|-------|---------|----------|-------|---------|----------|-------|---------|
| Date     | Time  | Depth   | Date     | Time  | Depth   | Date     | Time  | Depth   |
|          |       |        |          |       |        |          |       |        |          |       |         |          |       |         |          |       |         |
| 11/12/00 | 17:15 | 55.656 | 11/12/00 | 18:48 | 18.442 | 11/12/00 | 19:01 | 32.293 | 11/12/00 | 19:11 | 40.7841 | 11/12/00 | 17:29 | 53.3169 | 11/12/00 | 16:23 | 31.3944 |
| 11/12/00 | 21:15 | 55.587 | 11/12/00 | 22:48 | 18.442 | 11/12/00 | 23:01 | 32.303 | 11/12/00 | 23:11 | 40.7972 | 11/12/00 | 21:29 | 53.3366 | 11/12/00 | 20:23 | 31.4173 |
| 11/13/00 | 1:15  | 55.581 | 11/13/00 | 2:48  | 18.442 | 11/13/00 | 3:01  | 32.303 | 11/13/00 | 3:11  | 40.794  | 11/13/00 | 1:29  | 53.3333 | 11/13/00 | 0:23  | 31.4272 |
| 11/13/00 | 5:15  | 55.594 | 11/13/00 | 6:48  | 18.435 | 11/13/00 | 7:01  | 32.290 | 11/13/00 | 7:11  | 40.7808 | 11/13/00 | 5:29  | 53.3399 | 11/13/00 | 4:23  | 31.4272 |
| 11/13/00 | 9:15  | 55.564 | 11/13/00 | 10:48 | 18.432 | 11/13/00 | 11:01 | 32.287 | 11/13/00 | 11:11 | 40.7874 | 11/13/00 | 9:29  | 53.3235 | 11/13/00 | 8:23  | 31.4272 |
| 11/13/00 | 13:15 | 55.597 | 11/13/00 | 14:48 | 18.428 | 11/13/00 | 15:01 | 32.283 | 11/13/00 | 15:11 | 40.7808 | 11/13/00 | 13:29 | 53.3366 | 11/13/00 | 12:23 | 31.437  |
| 11/13/00 | 17:15 | 55.587 | 11/13/00 | 18:48 | 18.432 | 11/13/00 | 19:01 | 32.290 | 11/13/00 | 19:11 | 40.7874 | 11/13/00 | 17:29 | 53.3333 | 11/13/00 | 16:23 | 31.437  |
| 11/13/00 | 21:15 | 55.535 | 11/13/00 | 22:48 | 18.442 | 11/13/00 | 23:01 | 32.300 | 11/13/00 | 23:11 | 40.8071 | 11/13/00 | 21:29 | 53.3727 | 11/13/00 | 20:23 | 31.46   |
| 11/14/00 | 1:15  | 55.531 | 11/14/00 | 2:48  | 18.448 | 11/14/00 | 3:01  | 32.313 | 11/14/00 | 3:11  | 40.8169 | 11/14/00 | 1:29  | 53.3924 | 11/14/00 | 0:23  | 31.4797 |
| 11/14/00 | 5:15  | 55.525 | 11/14/00 | 6:48  | 18.448 | 11/14/00 | 7:01  | 32.313 | 11/14/00 | 7:11  | 40.8202 | 11/14/00 | 5:29  | 53.4121 | 11/14/00 | 4:23  | 31.4895 |
| 11/14/00 | 9:15  | 55.518 | 11/14/00 | 10:48 | 18.451 | 11/14/00 | 11:01 | 32.313 | 11/14/00 | 11:11 | 40.8333 | 11/14/00 | 9:29  | 53.4154 | 11/14/00 | 8:23  | 31.4993 |
| 11/14/00 | 13:15 | 55.623 | 11/14/00 | 14:48 | 18.455 | 11/14/00 | 15:01 | 32.313 | 11/14/00 | 15:11 | 40.8202 | 11/14/00 | 13:29 | 53.4121 | 11/14/00 | 12:23 | 31.5092 |
| 11/14/00 | 17:15 | 55.636 | 11/14/00 | 18:48 | 18.451 | 11/14/00 | 19:01 | 32.297 | 11/14/00 | 19:11 | 40.8005 | 11/14/00 | 17:29 | 53.3825 | 11/14/00 | 16:23 | 31.4961 |
| 11/14/00 | 21:15 | 55.607 | 11/14/00 | 22:48 | 18.451 | 11/14/00 | 23:01 | 32.283 | 11/14/00 | 23:11 | 40.7874 | 11/14/00 | 21:29 | 53.3399 | 11/14/00 | 20:23 | 31.4829 |
| 11/15/00 | 1:15  | 55.568 | 11/15/00 | 2:48  | 18.451 | 11/15/00 | 3:01  | 32.274 | 11/15/00 | 3:11  | 40.771  | 11/15/00 | 1:29  | 53.3202 | 11/15/00 | 0:23  | 31.4797 |
| 11/15/00 | 5:15  | 55.600 | 11/15/00 | 6:48  | 18.445 | 11/15/00 | 7:01  | 32.247 | 11/15/00 | 7:11  | 40.7316 | 11/15/00 | 5:29  | 53.2743 | 11/15/00 | 4:23  | 31.4633 |
| 11/15/00 | 9:15  | 55.627 | 11/15/00 | 10:48 | 18.435 | 11/15/00 | 11:01 | 32.215 | 11/15/00 | 11:11 | 40.6824 | 11/15/00 | 9:29  | 53.2349 | 11/15/00 | 8:23  | 31.4304 |
| 11/15/00 | 13:15 | 55.810 | 11/15/00 | 14:48 | 18.415 | 11/15/00 | 15:01 | 32.156 | 11/15/00 | 15:11 | 40.607  | 11/15/00 | 13:29 | 53.107  | 11/15/00 | 12:23 | 31.3911 |
| 11/15/00 | 17:15 | 55.889 | 11/15/00 | 18:48 | 18.406 | 11/15/00 | 19:01 | 32.113 | 11/15/00 | 19:11 | 40.5446 | 11/15/00 | 17:29 | 52.9921 | 11/15/00 | 16:23 | 31.3255 |
| 11/15/00 | 21:15 | 55.807 | 11/15/00 | 22:48 | 18.396 | 11/15/00 | 23:01 | 32.087 | 11/15/00 | 23:11 | 40.5118 | 11/15/00 | 21:29 | 52.956  | 11/15/00 | 20:23 | 31.3123 |
| 11/16/00 | 1:15  | 55.587 | 11/16/00 | 2:48  | 18.409 | 11/16/00 | 3:01  | 32.096 | 11/16/00 | 3:11  | 40.5249 | 11/16/00 | 1:29  | 53.002  | 11/16/00 | 0:23  | 31.3255 |
| 11/16/00 | 5:15  | 55.531 | 11/16/00 | 6:48  | 18.415 | 11/16/00 | 7:01  | 32.116 | 11/16/00 | 7:11  | 40.5545 | 11/16/00 | 5:29  | 53.084  | 11/16/00 | 4:23  | 31.3648 |
| 11/16/00 | 9:15  | 55.436 | 11/16/00 | 10:48 | 18.428 | 11/16/00 | 11:01 | 32.152 | 11/16/00 | 11:11 | 40.5938 | 11/16/00 | 9:29  | 53.1824 | 11/16/00 | 8:23  | 31.4075 |
| 11/16/00 | 13:15 | 55.495 | 11/16/00 | 14:48 | 18.442 | 11/16/00 | 15:01 | 32.182 | 11/16/00 | 15:11 | 40.6332 | 11/16/00 | 13:29 | 53.2349 | 11/16/00 | 12:23 | 31.4567 |
| 11/16/00 | 17:15 | 55.843 | 11/16/00 | 18:48 | 18.458 | 11/16/00 | 19:01 | 32.205 | 11/16/00 | 19:11 | 40.6627 | 11/16/00 | 17:29 | 53.2579 | 11/16/00 | 16:23 | 31.4731 |
| 11/16/00 | 21:15 | 55.892 | 11/16/00 | 22:48 | 18.468 | 11/16/00 | 23:01 | 32.228 | 11/16/00 | 23:11 | 40.6955 | 11/16/00 | 21:29 | 53.3137 | 11/16/00 | 20:23 | 31.5026 |
| 11/17/00 | 1:15  | 55.942 | 11/17/00 | 2:48  | 18.484 | 11/17/00 | 3:01  | 32.247 | 11/17/00 | 3:11  | 40.7152 | 11/17/00 | 1:29  | 53.3629 | 11/17/00 | 0:23  | 31.5223 |
| 11/17/00 | 5:15  | 55.968 | 11/17/00 | 6:48  | 18.497 | 11/17/00 | 7:01  | 32.260 | 11/17/00 | 7:11  | 40.7283 | 11/17/00 | 5:29  | 53.3333 | 11/17/00 | 4:23  | 31.542  |
| 11/17/00 | 9:15  | 55.994 | 11/17/00 | 10:48 | 18.507 | 11/17/00 | 11:01 | 32.277 | 11/17/00 | 11:11 | 40.7513 | 11/17/00 | 9:29  | 53.3924 | 11/17/00 | 8:23  | 31.5617 |
| 11/17/00 | 13:15 | 56.089 | 11/17/00 | 14:48 | 18.514 | 11/17/00 | 15:01 | 32.283 | 11/17/00 | 15:11 | 40.7382 | 11/17/00 | 13:29 | 53.4219 | 11/17/00 | 12:23 | 31.5846 |
| 11/17/00 | 17:15 | 56.109 | 11/17/00 | 18:48 | 18.517 | 11/17/00 | 19:01 | 32.277 | 11/17/00 | 19:11 | 40.7382 | 11/17/00 | 17:29 | 53.3694 | 11/17/00 | 16:23 | 31.5748 |
| 11/17/00 | 21:15 | 55.994 | 11/17/00 | 22:48 | 18.530 | 11/17/00 | 23:01 | 32.287 | 11/17/00 | 23:11 | 40.7448 | 11/17/00 | 21:29 | 53.3629 | 11/17/00 | 20:23 | 31.5846 |
| 11/18/00 | 1:15  | 56.011 | 11/18/00 | 2:48  | 18.540 | 11/18/00 | 3:01  | 32.297 | 11/18/00 | 3:11  | 40.7513 | 11/18/00 | 1:29  | 53.3891 | 11/18/00 | 0:23  | 31.6043 |
| 11/18/00 | 5:15  | 56.011 | 11/18/00 | 6:48  | 18.550 | 11/18/00 | 7:01  | 32.297 | 11/18/00 | 7:11  | 40.7579 | 11/18/00 | 5:29  | 53.3924 | 11/18/00 | 4:23  | 31.6175 |
| 11/18/00 | 9:15  | 56.014 | 11/18/00 | 10:48 | 18.556 | 11/18/00 | 11:01 | 32.306 | 11/18/00 | 11:11 | 40.7644 | 11/18/00 | 9:29  | 53.3858 | 11/18/00 | 8:23  | 31.6207 |
| 11/18/00 | 13:15 | 56.158 | 11/18/00 | 14:48 | 18.556 | 11/18/00 | 15:01 | 32.287 | 11/18/00 | 15:11 | 40.7316 | 11/18/00 | 13:29 | 53.3629 | 11/18/00 | 12:23 | 31.6273 |
| 11/18/00 | 17:15 | 56.191 | 11/18/00 | 18:48 | 18.560 | 11/18/00 | 19:01 | 32.267 | 11/18/00 | 19:11 | 40.7021 | 11/18/00 | 17:29 | 53.2776 | 11/18/00 | 16:23 | 31.5912 |
| 11/18/00 | 21:15 | 56.109 | 11/18/00 | 22:48 | 18.560 | 11/18/00 | 23:01 | 32.251 | 11/18/00 | 23:11 | 40.6759 | 11/18/00 | 21:29 | 53.2513 | 11/18/00 | 20:23 | 31.5912 |

|          | DW06  |        |          | SB01  |        |          | SB09  |        |          | SB16  |         |          | SB18  |         |          | SB19  |         |
|----------|-------|--------|----------|-------|--------|----------|-------|--------|----------|-------|---------|----------|-------|---------|----------|-------|---------|
| Date     | Time  | Depth   | Date     | Time  | Depth   | Date     | Time  | Depth   |
|          |       |        |          |       |        |          |       |        |          |       |         |          |       |         |          |       |         |
| 11/19/00 | 1:15  | 56.132 | 11/19/00 | 2:48  | 18.563 | 11/19/00 | 3:01  | 32.238 | 11/19/00 | 3:11  | 40.643  | 11/19/00 | 1:29  | 53.2218 | 11/19/00 | 0:23  | 31.5715 |
| 11/19/00 | 5:15  | 55.860 | 11/19/00 | 6:48  | 18.566 | 11/19/00 | 7:01  | 32.238 | 11/19/00 | 7:11  | 40.6398 | 11/19/00 | 5:29  | 53.189  | 11/19/00 | 4:23  | 31.5748 |
| 11/19/00 | 9:15  | 55.810 | 11/19/00 | 10:48 | 18.573 | 11/19/00 | 11:01 | 32.241 | 11/19/00 | 11:11 | 40.6463 | 11/19/00 | 9:29  | 53.2349 | 11/19/00 | 8:23  | 31.5846 |
| 11/19/00 | 13:15 | 55.912 | 11/19/00 | 14:48 | 18.579 | 11/19/00 | 15:01 | 32.241 | 11/19/00 | 15:11 | 40.643  | 11/19/00 | 13:29 | 53.2218 | 11/19/00 | 12:23 | 31.6011 |
| 11/19/00 | 17:15 | 55.801 | 11/19/00 | 18:48 | 18.596 | 11/19/00 | 19:01 | 32.260 | 11/19/00 | 19:11 | 40.6627 | 11/19/00 | 17:29 | 53.2513 | 11/19/00 | 16:23 | 31.6109 |
| 11/19/00 | 21:15 | 55.751 | 11/19/00 | 22:48 | 18.609 | 11/19/00 | 23:01 | 32.283 | 11/19/00 | 23:11 | 40.689  | 11/19/00 | 21:29 | 53.3038 | 11/19/00 | 20:23 | 31.647  |
| 11/20/00 | 1:15  | 55.722 | 11/20/00 | 2:48  | 18.622 | 11/20/00 | 3:01  | 32.306 | 11/20/00 | 3:11  | 40.7185 | 11/20/00 | 1:29  | 53.3465 | 11/20/00 | 0:23  | 31.6765 |
| 11/20/00 | 5:15  | 55.653 | 11/20/00 | 6:48  | 18.638 | 11/20/00 | 7:01  | 32.339 | 11/20/00 | 7:11  | 40.7644 | 11/20/00 | 5:29  | 53.4318 | 11/20/00 | 4:23  | 31.706  |
| 11/20/00 | 9:15  | 55.581 | 11/20/00 | 10:48 | 18.665 | 11/20/00 | 11:01 | 32.385 | 11/20/00 | 11:11 | 40.8136 | 11/20/00 | 9:29  | 53.481  | 11/20/00 | 8:23  | 31.752  |
| 11/20/00 | 13:15 | 55.636 | 11/20/00 | 14:48 | 18.675 | 11/20/00 | 15:01 | 32.402 | 11/20/00 | 15:11 | 40.8333 | 11/20/00 | 13:29 | 53.5367 | 11/20/00 | 12:23 | 31.7815 |
| 11/20/00 | 17:15 | 55.646 | 11/20/00 | 18:48 | 18.691 | 11/20/00 | 19:01 | 32.428 | 11/20/00 | 19:11 | 40.8497 | 11/20/00 | 17:29 | 53.5302 | 11/20/00 | 16:23 | 31.7848 |
| 11/20/00 | 21:15 | 55.646 | 11/20/00 | 22:48 | 18.704 | 11/20/00 | 23:01 | 32.441 | 11/20/00 | 23:11 | 40.8596 | 11/20/00 | 21:29 | 53.5433 | 11/20/00 | 20:23 | 31.8012 |
| 11/21/00 | 1:15  | 55.673 | 11/21/00 | 2:48  | 18.714 | 11/21/00 | 3:01  | 32.431 | 11/21/00 | 3:11  | 40.8497 | 11/21/00 | 1:29  | 53.5269 | 11/21/00 | 0:23  | 31.8045 |
| 11/21/00 | 5:15  | 55.659 | 11/21/00 | 6:48  | 18.717 | 11/21/00 | 7:01  | 32.421 | 11/21/00 | 7:11  | 40.8366 | 11/21/00 | 5:29  | 53.4908 | 11/21/00 | 4:23  | 31.7979 |
| 11/21/00 | 9:15  | 55.702 | 11/21/00 | 10:48 | 18.724 | 11/21/00 | 11:01 | 32.411 | 11/21/00 | 11:11 | 40.8202 | 11/21/00 | 9:29  | 53.4514 | 11/21/00 | 8:23  | 31.7881 |
| 11/21/00 | 13:15 | 55.873 | 11/21/00 | 14:48 | 18.724 | 11/21/00 | 15:01 | 32.385 | 11/21/00 | 15:11 | 40.7776 | 11/21/00 | 13:29 | 53.3891 | 11/21/00 | 12:23 | 31.7684 |
| 11/21/00 | 17:15 | 55.860 | 11/21/00 | 18:48 | 18.727 | 11/21/00 | 19:01 | 32.379 | 11/21/00 | 19:11 | 40.7644 | 11/21/00 | 17:29 | 53.3333 | 11/21/00 | 16:23 | 31.7487 |
| 11/21/00 | 21:15 | 55.728 | 11/21/00 | 22:48 | 18.740 | 11/21/00 | 23:01 | 32.388 | 11/21/00 | 23:11 | 40.7776 | 11/21/00 | 21:29 | 53.3694 | 11/21/00 | 20:23 | 31.7684 |
| 11/22/00 | 1:15  | 55.725 | 11/22/00 | 2:48  | 18.750 | 11/22/00 | 3:01  | 32.392 | 11/22/00 | 3:11  | 40.7743 | 11/22/00 | 1:29  | 53.3727 | 11/22/00 | 0:23  | 31.7815 |
| 11/22/00 | 5:15  | 55.712 | 11/22/00 | 6:48  | 18.757 | 11/22/00 | 7:01  | 32.398 | 11/22/00 | 7:11  | 40.7743 | 11/22/00 | 5:29  | 53.3858 | 11/22/00 | 4:23  | 31.7848 |
| 11/22/00 | 9:15  | 55.679 | 11/22/00 | 10:48 | 18.770 | 11/22/00 | 11:01 | 32.402 | 11/22/00 | 11:11 | 40.7808 | 11/22/00 | 9:29  | 53.3924 | 11/22/00 | 8:23  | 31.7946 |
| 11/22/00 | 13:15 | 55.820 | 11/22/00 | 14:48 | 18.770 | 11/22/00 | 15:01 | 32.395 | 11/22/00 | 15:11 | 40.7579 | 11/22/00 | 13:29 | 53.3793 | 11/22/00 | 12:23 | 31.8045 |
| 11/22/00 | 17:15 | 55.843 | 11/22/00 | 18:48 | 18.770 | 11/22/00 | 19:01 | 32.385 | 11/22/00 | 19:11 | 40.7349 | 11/22/00 | 17:29 | 53.3301 | 11/22/00 | 16:23 | 31.7815 |
| 11/22/00 | 21:15 | 55.768 | 11/22/00 | 22:48 | 18.776 | 11/22/00 | 23:01 | 32.379 | 11/22/00 | 23:11 | 40.7283 | 11/22/00 | 21:29 | 53.3202 | 11/22/00 | 20:23 | 31.7782 |
| 11/23/00 | 1:15  | 55.761 | 11/23/00 | 2:48  | 18.780 | 11/23/00 | 3:01  | 32.372 | 11/23/00 | 3:11  | 40.7054 | 11/23/00 | 1:29  | 53.2808 | 11/23/00 | 0:23  | 31.7782 |
| 11/23/00 | 5:15  | 55.741 | 11/23/00 | 6:48  | 18.783 | 11/23/00 | 7:01  | 32.362 | 11/23/00 | 7:11  | 40.6923 | 11/23/00 | 5:29  | 53.2776 | 11/23/00 | 4:23  | 31.7717 |
| 11/23/00 | 9:15  | 55.719 | 11/23/00 | 10:48 | 18.789 | 11/23/00 | 11:01 | 32.365 | 11/23/00 | 11:11 | 40.6923 | 11/23/00 | 9:29  | 53.2644 | 11/23/00 | 8:23  | 31.7749 |
| 11/23/00 | 13:15 | 55.873 | 11/23/00 | 14:48 | 18.793 | 11/23/00 | 15:01 | 32.359 | 11/23/00 | 15:11 | 40.6693 | 11/23/00 | 13:29 | 53.2808 | 11/23/00 | 12:23 | 31.7815 |
| 11/23/00 | 17:15 | 55.846 | 11/23/00 | 18:48 | 18.799 | 11/23/00 | 19:01 | 32.356 | 11/23/00 | 19:11 | 40.6627 | 11/23/00 | 17:29 | 53.2382 | 11/23/00 | 16:23 | 31.7684 |
| 11/23/00 | 21:15 | 55.745 | 11/23/00 | 22:48 | 18.809 | 11/23/00 | 23:01 | 32.362 | 11/23/00 | 23:11 | 40.666  | 11/23/00 | 21:29 | 53.2546 | 11/23/00 | 20:23 | 31.7881 |
| 11/24/00 | 1:15  | 55.735 | 11/24/00 | 2:48  | 18.816 | 11/24/00 | 3:01  | 32.365 | 11/24/00 | 3:11  | 40.6627 | 11/24/00 | 1:29  | 53.2972 | 11/24/00 | 0:23  | 31.8077 |
| 11/24/00 | 5:15  | 55.728 | 11/24/00 | 6:48  | 18.819 | 11/24/00 | 7:01  | 32.365 | 11/24/00 | 7:11  | 40.6562 | 11/24/00 | 5:29  | 53.2644 | 11/24/00 | 4:23  | 31.8012 |
| 11/24/00 | 9:15  | 55.692 | 11/24/00 | 10:48 | 18.832 | 11/24/00 | 11:01 | 32.375 | 11/24/00 | 11:11 | 40.6627 | 11/24/00 | 9:29  | 53.271  | 11/24/00 | 8:23  | 31.8143 |
| 11/24/00 | 13:15 | 55.823 | 11/24/00 | 14:48 | 18.835 | 11/24/00 | 15:01 | 32.369 | 11/24/00 | 15:11 | 40.643  | 11/24/00 | 13:29 | 53.2612 | 11/24/00 | 12:23 | 31.8241 |
| 11/24/00 | 17:15 | 55.863 | 11/24/00 | 18:48 | 18.835 | 11/24/00 | 19:01 | 32.356 | 11/24/00 | 19:11 | 40.6201 | 11/24/00 | 17:29 | 53.1988 | 11/24/00 | 16:23 | 31.7913 |
| 11/24/00 | 21:15 | 55.801 | 11/24/00 | 22:48 | 18.845 | 11/24/00 | 23:01 | 32.356 | 11/24/00 | 23:11 | 40.607  | 11/24/00 | 21:29 | 53.1955 | 11/24/00 | 20:23 | 31.7913 |
| 11/25/00 | 1:15  | 55.797 | 11/25/00 | 2:48  | 18.848 | 11/25/00 | 3:01  | 32.349 | 11/25/00 | 3:11  | 40.5971 | 11/25/00 | 1:29  | 53.2119 | 11/25/00 | 0:23  | 31.8045 |
| 11/25/00 | 5:15  | 55.787 | 11/25/00 | 6:48  | 18.845 | 11/25/00 | 7:01  | 32.336 | 11/25/00 | 7:11  | 40.5741 | 11/25/00 | 5:29  | 53.1759 | 11/25/00 | 4:23  | 31.7979 |

|          | DW06  |        |          | SB01  |        |          | SB09  |        |          | SB16  |         |          | SB18  |         |          | SB19  |         |
|----------|-------|--------|----------|-------|--------|----------|-------|--------|----------|-------|---------|----------|-------|---------|----------|-------|---------|
| Date     | Time  | Depth   | Date     | Time  | Depth   | Date     | Time  | Depth   |
|          |       |        |          |       |        |          |       |        |          |       |         |          |       |         |          |       |         |
| 11/25/00 | 9:15  | 55.751 | 11/25/00 | 10:48 | 18.852 | 11/25/00 | 11:01 | 32.339 | 11/25/00 | 11:11 | 40.5676 | 11/25/00 | 9:29  | 53.166  | 11/25/00 | 8:23  | 31.7881 |
| 11/25/00 | 13:15 | 55.791 | 11/25/00 | 14:48 | 18.858 | 11/25/00 | 15:01 | 32.333 | 11/25/00 | 15:11 | 40.5545 | 11/25/00 | 13:29 | 53.1824 | 11/25/00 | 12:23 | 31.8045 |
| 11/25/00 | 17:15 | 55.787 | 11/25/00 | 18:48 | 18.865 | 11/25/00 | 19:01 | 32.336 | 11/25/00 | 19:11 | 40.5545 | 11/25/00 | 17:29 | 53.166  | 11/25/00 | 16:23 | 31.7979 |
| 11/25/00 | 21:15 | 55.741 | 11/25/00 | 22:48 | 18.875 | 11/25/00 | 23:01 | 32.343 | 11/25/00 | 23:11 | 40.5545 | 11/25/00 | 21:29 | 53.1595 | 11/25/00 | 20:23 | 31.8143 |
| 11/26/00 | 1:15  | 55.728 | 11/26/00 | 2:48  | 18.881 | 11/26/00 | 3:01  | 32.349 | 11/26/00 | 3:11  | 40.5512 | 11/26/00 | 1:29  | 53.1759 | 11/26/00 | 0:23  | 31.8241 |
| 11/26/00 | 5:15  | 55.719 | 11/26/00 | 6:48  | 18.885 | 11/26/00 | 7:01  | 32.349 | 11/26/00 | 7:11  | 40.5479 | 11/26/00 | 5:29  | 53.1693 | 11/26/00 | 4:23  | 31.8274 |
| 11/26/00 | 9:15  | 55.719 | 11/26/00 | 10:48 | 18.891 | 11/26/00 | 11:01 | 32.356 | 11/26/00 | 11:11 | 40.5512 | 11/26/00 | 9:29  | 53.1595 | 11/26/00 | 8:23  | 31.834  |
| 11/26/00 | 13:15 | 55.827 | 11/26/00 | 14:48 | 18.898 | 11/26/00 | 15:01 | 32.352 | 11/26/00 | 15:11 | 40.5381 | 11/26/00 | 13:29 | 53.189  | 11/26/00 | 12:23 | 31.8471 |
| 11/26/00 | 17:15 | 55.797 | 11/26/00 | 18:48 | 18.907 | 11/26/00 | 19:01 | 32.356 | 11/26/00 | 19:11 | 40.5446 | 11/26/00 | 17:29 | 53.1529 | 11/26/00 | 16:23 | 31.8438 |
| 11/26/00 | 21:15 | 55.682 | 11/26/00 | 22:48 | 18.924 | 11/26/00 | 23:01 | 32.375 | 11/26/00 | 23:11 | 40.561  | 11/26/00 | 21:29 | 53.189  | 11/26/00 | 20:23 | 31.8668 |
| 11/27/00 | 1:15  | 55.646 | 11/27/00 | 2:48  | 18.930 | 11/27/00 | 3:01  | 32.388 | 11/27/00 | 3:11  | 40.561  | 11/27/00 | 1:29  | 53.2218 | 11/27/00 | 0:23  | 31.8865 |
| 11/27/00 | 5:15  | 55.676 | 11/27/00 | 6:48  | 18.940 | 11/27/00 | 7:01  | 32.395 | 11/27/00 | 7:11  | 40.5807 | 11/27/00 | 5:29  | 53.2513 | 11/27/00 | 4:23  | 31.9029 |
| 11/27/00 | 9:15  | 55.646 | 11/27/00 | 10:48 | 18.953 | 11/27/00 | 11:01 | 32.415 | 11/27/00 | 11:11 | 40.5971 | 11/27/00 | 9:29  | 53.2513 | 11/27/00 | 8:23  | 31.9127 |
| 11/27/00 | 13:15 | 55.797 | 11/27/00 | 14:48 | 18.960 | 11/27/00 | 15:01 | 32.421 | 11/27/00 | 15:11 | 40.5938 | 11/27/00 | 13:29 | 53.271  | 11/27/00 | 12:23 | 31.9357 |
| 11/27/00 | 17:15 | 55.791 | 11/27/00 | 18:48 | 18.970 | 11/27/00 | 19:01 | 32.431 | 11/27/00 | 19:11 | 40.6004 | 11/27/00 | 17:29 | 53.2579 | 11/27/00 | 16:23 | 31.9259 |
| 11/27/00 | 21:15 | 55.735 | 11/27/00 | 22:48 | 18.983 | 11/27/00 | 23:01 | 32.438 | 11/27/00 | 23:11 | 40.6102 | 11/27/00 | 21:29 | 53.2644 | 11/27/00 | 20:23 | 31.9423 |
| 11/28/00 | 1:15  | 55.741 | 11/28/00 | 2:48  | 18.993 | 11/28/00 | 3:01  | 32.448 | 11/28/00 | 3:11  | 40.6135 | 11/28/00 | 1:29  | 53.271  | 11/28/00 | 0:23  | 31.9587 |
| 11/28/00 | 5:15  | 55.745 | 11/28/00 | 6:48  | 18.999 | 11/28/00 | 7:01  | 32.451 | 11/28/00 | 7:11  | 40.607  | 11/28/00 | 5:29  | 53.2841 | 11/28/00 | 4:23  | 31.9652 |
| 11/28/00 | 9:15  | 55.728 | 11/28/00 | 10:48 | 19.009 | 11/28/00 | 11:01 | 32.457 | 11/28/00 | 11:11 | 40.6201 | 11/28/00 | 9:29  | 53.2776 | 11/28/00 | 8:23  | 31.9652 |
| 11/28/00 | 13:15 | 55.873 | 11/28/00 | 14:48 | 19.019 | 11/28/00 | 15:01 | 32.454 | 11/28/00 | 15:11 | 40.607  | 11/28/00 | 13:29 | 53.271  | 11/28/00 | 12:23 | 31.9718 |
| 11/28/00 | 17:15 | 55.794 | 11/28/00 | 18:48 | 19.035 | 11/28/00 | 19:01 | 32.477 | 11/28/00 | 19:11 | 40.6332 | 11/28/00 | 17:29 | 53.2644 | 11/28/00 | 16:23 | 31.9783 |
| 11/28/00 | 21:15 | 55.692 | 11/28/00 | 22:48 | 19.049 | 11/28/00 | 23:01 | 32.507 | 11/28/00 | 23:11 | 40.6693 | 11/28/00 | 21:29 | 53.3465 | 11/28/00 | 20:23 | 32.0276 |
| 11/29/00 | 1:15  | 55.669 | 11/29/00 | 2:48  | 19.065 | 11/29/00 | 3:01  | 32.530 | 11/29/00 | 3:11  | 40.6988 | 11/29/00 | 1:29  | 53.3793 | 11/29/00 | 0:23  | 32.0505 |
| 11/29/00 | 5:15  | 55.669 | 11/29/00 | 6:48  | 19.081 | 11/29/00 | 7:01  | 32.549 | 11/29/00 | 7:11  | 40.7152 | 11/29/00 | 5:29  | 53.4088 | 11/29/00 | 4:23  | 32.0669 |
| 11/29/00 | 9:15  | 55.633 | 11/29/00 | 10:48 | 19.098 | 11/29/00 | 11:01 | 32.575 | 11/29/00 | 11:11 | 40.7448 | 11/29/00 | 9:29  | 53.4482 | 11/29/00 | 8:23  | 32.0833 |
| 11/29/00 | 13:15 | 55.719 | 11/29/00 | 14:48 | 19.114 | 11/29/00 | 15:01 | 32.602 | 11/29/00 | 15:11 | 40.7776 | 11/29/00 | 13:29 | 53.4908 | 11/29/00 | 12:23 | 32.1129 |
| 11/29/00 | 17:15 | 55.679 | 11/29/00 | 18:48 | 19.127 | 11/29/00 | 19:01 | 32.621 | 11/29/00 | 19:11 | 40.8005 | 11/29/00 | 17:29 | 53.5335 | 11/29/00 | 16:23 | 32.1358 |
| 11/29/00 | 21:15 | 56.093 | 11/29/00 | 22:48 | 19.144 | 11/29/00 | 23:01 | 32.641 | 11/29/00 | 23:11 | 40.8202 | 11/29/00 | 21:29 | 53.5433 | 11/29/00 | 20:23 | 32.149  |
| 11/30/00 | 1:15  | 56.106 | 11/30/00 | 2:48  | 19.157 | 11/30/00 | 3:01  | 32.654 | 11/30/00 | 3:11  | 40.8366 | 11/30/00 | 1:29  | 53.5564 | 11/30/00 | 0:23  | 32.1654 |
| 11/30/00 | 5:15  | 56.093 | 11/30/00 | 6:48  | 19.170 | 11/30/00 | 7:01  | 32.657 | 11/30/00 | 7:11  | 40.8333 | 11/30/00 | 5:29  | 53.5269 | 11/30/00 | 4:23  | 32.1588 |
| 11/30/00 | 9:15  | 56.073 | 11/30/00 | 10:48 | 19.173 | 11/30/00 | 11:01 | 32.654 | 11/30/00 | 11:11 | 40.8268 | 11/30/00 | 9:29  | 53.5072 | 11/30/00 | 8:23  | 32.1522 |
| 11/30/00 | 13:15 | 56.047 | 11/30/00 | 14:48 | 19.177 | 11/30/00 | 15:01 | 32.638 | 11/30/00 | 15:11 | 40.794  | 11/30/00 | 13:29 | 53.4843 | 11/30/00 | 12:23 | 32.1424 |
| 11/30/00 | 17:15 | 55.971 | 11/30/00 | 18:48 | 19.177 | 11/30/00 | 19:01 | 32.621 | 11/30/00 | 19:11 | 40.7644 | 11/30/00 | 17:29 | 53.4022 | 11/30/00 | 16:23 | 32.1063 |
| 11/30/00 | 21:15 | 55.932 | 11/30/00 | 22:48 | 19.180 | 11/30/00 | 23:01 | 32.615 | 11/30/00 | 23:11 | 40.748  | 11/30/00 | 21:29 | 53.376  | 11/30/00 | 20:23 | 32.1096 |
| 12/1/00  | 1:15  | 55.892 | 12/1/00  | 2:48  | 19.186 | 12/1/00  | 3:01  | 32.608 | 12/1/00  | 3:11  | 40.7349 | 12/1/00  | 1:29  | 53.3366 | 12/1/00  | 0:23  | 32.0997 |
| 12/1/00  | 5:15  | 55.883 | 12/1/00  | 6:48  | 19.196 | 12/1/00  | 7:01  | 32.615 | 12/1/00  | 7:11  | 40.7382 | 12/1/00  | 5:29  | 53.3497 | 12/1/00  | 4:23  | 32.1063 |
| 12/1/00  | 9:15  | 55.906 | 12/1/00  | 10:48 | 19.216 | 12/1/00  | 11:01 | 32.641 | 12/1/00  | 11:11 | 40.7644 | 12/1/00  | 9:29  | 53.3924 | 12/1/00  | 8:23  | 32.126  |
| 12/1/00  | 13:15 | 55.978 | 12/1/00  | 14:48 | 19.226 | 12/1/00  | 15:01 | 32.677 | 12/1/00  | 15:11 | 40.8071 | 12/1/00  | 13:29 | 53.4744 | 12/1/00  | 12:23 | 32.1719 |

| Date     Time     Depth     Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | DW06  |        |         | SB01  |        |          | SB09  |        |          | SB16  |          |          | SB18  |         |         | SB19  |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|--------|---------|-------|--------|----------|-------|--------|----------|-------|----------|----------|-------|---------|---------|-------|----------|
| Image: Constraint of the constrant of the constraint of the constraint of the constraint of the c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date     | Time  | Depth  | Date    | Time  | Depth  | Date     | Time  | Depth  | Date     | Time  | Depth    | Date     | Time  | Depth   | Date    | Time  | Depth    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.0/4/00 | 47.45 | 50.052 | 40/4/00 | 40.40 | 10.040 | 4.0/4/00 | 40.04 | 00 740 | 4.0/4/00 | 10-11 | 40.0500  | 4.0/4/00 | 47.00 | 50 5007 | 40/4/00 | 40.00 | 22.04.40 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12/1/00  | 01:15 | 50.053 | 12/1/00 | 10.40 | 19.249 | 12/1/00  | 19.01 | 32.713 | 12/1/00  | 19.11 | 40.8596  | 12/1/00  | 17.29 | 53.5367 | 12/1/00 | 10.23 | 32.2140  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/1/00  | 21.15 | 56 100 | 12/1/00 | 22.40 | 19.272 | 12/1/00  | 23.01 | 32.759 | 12/1/00  | 23.11 | 40.9121  | 12/1/00  | 21.29 | 53.0352 | 12/1/00 | 20.23 | 32.2372  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/2/00  | 1.15  | 56 224 | 12/2/00 | 2.40  | 19.291 | 12/2/00  | 7:01  | 32.709 | 12/2/00  | 7.11  | 40.9514  | 12/2/00  | 5.20  | 52 7172 | 12/2/00 | 0.23  | 32.2035  |
| 12/2/00   9.15   56.257   12/2/00   10.48   19.327   12/2/00   11.01   32.831   12/2/00   11.11   41.0269   12/2/00   9.29   55.7762   12/2/00   8.23   32.352     12/2/00   13:15   56.289   12/2/00   14:48   19.341   12/2/00   15:01   32.867   12/2/00   15:11   41.0466   12/2/00   13:29   53.8222   12/2/00   12:23   32.3556     12/2/00   17:15   56.289   12/2/00   18:48   19.357   12/2/00   19:01   32.881   12/2/00   19:11   41.0499   12/2/00   17:29   53.7828   12/2/00   16:23   32.352/     12/2/00   21:15   56.286   12/2/00   22:48   19.367   12/2/00   23:01   32.887   12/2/00   23:11   41.0597   12/2/00   21:29   53.773   12/2/00   20:23   32.352/     12/3/00   1:15   56.257   12/3/00   2:48   19.377   12/3/00   3:01   32.890   12/3/00   7:11   41.0499   12/3/00   5:29   53.7434   12/3/00 <t< td=""><td>12/2/00</td><td>0.15</td><td>56 257</td><td>12/2/00</td><td>0.40</td><td>19.300</td><td>12/2/00</td><td>11:01</td><td>32.013</td><td>12/2/00</td><td>11.11</td><td>40.9075</td><td>12/2/00</td><td>0.29</td><td>52 7762</td><td>12/2/00</td><td>4.23</td><td>32.3004</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12/2/00  | 0.15  | 56 257 | 12/2/00 | 0.40  | 19.300 | 12/2/00  | 11:01 | 32.013 | 12/2/00  | 11.11 | 40.9075  | 12/2/00  | 0.29  | 52 7762 | 12/2/00 | 4.23  | 32.3004  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/2/00  | 9.15  | 56.200 | 12/2/00 | 10.40 | 19.327 | 12/2/00  | 15:01 | 32.001 | 12/2/00  | 15.11 | 41.0269  | 12/2/00  | 9.29  | 53.7762 | 12/2/00 | 0.23  | 32.3327  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/2/00  | 13.13 | 56,200 | 12/2/00 | 14.40 | 19.341 | 12/2/00  | 10:01 | 32.007 | 12/2/00  | 10.11 | 41.0400  | 12/2/00  | 13.29 | 52 7020 | 12/2/00 | 12:23 | 32.3000  |
| 12/2/00   21.15   56.266   12/2/00   22.46   19.367   12/2/00   23.01   32.867   12/2/00   23.11   41.0597   12/2/00   21.29   55.773   12/2/00   20.23   32.349     12/3/00   1:15   56.276   12/3/00   2:48   19.377   12/3/00   3:01   32.894   12/3/00   3:11   41.0597   12/3/00   1:29   53.7664   12/3/00   0:23   32.3522     12/3/00   5:15   56.257   12/3/00   6:48   19.386   12/3/00   7:01   32.890   12/3/00   7:11   41.0499   12/3/00   5:29   53.7434   12/3/00   4:23   32.3452     12/3/00   9:15   56.237   12/3/00   10:48   19.393   12/3/00   11:01   32.887   12/3/00   11:11   41.0466   12/3/00   9:29   53.7303   12/3/00   8:23   32.3452     12/3/00   13:15   56.201   12/3/00   14:48   19.390   12/3/00   15:01   32.864   12/3/00   15:11   41.0072   12/3/00   13:29   53.6778   12/3/00   12:23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12/2/00  | 17.15 | 56.209 | 12/2/00 | 10.40 | 19.307 | 12/2/00  | 19.01 | 32.001 | 12/2/00  | 19.11 | 41.0499  | 12/2/00  | 21.29 | 53.7020 | 12/2/00 | 10.23 | 32.3324  |
| 12/3/00   1.15   56.276   12/3/00   2.48   19.377   12/3/00   52.694   12/3/00   5.11   41.0397   12/3/00   1.29   55.7664   12/3/00   0.23   52.324     12/3/00   5:15   56.257   12/3/00   6:48   19.386   12/3/00   7:01   32.890   12/3/00   7:11   41.0499   12/3/00   5:29   53.7434   12/3/00   4:23   32.3456     12/3/00   9:15   56.237   12/3/00   10:48   19.393   12/3/00   11:01   32.887   12/3/00   11:11   41.0466   12/3/00   9:29   53.7303   12/3/00   8:23   32.3425     12/3/00   13:15   56.201   12/3/00   14:48   19.390   12/3/00   15:01   32.864   12/3/00   15:11   41.0072   12/3/00   13:29   53.6778   12/3/00   12:23   32.3327     12/3/00   17:15   56.125   12/3/00   18:48   19.390   12/3/00   19:01   32.848   12/3/00   19:11   40.9711   12/3/00   13:29   53.57925   12/3/00   16:23   32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12/2/00  | 21.15 | 56.276 | 12/2/00 | 22.40 | 19.307 | 12/2/00  | 23.01 | 32.001 | 12/2/00  | 23.11 | 41.0597  | 12/2/00  | 21.29 | 53.775  | 12/2/00 | 20.23 | 32.3491  |
| 12/3/00   5.15   56.257   12/3/00   6.46   19.386   12/3/00   7.01   32.890   12/3/00   7.11   41.0499   12/3/00   5.29   55.7434   12/3/00   4.23   32.3450     12/3/00   9:15   56.237   12/3/00   10:48   19.393   12/3/00   11:01   32.887   12/3/00   11:11   41.0466   12/3/00   9:29   53.7303   12/3/00   8:23   32.342t     12/3/00   13:15   56.201   12/3/00   14:48   19.390   12/3/00   15:01   32.864   12/3/00   15:11   41.0072   12/3/00   13:29   53.6778   12/3/00   12:23   32.3327     12/3/00   17:15   56.125   12/3/00   18:48   19.390   12/3/00   19:01   32.848   12/3/00   19:11   40.9711   12/3/00   13:29   53.5925   12/3/00   16:23   32.2933     12/3/00   17:15   56.125   12/3/00   18:48   19.390   12/3/00   19:01   32.848   12/3/00   19:11   40.974/00   23.240   32.2933   32.2933 <t< td=""><td>12/3/00</td><td>1.15</td><td>50.270</td><td>12/3/00</td><td>2.40</td><td>19.377</td><td>12/3/00</td><td>3.01</td><td>32.094</td><td>12/3/00</td><td>7.11</td><td>41.0597</td><td>12/3/00</td><td>1.29</td><td>53.7004</td><td>12/3/00</td><td>0.23</td><td>32.3324</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12/3/00  | 1.15  | 50.270 | 12/3/00 | 2.40  | 19.377 | 12/3/00  | 3.01  | 32.094 | 12/3/00  | 7.11  | 41.0597  | 12/3/00  | 1.29  | 53.7004 | 12/3/00 | 0.23  | 32.3324  |
| 12/3/00     9.15     56.257     12/3/00     10.48     19.393     12/3/00     11.01     52.867     12/3/00     11.11     41.0466     12/3/00     9.29     55.7503     12/3/00     6.23     52.32.322       12/3/00     13:15     56.201     12/3/00     14:48     19.390     12/3/00     15:01     32.864     12/3/00     15:11     41.0072     12/3/00     13:29     53.6778     12/3/00     12:23     32.3327       12/3/00     17:15     56.125     12/3/00     18:48     19.390     12/3/00     19:01     32.848     12/3/00     19:11     40.9711     12/3/00     13:29     53.5925     12/3/00     16:23     32.2933       12/3/00     17:15     56.125     12/3/00     18:48     19.390     12/3/00     19:01     32.848     12/3/00     19:11     40.9711     12/3/00     17:29     53.5925     12/3/00     16:23     32.2933       12/3/00     12/3/00     12/3/00     12/3/00     12:30     12/3/00     16:23     32.2933     32.2933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/3/00  | 0.15  | 56 227 | 12/3/00 | 0.40  | 19.300 | 12/3/00  | 11:01 | 32.090 | 12/3/00  | 11.11 | 41.0499  | 12/3/00  | 0.29  | 53.7434 | 12/3/00 | 4.23  | 32.3430  |
| $\frac{12}{3}00  15.15  50.201  \frac{12}{3}00  14.48  19.390  \frac{12}{3}00  19.01  32.848  \frac{12}{3}00  19.11  41.072  \frac{12}{3}00  15.29  53.0776  \frac{12}{3}00  12.23  32.931  \frac{12}{3}00  19.11  \frac{12}{3}00  19$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12/3/00  | 9.15  | 56 201 | 12/3/00 | 10.40 | 19.393 | 12/3/00  | 15:01 | 32.001 | 12/3/00  | 15.11 | 41.0400  | 12/3/00  | 9.29  | 52 6779 | 12/3/00 | 0.23  | 32.3423  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/3/00  | 17.15 | 56 125 | 12/3/00 | 14.40 | 10.300 | 12/3/00  | 10.01 | 22.004 | 12/3/00  | 10.11 | 41.0072  | 12/3/00  | 17.20 | 53.0770 | 12/3/00 | 12.20 | 32.3327  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12/3/00  | 21.15 | 56.076 | 12/3/00 | 22.49 | 10.300 | 12/3/00  | 22.01 | 32.040 | 12/3/00  | 22.11 | 40.9711  | 12/3/00  | 21.29 | 52 5507 | 12/3/00 | 20.23 | 32.2933  |
| $\frac{12}{2}/4/00 = \frac{11}{5} = \frac{500}{5} = \frac{12}{2}/4/00 = \frac{12}{5} = \frac{12}{2}/4/00 = \frac{12}{5} = 12$                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/00  | 21.15 | 56.042 | 12/3/00 | 22.40 | 10.306 | 12/3/00  | 23.01 | 22.000 | 12/3/00  | 20.11 | 40.9514  | 12/3/00  | 1.29  | 52 5267 | 12/3/00 | 20.23 | 32.2002  |
| $\frac{12}{2}/4/00 = \frac{1}{5} \frac{15}{5} \frac{5}{5} \frac{5}{5} \frac{12}{4} \frac{1}{100} = \frac{2}{5} \frac{12}{5} \frac{12}{4} \frac{1}{100} = \frac{1}{5} \frac{12}{4} \frac{1}{100} = \frac{1}{5} \frac{1}{5} \frac{1}{100} = \frac{1}{5} \frac{1}{5}$                                                                                                                                                | 12/4/00  | 5.15  | 56.004 | 12/4/00 | 2.40  | 10.402 | 12/4/00  | 7.01  | 22.020 | 12/4/00  | 7.11  | 40.9219  | 12/4/00  | 5.20  | 52 5171 | 12/4/00 | 0.23  | 32.2703  |
| $\frac{12}{2}/4/00 \qquad 0.15 \qquad 50.004 \qquad \frac{12}{2}/4/00 \qquad 10.49 \qquad 10.403 \qquad \frac{12}{2}/4/00 \qquad 1.01 \qquad 32.023 \qquad \frac{12}{12}/4/00 \qquad 1.11 \qquad 40.052 \qquad \frac{12}{2}/4/00 \qquad 0.23 \qquad 32.210 \qquad 4.23 \qquad \frac{12}{2}/4/00 \qquad 1$ | 12/4/00  | 0.15  | 56 001 | 12/4/00 | 10.40 | 10 /12 | 12/4/00  | 11.01 | 22.023 | 12/4/00  | 11.11 | 40.9134  | 12/4/00  | 0.20  | 52 5129 | 12/4/00 | 9.23  | 32.2703  |
| $\frac{12}{2}/400  \frac{5.15}{2}  \frac{50.001}{2}  \frac{12}{4}/00  \frac{10.46}{12}  \frac{15.15}{2}  \frac{12}{4}/00  \frac{11.01}{2}  \frac{32.651}{2}  \frac{12}{4}/00  \frac{11.11}{2}  \frac{40.522}{4}  \frac{22}{2}  \frac{12}{4}/00  \frac{32.55}{2}  \frac{12}{4}/00  \frac{32.27}{2}  \frac{32.27}{2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/4/00  | 9.15  | 56.033 | 12/4/00 | 11.40 | 19.413 | 12/4/00  | 15:01 | 32.001 | 12/4/00  | 15.11 | 40.9252  | 12/4/00  | 13.29 | 53 5507 | 12/4/00 | 12.23 | 32.2709  |
| $\frac{12}{400} \frac{15.15}{15.15} \frac{30.053}{50.051} \frac{12}{12} \frac{10}{10} \frac{11.45}{15.15} \frac{12}{12} \frac{10}{10} \frac{10.01}{15.01} \frac{32.041}{12} \frac{12}{10} \frac{10.11}{10} \frac{10.12}{10} \frac{10.12}{10} \frac{10.25}{15.25} \frac{12}{12} \frac{10}{10} \frac{10.12}{12} \frac{10}{10} \frac{10.12}{10} \frac{10.12}{10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12/4/00  | 17.15 | 56.050 | 12/4/00 | 14.40 | 10 432 | 12/4/00  | 10.01 | 32.041 | 12/4/00  | 10.11 | 40.92.92 | 12/4/00  | 17.29 | 53 5892 | 12/4/00 | 16:23 | 32.3004  |
| $\frac{12}{2}/4/00 = \frac{11}{5} = \frac{30.005}{56.070} = \frac{12}{4}/4/00 = \frac{12.100}{2} = \frac{12.100}{12} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/4/00  | 21.15 | 56.079 | 12/4/00 | 22.48 | 10.402 | 12/4/00  | 23.01 | 32.004 | 12/4/00  | 23.11 | 40.0000  | 12/4/00  | 21.20 | 53 6310 | 12/4/00 | 20.23 | 32 336   |
| $\frac{12}{2} \frac{500}{10} = \frac{113}{15} = \frac{30.073}{15} = \frac{12}{15} \frac{12}{10} = \frac{12}{15} \frac{12}{15} \frac{12}{15} \frac{12}{15} = \frac{12}{15} \frac{12}{15} \frac{12}{15} \frac{12}{15} = \frac{12}{15} \frac{12}{15} \frac{12}{15} \frac{12}{15} \frac{12}{15} = \frac{12}{15} \frac{12}{1$                                                                                                                                                                                                                                                                                                                                                                | 12/4/00  | 1.15  | 56 110 | 12/4/00 | 22.40 | 10.442 | 12/4/00  | 20.01 | 32.077 | 12/4/00  | 20.11 | 40.3070  | 12/4/00  | 1.23  | 53 6516 | 12/4/00 | 20.23 | 32,350   |
| 12/5/00 5-15 56 135 12/5/00 6:48 19.465 12/5/00 7:01 32.900 12/5/00 7:11 40.975 12/5/00 5:29 53.6516 12/5/00 4:23 32.372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12/5/00  | 5.15  | 56 135 | 12/5/00 | 6.48  | 10.45  | 12/5/00  | 7.01  | 32.030 | 12/5/00  | 7.11  | 40.3777  | 12/5/00  | 5.20  | 53 6516 | 12/5/00 | 4.23  | 32.3022  |
| 12/5/00 9-15 56 138 12/5/00 10:48 19.475 12/5/00 11:01 32.913 12/5/00 11:11 40.9041 12/5/00 9:29 53.6647 12/5/00 8:23 32.372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/5/00  | 0·15  | 56 138 | 12/5/00 | 10:48 | 19.405 | 12/5/00  | 11:01 | 32.900 | 12/5/00  | 11.11 | 40.9073  | 12/5/00  | 0.29  | 53 6647 | 12/5/00 | 8.23  | 32.372   |
| 12/5/00 13:15 56 135 12/5/00 14:48 19.475 12/5/00 15:01 32.904 12/5/00 11:11 10.374 12/5/00 13:29 53.6516 12/5/00 12:33 32.376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/5/00  | 13.15 | 56 135 | 12/5/00 | 14.48 | 10.475 | 12/5/00  | 15:01 | 32.010 | 12/5/00  | 15.11 | 40.0744  | 12/5/00  | 13.20 | 53 6516 | 12/5/00 | 12.23 | 32 3786  |
| 12/5/00 15:15 56:1576 12/5/00 14:48 19.478 12/5/00 19:11 22/5/00 10:11 22/5/00 10:11 10.942 12/5/00 17:29 53 5728 12/5/00 16:23 32 352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12/5/00  | 17.15 | 56.076 | 12/5/00 | 18.48 | 10.478 | 12/5/00  | 10.01 | 32.304 | 12/5/00  | 10.11 | 40.0744  | 12/5/00  | 17.20 | 53 5728 | 12/5/00 | 16.23 | 32 3524  |
| 12/5/00 11:15 56.033 12/5/00 22:48 19.488 12/5/00 23:01 32.890 12/5/00 23:11 10.0402 12/5/00 21:29 53.5696 12/5/00 20:23 32.340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12/5/00  | 21.15 | 56 033 | 12/5/00 | 22:48 | 10.488 | 12/5/00  | 23.01 | 32.000 | 12/5/00  | 23.11 | 40.0402  | 12/5/00  | 21.20 | 53 5696 | 12/5/00 | 20.23 | 32 3491  |
| 12/6/00 1:15 56.024 12/6/00 2:48 19.485 12/6/00 3:01 32.884 12/6/00 2:11 10.0752 12/6/00 1:20 53.5696 12/6/00 0:23 32.352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12/6/00  | 1.15  | 56 024 | 12/6/00 | 2:48  | 10.400 | 12/6/00  | 3.01  | 32.884 | 12/6/00  | 3.11  | 40 9252  | 12/6/00  | 1.20  | 53 5696 | 12/6/00 | 0.23  | 32 3524  |
| $\frac{12}{2} \frac{6}{6} \frac{115}{2} = \frac{30.024}{12} + \frac{12}{12} \frac{6}{6} \frac{100}{12} = \frac{12}{12} + \frac{1000}{12} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12/6/00  | 5.15  | 56 004 | 12/6/00 | 6:48  | 19 491 | 12/6/00  | 7.01  | 32.004 | 12/6/00  | 7.11  | 40.9186  | 12/6/00  | 5.29  | 53 54   | 12/6/00 | 4.23  | 32 3491  |
| 12/6/00 9-15 55.991 12/6/00 10:48 19.498 12/6/00 11:01 32.877 12/6/00 11:11 40.9154 12/6/00 9:20 53.5367 12/6/00 8:23 32.346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/00  | 0.10  | 55 001 | 12/6/00 | 10:48 | 10.401 | 12/6/00  | 11.01 | 32 877 | 12/6/00  | 11.11 | 40.0154  | 12/6/00  | Q.20  | 53 5367 | 12/6/00 | 8.23  | 32 3491  |
| 12/6/00 13:15 55.971 12/6/00 14:48 19.495 12/6/00 15:01 32.858 12/6/00 11:11 10:0777 12/6/00 13:29 53.5597 12/6/00 12:23 32.352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12/6/00  | 13.15 | 55 971 | 12/6/00 | 14.48 | 10.400 | 12/6/00  | 15:01 | 32.858 | 12/6/00  | 15.11 | 40.8727  | 12/6/00  | 13.20 | 53 5597 | 12/6/00 | 12.23 | 32 3524  |
| $\frac{12}{6}(0)  \frac{17.15}{12}  \frac{53.071}{5}  \frac{12}{5}  \frac{12}{6}(0)  \frac{18.48}{19}  \frac{19.96}{12}  \frac{10.06}{12}  \frac{12.00}{12}  \frac{12}{12}  \frac{1000}{12}  \frac{10.12}{12}  \frac{1000}{12}  \frac{12}{12}  \frac{1000}{12}  1000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/00  | 17.15 | 55 899 | 12/6/00 | 18:48 | 19 491 | 12/6/00  | 19.01 | 32.000 | 12/6/00  | 19.11 | 40.8333  | 12/6/00  | 17.29 | 53 4449 | 12/6/00 | 16:23 | 32 3097  |
| 12/6/00 21:15 55.840 12/6/00 22:48 19.491 12/6/00 23:01 32.812 12/6/00 23:11 40.7072 12/6/00 21:20 53.376 12/6/00 20:23 32.996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/00  | 21.15 | 55 840 | 12/6/00 | 22.48 | 10.401 | 12/6/00  | 23.01 | 32,812 | 12/6/00  | 23.11 | 40 7972  | 12/6/00  | 21.20 | 53 376  | 12/6/00 | 20.23 | 32 2966  |
| 12/7/00 1.15 55 771 12/7/00 2.48 19.482 12/7/00 3.01 32 772 12/7/00 3.11 40 7382 12/7/00 1.29 53 3104 12/7/00 0.23 32 2760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12/7/00  | 1.15  | 55 771 | 12/7/00 | 2:48  | 19 482 | 12/7/00  | 3.01  | 32 772 | 12/7/00  | 3.11  | 40 7382  | 12/7/00  | 1.20  | 53 3104 | 12/7/00 | 0.23  | 32 2769  |
| 12/7/00 5·15 55 689 12/7/00 6·48 19 472 12/7/00 7·01 32 740 12/7/00 7·11 40 689 12/7/00 5·29 53 2349 12/7/00 4·23 32 2404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12/7/00  | 5.15  | 55 689 | 12/7/00 | 6.48  | 19 472 | 12/7/00  | 7.01  | 32 740 | 12/7/00  | 7.11  | 40.689   | 12/7/00  | 5.20  | 53 2349 | 12/7/00 | 4.23  | 32 2408  |
| $\frac{12}{7}/00 \qquad 9.15 \qquad 55.623 \qquad 12/7/00 \qquad 10.48 \qquad 19.475 \qquad 12/7/00 \qquad 11.01 \qquad 32.717 \qquad 12/7/00 \qquad 11.11 \qquad 40.6627 \qquad 12/7/00 \qquad 9.29 \qquad 53.1923 \qquad 12/7/00 \qquad 4.23 \qquad 32.240 \qquad 12/7/00 \qquad$                                                                                                                      | 12/7/00  | 9.15  | 55 623 | 12/7/00 | 10:48 | 19 475 | 12/7/00  | 11.01 | 32 717 | 12/7/00  | 11.11 | 40.6627  | 12/7/00  | 9.29  | 53 1923 | 12/7/00 | 8.23  | 32 2244  |
| 12/7/00 13:15 55 587 12/7/00 14:48 19:465 12/7/00 15:01 32:703 12/7/00 15:11 40:6266 12/7/00 13:29 53:1923 12/7/00 12:23 32:224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12/7/00  | 13.15 | 55 587 | 12/7/00 | 14.48 | 19 465 | 12/7/00  | 15:01 | 32 703 | 12/7/00  | 15.11 | 40.6266  | 12/7/00  | 13:29 | 53 1923 | 12/7/00 | 12.23 | 32 2244  |
| 12/7/00 17:15 55 574 12/7/00 18:48 19 475 12/7/00 19:01 32 713 12/7/00 19:11 40.643 12/7/00 17:29 53 1857 12/7/00 16:23 32 227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/7/00  | 17.15 | 55 574 | 12/7/00 | 18.48 | 19 475 | 12/7/00  | 19.01 | 32 713 | 12/7/00  | 19.11 | 40 643   | 12/7/00  | 17.20 | 53 1857 | 12/7/00 | 16:23 | 32 2277  |
| 12/7/00 21:15 55.633 12/7/00 22:48 19.495 12/7/00 23:01 32.762 12/7/00 23:11 40.7021 12/7/00 21:29 53.3104 12/7/00 20:23 32.2867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/7/00  | 21:15 | 55.633 | 12/7/00 | 22:48 | 19,495 | 12/7/00  | 23:01 | 32.762 | 12/7/00  | 23:11 | 40.7021  | 12/7/00  | 21:29 | 53.3104 | 12/7/00 | 20:23 | 32,2867  |

|          | DW06  |        |          | SB01  |        |          | SB09  |        |          | SB16  |         |          | SB18  |         |          | SB19  |         |
|----------|-------|--------|----------|-------|--------|----------|-------|--------|----------|-------|---------|----------|-------|---------|----------|-------|---------|
| Date     | Time  | Depth   | Date     | Time  | Depth   | Date     | Time  | Depth   |
|          |       |        |          |       |        |          |       |        |          |       |         |          |       |         |          |       |         |
| 12/8/00  | 1:15  | 55.745 | 12/8/00  | 2:48  | 19.511 | 12/8/00  | 3:01  | 32.805 | 12/8/00  | 3:11  | 40.7513 | 12/8/00  | 1:29  | 53.4318 | 12/8/00  | 0:23  | 32.3491 |
| 12/8/00  | 5:15  | 55.840 | 12/8/00  | 6:48  | 19.534 | 12/8/00  | 7:01  | 32.841 | 12/8/00  | 7:11  | 40.8005 | 12/8/00  | 5:29  | 53.4974 | 12/8/00  | 4:23  | 32.3885 |
| 12/8/00  | 9:15  | 55.932 | 12/8/00  | 10:48 | 19.557 | 12/8/00  | 11:01 | 32.890 | 12/8/00  | 11:11 | 40.8497 | 12/8/00  | 9:29  | 53.5728 | 12/8/00  | 8:23  | 32.4344 |
| 12/8/00  | 13:15 | 55.991 | 12/8/00  | 14:48 | 19.567 | 12/8/00  | 15:01 | 32.904 | 12/8/00  | 15:11 | 40.876  | 12/8/00  | 13:29 | 53.6122 | 12/8/00  | 12:23 | 32.4574 |
| 12/8/00  | 17:15 | 56.014 | 12/8/00  | 18:48 | 19.577 | 12/8/00  | 19:01 | 32.920 | 12/8/00  | 19:11 | 40.8825 | 12/8/00  | 17:29 | 53.6188 | 12/8/00  | 16:23 | 32.4574 |
| 12/8/00  | 21:15 | 56.020 | 12/8/00  | 22:48 | 19.590 | 12/8/00  | 23:01 | 32.927 | 12/8/00  | 23:11 | 40.8825 | 12/8/00  | 21:29 | 53.6024 | 12/8/00  | 20:23 | 32.4672 |
| 12/9/00  | 1:15  | 56.004 | 12/9/00  | 2:48  | 19.593 | 12/9/00  | 3:01  | 32.923 | 12/9/00  | 3:11  | 40.8825 | 12/9/00  | 1:29  | 53.5958 | 12/9/00  | 0:23  | 32.4639 |
| 12/9/00  | 5:15  | 55.978 | 12/9/00  | 6:48  | 19.593 | 12/9/00  | 7:01  | 32.917 | 12/9/00  | 7:11  | 40.8563 | 12/9/00  | 5:29  | 53.5499 | 12/9/00  | 4:23  | 32.4541 |
| 12/9/00  | 9:15  | 55.925 | 12/9/00  | 10:48 | 19.600 | 12/9/00  | 11:01 | 32.910 | 12/9/00  | 11:11 | 40.8465 | 12/9/00  | 9:29  | 53.4974 | 12/9/00  | 8:23  | 32.4344 |
| 12/9/00  | 13:15 | 55.873 | 12/9/00  | 14:48 | 19.600 | 12/9/00  | 15:01 | 32.887 | 12/9/00  | 15:11 | 40.8136 | 12/9/00  | 13:29 | 53.4777 | 12/9/00  | 12:23 | 32.4278 |
| 12/9/00  | 17:15 | 55.797 | 12/9/00  | 18:48 | 19.600 | 12/9/00  | 19:01 | 32.874 | 12/9/00  | 19:11 | 40.7841 | 12/9/00  | 17:29 | 53.4154 | 12/9/00  | 16:23 | 32.3983 |
| 12/9/00  | 21:15 | 55.771 | 12/9/00  | 22:48 | 19.610 | 12/9/00  | 23:01 | 32.874 | 12/9/00  | 23:11 | 40.7808 | 12/9/00  | 21:29 | 53.3924 | 12/9/00  | 20:23 | 32.4016 |
| 12/10/00 | 1:15  | 55.764 | 12/10/00 | 2:48  | 19.616 | 12/10/00 | 3:01  | 32.877 | 12/10/00 | 3:11  | 40.7808 | 12/10/00 | 1:29  | 53.4022 | 12/10/00 | 0:23  | 32.4147 |
| 12/10/00 | 5:15  | 55.787 | 12/10/00 | 6:48  | 19.626 | 12/10/00 | 7:01  | 32.897 | 12/10/00 | 7:11  | 40.8071 | 12/10/00 | 5:29  | 53.4613 | 12/10/00 | 4:23  | 32.4311 |
| 12/10/00 | 9:15  | 55.860 | 12/10/00 | 10:48 | 19.649 | 12/10/00 | 11:01 | 32.943 | 12/10/00 | 11:11 | 40.8694 | 12/10/00 | 9:29  | 53.5433 | 12/10/00 | 8:23  | 32.4803 |
| 12/10/00 | 13:15 | 55.945 | 12/10/00 | 14:48 | 19.659 | 12/10/00 | 15:01 | 32.966 | 12/10/00 | 15:11 | 40.8825 | 12/10/00 | 13:29 | 53.6122 | 12/10/00 | 12:23 | 32.5197 |
| 12/10/00 | 17:15 | 55.965 | 12/10/00 | 18:48 | 19.665 | 12/10/00 | 19:01 | 32.979 | 12/10/00 | 19:11 | 40.8891 | 12/10/00 | 17:29 | 53.6188 | 12/10/00 | 16:23 | 32.5197 |
| 12/10/00 | 21:15 | 55.971 | 12/10/00 | 22:48 | 19.678 | 12/10/00 | 23:01 | 32.982 | 12/10/00 | 23:11 | 40.8957 | 12/10/00 | 21:29 | 53.5991 | 12/10/00 | 20:23 | 32.523  |
| 12/11/00 | 1:15  | 55.935 | 12/11/00 | 2:48  | 19.675 | 12/11/00 | 3:01  | 32.969 | 12/11/00 | 3:11  | 40.8727 | 12/11/00 | 1:29  | 53.5499 | 12/11/00 | 0:23  | 32.5033 |
| 12/11/00 | 5:15  | 55.899 | 12/11/00 | 6:48  | 19.675 | 12/11/00 | 7:01  | 32.959 | 12/11/00 | 7:11  | 40.8563 | 12/11/00 | 5:29  | 53.5367 | 12/11/00 | 4:23  | 32.4967 |
| 12/11/00 | 9:15  | 55.883 | 12/11/00 | 10:48 | 19.685 | 12/11/00 | 11:01 | 32.969 | 12/11/00 | 11:11 | 40.8694 | 12/11/00 | 9:29  | 53.5302 | 12/11/00 | 8:23  | 32.4967 |
| 12/11/00 | 13:15 | 55.912 | 12/11/00 | 14:48 | 19.698 | 12/11/00 | 15:01 | 32.995 | 12/11/00 | 15:11 | 40.9121 | 12/11/00 | 13:29 | 53.5663 | 12/11/00 | 12:23 | 32.5295 |
| 12/11/00 | 17:15 | 55.988 | 12/11/00 | 18:48 | 19.718 | 12/11/00 | 19:01 | 33.041 | 12/11/00 | 19:11 | 40.958  | 12/11/00 | 17:29 | 53.6647 | 12/11/00 | 16:23 | 32.5755 |
| 12/11/00 | 21:15 | 56.076 | 12/11/00 | 22:48 | 19.747 | 12/11/00 | 23:01 | 33.087 | 12/11/00 | 23:11 | 41.0203 | 12/11/00 | 21:29 | 53.7533 | 12/11/00 | 20:23 | 32.6148 |
| 12/12/00 | 1:15  | 56.155 | 12/12/00 | 2:48  | 19.764 | 12/12/00 | 3:01  | 33.123 | 12/12/00 | 3:11  | 41.0696 | 12/12/00 | 1:29  | 53.8189 | 12/12/00 | 0:23  | 32.6575 |
| 12/12/00 | 5:15  | 56.198 | 12/12/00 | 6:48  | 19.780 | 12/12/00 | 7:01  | 33.146 | 12/12/00 | 7:11  | 41.0958 | 12/12/00 | 5:29  | 53.8156 | 12/12/00 | 4:23  | 32.664  |
| 12/12/00 | 9:15  | 56.243 | 12/12/00 | 10:48 | 19.797 | 12/12/00 | 11:01 | 33.179 | 12/12/00 | 11:11 | 41.1516 | 12/12/00 | 9:29  | 53.9042 | 12/12/00 | 8:23  | 32.6969 |
| 12/12/00 | 13:15 | 56.266 | 12/12/00 | 14:48 | 19.806 | 12/12/00 | 15:01 | 33.182 | 12/12/00 | 15:11 | 41.1385 | 12/12/00 | 13:29 | 53.9042 | 12/12/00 | 12:23 | 32.7133 |
| 12/12/00 | 17:15 | 56.217 | 12/12/00 | 18:48 | 19.810 | 12/12/00 | 19:01 | 33.176 | 12/12/00 | 19:11 | 41.1122 | 12/12/00 | 17:29 | 53.8287 | 12/12/00 | 16:23 | 32.6804 |
| 12/12/00 | 21:15 | 56.165 | 12/12/00 | 22:48 | 19.816 | 12/12/00 | 23:01 | 33.176 | 12/12/00 | 23:11 | 41.1056 | 12/12/00 | 21:29 | 53.7828 | 12/12/00 | 20:23 | 32.664  |
| 12/13/00 | 1:15  | 56.132 | 12/13/00 | 2:48  | 19.826 | 12/13/00 | 3:01  | 33.159 | 12/13/00 | 3:11  | 41.0892 | 12/13/00 | 1:29  | 53.7533 | 12/13/00 | 0:23  | 32.6575 |
| 12/13/00 | 5:15  | 56.083 | 12/13/00 | 6:48  | 19.816 | 12/13/00 | 7:01  | 33.136 | 12/13/00 | 7:11  | 41.0499 | 12/13/00 | 5:29  | 53.6975 | 12/13/00 | 4:23  | 32.6411 |
| 12/13/00 | 9:15  | 56.030 | 12/13/00 | 10:48 | 19.810 | 12/13/00 | 11:01 | 33.114 | 12/13/00 | 11:11 | 41.0203 | 12/13/00 | 9:29  | 53.6778 | 12/13/00 | 8:23  | 32.6148 |
| 12/13/00 | 13:15 | 55.981 | 12/13/00 | 14:48 | 19.800 | 12/13/00 | 15:01 | 33.087 | 12/13/00 | 15:11 | 40.981  | 12/13/00 | 13:29 | 53.5958 | 12/13/00 | 12:23 | 32.5951 |
| 12/13/00 | 17:15 | 55.928 | 12/13/00 | 18:48 | 19.803 | 12/13/00 | 19:01 | 33.091 | 12/13/00 | 19:11 | 40.9744 | 12/13/00 | 17:29 | 53.5663 | 12/13/00 | 16:23 | 32.582  |
| 12/13/00 | 21:15 | 55.935 | 12/13/00 | 22:48 | 19.816 | 12/13/00 | 23:01 | 33.107 | 12/13/00 | 23:11 | 40.9941 | 12/13/00 | 21:29 | 53.6155 | 12/13/00 | 20:23 | 32.6017 |
| 12/14/00 | 1:15  | 55.971 | 12/14/00 | 2:48  | 19.833 | 12/14/00 | 3:01  | 33.123 | 12/14/00 | 3:11  | 41.0138 | 12/14/00 | 1:29  | 53.6417 | 12/14/00 | 0:23  | 32.6312 |
| 12/14/00 | 5:15  | 56.020 | 12/14/00 | 6:48  | 19.843 | 12/14/00 | 7:01  | 33.150 | 12/14/00 | 7:11  | 41.0433 | 12/14/00 | 5:29  | 53.6909 | 12/14/00 | 4:23  | 32.6673 |

|          | DW06  |        |          | SB01  |        |          | SB09  |        |          | SB16  |         |          | SB18  |         |          | SB19  |         |
|----------|-------|--------|----------|-------|--------|----------|-------|--------|----------|-------|---------|----------|-------|---------|----------|-------|---------|
| Date     | Time  | Depth   | Date     | Time  | Depth   | Date     | Time  | Depth   |
|          |       |        |          |       |        |          |       |        |          |       |         | 10/11/00 |       |         |          |       |         |
| 12/14/00 | 9:15  | 56.073 | 12/14/00 | 10:48 | 19.859 | 12/14/00 | 11:01 | 33.173 | 12/14/00 | 11:11 | 41.0794 | 12/14/00 | 9:29  | 53.7533 | 12/14/00 | 8:23  | 32.687  |
| 12/14/00 | 13:15 | 56.115 | 12/14/00 | 14:48 | 19.869 | 12/14/00 | 15:01 | 33.186 | 12/14/00 | 15:11 | 41.0958 | 12/14/00 | 13:29 | 53.7697 | 12/14/00 | 12:23 | 32.71   |
| 12/14/00 | 17:15 | 56.119 | 12/14/00 | 18:48 | 19.875 | 12/14/00 | 19:01 | 33.192 | 12/14/00 | 19:11 | 41.0892 | 12/14/00 | 17:29 | 53.7697 | 12/14/00 | 16:23 | 32.7034 |
| 12/14/00 | 21:15 | 56.102 | 12/14/00 | 22:48 | 19.882 | 12/14/00 | 23:01 | 33.192 | 12/14/00 | 23:11 | 41.0892 | 12/14/00 | 21:29 | 53.7566 | 12/14/00 | 20:23 | 32.7034 |
| 12/15/00 | 1:15  | 56.083 | 12/15/00 | 2:48  | 19.895 | 12/15/00 | 3:01  | 33.199 | 12/15/00 | 3:11  | 41.0892 | 12/15/00 | 1:29  | 53.7631 | 12/15/00 | 0:23  | 32.7133 |
| 12/15/00 | 5:15  | 56.050 | 12/15/00 | 6:48  | 19.895 | 12/15/00 | 7:01  | 33.179 | 12/15/00 | 7:11  | 41.0597 | 12/15/00 | 5:29  | 53.7172 | 12/15/00 | 4:23  | 32.6936 |
| 12/15/00 | 9:15  | 55.981 | 12/15/00 | 10:48 | 19.888 | 12/15/00 | 11:01 | 33.153 | 12/15/00 | 11:11 | 41.0171 | 12/15/00 | 9:29  | 53.6352 | 12/15/00 | 8:23  | 32.6673 |
| 12/15/00 | 13:15 | 55.899 | 12/15/00 | 14:48 | 19.879 | 12/15/00 | 15:01 | 33.097 | 12/15/00 | 15:11 | 40.935  | 12/15/00 | 13:29 | 53.5367 | 12/15/00 | 12:23 | 32.6312 |
| 12/15/00 | 17:15 | 55.771 | 12/15/00 | 18:48 | 19.865 | 12/15/00 | 19:01 | 33.051 | 12/15/00 | 19:11 | 40.8694 | 12/15/00 | 17:29 | 53.3924 | 12/15/00 | 16:23 | 32.5755 |
| 12/15/00 | 21:15 | 55.669 | 12/15/00 | 22:48 | 19.862 | 12/15/00 | 23:01 | 33.022 | 12/15/00 | 23:11 | 40.8235 | 12/15/00 | 21:29 | 53.3169 | 12/15/00 | 20:23 | 32.5623 |
| 12/16/00 | 1:15  | 55.630 | 12/16/00 | 2:48  | 19.862 | 12/16/00 | 3:01  | 33.005 | 12/16/00 | 3:11  | 40.8005 | 12/16/00 | 1:29  | 53.2874 | 12/16/00 | 0:23  | 32.5558 |
| 12/16/00 | 5:15  | 55.614 | 12/16/00 | 6:48  | 19.875 | 12/16/00 | 7:01  | 33.022 | 12/16/00 | 7:11  | 40.8169 | 12/16/00 | 5:29  | 53.2841 | 12/16/00 | 4:23  | 32.5656 |
| 12/16/00 | 9:15  | 55.692 | 12/16/00 | 10:48 | 19.898 | 12/16/00 | 11:01 | 33.084 | 12/16/00 | 11:11 | 40.8957 | 12/16/00 | 9:29  | 53.2218 | 12/16/00 | 8:23  | 32.6247 |
| 12/16/00 | 13:15 | 55.830 | 12/16/00 | 14:48 | 19.911 | 12/16/00 | 15:01 | 33.123 | 12/16/00 | 15:11 | 40.9449 | 12/16/00 | 13:29 | 53.5564 | 12/16/00 | 12:23 | 32.6903 |
| 12/16/00 | 17:15 | 55.912 | 12/16/00 | 18:48 | 19.931 | 12/16/00 | 19:01 | 33.159 | 12/16/00 | 19:11 | 40.9843 | 12/16/00 | 17:29 | 53.6417 | 12/16/00 | 16:23 | 32.7198 |
| 12/16/00 | 21:15 | 55.984 | 12/16/00 | 22:48 | 19.944 | 12/16/00 | 23:01 | 33.192 | 12/16/00 | 23:11 | 41.0203 | 12/16/00 | 21:29 | 53.7074 | 12/16/00 | 20:23 | 32.7493 |
| 12/17/00 | 1:15  | 56.037 | 12/17/00 | 2:48  | 19.961 | 12/17/00 | 3:01  | 33.205 | 12/17/00 | 3:11  | 41.0466 | 12/17/00 | 1:29  | 53.7238 | 12/17/00 | 0:23  | 32.769  |
| 12/17/00 | 5:15  | 56.060 | 12/17/00 | 6:48  | 19.970 | 12/17/00 | 7:01  | 33.225 | 12/17/00 | 7:11  | 41.063  | 12/17/00 | 5:29  | 53.7467 | 12/17/00 | 4:23  | 32.7789 |
| 12/17/00 | 9:15  | 56.073 | 12/17/00 | 10:48 | 19.984 | 12/17/00 | 11:01 | 33.235 | 12/17/00 | 11:11 | 41.0892 | 12/17/00 | 9:29  | 53.7631 | 12/17/00 | 8:23  | 32.7854 |
| 12/17/00 | 13:15 | 56.070 | 12/17/00 | 14:48 | 19.984 | 12/17/00 | 15:01 | 33.222 | 12/17/00 | 15:11 | 41.063  | 12/17/00 | 13:29 | 53.7533 | 12/17/00 | 12:23 | 32.7822 |
| 12/17/00 | 17:15 | 55.997 | 12/17/00 | 18:48 | 19.984 | 12/17/00 | 19:01 | 33.202 | 12/17/00 | 19:11 | 41.0072 | 12/17/00 | 17:29 | 53.6549 | 12/17/00 | 16:23 | 32.7493 |
| 12/17/00 | 21:15 | 55.902 | 12/17/00 | 22:48 | 19.990 | 12/17/00 | 23:01 | 33.196 | 12/17/00 | 23:11 | 40.9875 | 12/17/00 | 21:29 | 53.5597 | 12/17/00 | 20:23 | 32.7198 |
| 12/18/00 | 1:15  | 55.876 | 12/18/00 | 2:48  | 19.984 | 12/18/00 | 3:01  | 33.173 | 12/18/00 | 3:11  | 40.9613 | 12/18/00 | 1:29  | 53.5433 | 12/18/00 | 0:23  | 32.7231 |
| 12/18/00 | 5:15  | 55.817 | 12/18/00 | 6:48  | 19.990 | 12/18/00 | 7:01  | 33.166 | 12/18/00 | 7:11  | 40.9514 | 12/18/00 | 5:29  | 53.4875 | 12/18/00 | 4:23  | 32.7034 |
| 12/18/00 | 9:15  | 55.817 | 12/18/00 | 10:48 | 20.003 | 12/18/00 | 11:01 | 33.182 | 12/18/00 | 11:11 | 40.9843 | 12/18/00 | 9:29  | 53.5236 | 12/18/00 | 8:23  | 32.7231 |
| 12/18/00 | 13:15 | 55.886 | 12/18/00 | 14:48 | 20.016 | 12/18/00 | 15:01 | 33.222 | 12/18/00 | 15:11 | 41.0269 | 12/18/00 | 13:29 | 53.6122 | 12/18/00 | 12:23 | 32.7723 |
| 12/18/00 | 17:15 | 55.971 | 12/18/00 | 18:48 | 20.039 | 12/18/00 | 19:01 | 33.264 | 12/18/00 | 19:11 | 41.0696 | 12/18/00 | 17:29 | 53.7172 | 12/18/00 | 16:23 | 32.815  |
| 12/18/00 | 21:15 | 56.047 | 12/18/00 | 22:48 | 20.056 | 12/18/00 | 23:01 | 33.294 | 12/18/00 | 23:11 | 41.1089 | 12/18/00 | 21:29 | 53.8058 | 12/18/00 | 20:23 | 32.8511 |
| 12/19/00 | 1:15  | 56.099 | 12/19/00 | 2:48  | 20.066 | 12/19/00 | 3:01  | 33.314 | 12/19/00 | 3:11  | 41.1253 | 12/19/00 | 1:29  | 53.8156 | 12/19/00 | 0:23  | 32.8609 |
| 12/19/00 | 5:15  | 56.132 | 12/19/00 | 6:48  | 20.082 | 12/19/00 | 7:01  | 33.333 | 12/19/00 | 7:11  | 41.1581 | 12/19/00 | 5:29  | 53.8517 | 12/19/00 | 4:23  | 32.874  |
| 12/19/00 | 9:15  | 56.155 | 12/19/00 | 10:48 | 20.098 | 12/19/00 | 11:01 | 33.353 | 12/19/00 | 11:11 | 41.1909 | 12/19/00 | 9:29  | 53.8616 | 12/19/00 | 8:23  | 32.8904 |
| 12/19/00 | 13:15 | 56.158 | 12/19/00 | 14:48 | 20.102 | 12/19/00 | 15:01 | 33.353 | 12/19/00 | 15:11 | 41.1877 | 12/19/00 | 13:29 | 53.8616 | 12/19/00 | 12:23 | 32.8904 |
| 12/19/00 | 17:15 | 56.122 | 12/19/00 | 18:48 | 20.108 | 12/19/00 | 19:01 | 33.346 | 12/19/00 | 19:11 | 41.1647 | 12/19/00 | 17:29 | 53.8025 | 12/19/00 | 16:23 | 32.874  |
| 12/19/00 | 21:15 | 56.073 | 12/19/00 | 22:48 | 20.108 | 12/19/00 | 23:01 | 33.333 | 12/19/00 | 23:11 | 41.1286 | 12/19/00 | 21:29 | 53.7434 | 12/19/00 | 20:23 | 32.8576 |
| 12/20/00 | 1:15  | 55.991 | 12/20/00 | 2:48  | 20.102 | 12/20/00 | 3:01  | 33.297 | 12/20/00 | 3:11  | 41.0827 | 12/20/00 | 1:29  | 53.6549 | 12/20/00 | 0:23  | 32.8281 |
| 12/20/00 | 5:15  | 55.896 | 12/20/00 | 6:48  | 20.098 | 12/20/00 | 7:01  | 33.261 | 12/20/00 | 7:11  | 41.04   | 12/20/00 | 5:29  | 53.5564 | 12/20/00 | 4:23  | 32.7986 |
| 12/20/00 | 9:15  | 55.823 | 12/20/00 | 10:48 | 20.105 | 12/20/00 | 11:01 | 33.251 | 12/20/00 | 11:11 | 41.0269 | 12/20/00 | 9:29  | 53.5039 | 12/20/00 | 8:23  | 32.7789 |
| 12/20/00 | 13:15 | 55.817 | 12/20/00 | 14:48 | 20.095 | 12/20/00 | 15:01 | 33.245 | 12/20/00 | 15:11 | 41.0072 | 12/20/00 | 13:29 | 53.5203 | 12/20/00 | 12:23 | 32.7953 |

|          | DW06  |        |          | SB01  |        |          | SB09  |        |          | SB16  |         |          | SB18  |         |          | SB19  |         |
|----------|-------|--------|----------|-------|--------|----------|-------|--------|----------|-------|---------|----------|-------|---------|----------|-------|---------|
| Date     | Time  | Depth   | Date     | Time  | Depth   | Date     | Time  | Depth   |
|          |       |        |          |       |        |          |       |        |          |       |         |          |       |         |          |       |         |
| 12/20/00 | 17:15 | 55.827 | 12/20/00 | 18:48 | 20.112 | 12/20/00 | 19:01 | 33.271 | 12/20/00 | 19:11 | 41.04   | 12/20/00 | 17:29 | 53.5466 | 12/20/00 | 16:23 | 32.8018 |
| 12/20/00 | 21:15 | 55.889 | 12/20/00 | 22:48 | 20.131 | 12/20/00 | 23:01 | 33.310 | 12/20/00 | 23:11 | 41.086  | 12/20/00 | 21:29 | 53.6352 | 12/20/00 | 20:23 | 32.8445 |
| 12/21/00 | 1:15  | 55.988 | 12/21/00 | 2:48  | 20.151 | 12/21/00 | 3:01  | 33.353 | 12/21/00 | 3:11  | 41.1253 | 12/21/00 | 1:29  | 53.7303 | 12/21/00 | 0:23  | 32.897  |
| 12/21/00 | 5:15  | 56.060 | 12/21/00 | 6:48  | 20.164 | 12/21/00 | 7:01  | 33.379 | 12/21/00 | 7:11  | 41.1647 | 12/21/00 | 5:29  | 53.7927 | 12/21/00 | 4:23  | 32.9265 |
| 12/21/00 | 9:15  | 56.129 | 12/21/00 | 10:48 | 20.187 | 12/21/00 | 11:01 | 33.419 | 12/21/00 | 11:11 | 41.227  | 12/21/00 | 9:29  | 53.8648 | 12/21/00 | 8:23  | 32.9528 |
| 12/21/00 | 13:15 | 56.191 | 12/21/00 | 14:48 | 20.200 | 12/21/00 | 15:01 | 33.445 | 12/21/00 | 15:11 | 41.2598 | 12/21/00 | 13:29 | 53.9436 | 12/21/00 | 12:23 | 32.9888 |
| 12/21/00 | 17:15 | 56.224 | 12/21/00 | 18:48 | 20.217 | 12/21/00 | 19:01 | 33.468 | 12/21/00 | 19:11 | 41.2697 | 12/21/00 | 17:29 | 53.9337 | 12/21/00 | 16:23 | 32.9888 |
| 12/21/00 | 21:15 | 56.243 | 12/21/00 | 22:48 | 20.233 | 12/21/00 | 23:01 | 33.488 | 12/21/00 | 23:11 | 41.2992 | 12/21/00 | 21:29 | 53.9731 | 12/21/00 | 20:23 | 33.0053 |
| 12/22/00 | 1:15  | 56.253 | 12/22/00 | 2:48  | 20.243 | 12/22/00 | 3:01  | 33.501 | 12/22/00 | 3:11  | 41.3156 | 12/22/00 | 1:29  | 53.9731 | 12/22/00 | 0:23  | 33.0184 |
| 12/22/00 | 5:15  | 56.253 | 12/22/00 | 6:48  | 20.253 | 12/22/00 | 7:01  | 33.510 | 12/22/00 | 7:11  | 41.3222 | 12/22/00 | 5:29  | 53.9797 | 12/22/00 | 4:23  | 33.0184 |
| 12/22/00 | 9:15  | 56.250 | 12/22/00 | 10:48 | 20.266 | 12/22/00 | 11:01 | 33.520 | 12/22/00 | 11:11 | 41.3451 | 12/22/00 | 9:29  | 53.9731 | 12/22/00 | 8:23  | 33.0249 |
| 12/22/00 | 13:15 | 56.237 | 12/22/00 | 14:48 | 20.269 | 12/22/00 | 15:01 | 33.510 | 12/22/00 | 15:11 | 41.332  | 12/22/00 | 13:29 | 53.96   | 12/22/00 | 12:23 | 33.0249 |
| 12/22/00 | 17:15 | 56.178 | 12/22/00 | 18:48 | 20.266 | 12/22/00 | 19:01 | 33.494 | 12/22/00 | 19:11 | 41.2894 | 12/22/00 | 17:29 | 53.8911 | 12/22/00 | 16:23 | 32.9888 |
| 12/22/00 | 21:15 | 56.122 | 12/22/00 | 22:48 | 20.279 | 12/22/00 | 23:01 | 33.497 | 12/22/00 | 23:11 | 41.2762 | 12/22/00 | 21:29 | 53.8451 | 12/22/00 | 20:23 | 32.9823 |
| 12/23/00 | 1:15  | 56.089 | 12/23/00 | 2:48  | 20.279 | 12/23/00 | 3:01  | 33.488 | 12/23/00 | 3:11  | 41.2631 | 12/23/00 | 1:29  | 53.832  | 12/23/00 | 0:23  | 32.979  |
| 12/23/00 | 5:15  | 56.066 | 12/23/00 | 6:48  | 20.285 | 12/23/00 | 7:01  | 33.488 | 12/23/00 | 7:11  | 41.2664 | 12/23/00 | 5:29  | 53.7959 | 12/23/00 | 4:23  | 32.9724 |
| 12/23/00 | 9:15  | 56.076 | 12/23/00 | 10:48 | 20.302 | 12/23/00 | 11:01 | 33.510 | 12/23/00 | 11:11 | 41.2959 | 12/23/00 | 9:29  | 53.8287 | 12/23/00 | 8:23  | 32.9921 |
| 12/23/00 | 13:15 | 56.129 | 12/23/00 | 14:48 | 20.315 | 12/23/00 | 15:01 | 33.533 | 12/23/00 | 15:11 | 41.3123 | 12/23/00 | 13:29 | 53.8845 | 12/23/00 | 12:23 | 33.0315 |
| 12/23/00 | 17:15 | 56.175 | 12/23/00 | 18:48 | 20.331 | 12/23/00 | 19:01 | 33.566 | 12/23/00 | 19:11 | 41.3451 | 12/23/00 | 17:29 | 53.937  | 12/23/00 | 16:23 | 33.0512 |
| 12/23/00 | 21:15 | 56.240 | 12/23/00 | 22:48 | 20.351 | 12/23/00 | 23:01 | 33.599 | 12/23/00 | 23:11 | 41.3845 | 12/23/00 | 21:29 | 53.9961 | 12/23/00 | 20:23 | 33.084  |
| 12/24/00 | 1:15  | 56.286 | 12/24/00 | 2:48  | 20.364 | 12/24/00 | 3:01  | 33.629 | 12/24/00 | 3:11  | 41.414  | 12/24/00 | 1:29  | 54.0617 | 12/24/00 | 0:23  | 33.1102 |
| 12/24/00 | 5:15  | 56.319 | 12/24/00 | 6:48  | 20.377 | 12/24/00 | 7:01  | 33.648 | 12/24/00 | 7:11  | 41.4436 | 12/24/00 | 5:29  | 54.1011 | 12/24/00 | 4:23  | 33.1201 |
| 12/24/00 | 9:15  | 56.339 | 12/24/00 | 10:48 | 20.397 | 12/24/00 | 11:01 | 33.678 | 12/24/00 | 11:11 | 41.4961 | 12/24/00 | 9:29  | 54.1306 | 12/24/00 | 8:23  | 33.1398 |
| 12/24/00 | 13:15 | 56.365 | 12/24/00 | 14:48 | 20.410 | 12/24/00 | 15:01 | 33.691 | 12/24/00 | 15:11 | 41.5157 | 12/24/00 | 13:29 | 54.147  | 12/24/00 | 12:23 | 33.1562 |
| 12/24/00 | 17:15 | 56.368 | 12/24/00 | 18:48 | 20.417 | 12/24/00 | 19:01 | 33.698 | 12/24/00 | 19:11 | 41.5157 | 12/24/00 | 17:29 | 54.1306 | 12/24/00 | 16:23 | 33.1496 |
| 12/24/00 | 21:15 | 56.378 | 12/24/00 | 22:48 | 20.433 | 12/24/00 | 23:01 | 33.717 | 12/24/00 | 23:11 | 41.5289 | 12/24/00 | 21:29 | 54.1371 | 12/24/00 | 20:23 | 33.1562 |
| 12/25/00 | 1:15  | 56.388 | 12/25/00 | 2:48  | 20.443 | 12/25/00 | 3:01  | 33.727 | 12/25/00 | 3:11  | 41.5354 | 12/25/00 | 1:29  | 54.1535 | 12/25/00 | 0:23  | 33.166  |
| 12/25/00 | 5:15  | 56.388 | 12/25/00 | 6:48  | 20.449 | 12/25/00 | 7:01  | 33.734 | 12/25/00 | 7:11  | 41.542  | 12/25/00 | 5:29  | 54.1404 | 12/25/00 | 4:23  | 33.1693 |
| 12/25/00 | 9:15  | 56.388 | 12/25/00 | 10:48 | 20.459 | 12/25/00 | 11:01 | 33.743 | 12/25/00 | 11:11 | 41.5584 | 12/25/00 | 9:29  | 54.1404 | 12/25/00 | 8:23  | 33.1759 |
| 12/25/00 | 13:15 | 56.437 | 12/25/00 | 14:48 | 20.469 | 12/25/00 | 15:01 | 33.740 | 12/25/00 | 15:11 | 41.5551 | 12/25/00 | 13:29 | 54.1371 | 12/25/00 | 12:23 | 33.1824 |
| 12/25/00 | 17:15 | 56.437 | 12/25/00 | 18:48 | 20.476 | 12/25/00 | 19:01 | 33.740 | 12/25/00 | 19:11 | 41.542  | 12/25/00 | 17:29 | 54.0945 | 12/25/00 | 16:23 | 33.166  |
| 12/25/00 | 21:15 | 56.447 | 12/25/00 | 22:48 | 20.482 | 12/25/00 | 23:01 | 33.740 | 12/25/00 | 23:11 | 41.542  | 12/25/00 | 21:29 | 54.0879 | 12/25/00 | 20:23 | 33.1627 |
| 12/26/00 | 1:15  | 56.453 | 12/26/00 | 2:48  | 20.482 | 12/26/00 | 3:01  | 33.737 | 12/26/00 | 3:11  | 41.5256 | 12/26/00 | 1:29  | 54.0715 | 12/26/00 | 0:23  | 33.1693 |
| 12/26/00 | 5:15  | 56.463 | 12/26/00 | 6:48  | 20.482 | 12/26/00 | 7:01  | 33.730 | 12/26/00 | 7:11  | 41.5157 | 12/26/00 | 5:29  | 54.0453 | 12/26/00 | 4:23  | 33.1562 |
| 12/26/00 | 9:15  | 56.457 | 12/26/00 | 10:48 | 20.492 | 12/26/00 | 11:01 | 33.737 | 12/26/00 | 11:11 | 41.5125 | 12/26/00 | 9:29  | 54.042  | 12/26/00 | 8:23  | 33.1562 |
| 12/26/00 | 13:15 | 56.293 | 12/26/00 | 14:48 | 20.499 | 12/26/00 | 15:01 | 33.734 | 12/26/00 | 15:11 | 41.4993 | 12/26/00 | 13:29 | 54.019  | 12/26/00 | 12:23 | 33.166  |
| 12/26/00 | 17:15 | 56.273 | 12/26/00 | 18:48 | 20.505 | 12/26/00 | 19:01 | 33.730 | 12/26/00 | 19:11 | 41.4862 | 12/26/00 | 17:29 | 54.0125 | 12/26/00 | 16:23 | 33.1562 |
| 12/26/00 | 21:15 | 56.243 | 12/26/00 | 22:48 | 20.515 | 12/26/00 | 23:01 | 33.734 | 12/26/00 | 23:11 | 41.4731 | 12/26/00 | 21:29 | 54.0059 | 12/26/00 | 20:23 | 33.1562 |

|          | DW06  |        |          | SB01  |        |          | SB09  |        |          | SB16  |         |          | SB18  |         |          | SB19  |         |
|----------|-------|--------|----------|-------|--------|----------|-------|--------|----------|-------|---------|----------|-------|---------|----------|-------|---------|
| Date     | Time  | Depth   | Date     | Time  | Depth   | Date     | Time  | Depth   |
| 12/27/00 | 1.15  | 56 240 | 12/27/00 | 2.48  | 20 518 | 12/27/00 | 3.01  | 33 730 | 12/27/00 | 3.11  | A1 4534 | 12/27/00 | 1.20  | 53 9764 | 12/27/00 | 0.53  | 33 1562 |
| 12/27/00 | 5.15  | 56 293 | 12/27/00 | 6:48  | 20.518 | 12/27/00 | 7.01  | 33 707 | 12/27/00 | 7.11  | 41 4272 | 12/27/00 | 5.20  | 53 9436 | 12/27/00 | 4.23  | 33 1463 |
| 12/27/00 | 9.15  | 56 302 | 12/27/00 | 10:48 | 20.522 | 12/27/00 | 11.01 | 33 694 | 12/27/00 | 11.11 | 41 4173 | 12/27/00 | 9.29  | 53 8911 | 12/27/00 | 8.23  | 33 1398 |
| 12/27/00 | 13:15 | 56.099 | 12/27/00 | 14:48 | 20.522 | 12/27/00 | 15:01 | 33.668 | 12/27/00 | 15:11 | 41.3812 | 12/27/00 | 13:29 | 53.8583 | 12/27/00 | 12:23 | 33.1266 |
| 12/27/00 | 17:15 | 56.033 | 12/27/00 | 18:48 | 20.518 | 12/27/00 | 19:01 | 33.642 | 12/27/00 | 19:11 | 41.3386 | 12/27/00 | 17:29 | 53.8189 | 12/27/00 | 16:23 | 33.1004 |
| 12/27/00 | 21:15 | 55.994 | 12/27/00 | 22:48 | 20.525 | 12/27/00 | 23:01 | 33.638 | 12/27/00 | 23:11 | 41.3189 | 12/27/00 | 21:29 | 53.7631 | 12/27/00 | 20:23 | 33.0971 |
| 12/28/00 | 1:15  | 55.974 | 12/28/00 | 2:48  | 20.525 | 12/28/00 | 3:01  | 33.635 | 12/28/00 | 3:11  | 41.2927 | 12/28/00 | 1:29  | 53.75   | 12/28/00 | 0:23  | 33.1037 |
| 12/28/00 | 5:15  | 55.958 | 12/28/00 | 6:48  | 20.525 | 12/28/00 | 7:01  | 33.625 | 12/28/00 | 7:11  | 41.2828 | 12/28/00 | 5:29  | 53.7303 | 12/28/00 | 4:23  | 33.1037 |
| 12/28/00 | 9:15  | 55.948 | 12/28/00 | 10:48 | 20.535 | 12/28/00 | 11:01 | 33.625 | 12/28/00 | 11:11 | 41.2894 | 12/28/00 | 9:29  | 53.7336 | 12/28/00 | 8:23  | 33.107  |
| 12/28/00 | 13:15 | 55.948 | 12/28/00 | 14:48 | 20.535 | 12/28/00 | 15:01 | 33.609 | 12/28/00 | 15:11 | 41.2631 | 12/28/00 | 13:29 | 53.7467 | 12/28/00 | 12:23 | 33.1168 |
| 12/28/00 | 17:15 | 55.915 | 12/28/00 | 18:48 | 20.541 | 12/28/00 | 19:01 | 33.609 | 12/28/00 | 19:11 | 41.2631 | 12/28/00 | 17:29 | 53.6877 | 12/28/00 | 16:23 | 33.1004 |
| 12/28/00 | 21:15 | 55.879 | 12/28/00 | 22:48 | 20.551 | 12/28/00 | 23:01 | 33.625 | 12/28/00 | 23:11 | 41.2762 | 12/28/00 | 21:29 | 53.7402 | 12/28/00 | 20:23 | 33.1299 |
| 12/29/00 | 1:15  | 55.840 | 12/29/00 | 2:48  | 20.561 | 12/29/00 | 3:01  | 33.638 | 12/29/00 | 3:11  | 41.2828 | 12/29/00 | 1:29  | 53.7697 | 12/29/00 | 0:23  | 33.1496 |
| 12/29/00 | 5:15  | 55.823 | 12/29/00 | 6:48  | 20.571 | 12/29/00 | 7:01  | 33.658 | 12/29/00 | 7:11  | 41.2959 | 12/29/00 | 5:29  | 53.8058 | 12/29/00 | 4:23  | 33.166  |
| 12/29/00 | 9:15  | 55.823 | 12/29/00 | 10:48 | 20.584 | 12/29/00 | 11:01 | 33.678 | 12/29/00 | 11:11 | 41.332  | 12/29/00 | 9:29  | 53.8353 | 12/29/00 | 8:23  | 33.1824 |
| 12/29/00 | 13:15 | 55.846 | 12/29/00 | 14:48 | 20.591 | 12/29/00 | 15:01 | 33.691 | 12/29/00 | 15:11 | 41.355  | 12/29/00 | 13:29 | 53.8911 | 12/29/00 | 12:23 | 33.2087 |
| 12/29/00 | 17:15 | 55.853 | 12/29/00 | 18:48 | 20.600 | 12/29/00 | 19:01 | 33.704 | 12/29/00 | 19:11 | 41.3583 | 12/29/00 | 17:29 | 53.9042 | 12/29/00 | 16:23 | 33.2087 |
| 12/29/00 | 21:15 | 55.863 | 12/29/00 | 22:48 | 20.610 | 12/29/00 | 23:01 | 33.717 | 12/29/00 | 23:11 | 41.3648 | 12/29/00 | 21:29 | 53.9075 | 12/29/00 | 20:23 | 33.2152 |
| 12/30/00 | 1:15  | 55.886 | 12/30/00 | 2:48  | 20.623 | 12/30/00 | 3:01  | 33.727 | 12/30/00 | 3:11  | 41.3714 | 12/30/00 | 1:29  | 53.9239 | 12/30/00 | 0:23  | 33.2251 |
| 12/30/00 | 5:15  | 55.876 | 12/30/00 | 6:48  | 20.633 | 12/30/00 | 7:01  | 33.737 | 12/30/00 | 7:11  | 41.3845 | 12/30/00 | 5:29  | 53.9272 | 12/30/00 | 4:23  | 33.2316 |
| 12/30/00 | 9:15  | 55.883 | 12/30/00 | 10:48 | 20.643 | 12/30/00 | 11:01 | 33.757 | 12/30/00 | 11:11 | 41.414  | 12/30/00 | 9:29  | 53.9501 | 12/30/00 | 8:23  | 33.2448 |
| 12/30/00 | 13:15 | 55.915 | 12/30/00 | 14:48 | 20.650 | 12/30/00 | 15:01 | 33.760 | 12/30/00 | 15:11 | 41.4239 | 12/30/00 | 13:29 | 53.9764 | 12/30/00 | 12:23 | 33.2612 |
| 12/30/00 | 17:15 | 55.906 | 12/30/00 | 18:48 | 20.659 | 12/30/00 | 19:01 | 33.773 | 12/30/00 | 19:11 | 41.4206 | 12/30/00 | 17:29 | 53.9534 | 12/30/00 | 16:23 | 33.2579 |
| 12/30/00 | 21:15 | 55.860 | 12/30/00 | 22:48 | 20.673 | 12/30/00 | 23:01 | 33.789 | 12/30/00 | 23:11 | 41.4272 | 12/30/00 | 21:29 | 53.9698 | 12/30/00 | 20:23 | 33.2677 |
| 12/31/00 | 1:15  | 55.853 | 12/31/00 | 2:48  | 20.682 | 12/31/00 | 3:01  | 33.799 | 12/31/00 | 3:11  | 41.4436 | 12/31/00 | 1:29  | 53.9961 | 12/31/00 | 0:23  | 33.2776 |
| 12/31/00 | 5:15  | 55.833 | 12/31/00 | 6:48  | 20.692 | 12/31/00 | 7:01  | 33.816 | 12/31/00 | 7:11  | 41.4403 | 12/31/00 | 5:29  | 54.0157 | 12/31/00 | 4:23  | 33.2874 |
| 12/31/00 | 9:15  | 55.820 | 12/31/00 | 10:48 | 20.705 | 12/31/00 | 11:01 | 33.825 | 12/31/00 | 11:11 | 41.4797 | 12/31/00 | 9:29  | 54.0354 | 12/31/00 | 8:23  | 33.294  |
| 12/31/00 | 13:15 | 55.873 | 12/31/00 | 14:48 | 20.712 | 12/31/00 | 15:01 | 33.825 | 12/31/00 | 15:11 | 41.4797 | 12/31/00 | 13:29 | 54.0354 | 12/31/00 | 12:23 | 33.3038 |
| 12/31/00 | 17:15 | 56.201 | 12/31/00 | 18:48 | 20.725 | 12/31/00 | 19:01 | 33.839 | 12/31/00 | 19:11 | 41.4797 | 12/31/00 | 17:29 | 54.0059 | 12/31/00 | 16:23 | 33.3005 |
| 12/31/00 | 21:15 | 56.201 | 12/31/00 | 22:48 | 20.732 | 12/31/00 | 23:01 | 33.848 | 12/31/00 | 23:11 | 41.4862 | 12/31/00 | 21:29 | 54.0256 | 12/31/00 | 20:23 | 33.3038 |
| 1/1/01   | 1:15  | 56.211 | 1/1/01   | 2:48  | 20.741 | 1/1/01   | 3:01  | 33.865 | 1/1/01   | 3:11  | 41.4961 | 1/1/01   | 1:29  | 54.0223 | 1/1/01   | 0:23  | 33.3202 |
| 1/1/01   | 5:15  | 56.227 | 1/1/01   | 6:48  | 20.751 | 1/1/01   | 7:01  | 33.871 | 1/1/01   | 7:11  | 41.5125 | 1/1/01   | 5:29  | 54.0486 | 1/1/01   | 4:23  | 33.3333 |
| 1/1/01   | 9:15  | 56.240 | 1/1/01   | 10:48 | 20.764 | 1/1/01   | 11:01 | 33.888 | 1/1/01   | 11:11 | 41.5453 | 1/1/01   | 9:29  | 54.0617 | 1/1/01   | 8:23  | 33.3399 |
| 1/1/01   | 13:15 | 56.263 | 1/1/01   | 14:48 | 20.774 | 1/1/01   | 15:01 | 33.901 | 1/1/01   | 15:11 | 41.565  | 1/1/01   | 13:29 | 54.0781 | 1/1/01   | 12:23 | 33.3563 |
| 1/1/01   | 17:15 | 56.273 | 1/1/01   | 18:48 | 20.791 | 1/1/01   | 19:01 | 33.917 | 1/1/01   | 19:11 | 41.5748 | 1/1/01   | 17:29 | 54.1076 | 1/1/01   | 16:23 | 33.3629 |
| 1/1/01   | 21:15 | 56.299 | 1/1/01   | 22:48 | 20.801 | 1/1/01   | 23:01 | 33.937 | 1/1/01   | 23:11 | 41.5846 | 1/1/01   | 21:29 | 54.1503 | 1/1/01   | 20:23 | 33.3793 |
| 1/2/01   | 1:15  | 56.329 | 1/2/01   | 2:48  | 20.814 | 1/2/01   | 3:01  | 33.960 | 1/2/01   | 3:11  | 41.6109 | 1/2/01   | 1:29  | 54.1634 | 1/2/01   | 0:23  | 33.3924 |
| 1/2/01   | 5:15  | 56.358 | 1/2/01   | 6:48  | 20.827 | 1/2/01   | 7:01  | 33.973 | 1/2/01   | 7:11  | 41.6273 | 1/2/01   | 5:29  | 54.1929 | 1/2/01   | 4:23  | 33.4055 |

|        | DW06  |        |        | SB01  |        |        | SB09  |        |        | SB16  |         |        | SB18  |         |        | SB19  |         |
|--------|-------|--------|--------|-------|--------|--------|-------|--------|--------|-------|---------|--------|-------|---------|--------|-------|---------|
| Date   | Time  | Depth   | Date   | Time  | Depth   | Date   | Time  | Depth   |
| 1/2/01 | Q·15  | 56 371 | 1/2/01 | 10:48 | 20 840 | 1/2/01 | 11.01 | 33 003 | 1/2/01 | 11.11 | 41 6667 | 1/2/01 | 0.20  | 54 1995 | 1/2/01 | 8.23  | 33 4121 |
| 1/2/01 | 13.10 | 56 375 | 1/2/01 | 14.48 | 20.840 | 1/2/01 | 15:01 | 33 983 | 1/2/01 | 15.11 | 41.6667 | 1/2/01 | 13.20 | 54 2192 | 1/2/01 | 12.23 | 33 4252 |
| 1/2/01 | 17.15 | 56 332 | 1/2/01 | 18.48 | 20.843 | 1/2/01 | 19:01 | 33 976 | 1/2/01 | 19.11 | 41 647  | 1/2/01 | 17:29 | 54 1699 | 1/2/01 | 16:23 | 33 3924 |
| 1/2/01 | 21:15 | 56.293 | 1/2/01 | 22:48 | 20.850 | 1/2/01 | 23:01 | 33.960 | 1/2/01 | 23:11 | 41.6175 | 1/2/01 | 21:29 | 54.124  | 1/2/01 | 20:23 | 33.3891 |
| 1/3/01 | 1:15  | 56.237 | 1/3/01 | 2:48  | 20.850 | 1/3/01 | 3:01  | 33.934 | 1/3/01 | 3:11  | 41.5781 | 1/3/01 | 1:29  | 54.0486 | 1/3/01 | 0:23  | 33.3629 |
| 1/3/01 | 5:15  | 56.181 | 1/3/01 | 6:48  | 20.850 | 1/3/01 | 7:01  | 33.904 | 1/3/01 | 7:11  | 41.5223 | 1/3/01 | 5:29  | 53.9567 | 1/3/01 | 4:23  | 33.353  |
| 1/3/01 | 9:15  | 56.122 | 1/3/01 | 10:48 | 20.850 | 1/3/01 | 11:01 | 33.871 | 1/3/01 | 11:11 | 41.4895 | 1/3/01 | 9:29  | 53.9075 | 1/3/01 | 8:23  | 33.3333 |
| 1/3/01 | 13:15 | 56.099 | 1/3/01 | 14:48 | 20.843 | 1/3/01 | 15:01 | 33.825 | 1/3/01 | 15:11 | 41.4075 | 1/3/01 | 13:29 | 53.8386 | 1/3/01 | 12:23 | 33.3235 |
| 1/3/01 | 17:15 | 56.053 | 1/3/01 | 18:48 | 20.846 | 1/3/01 | 19:01 | 33.819 | 1/3/01 | 19:11 | 41.4042 | 1/3/01 | 17:29 | 53.7631 | 1/3/01 | 16:23 | 33.3038 |
| 1/3/01 | 21:15 | 55.965 | 1/3/01 | 22:48 | 20.853 | 1/3/01 | 23:01 | 33.832 | 1/3/01 | 23:11 | 41.4108 | 1/3/01 | 21:29 | 53.8025 | 1/3/01 | 20:23 | 33.3235 |
| 1/4/01 | 1:15  | 55.965 | 1/4/01 | 2:48  | 20.856 | 1/4/01 | 3:01  | 33.845 | 1/4/01 | 3:11  | 41.4075 | 1/4/01 | 1:29  | 53.8222 | 1/4/01 | 0:23  | 33.3399 |
| 1/4/01 | 5:15  | 55.988 | 1/4/01 | 6:48  | 20.860 | 1/4/01 | 7:01  | 33.835 | 1/4/01 | 7:11  | 41.3944 | 1/4/01 | 5:29  | 53.8222 | 1/4/01 | 4:23  | 33.3333 |
| 1/4/01 | 9:15  | 56.037 | 1/4/01 | 10:48 | 20.860 | 1/4/01 | 11:01 | 33.812 | 1/4/01 | 11:11 | 41.3845 | 1/4/01 | 9:29  | 53.7566 | 1/4/01 | 8:23  | 33.3268 |
| 1/4/01 | 13:15 | 55.951 | 1/4/01 | 14:48 | 20.853 | 1/4/01 | 15:01 | 33.750 | 1/4/01 | 15:11 | 41.2927 | 1/4/01 | 13:29 | 53.7041 | 1/4/01 | 12:23 | 33.3136 |
| 1/4/01 | 17:15 | 55.863 | 1/4/01 | 18:48 | 20.850 | 1/4/01 | 19:01 | 33.727 | 1/4/01 | 19:11 | 41.2697 | 1/4/01 | 17:29 | 53.5991 | 1/4/01 | 16:23 | 33.2743 |
| 1/4/01 | 21:15 | 55.850 | 1/4/01 | 22:48 | 20.856 | 1/4/01 | 23:01 | 33.740 | 1/4/01 | 23:11 | 41.273  | 1/4/01 | 21:29 | 53.6385 | 1/4/01 | 20:23 | 33.294  |
| 1/5/01 | 1:15  | 55.873 | 1/5/01 | 2:48  | 20.860 | 1/5/01 | 3:01  | 33.760 | 1/5/01 | 3:11  | 41.2927 | 1/5/01 | 1:29  | 53.6778 | 1/5/01 | 0:23  | 33.3202 |
| 1/5/01 | 5:15  | 55.902 | 1/5/01 | 6:48  | 20.866 | 1/5/01 | 7:01  | 33.776 | 1/5/01 | 7:11  | 41.3091 | 1/5/01 | 5:29  | 53.6877 | 1/5/01 | 4:23  | 33.3301 |
| 1/5/01 | 9:15  | 55.925 | 1/5/01 | 10:48 | 20.876 | 1/5/01 | 11:01 | 33.796 | 1/5/01 | 11:11 | 41.332  | 1/5/01 | 9:29  | 53.7369 | 1/5/01 | 8:23  | 33.3432 |
| 1/5/01 | 13:15 | 55.955 | 1/5/01 | 14:48 | 20.883 | 1/5/01 | 15:01 | 33.809 | 1/5/01 | 15:11 | 41.3353 | 1/5/01 | 13:29 | 53.7795 | 1/5/01 | 12:23 | 33.3596 |
| 1/5/01 | 17:15 | 55.955 | 1/5/01 | 18:48 | 20.889 | 1/5/01 | 19:01 | 33.809 | 1/5/01 | 19:11 | 41.3386 | 1/5/01 | 17:29 | 53.7828 | 1/5/01 | 16:23 | 33.3497 |
| 1/5/01 | 21:15 | 55.948 | 1/5/01 | 22:48 | 20.892 | 1/5/01 | 23:01 | 33.796 | 1/5/01 | 23:11 | 41.3287 | 1/5/01 | 21:29 | 53.7402 | 1/5/01 | 20:23 | 33.353  |
| 1/6/01 | 1:15  | 55.912 | 1/6/01 | 2:48  | 20.879 | 1/6/01 | 3:01  | 33.743 | 1/6/01 | 3:11  | 41.2631 | 1/6/01 | 1:29  | 53.7402 | 1/6/01 | 0:23  | 33.3301 |
| 1/6/01 | 5:15  | 55.837 | 1/6/01 | 6:48  | 20.873 | 1/6/01 | 7:01  | 33.701 | 1/6/01 | 7:11  | 41.2172 | 1/6/01 | 5:29  | 53.6352 | 1/6/01 | 4:23  | 33.2874 |
| 1/6/01 | 9:15  | 55.791 | 1/6/01 | 10:48 | 20.876 | 1/6/01 | 11:01 | 33.704 | 1/6/01 | 11:11 | 41.2172 | 1/6/01 | 9:29  | 53.5663 | 1/6/01 | 8:23  | 33.2776 |
| 1/6/01 | 13:15 | 55.787 | 1/6/01 | 14:48 | 20.869 | 1/6/01 | 15:01 | 33.707 | 1/6/01 | 15:11 | 41.2139 | 1/6/01 | 13:29 | 53.6188 | 1/6/01 | 12:23 | 33.2874 |
| 1/6/01 | 17:15 | 55.784 | 1/6/01 | 18:48 | 20.873 | 1/6/01 | 19:01 | 33.711 | 1/6/01 | 19:11 | 41.2172 | 1/6/01 | 17:29 | 53.5597 | 1/6/01 | 16:23 | 33.2776 |
| 1/6/01 | 21:15 | 55.801 | 1/6/01 | 22:48 | 20.876 | 1/6/01 | 23:01 | 33.730 | 1/6/01 | 23:11 | 41.2402 | 1/6/01 | 21:29 | 53.5958 | 1/6/01 | 20:23 | 33.2907 |
| 1/7/01 | 1:15  | 55.840 | 1/7/01 | 2:48  | 20.876 | 1/7/01 | 3:01  | 33.757 | 1/7/01 | 3:11  | 41.2631 | 1/7/01 | 1:29  | 53.6417 | 1/7/01 | 0:23  | 33.3005 |
| 1/7/01 | 5:15  | 55.883 | 1/7/01 | 6:48  | 20.879 | 1/7/01 | 7:01  | 33.780 | 1/7/01 | 7:11  | 41.2959 | 1/7/01 | 5:29  | 53.7205 | 1/7/01 | 4:23  | 33.3071 |
| 1/7/01 | 9:15  | 55.945 | 1/7/01 | 10:48 | 20.889 | 1/7/01 | 11:01 | 33.812 | 1/7/01 | 11:11 | 41.3386 | 1/7/01 | 9:29  | 53.7861 | 1/7/01 | 8:23  | 33.3235 |
| 1/7/01 | 13:15 | 56.004 | 1/7/01 | 14:48 | 20.892 | 1/7/01 | 15:01 | 33.835 | 1/7/01 | 15:11 | 41.3615 | 1/7/01 | 13:29 | 53.8517 | 1/7/01 | 12:23 | 33.3366 |
| 1/7/01 | 17:15 | 56.043 | 1/7/01 | 18:48 | 20.892 | 1/7/01 | 19:01 | 33.855 | 1/7/01 | 19:11 | 41.3911 | 1/7/01 | 17:29 | 53.8681 | 1/7/01 | 16:23 | 33.3301 |
| 1/7/01 | 21:15 | 56.073 | 1/7/01 | 22:48 | 20.896 | 1/7/01 | 23:01 | 33.881 | 1/7/01 | 23:11 | 41.4206 | 1/7/01 | 21:29 | 53.9042 | 1/7/01 | 20:23 | 33.3366 |
| 1/8/01 | 1:15  | 56.106 | 1/8/01 | 2:48  | 20.892 | 1/8/01 | 3:01  | 33.891 | 1/8/01 | 3:11  | 41.4304 | 1/8/01 | 1:29  | 53.9501 | 1/8/01 | 0:23  | 33.3333 |
| 1/8/01 | 5:15  | 56.106 | 1/8/01 | 6:48  | 20.886 | 1/8/01 | 7:01  | 33.898 | 1/8/01 | 7:11  | 41.4403 | 1/8/01 | 5:29  | 53.914  | 1/8/01 | 4:23  | 33.3169 |
| 1/8/01 | 9:15  | 56.122 | 1/8/01 | 10:48 | 20.886 | 1/8/01 | 11:01 | 33.914 | 1/8/01 | 11:11 | 41.4665 | 1/8/01 | 9:29  | 53.9534 | 1/8/01 | 8:23  | 33.3136 |
| 1/8/01 | 13:15 | 56.148 | 1/8/01 | 14:48 | 20.879 | 1/8/01 | 15:01 | 33.917 | 1/8/01 | 15:11 | 41.4731 | 1/8/01 | 13:29 | 53.9633 | 1/8/01 | 12:23 | 33.3202 |

|         | DW06  |        |         | SB01  |        |         | SB09  |        |         | SB16  |         |         | SB18  |         |         | SB19  |         |
|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|---------|---------|-------|---------|---------|-------|---------|
| Date    | Time  | Depth   | Date    | Time  | Depth   | Date    | Time  | Depth   |
|         |       |        |         |       |        |         |       |        |         |       |         |         |       |         |         |       |         |
| 1/8/01  | 17:15 | 56.142 | 1/8/01  | 18:48 | 20.876 | 1/8/01  | 19:01 | 33.924 | 1/8/01  | 19:11 | 41.4829 | 1/8/01  | 17:29 | 53.9436 | 1/8/01  | 16:23 | 33.2972 |
| 1/8/01  | 21:15 | 56.155 | 1/8/01  | 22:48 | 20.883 | 1/8/01  | 23:01 | 33.944 | 1/8/01  | 23:11 | 41.5125 | 1/8/01  | 21:29 | 53.9895 | 1/8/01  | 20:23 | 33.3038 |
| 1/9/01  | 1:15  | 56.191 | 1/9/01  | 2:48  | 20.879 | 1/9/01  | 3:01  | 33.960 | 1/9/01  | 3:11  | 41.542  | 1/9/01  | 1:29  | 54.0486 | 1/9/01  | 0:23  | 33.3169 |
| 1/9/01  | 5:15  | 56.230 | 1/9/01  | 6:48  | 20.873 | 1/9/01  | 7:01  | 33.970 | 1/9/01  | 7:11  | 41.5551 | 1/9/01  | 5:29  | 54.0814 | 1/9/01  | 4:23  | 33.3169 |
| 1/9/01  | 9:15  | 56.260 | 1/9/01  | 10:48 | 20.873 | 1/9/01  | 11:01 | 33.983 | 1/9/01  | 11:11 | 41.5912 | 1/9/01  | 9:29  | 54.1142 | 1/9/01  | 8:23  | 33.3136 |
| 1/9/01  | 13:15 | 56.280 | 1/9/01  | 14:48 | 20.866 | 1/9/01  | 15:01 | 33.986 | 1/9/01  | 15:11 | 41.5879 | 1/9/01  | 13:29 | 54.1404 | 1/9/01  | 12:23 | 33.3169 |
| 1/9/01  | 17:15 | 56.257 | 1/9/01  | 18:48 | 20.856 | 1/9/01  | 19:01 | 33.973 | 1/9/01  | 19:11 | 41.5781 | 1/9/01  | 17:29 | 54.0814 | 1/9/01  | 16:23 | 33.2841 |
| 1/9/01  | 21:15 | 56.230 | 1/9/01  | 22:48 | 20.853 | 1/9/01  | 23:01 | 33.973 | 1/9/01  | 23:11 | 41.5781 | 1/9/01  | 21:29 | 54.0387 | 1/9/01  | 20:23 | 33.2677 |
| 1/10/01 | 1:15  | 56.204 | 1/10/01 | 2:48  | 20.840 | 1/10/01 | 3:01  | 33.953 | 1/10/01 | 3:11  | 41.5617 | 1/10/01 | 1:29  | 54.0157 | 1/10/01 | 0:23  | 33.2579 |
| 1/10/01 | 5:15  | 56.168 | 1/10/01 | 6:48  | 20.827 | 1/10/01 | 7:01  | 33.924 | 1/10/01 | 7:11  | 41.5289 | 1/10/01 | 5:29  | 53.9534 | 1/10/01 | 4:23  | 33.2283 |
| 1/10/01 | 9:15  | 56.129 | 1/10/01 | 10:48 | 20.820 | 1/10/01 | 11:01 | 33.914 | 1/10/01 | 11:11 | 41.5223 | 1/10/01 | 9:29  | 53.9403 | 1/10/01 | 8:23  | 33.2087 |
| 1/10/01 | 13:15 | 56.115 | 1/10/01 | 14:48 | 20.807 | 1/10/01 | 15:01 | 33.888 | 1/10/01 | 15:11 | 41.4895 | 1/10/01 | 13:29 | 53.9337 | 1/10/01 | 12:23 | 33.2021 |
| 1/10/01 | 17:15 | 56.073 | 1/10/01 | 18:48 | 20.797 | 1/10/01 | 19:01 | 33.865 | 1/10/01 | 19:11 | 41.4633 | 1/10/01 | 17:29 | 53.8583 | 1/10/01 | 16:23 | 33.1726 |
| 1/10/01 | 21:15 | 56.066 | 1/10/01 | 22:48 | 20.791 | 1/10/01 | 23:01 | 33.865 | 1/10/01 | 23:11 | 41.4698 | 1/10/01 | 21:29 | 53.8812 | 1/10/01 | 20:23 | 33.1759 |
| 1/11/01 | 1:15  | 56.066 | 1/11/01 | 2:48  | 20.774 | 1/11/01 | 3:01  | 33.858 | 1/11/01 | 3:11  | 41.4534 | 1/11/01 | 1:29  | 53.9042 | 1/11/01 | 0:23  | 33.1693 |
| 1/11/01 | 5:15  | 56.070 | 1/11/01 | 6:48  | 20.755 | 1/11/01 | 7:01  | 33.855 | 1/11/01 | 7:11  | 41.4534 | 1/11/01 | 5:29  | 53.9075 | 1/11/01 | 4:23  | 33.1594 |
| 1/11/01 | 9:15  | 56.063 | 1/11/01 | 10:48 | 20.738 | 1/11/01 | 11:01 | 33.845 | 1/11/01 | 11:11 | 41.4567 | 1/11/01 | 9:29  | 53.9042 | 1/11/01 | 8:23  | 33.1201 |
| 1/11/01 | 13:15 | 56.063 | 1/11/01 | 14:48 | 20.722 | 1/11/01 | 15:01 | 33.835 | 1/11/01 | 15:11 | 41.4469 | 1/11/01 | 13:29 | 53.8845 | 1/11/01 | 12:23 | 33.1234 |
| 1/11/01 | 17:15 | 56.043 | 1/11/01 | 18:48 | 20.702 | 1/11/01 | 19:01 | 33.822 | 1/11/01 | 19:11 | 41.4403 | 1/11/01 | 17:29 | 53.8583 | 1/11/01 | 16:23 | 33.0545 |
| 1/11/01 | 21:15 | 56.056 | 1/11/01 | 22:48 | 20.682 | 1/11/01 | 23:01 | 33.822 | 1/11/01 | 23:11 | 41.4534 | 1/11/01 | 21:29 | 53.8681 | 1/11/01 | 20:23 | 33.0381 |
| 1/12/01 | 1:15  | 56.079 | 1/12/01 | 2:48  | 20.666 | 1/12/01 | 3:01  | 33.832 | 1/12/01 | 3:11  | 41.4665 | 1/12/01 | 1:29  | 53.8976 | 1/12/01 | 0:23  | 33.0184 |
| 1/12/01 | 5:15  | 56.115 | 1/12/01 | 6:48  | 20.643 | 1/12/01 | 7:01  | 33.832 | 1/12/01 | 7:11  | 41.4829 | 1/12/01 | 5:29  | 53.9469 | 1/12/01 | 4:23  | 33.002  |
| 1/12/01 | 9:15  | 56.152 | 1/12/01 | 10:48 | 20.627 | 1/12/01 | 11:01 | 33.839 | 1/12/01 | 11:11 | 41.4993 | 1/12/01 | 9:29  | 53.9862 | 1/12/01 | 8:23  | 32.9888 |
| 1/12/01 | 13:15 | 56.181 | 1/12/01 | 14:48 | 20.604 | 1/12/01 | 15:01 | 33.835 | 1/12/01 | 15:11 | 41.5092 | 1/12/01 | 13:29 | 54.0354 | 1/12/01 | 12:23 | 32.9757 |
| 1/12/01 | 17:15 | 56.227 | 1/12/01 | 18:48 | 20.577 | 1/12/01 | 19:01 | 33.822 | 1/12/01 | 19:11 | 41.4961 | 1/12/01 | 17:29 | 53.9731 | 1/12/01 | 16:23 | 32.9364 |
| 1/12/01 | 21:15 | 56.198 | 1/12/01 | 22:48 | 20.554 | 1/12/01 | 23:01 | 33.812 | 1/12/01 | 23:11 | 41.4895 | 1/12/01 | 21:29 | 53.9698 | 1/12/01 | 20:23 | 32.9068 |
| 1/13/01 | 1:15  | 56.211 | 1/13/01 | 2:48  | 20.535 | 1/13/01 | 3:01  | 33.796 | 1/13/01 | 3:11  | 41.4829 | 1/13/01 | 1:29  | 53.9403 | 1/13/01 | 0:23  | 32.8806 |
| 1/13/01 | 5:15  | 56.240 | 1/13/01 | 6:48  | 20.509 | 1/13/01 | 7:01  | 33.770 | 1/13/01 | 7:11  | 41.4534 | 1/13/01 | 5:29  | 53.9272 | 1/13/01 | 4:23  | 32.8543 |
| 1/13/01 | 9:15  | 56.289 | 1/13/01 | 10:48 | 20.479 | 1/13/01 | 11:01 | 33.734 | 1/13/01 | 11:11 | 41.4075 | 1/13/01 | 9:29  | 53.8451 | 1/13/01 | 8:23  | 32.8051 |
| 1/13/01 | 13:15 | 56.342 | 1/13/01 | 14:48 | 20.436 | 1/13/01 | 15:01 | 33.658 | 1/13/01 | 15:11 | 41.3091 | 1/13/01 | 13:29 | 53.7927 | 1/13/01 | 12:23 | 32.769  |
| 1/13/01 | 17:15 | 56.352 | 1/13/01 | 18:48 | 20.400 | 1/13/01 | 19:01 | 33.602 | 1/13/01 | 19:11 | 41.2631 | 1/13/01 | 17:29 | 53.7927 | 1/13/01 | 16:23 | 32.7395 |
| 1/13/01 | 21:15 | 56.322 | 1/13/01 | 22:48 | 20.367 | 1/13/01 | 23:01 | 33.573 | 1/13/01 | 23:11 | 41.2467 | 1/13/01 | 21:29 | 53.8255 | 1/13/01 | 20:23 | 32.6837 |
| 1/14/01 | 1:15  | 56.342 | 1/14/01 | 2:48  | 20.335 | 1/14/01 | 3:01  | 33.553 | 1/14/01 | 3:11  | 41.2336 | 1/14/01 | 1:29  | 53.8353 | 1/14/01 | 0:23  | 32.6345 |
| 1/14/01 | 5:15  | 56.280 | 1/14/01 | 6:48  | 20.302 | 1/14/01 | 7:01  | 33.547 | 1/14/01 | 7:11  | 41.2402 | 1/14/01 | 5:29  | 53.8484 | 1/14/01 | 4:23  | 32.5755 |
| 1/14/01 | 9:15  | 56.178 | 1/14/01 | 10:48 | 20.269 | 1/14/01 | 11:01 | 33.553 | 1/14/01 | 11:11 | 41.2762 | 1/14/01 | 9:29  | 53.7369 | 1/14/01 | 8:23  | 32.5    |
| 1/14/01 | 13:15 | 56.161 | 1/14/01 | 14:48 | 20.236 | 1/14/01 | 15:01 | 33.553 | 1/14/01 | 15:11 | 41.2959 | 1/14/01 | 13:29 | 53.7861 | 1/14/01 | 12:23 | 32.5394 |
| 1/14/01 | 17:15 | 56.129 | 1/14/01 | 18:48 | 20.207 | 1/14/01 | 19:01 | 33.563 | 1/14/01 | 19:11 | 41.3353 | 1/14/01 | 17:29 | 53.8222 | 1/14/01 | 16:23 | 32.5066 |
| 1/14/01 | 21:15 | 56.119 | 1/14/01 | 22:48 | 20.174 | 1/14/01 | 23:01 | 33.573 | 1/14/01 | 23:11 | 41.3583 | 1/14/01 | 21:29 | 53.9075 | 1/14/01 | 20:23 | 32.4902 |

|         | DW06  |        |         | SB01  |        |         | SB09  |        |         | SB16  |         |         | SB18  |         |         | SB19  |         |
|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|---------|---------|-------|---------|---------|-------|---------|
| Date    | Time  | Depth   | Date    | Time  | Depth   | Date    | Time  | Depth   |
| 4/45/04 | 4.45  | 50.400 | 4/45/04 | 0.40  | 00.444 | 4/45/04 | 0.04  | 00.570 | 4/45/04 | 0.44  | 44.0045 | 4/45/04 | 4.00  | 50.0400 | 4/45/04 | 0.00  | 00.4000 |
| 1/15/01 | 1:15  | 56.102 | 1/15/01 | 2:48  | 20.144 | 1/15/01 | 3:01  | 33.570 | 1/15/01 | 3:11  | 41.3845 | 1/15/01 | 1:29  | 53.9403 | 1/15/01 | 0:23  | 32.4606 |
| 1/15/01 | 5:15  | 56.083 | 1/15/01 | 6:48  | 20.112 | 1/15/01 | 7:01  | 33.566 | 1/15/01 | 7:11  | 41.4042 | 1/15/01 | 5:29  | 53.9501 | 1/15/01 | 4:23  | 32.4377 |
| 1/15/01 | 9:15  | 56.089 | 1/15/01 | 10:48 | 20.089 | 1/15/01 | 11:01 | 33.570 | 1/15/01 | 11:11 | 41.4239 | 1/15/01 | 9:29  | 53.9829 | 1/15/01 | 8:23  | 32.4114 |
| 1/15/01 | 13:15 | 56.243 | 1/15/01 | 14:48 | 20.066 | 1/15/01 | 15:01 | 33.563 | 1/15/01 | 15:11 | 41.4272 | 1/15/01 | 13:29 | 54.0256 | 1/15/01 | 12:23 | 32.395  |
| 1/15/01 | 17:15 | 56.253 | 1/15/01 | 18:48 | 20.039 | 1/15/01 | 19:01 | 33.556 | 1/15/01 | 19:11 | 41.4469 | 1/15/01 | 17:29 | 54.042  | 1/15/01 | 16:23 | 32.3622 |
| 1/15/01 | 21:15 | 56.243 | 1/15/01 | 22:48 | 20.016 | 1/15/01 | 23:01 | 33.556 | 1/15/01 | 23:11 | 41.4633 | 1/15/01 | 21:29 | 54.0518 | 1/15/01 | 20:23 | 32.3491 |
| 1/16/01 | 1:15  | 56.211 | 1/16/01 | 2:48  | 19.993 | 1/16/01 | 3:01  | 33.553 | 1/16/01 | 3:11  | 41.4731 | 1/16/01 | 1:29  | 54.0781 | 1/16/01 | 0:23  | 32.3327 |
| 1/16/01 | 5:15  | 56.191 | 1/16/01 | 6:48  | 19.974 | 1/16/01 | 7:01  | 33.550 | 1/16/01 | /:11  | 41.4862 | 1/16/01 | 5:29  | 54.1109 | 1/16/01 | 4:23  | 32.3163 |
| 1/16/01 | 9:15  | 56.168 | 1/16/01 | 10:48 | 19.957 | 1/16/01 | 11:01 | 33.547 | 1/16/01 | 11:11 | 41.4993 | 1/16/01 | 9:29  | 54.1142 | 1/16/01 | 8:23  | 32.29   |
| 1/16/01 | 13:15 | 56.188 | 1/16/01 | 14:48 | 19.938 | 1/16/01 | 15:01 | 33.533 | 1/16/01 | 15:11 | 41.4862 | 1/16/01 | 13:29 | 54.124  | 1/16/01 | 12:23 | 32.2769 |
| 1/16/01 | 17:15 | 56.194 | 1/16/01 | 18:48 | 19.918 | 1/16/01 | 19:01 | 33.524 | 1/16/01 | 19:11 | 41.4928 | 1/16/01 | 17:29 | 54.1109 | 1/16/01 | 16:23 | 32.2572 |
| 1/16/01 | 21:15 | 56.188 | 1/16/01 | 22:48 | 19.908 | 1/16/01 | 23:01 | 33.517 | 1/16/01 | 23:11 | 41.5026 | 1/16/01 | 21:29 | 54.1207 | 1/16/01 | 20:23 | 32.2408 |
| 1/17/01 | 1:15  | 56.158 | 1/17/01 | 2:48  | 19.885 | 1/17/01 | 3:01  | 33.507 | 1/17/01 | 3:11  | 41.4993 | 1/17/01 | 1:29  | 54.1175 | 1/17/01 | 0:23  | 32.231  |
| 1/17/01 | 5:15  | 56.152 | 1/17/01 | 6:48  | 19.872 | 1/17/01 | 7:01  | 33.497 | 1/17/01 | 7:11  | 41.4961 | 1/17/01 | 5:29  | 54.1076 | 1/17/01 | 4:23  | 32.2113 |
| 1/17/01 | 9:15  | 56.165 | 1/17/01 | 10:48 | 19.859 | 1/17/01 | 11:01 | 33.488 | 1/17/01 | 11:11 | 41.4895 | 1/17/01 | 9:29  | 54.1142 | 1/17/01 | 8:23  | 32.2014 |
| 1/17/01 | 13:15 | 56.280 | 1/17/01 | 14:48 | 19.833 | 1/17/01 | 15:01 | 33.458 | 1/17/01 | 15:11 | 41.46   | 1/17/01 | 13:29 | 54.0879 | 1/17/01 | 12:23 | 32.185  |
| 1/17/01 | 17:15 | 56.306 | 1/17/01 | 18:48 | 19.816 | 1/17/01 | 19:01 | 33.425 | 1/17/01 | 19:11 | 41.4304 | 1/17/01 | 17:29 | 54.0322 | 1/17/01 | 16:23 | 32.1358 |
| 1/17/01 | 21:15 | 56.260 | 1/17/01 | 22:48 | 19.793 | 1/17/01 | 23:01 | 33.402 | 1/17/01 | 23:11 | 41.4042 | 1/17/01 | 21:29 | 53.9731 | 1/17/01 | 20:23 | 32.1129 |
| 1/18/01 | 1:15  | 56.247 | 1/18/01 | 2:48  | 19.770 | 1/18/01 | 3:01  | 33.369 | 1/18/01 | 3:11  | 41.3648 | 1/18/01 | 1:29  | 53.9469 | 1/18/01 | 0:23  | 32.0833 |
| 1/18/01 | 5:15  | 56.273 | 1/18/01 | 6:48  | 19.751 | 1/18/01 | 7:01  | 33.337 | 1/18/01 | 7:11  | 41.3287 | 1/18/01 | 5:29  | 53.9009 | 1/18/01 | 4:23  | 32.0571 |
| 1/18/01 | 9:15  | 56.237 | 1/18/01 | 10:48 | 19.734 | 1/18/01 | 11:01 | 33.317 | 1/18/01 | 11:11 | 41.3156 | 1/18/01 | 9:29  | 53.8976 | 1/18/01 | 8:23  | 32.0341 |
| 1/18/01 | 13:15 | 56.312 | 1/18/01 | 14:48 | 19.718 | 1/18/01 | 15:01 | 33.297 | 1/18/01 | 15:11 | 41.2894 | 1/18/01 | 13:29 | 53.9108 | 1/18/01 | 12:23 | 32.0374 |
| 1/18/01 | 17:15 | 56.283 | 1/18/01 | 18:48 | 19.708 | 1/18/01 | 19:01 | 33.291 | 1/18/01 | 19:11 | 41.2828 | 1/18/01 | 17:29 | 53.8911 | 1/18/01 | 16:23 | 32.021  |
| 1/18/01 | 21:15 | 56.217 | 1/18/01 | 22:48 | 19.698 | 1/18/01 | 23:01 | 33.287 | 1/18/01 | 23:11 | 41.2894 | 1/18/01 | 21:29 | 53.8845 | 1/18/01 | 20:23 | 32.0276 |
| 1/19/01 | 1:15  | 56.198 | 1/19/01 | 2:48  | 19.692 | 1/19/01 | 3:01  | 33.287 | 1/19/01 | 3:11  | 41.2959 | 1/19/01 | 1:29  | 53.9272 | 1/19/01 | 0:23  | 32.0374 |
| 1/19/01 | 5:15  | 56.056 | 1/19/01 | 6:48  | 19.692 | 1/19/01 | 7:01  | 33.307 | 1/19/01 | 7:11  | 41.3255 | 1/19/01 | 5:29  | 53.9731 | 1/19/01 | 4:23  | 32.0538 |
| 1/19/01 | 9:15  | 55.991 | 1/19/01 | 10:48 | 19.695 | 1/19/01 | 11:01 | 33.330 | 1/19/01 | 11:11 | 41.3583 | 1/19/01 | 9:29  | 54.0551 | 1/19/01 | 8:23  | 32.0833 |
| 1/19/01 | 13:15 | 56.060 | 1/19/01 | 14:48 | 19.692 | 1/19/01 | 15:01 | 33.323 | 1/19/01 | 15:11 | 41.3517 | 1/19/01 | 13:29 | 54.0486 | 1/19/01 | 12:23 | 32.1096 |
| 1/19/01 | 17:15 | 56.050 | 1/19/01 | 18:48 | 19.692 | 1/19/01 | 19:01 | 33.333 | 1/19/01 | 19:11 | 41.3648 | 1/19/01 | 17:29 | 54.042  | 1/19/01 | 16:23 | 32.0965 |
| 1/19/01 | 21:15 | 56.033 | 1/19/01 | 22:48 | 19.695 | 1/19/01 | 23:01 | 33.340 | 1/19/01 | 23:11 | 41.3714 | 1/19/01 | 21:29 | 54.0748 | 1/19/01 | 20:23 | 32.1161 |
| 1/20/01 | 1:15  | 56.047 | 1/20/01 | 2:48  | 19.682 | 1/20/01 | 3:01  | 33.327 | 1/20/01 | 3:11  | 41.3583 | 1/20/01 | 1:29  | 54.0978 | 1/20/01 | 0:23  | 32.1129 |
| 1/20/01 | 5:15  | 56.086 | 1/20/01 | 6:48  | 19.675 | 1/20/01 | 7:01  | 33.314 | 1/20/01 | 7:11  | 41.3419 | 1/20/01 | 5:29  | 54.0486 | 1/20/01 | 4:23  | 32.1096 |
| 1/20/01 | 9:15  | 56.083 | 1/20/01 | 10:48 | 19.672 | 1/20/01 | 11:01 | 33.304 | 1/20/01 | 11:11 | 41.3451 | 1/20/01 | 9:29  | 54.0387 | 1/20/01 | 8:23  | 32.103  |
| 1/20/01 | 13:15 | 56.220 | 1/20/01 | 14:48 | 19.662 | 1/20/01 | 15:01 | 33.278 | 1/20/01 | 15:11 | 41.3123 | 1/20/01 | 13:29 | 54.0125 | 1/20/01 | 12:23 | 32.1096 |
| 1/20/01 | 17:15 | 56.211 | 1/20/01 | 18:48 | 19.659 | 1/20/01 | 19:01 | 33.271 | 1/20/01 | 19:11 | 41.2927 | 1/20/01 | 17:29 | 53.9797 | 1/20/01 | 16:23 | 32.0801 |
| 1/20/01 | 21:15 | 56.158 | 1/20/01 | 22:48 | 19.656 | 1/20/01 | 23:01 | 33.264 | 1/20/01 | 23:11 | 41.2861 | 1/20/01 | 21:29 | 53.9731 | 1/20/01 | 20:23 | 32.0735 |
| 1/21/01 | 1:15  | 56.152 | 1/21/01 | 2:48  | 19.646 | 1/21/01 | 3:01  | 33.255 | 1/21/01 | 3:11  | 41.273  | 1/21/01 | 1:29  | 53.9731 | 1/21/01 | 0:23  | 32.0833 |
| 1/21/01 | 5:15  | 56.145 | 1/21/01 | 6:48  | 19.649 | 1/21/01 | 7:01  | 33.261 | 1/21/01 | 7:11  | 41.2795 | 1/21/01 | 5:29  | 53.9961 | 1/21/01 | 4:23  | 32.0866 |

|         | DW06  |          |         | SB01  |        |         | SB09         |        |         | SB16  |         |         | SB18         |         |         | SB19  |         |
|---------|-------|----------|---------|-------|--------|---------|--------------|--------|---------|-------|---------|---------|--------------|---------|---------|-------|---------|
| Date    | Time  | Depth    | Date    | Time  | Depth  | Date    | Time         | Depth  | Date    | Time  | Depth   | Date    | Time         | Depth   | Date    | Time  | Depth   |
| 1/01/04 | 0.15  | EC 070   | 1/01/04 | 10.40 | 10.650 | 1/01/04 | 11.01        | 22.004 | 1/01/04 | 11.14 | 44.0000 | 1/01/04 | 0.20         | E4 0000 | 1/01/04 | 0.00  | 22.4420 |
| 1/21/01 | 9:15  | 50.070   | 1/21/01 | 10:48 | 19.659 | 1/21/01 | 11:01        | 33.281 | 1/21/01 | 11.11 | 41.3222 | 1/21/01 | 9:29         | 54.0223 | 1/21/01 | 8:23  | 32.1129 |
| 1/21/01 | 13.13 | 56 101   | 1/21/01 | 14.40 | 19.009 | 1/21/01 | 10.01        | 33.204 | 1/21/01 | 10.11 | 41.3222 | 1/21/01 | 13.29        | 54.0715 | 1/21/01 | 12:23 | 32.149  |
| 1/21/01 | 21.15 | 56 152   | 1/21/01 | 10.40 | 19.009 | 1/21/01 | 19.01        | 22 204 | 1/21/01 | 19.11 | 41.3222 | 1/21/01 | 21.29        | 54.0692 | 1/21/01 | 10.23 | 32.1391 |
| 1/21/01 | 21.15 | 56 1 4 2 | 1/21/01 | 22.40 | 19.009 | 1/21/01 | 23.01        | 22 201 | 1/21/01 | 23.11 | 41.3207 | 1/21/01 | 21.29        | 54.0002 | 1/21/01 | 20.23 | 32.149  |
| 1/22/01 | 5.15  | 56 125   | 1/22/01 | 2.40  | 19.009 | 1/22/01 | 3.01<br>7.01 | 22 279 | 1/22/01 | 7.11  | 41.3222 | 1/22/01 | 5.20         | 54.005  | 1/22/01 | 0.23  | 32.1500 |
| 1/22/01 | 0.15  | 56 1/2   | 1/22/01 | 10.40 | 19.052 | 1/22/01 | 11.01        | 33 271 | 1/22/01 | 11.11 | 41.2939 | 1/22/01 | 0.29         | 54.0551 | 1/22/01 | 8.23  | 32.149  |
| 1/22/01 | 9.15  | 56 200   | 1/22/01 | 14.40 | 10.640 | 1/22/01 | 15.01        | 22 251 | 1/22/01 | 15.11 | 41.3091 | 1/22/01 | 12.29        | 54.005  | 1/22/01 | 12.23 | 32.149  |
| 1/22/01 | 13.15 | 56 335   | 1/22/01 | 14.40 | 19.049 | 1/22/01 | 10.01        | 22 222 | 1/22/01 | 10.11 | 41.2097 | 1/22/01 | 13.29        | 52 0905 | 1/22/01 | 12.23 | 32.149  |
| 1/22/01 | 21.15 | 56 217   | 1/22/01 | 22.49 | 10.646 | 1/22/01 | 22.01        | 22 222 | 1/22/01 | 22.11 | 41.2434 | 1/22/01 | 21.29        | 52 0920 | 1/22/01 | 20.23 | 32.1227 |
| 1/22/01 | 21.15 | 56 108   | 1/22/01 | 22.40 | 19.040 | 1/22/01 | 23.01        | 33 225 | 1/22/01 | 23.11 | 41.2407 | 1/22/01 | 1.29         | 53 0820 | 1/22/01 | 0.23  | 32.1227 |
| 1/23/01 | 5.15  | 56 171   | 1/23/01 | 6.48  | 19.646 | 1/23/01 | 7.01         | 33 228 | 1/23/01 | 7.11  | 41 2360 | 1/23/01 | 5.20         | 53 0003 | 1/23/01 | 4.23  | 32 1301 |
| 1/23/01 | 0.15  | 56 181   | 1/23/01 | 10:48 | 19.649 | 1/23/01 | 11.01        | 33 232 | 1/23/01 | 11.11 | 41 2533 | 1/23/01 | 0.20<br>Q·20 | 54 0157 | 1/23/01 | 8.23  | 32 1457 |
| 1/23/01 | 13.15 | 56 332   | 1/23/01 | 14.48 | 19 646 | 1/23/01 | 15:01        | 33 219 | 1/23/01 | 15.11 | 41 2303 | 1/23/01 | 13.20        | 54 0125 | 1/23/01 | 12.23 | 32 1555 |
| 1/23/01 | 17:15 | 56.329   | 1/23/01 | 18.48 | 19 646 | 1/23/01 | 19:01        | 33 212 | 1/23/01 | 19.11 | 41 2205 | 1/23/01 | 17:29        | 53 9829 | 1/23/01 | 16:23 | 32 1358 |
| 1/23/01 | 21:15 | 56.237   | 1/23/01 | 22:48 | 19.646 | 1/23/01 | 23:01        | 33.215 | 1/23/01 | 23:11 | 41,2205 | 1/23/01 | 21:29        | 53,9961 | 1/23/01 | 20:23 | 32,1424 |
| 1/24/01 | 1:15  | 56.230   | 1/24/01 | 2:48  | 19.649 | 1/24/01 | 3:01         | 33.215 | 1/24/01 | 3:11  | 41.2205 | 1/24/01 | 1:29         | 53.9829 | 1/24/01 | 0:23  | 32.1457 |
| 1/24/01 | 5:15  | 56.188   | 1/24/01 | 6:48  | 19.649 | 1/24/01 | 7:01         | 33.215 | 1/24/01 | 7:11  | 41.227  | 1/24/01 | 5:29         | 53.9961 | 1/24/01 | 4:23  | 32.1522 |
| 1/24/01 | 9:15  | 56.106   | 1/24/01 | 10:48 | 19.659 | 1/24/01 | 11:01        | 33.241 | 1/24/01 | 11:11 | 41.2566 | 1/24/01 | 9:29         | 54.0289 | 1/24/01 | 8:23  | 32.1719 |
| 1/24/01 | 13:15 | 56.342   | 1/24/01 | 14:48 | 19.669 | 1/24/01 | 15:01        | 33.255 | 1/24/01 | 15:11 | 41.2762 | 1/24/01 | 13:29        | 54.0879 | 1/24/01 | 12:23 | 32.2047 |
| 1/24/01 | 17:15 | 56.365   | 1/24/01 | 18:48 | 19.678 | 1/24/01 | 19:01        | 33.271 | 1/24/01 | 19:11 | 41.2959 | 1/24/01 | 17:29        | 54.1076 | 1/24/01 | 16:23 | 32.2146 |
| 1/24/01 | 21:15 | 56.394   | 1/24/01 | 22:48 | 19.692 | 1/24/01 | 23:01        | 33.297 | 1/24/01 | 23:11 | 41.3222 | 1/24/01 | 21:29        | 54.1207 | 1/24/01 | 20:23 | 32.231  |
| 1/25/01 | 1:15  | 56.421   | 1/25/01 | 2:48  | 19.698 | 1/25/01 | 3:01         | 33.301 | 1/25/01 | 3:11  | 41.3287 | 1/25/01 | 1:29         | 54.1503 | 1/25/01 | 0:23  | 32.2507 |
| 1/25/01 | 5:15  | 56.424   | 1/25/01 | 6:48  | 19.698 | 1/25/01 | 7:01         | 33.297 | 1/25/01 | 7:11  | 41.3123 | 1/25/01 | 5:29         | 54.1503 | 1/25/01 | 4:23  | 32.2507 |
| 1/25/01 | 9:15  | 56.404   | 1/25/01 | 10:48 | 19.698 | 1/25/01 | 11:01        | 33.287 | 1/25/01 | 11:11 | 41.3091 | 1/25/01 | 9:29         | 54.1207 | 1/25/01 | 8:23  | 32.2343 |
| 1/25/01 | 13:15 | 56.362   | 1/25/01 | 14:48 | 19.692 | 1/25/01 | 15:01        | 33.251 | 1/25/01 | 15:11 | 41.2533 | 1/25/01 | 13:29        | 54.0748 | 1/25/01 | 12:23 | 32.2244 |
| 1/25/01 | 17:15 | 56.260   | 1/25/01 | 18:48 | 19.675 | 1/25/01 | 19:01        | 33.209 | 1/25/01 | 19:11 | 41.1844 | 1/25/01 | 17:29        | 53.9403 | 1/25/01 | 16:23 | 32.1621 |
| 1/25/01 | 21:15 | 56.158   | 1/25/01 | 22:48 | 19.662 | 1/25/01 | 23:01        | 33.159 | 1/25/01 | 23:11 | 41.122  | 1/25/01 | 21:29        | 53.8451 | 1/25/01 | 20:23 | 32.1194 |
| 1/26/01 | 1:15  | 56.060   | 1/26/01 | 2:48  | 19.636 | 1/26/01 | 3:01         | 33.104 | 1/26/01 | 3:11  | 41.0302 | 1/26/01 | 1:29         | 53.7467 | 1/26/01 | 0:23  | 32.0735 |
| 1/26/01 | 5:15  | 55.932   | 1/26/01 | 6:48  | 19.616 | 1/26/01 | 7:01         | 33.051 | 1/26/01 | 7:11  | 40.958  | 1/26/01 | 5:29         | 53.6089 | 1/26/01 | 4:23  | 32.021  |
| 1/26/01 | 9:15  | 55.869   | 1/26/01 | 10:48 | 19.623 | 1/26/01 | 11:01        | 33.061 | 1/26/01 | 11:11 | 40.981  | 1/26/01 | 9:29         | 53.5991 | 1/26/01 | 8:23  | 32.0112 |
| 1/26/01 | 13:15 | 55.951   | 1/26/01 | 14:48 | 19.633 | 1/26/01 | 15:01        | 33.097 | 1/26/01 | 15:11 | 41.0302 | 1/26/01 | 13:29        | 53.7598 | 1/26/01 | 12:23 | 32.0899 |
| 1/26/01 | 17:15 | 56.037   | 1/26/01 | 18:48 | 19.649 | 1/26/01 | 19:01        | 33.140 | 1/26/01 | 19:11 | 41.0827 | 1/26/01 | 17:29        | 53.8616 | 1/26/01 | 16:23 | 32.1358 |
| 1/26/01 | 21:15 | 56.148   | 1/26/01 | 22:48 | 19.665 | 1/26/01 | 23:01        | 33.186 | 1/26/01 | 23:11 | 41.145  | 1/26/01 | 21:29        | 53.9469 | 1/26/01 | 20:23 | 32.1883 |
| 1/27/01 | 1:15  | 56.240   | 1/27/01 | 2:48  | 19.682 | 1/27/01 | 3:01         | 33.215 | 1/27/01 | 3:11  | 41.1778 | 1/27/01 | 1:29         | 54.019  | 1/27/01 | 0:23  | 32.231  |
| 1/27/01 | 5:15  | 56.309   | 1/27/01 | 6:48  | 19.692 | 1/27/01 | 7:01         | 33.232 | 1/27/01 | 7:11  | 41.2008 | 1/27/01 | 5:29         | 54.065  | 1/27/01 | 4:23  | 32.2539 |
| 1/27/01 | 9:15  | 56.352   | 1/27/01 | 10:48 | 19.701 | 1/27/01 | 11:01        | 33.251 | 1/27/01 | 11:11 | 41.2303 | 1/27/01 | 9:29         | 54.0912 | 1/27/01 | 8:23  | 32.2769 |
| 1/27/01 | 13:15 | 56.381   | 1/27/01 | 14:48 | 19.708 | 1/27/01 | 15:01        | 33.245 | 1/27/01 | 15:11 | 41.2205 | 1/27/01 | 13:29        | 54.0879 | 1/27/01 | 12:23 | 32.2966 |

|         | DW06  |        |         | SB01  |        |         | SB09  |        |         | SB16  |         |         | SB18  |         |         | SB19  |         |
|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|---------|---------|-------|---------|---------|-------|---------|
| Date    | Time  | Depth   | Date    | Time  | Depth   | Date    | Time  | Depth   |
|         |       |        |         |       |        |         |       |        |         |       |         |         |       |         |         |       |         |
| 1/27/01 | 17:15 | 56.342 | 1/27/01 | 18:48 | 19.708 | 1/27/01 | 19:01 | 33.235 | 1/27/01 | 19:11 | 41.2008 | 1/27/01 | 17:29 | 54.0354 | 1/27/01 | 16:23 | 32.2638 |
| 1/27/01 | 21:15 | 56.322 | 1/27/01 | 22:48 | 19.718 | 1/27/01 | 23:01 | 33.241 | 1/27/01 | 23:11 | 41.1975 | 1/27/01 | 21:29 | 54.0256 | 1/27/01 | 20:23 | 32.2638 |
| 1/28/01 | 1:15  | 56.309 | 1/28/01 | 2:48  | 19.721 | 1/28/01 | 3:01  | 33.235 | 1/28/01 | 3:11  | 41.1909 | 1/28/01 | 1:29  | 54.0223 | 1/28/01 | 0:23  | 32.2671 |
| 1/28/01 | 5:15  | 56.283 | 1/28/01 | 6:48  | 19.715 | 1/28/01 | 7:01  | 33.215 | 1/28/01 | 7:11  | 41.1581 | 1/28/01 | 5:29  | 53.9829 | 1/28/01 | 4:23  | 32.2638 |
| 1/28/01 | 9:15  | 56.247 | 1/28/01 | 10:48 | 19.698 | 1/28/01 | 11:01 | 33.189 | 1/28/01 | 11:11 | 41.1286 | 1/28/01 | 9:29  | 53.9633 | 1/28/01 | 8:23  | 32.2408 |
| 1/28/01 | 13:15 | 56.289 | 1/28/01 | 14:48 | 19.669 | 1/28/01 | 15:01 | 33.150 | 1/28/01 | 15:11 | 41.0728 | 1/28/01 | 13:29 | 54.0256 | 1/28/01 | 12:23 | 32.2244 |
| 1/28/01 | 17:15 | 56.309 | 1/28/01 | 18:48 | 19.662 | 1/28/01 | 19:01 | 33.127 | 1/28/01 | 19:11 | 41.04   | 1/28/01 | 17:29 | 54.0551 | 1/28/01 | 16:23 | 32.1818 |
| 1/28/01 | 21:15 | 56.332 | 1/28/01 | 22:48 | 19.649 | 1/28/01 | 23:01 | 33.100 | 1/28/01 | 23:11 | 41.0072 | 1/28/01 | 21:29 | 54.0715 | 1/28/01 | 20:23 | 32.1457 |
| 1/29/01 | 1:15  | 56.358 | 1/29/01 | 2:48  | 19.623 | 1/29/01 | 3:01  | 33.064 | 1/29/01 | 3:11  | 40.9514 | 1/29/01 | 1:29  | 53.8681 | 1/29/01 | 0:23  | 32.1129 |
| 1/29/01 | 5:15  | 56.430 | 1/29/01 | 6:48  | 19.580 | 1/29/01 | 7:01  | 33.005 | 1/29/01 | 7:11  | 41.0532 | 1/29/01 | 5:29  | 53.8976 | 1/29/01 | 4:23  | 32.0571 |
| 1/29/01 | 9:15  | 55.968 | 1/29/01 | 10:48 | 19.534 | 1/29/01 | 11:01 | 32.946 | 1/29/01 | 11:11 | 41.0269 | 1/29/01 | 9:29  | 53.9304 | 1/29/01 | 8:23  | 31.9915 |
| 1/29/01 | 13:15 | 55.833 | 1/29/01 | 14:48 | 19.482 | 1/29/01 | 15:01 | 32.877 | 1/29/01 | 15:11 | 40.5315 | 1/29/01 | 13:29 | 53.914  | 1/29/01 | 12:23 | 31.8996 |
| 1/29/01 | 17:15 | 55.768 | 1/29/01 | 18:48 | 19.436 | 1/29/01 | 19:01 | 32.835 | 1/29/01 | 19:11 | 40.6463 | 1/29/01 | 17:29 | 53.7861 | 1/29/01 | 16:23 | 31.7979 |
| 1/29/01 | 21:15 | 55.761 | 1/29/01 | 22:48 | 19.383 | 1/29/01 | 23:01 | 32.795 | 1/29/01 | 23:11 | 40.2723 | 1/29/01 | 21:29 | 53.7598 | 1/29/01 | 20:23 | 31.7323 |
| 1/30/01 | 1:15  | 55.771 | 1/30/01 | 2:48  | 19.324 | 1/30/01 | 3:01  | 32.749 | 1/30/01 | 3:11  | 40.4987 | 1/30/01 | 1:29  | 53.5958 | 1/30/01 | 0:23  | 31.6601 |
| 1/30/01 | 5:15  | 55.771 | 1/30/01 | 6:48  | 19.268 | 1/30/01 | 7:01  | 32.713 | 1/30/01 | 7:11  | 40.5282 | 1/30/01 | 5:29  | 53.1234 | 1/30/01 | 4:23  | 31.5682 |
| 1/30/01 | 9:15  | 55.679 | 1/30/01 | 10:48 | 19.229 | 1/30/01 | 11:01 | 32.707 | 1/30/01 | 11:11 | 40.5446 | 1/30/01 | 9:29  | 53.1824 | 1/30/01 | 8:23  | 31.542  |
| 1/30/01 | 13:15 | 55.636 | 1/30/01 | 14:48 | 19.196 | 1/30/01 | 15:01 | 32.723 | 1/30/01 | 15:11 | 40.5807 | 1/30/01 | 13:29 | 53.2218 | 1/30/01 | 12:23 | 31.542  |
| 1/30/01 | 17:15 | 55.591 | 1/30/01 | 18:48 | 19.173 | 1/30/01 | 19:01 | 32.749 | 1/30/01 | 19:11 | 40.6496 | 1/30/01 | 17:29 | 53.2054 | 1/30/01 | 16:23 | 31.5453 |
| 1/30/01 | 21:15 | 55.522 | 1/30/01 | 22:48 | 19.150 | 1/30/01 | 23:01 | 32.779 | 1/30/01 | 23:11 | 40.7054 | 1/30/01 | 21:29 | 53.1923 | 1/30/01 | 20:23 | 31.5814 |
| 1/31/01 | 1:15  | 55.509 | 1/31/01 | 2:48  | 19.134 | 1/31/01 | 3:01  | 32.812 | 1/31/01 | 3:11  | 40.7743 | 1/31/01 | 1:29  | 53.6286 | 1/31/01 | 0:23  | 31.5945 |
| 1/31/01 | 5:15  | 55.505 | 1/31/01 | 6:48  | 19.124 | 1/31/01 | 7:01  | 32.841 | 1/31/01 | 7:11  | 40.8366 | 1/31/01 | 5:29  | 53.7139 | 1/31/01 | 4:23  | 31.6076 |
| 1/31/01 | 9:15  | 55.492 | 1/31/01 | 10:48 | 19.108 | 1/31/01 | 11:01 | 32.867 | 1/31/01 | 11:11 | 40.8825 | 1/31/01 | 9:29  | 53.8025 | 1/31/01 | 8:23  | 31.624  |
| 1/31/01 | 13:15 | 56.119 | 1/31/01 | 14:48 | 19.091 | 1/31/01 | 15:01 | 32.877 | 1/31/01 | 15:11 | 40.9121 | 1/31/01 | 13:29 | 53.8681 | 1/31/01 | 12:23 | 31.6339 |
| 1/31/01 | 17:15 | 56.165 | 1/31/01 | 18:48 | 19.081 | 1/31/01 | 19:01 | 32.877 | 1/31/01 | 19:11 | 40.9318 | 1/31/01 | 17:29 | 53.8681 | 1/31/01 | 16:23 | 31.6306 |
| 1/31/01 | 21:15 | 56.207 | 1/31/01 | 22:48 | 19.065 | 1/31/01 | 23:01 | 32.887 | 1/31/01 | 23:11 | 40.9514 | 1/31/01 | 21:29 | 53.9272 | 1/31/01 | 20:23 | 31.6076 |
| 2/1/01  | 1:15  | 56.257 | 2/1/01  | 2:48  | 19.049 | 2/1/01  | 3:01  | 32.894 | 2/1/01  | 3:11  | 40.9777 | 2/1/01  | 1:29  | 53.9206 | 2/1/01  | 0:23  | 31.6043 |
| 2/1/01  | 5:15  | 56.283 | 2/1/01  | 6:48  | 19.032 | 2/1/01  | 7:01  | 32.887 | 2/1/01  | 7:11  | 40.9908 | 2/1/01  | 5:29  | 53.937  | 2/1/01  | 4:23  | 31.5912 |
| 2/1/01  | 9:15  | 56.309 | 2/1/01  | 10:48 | 19.022 | 2/1/01  | 11:01 | 32.897 | 2/1/01  | 11:11 | 41.0269 | 2/1/01  | 9:29  | 53.9567 | 2/1/01  | 8:23  | 31.5748 |
| 2/1/01  | 13:15 | 56.362 | 2/1/01  | 14:48 | 19.012 | 2/1/01  | 15:01 | 32.930 | 2/1/01  | 15:11 | 41.0696 | 2/1/01  | 13:29 | 54.019  | 2/1/01  | 12:23 | 31.5879 |
| 2/1/01  | 17:15 | 56.417 | 2/1/01  | 18:48 | 19.012 | 2/1/01  | 19:01 | 32.959 | 2/1/01  | 19:11 | 41.1155 | 2/1/01  | 17:29 | 54.1043 | 2/1/01  | 16:23 | 31.6043 |
| 2/1/01  | 21:15 | 56.473 | 2/1/01  | 22:48 | 19.006 | 2/1/01  | 23:01 | 32.979 | 2/1/01  | 23:11 | 41.1581 | 2/1/01  | 21:29 | 54.1535 | 2/1/01  | 20:23 | 31.624  |
| 2/2/01  | 1:15  | 56.503 | 2/2/01  | 2:48  | 18.999 | 2/2/01  | 3:01  | 32.982 | 2/2/01  | 3:11  | 41.1713 | 2/2/01  | 1:29  | 54.1634 | 2/2/01  | 0:23  | 31.624  |
| 2/2/01  | 5:15  | 56.509 | 2/2/01  | 6:48  | 18.990 | 2/2/01  | 7:01  | 32.976 | 2/2/01  | 7:11  | 41.1713 | 2/2/01  | 5:29  | 54.1437 | 2/2/01  | 4:23  | 31.6076 |
| 2/2/01  | 9:15  | 56.512 | 2/2/01  | 10:48 | 18.973 | 2/2/01  | 11:01 | 32.949 | 2/2/01  | 11:11 | 41.1745 | 2/2/01  | 9:29  | 54.1306 | 2/2/01  | 8:23  | 31.5912 |
| 2/2/01  | 13:15 | 56.483 | 2/2/01  | 14:48 | 18.957 | 2/2/01  | 15:01 | 32.917 | 2/2/01  | 15:11 | 41.1286 | 2/2/01  | 13:29 | 54.0814 | 2/2/01  | 12:23 | 31.5748 |
| 2/2/01  | 17:15 | 56.394 | 2/2/01  | 18:48 | 18.940 | 2/2/01  | 19:01 | 32.877 | 2/2/01  | 19:11 | 41.0761 | 2/2/01  | 17:29 | 53.9501 | 2/2/01  | 16:23 | 31.5092 |
| 2/2/01  | 21:15 | 56.335 | 2/2/01  | 22:48 | 18.983 | 2/2/01  | 23:01 | 32.844 | 2/2/01  | 23:11 | 41.0335 | 2/2/01  | 21:29 | 53.9009 | 2/2/01  | 20:23 | 31.4665 |

|        | DW06  |        |        | SB01  |        |        | SB09  |        |        | SB16  |         |        | SB18  |         |        | SB19  |         |
|--------|-------|--------|--------|-------|--------|--------|-------|--------|--------|-------|---------|--------|-------|---------|--------|-------|---------|
| Date   | Time  | Depth   | Date   | Time  | Depth   | Date   | Time  | Depth   |
| 2/2/04 | 4.45  | 50.000 | 0/2/04 | 0.40  | 40.040 | 0/0/04 | 2:04  | 22.000 | 0/0/04 | 0.14  | 40.0000 | 0/0/04 | 4.00  | 50.0454 | 0/0/04 | 0.00  | 24 4227 |
| 2/3/01 | 1:15  | 56.280 | 2/3/01 | 2:48  | 18.842 | 2/3/01 | 3:01  | 32.808 | 2/3/01 | 3:11  | 40.9908 | 2/3/01 | 1:29  | 53.8451 | 2/3/01 | 0:23  | 31.4337 |
| 2/3/01 | 5:15  | 56.234 | 2/3/01 | 0:48  | 10.001 | 2/3/01 | 7:01  | 32.112 | 2/3/01 | 7:11  | 40.958  | 2/3/01 | 5:29  | 53.8025 | 2/3/01 | 4:23  | 31.4108 |
| 2/3/01 | 9.10  | 56 171 | 2/3/01 | 10.40 | 10.000 | 2/3/01 | 15:01 | 32.733 | 2/3/01 | 15.11 | 40.9310 | 2/3/01 | 9.29  | 52 7621 | 2/3/01 | 12.22 | 31.3944 |
| 2/3/01 | 13.13 | 50.171 | 2/3/01 | 14.40 | 10.002 | 2/3/01 | 10.01 | 32.730 | 2/3/01 | 10.11 | 40.9022 | 2/3/01 | 13.29 | 53.7031 | 2/3/01 | 12.23 | 31.3012 |
| 2/3/01 | 21:15 | 56 179 | 2/3/01 | 10.40 | 10.042 | 2/3/01 | 19.01 | 32.723 | 2/3/01 | 19.11 | 41.0925 | 2/3/01 | 21.29 | 53.7402 | 2/3/01 | 10.23 | 31.3714 |
| 2/3/01 | 21.13 | 56 109 | 2/3/01 | 22.40 | 19.002 | 2/3/01 | 23.01 | 32.720 | 2/3/01 | 23.11 | 40.0924 | 2/3/01 | 1.29  | 53.7309 | 2/3/01 | 20.23 | 31.3012 |
| 2/4/01 | 1.13  | 56.201 | 2/4/01 | 2.40  | 10.010 | 2/4/01 | 3.01  | 32.707 | 2/4/01 | 3.11  | 40.0000 | 2/4/01 | 1.29  | 53.7001 | 2/4/01 | 0.23  | 31.3714 |
| 2/4/01 | 0:15  | 56.201 | 2/4/01 | 0.40  | 10.799 | 2/4/01 | 11:01 | 32.097 | 2/4/01 | 11.11 | 40.0020 | 2/4/01 | 0.29  | 53.7694 | 2/4/01 | 4.23  | 31.300  |
| 2/4/01 | 9.10  | 56 266 | 2/4/01 | 10.40 | 10.709 | 2/4/01 | 15:01 | 32.703 | 2/4/01 | 15.11 | 40.099  | 2/4/01 | 9.29  | 52 9440 | 2/4/01 | 12.22 | 31.3317 |
| 2/4/01 | 13.13 | 56 206 | 2/4/01 | 14.40 | 10.703 | 2/4/01 | 10:01 | 32.720 | 2/4/01 | 10.11 | 40.9219 | 2/4/01 | 13.29 | 52 9616 | 2/4/01 | 12.20 | 31.370  |
| 2/4/01 | 21.15 | 56 220 | 2/4/01 | 10.40 | 10.703 | 2/4/01 | 19.01 | 32.723 | 2/4/01 | 22.11 | 40.9200 | 2/4/01 | 21.29 | 52 0272 | 2/4/01 | 20.23 | 31.3012 |
| 2/4/01 | 21.15 | 56 3/9 | 2/4/01 | 22.40 | 19 757 | 2/4/01 | 23.01 | 22.730 | 2/4/01 | 20.11 | 40.9449 | 2/4/01 | 1.29  | 52 0042 | 2/4/01 | 20.23 | 21 2912 |
| 2/5/01 | 5.15  | 56 310 | 2/5/01 | 2.40  | 18 7/0 | 2/5/01 | 7.01  | 32.687 | 2/5/01 | 7.11  | 40.9200 | 2/5/01 | 5.20  | 53 8517 | 2/5/01 | 1.23  | 31 3484 |
| 2/5/01 | 9.15  | 56 270 | 2/5/01 | 10:48 | 18 724 | 2/5/01 | 11.01 | 32.007 | 2/5/01 | 11.11 | 40.3022 | 2/5/01 | 0.20  | 53 8025 | 2/5/01 | 8.23  | 31 3189 |
| 2/5/01 | 13.15 | 56 201 | 2/5/01 | 14.48 | 18 701 | 2/5/01 | 15.01 | 32.007 | 2/5/01 | 15.11 | 40 8071 | 2/5/01 | 13.20 | 53 7631 | 2/5/01 | 12.23 | 31 2894 |
| 2/5/01 | 17.15 | 56 115 | 2/5/01 | 18.48 | 18 681 | 2/5/01 | 19.01 | 32 572 | 2/5/01 | 10.11 | 40 7513 | 2/5/01 | 17.20 | 53 6417 | 2/5/01 | 16.23 | 31 2336 |
| 2/5/01 | 21.15 | 56.066 | 2/5/01 | 22.48 | 18 661 | 2/5/01 | 23.01 | 32 566 | 2/5/01 | 23.11 | 40 7448 | 2/5/01 | 21.29 | 53 668  | 2/5/01 | 20.23 | 31 2205 |
| 2/6/01 | 1:15  | 56.083 | 2/6/01 | 2:48  | 18.652 | 2/6/01 | 3:01  | 32,562 | 2/6/01 | 3:11  | 40.7513 | 2/6/01 | 1:29  | 53.6975 | 2/6/01 | 0:23  | 31,227  |
| 2/6/01 | 5:15  | 56,115 | 2/6/01 | 6:48  | 18.638 | 2/6/01 | 7:01  | 32,569 | 2/6/01 | 7:11  | 40.771  | 2/6/01 | 5:29  | 53,7106 | 2/6/01 | 4:23  | 31,2336 |
| 2/6/01 | 9:15  | 56,181 | 2/6/01 | 10:48 | 18.632 | 2/6/01 | 11:01 | 32,595 | 2/6/01 | 11:11 | 40.8136 | 2/6/01 | 9:29  | 53,7959 | 2/6/01 | 8:23  | 31,2533 |
| 2/6/01 | 13:15 | 56.250 | 2/6/01 | 14:48 | 18.622 | 2/6/01 | 15:01 | 32.605 | 2/6/01 | 15:11 | 40.8366 | 2/6/01 | 13:29 | 53.8517 | 2/6/01 | 12:23 | 31.273  |
| 2/6/01 | 17:15 | 56.280 | 2/6/01 | 18:48 | 18.615 | 2/6/01 | 19:01 | 32.602 | 2/6/01 | 19:11 | 40.8399 | 2/6/01 | 17:29 | 53.8386 | 2/6/01 | 16:23 | 31.2631 |
| 2/6/01 | 21:15 | 56.299 | 2/6/01 | 22:48 | 18.606 | 2/6/01 | 23:01 | 32.598 | 2/6/01 | 23:11 | 40.853  | 2/6/01 | 21:29 | 53.8451 | 2/6/01 | 20:23 | 31.2631 |
| 2/7/01 | 1:15  | 56.299 | 2/7/01 | 2:48  | 18.589 | 2/7/01 | 3:01  | 32.585 | 2/7/01 | 3:11  | 40.8399 | 2/7/01 | 1:29  | 53.8484 | 2/7/01 | 0:23  | 31.2533 |
| 2/7/01 | 5:15  | 56.266 | 2/7/01 | 6:48  | 18.563 | 2/7/01 | 7:01  | 32.549 | 2/7/01 | 7:11  | 40.794  | 2/7/01 | 5:29  | 53.7598 | 2/7/01 | 4:23  | 31.2172 |
| 2/7/01 | 9:15  | 56.220 | 2/7/01 | 10:48 | 18.547 | 2/7/01 | 11:01 | 32.533 | 2/7/01 | 11:11 | 40.7743 | 2/7/01 | 9:29  | 53.7303 | 2/7/01 | 8:23  | 31.1877 |
| 2/7/01 | 13:15 | 56.184 | 2/7/01 | 14:48 | 18.524 | 2/7/01 | 15:01 | 32.490 | 2/7/01 | 15:11 | 40.7218 | 2/7/01 | 13:29 | 53.7008 | 2/7/01 | 12:23 | 31.1581 |
| 2/7/01 | 17:15 | 56.109 | 2/7/01 | 18:48 | 18.504 | 2/7/01 | 19:01 | 32.454 | 2/7/01 | 19:11 | 40.6791 | 2/7/01 | 17:29 | 53.6188 | 2/7/01 | 16:23 | 31.1056 |
| 2/7/01 | 21:15 | 56.073 | 2/7/01 | 22:48 | 18.491 | 2/7/01 | 23:01 | 32.438 | 2/7/01 | 23:11 | 40.6726 | 2/7/01 | 21:29 | 53.622  | 2/7/01 | 20:23 | 31.0925 |
| 2/8/01 | 1:15  | 56.076 | 2/8/01 | 2:48  | 18.484 | 2/8/01 | 3:01  | 32.434 | 2/8/01 | 3:11  | 40.6759 | 2/8/01 | 1:29  | 53.6286 | 2/8/01 | 0:23  | 31.0958 |
| 2/8/01 | 5:15  | 56.093 | 2/8/01 | 6:48  | 18.468 | 2/8/01 | 7:01  | 32.425 | 2/8/01 | 7:11  | 40.6627 | 2/8/01 | 5:29  | 53.6286 | 2/8/01 | 4:23  | 31.0958 |
| 2/8/01 | 9:15  | 56.089 | 2/8/01 | 10:48 | 18.458 | 2/8/01 | 11:01 | 32.428 | 2/8/01 | 11:11 | 40.6791 | 2/8/01 | 9:29  | 53.5991 | 2/8/01 | 8:23  | 31.0991 |
| 2/8/01 | 13:15 | 56.158 | 2/8/01 | 14:48 | 18.448 | 2/8/01 | 15:01 | 32.388 | 2/8/01 | 15:11 | 40.9318 | 2/8/01 | 13:29 | 53.6188 | 2/8/01 | 12:23 | 31.0958 |
| 2/8/01 | 17:15 | 56.168 | 2/8/01 | 18:48 | 18.924 | 2/8/01 | 19:01 | 32.372 | 2/8/01 | 19:11 | 40.794  | 2/8/01 | 17:29 | 53.6417 | 2/8/01 | 16:23 | 31.1122 |
| 2/8/01 | 21:15 | 56.168 | 2/8/01 | 22:48 | 18.455 | 2/8/01 | 23:01 | 32.349 | 2/8/01 | 23:11 | 40.4068 | 2/8/01 | 21:29 | 53.668  | 2/8/01 | 20:23 | 31.0203 |
| 2/9/01 | 1:15  | 56.145 | 2/9/01 | 2:48  | 18.366 | 2/9/01 | 3:01  | 32.297 | 2/9/01 | 3:11  | 40.128  | 2/9/01 | 1:29  | 53.6056 | 2/9/01 | 0:23  | 30.9514 |
| 2/9/01 | 5:15  | 56.125 | 2/9/01 | 6:48  | 18.140 | 2/9/01 | 7:01  | 32.247 | 2/9/01 | 7:11  | 40.4331 | 2/9/01 | 5:29  | 53.4252 | 2/9/01 | 4:23  | 30.8465 |

| DW06    |       |        | SB01    |       |        |         | SB09  |        |         | SB16  |         |         | SB18  |         |         |       |         |
|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|---------|---------|-------|---------|---------|-------|---------|
| Date    | Time  | Depth   | Date    | Time  | Depth   | Date    | Time  | Depth   |
| 2/0/01  | 0.15  | 56 053 | 2/0/01  | 10.49 | 18.064 | 2/0/01  | 11.01 | 22 270 | 2/0/01  | 11.11 | 40 5774 | 2/0/01  | 0.20  | 52 1192 | 2/0/01  | 9.22  | 20 8126 |
| 2/9/01  | 9.15  | 55 061 | 2/9/01  | 11.40 | 19.004 | 2/9/01  | 15:01 | 32.270 | 2/9/01  | 15.11 | 40.5774 | 2/9/01  | 12.20 | 52 /121 | 2/9/01  | 12.23 | 30,8225 |
| 2/9/01  | 17.15 | 55 883 | 2/9/01  | 18:48 | 18.004 | 2/9/01  | 10.01 | 32.300 | 2/9/01  | 10.11 | 40.0000 | 2/9/01  | 17.29 | 53 4088 | 2/9/01  | 16.23 | 30.8202 |
| 2/9/01  | 21.15 | 55 860 | 2/9/01  | 22.48 | 18.097 | 2/9/01  | 23.01 | 32.345 | 2/9/01  | 23.11 | 40 7743 | 2/9/01  | 21.29 | 53 3793 | 2/9/01  | 20.23 | 30.8366 |
| 2/10/01 | 1.15  | 55 876 | 2/10/01 | 2:40  | 18.007 | 2/10/01 | 3.01  | 32 395 | 2/10/01 | 3.11  | 40.8202 | 2/10/01 | 1.20  | 53 3694 | 2/10/01 | 0.23  | 30,8366 |
| 2/10/01 | 5.15  | 55 837 | 2/10/01 | 6.48  | 18.007 | 2/10/01 | 7.01  | 32 402 | 2/10/01 | 7.11  | 40.8399 | 2/10/01 | 5.29  | 53 3235 | 2/10/01 | 4.23  | 30.8268 |
| 2/10/01 | 9:15  | 55.873 | 2/10/01 | 10:48 | 18.077 | 2/10/01 | 11:01 | 32,408 | 2/10/01 | 11:11 | 40.8793 | 2/10/01 | 9:29  | 53.3169 | 2/10/01 | 8:23  | 30.8071 |
| 2/10/01 | 13:15 | 55.922 | 2/10/01 | 14:48 | 18.058 | 2/10/01 | 15:01 | 32,392 | 2/10/01 | 15:11 | 40.876  | 2/10/01 | 13:29 | 53,2972 | 2/10/01 | 12:23 | 30,7874 |
| 2/10/01 | 17:15 | 55.981 | 2/10/01 | 18:48 | 18.031 | 2/10/01 | 19:01 | 32.362 | 2/10/01 | 19:11 | 40.8333 | 2/10/01 | 17:29 | 53.3399 | 2/10/01 | 16:23 | 30.7382 |
| 2/10/01 | 21:15 | 55.932 | 2/10/01 | 22:48 | 18.015 | 2/10/01 | 23:01 | 32.343 | 2/10/01 | 23:11 | 40.8268 | 2/10/01 | 21:29 | 53.3268 | 2/10/01 | 20:23 | 30.7021 |
| 2/11/01 | 1:15  | 55.938 | 2/11/01 | 2:48  | 17.989 | 2/11/01 | 3:01  | 32.323 | 2/11/01 | 3:11  | 40.8136 | 2/11/01 | 1:29  | 53.3038 | 2/11/01 | 0:23  | 30.6791 |
| 2/11/01 | 5:15  | 55.971 | 2/11/01 | 6:48  | 17.969 | 2/11/01 | 7:01  | 32.293 | 2/11/01 | 7:11  | 40.7874 | 2/11/01 | 5:29  | 53.3005 | 2/11/01 | 4:23  | 30.6529 |
| 2/11/01 | 9:15  | 55.984 | 2/11/01 | 10:48 | 17.946 | 2/11/01 | 11:01 | 32.267 | 2/11/01 | 11:11 | 40.7776 | 2/11/01 | 9:29  | 53.3202 | 2/11/01 | 8:23  | 30.6168 |
| 2/11/01 | 13:15 | 56.063 | 2/11/01 | 14:48 | 17.917 | 2/11/01 | 15:01 | 32.221 | 2/11/01 | 15:11 | 40.7316 | 2/11/01 | 13:29 | 53.3301 | 2/11/01 | 12:23 | 30.584  |
| 2/11/01 | 17:15 | 56.119 | 2/11/01 | 18:48 | 17.890 | 2/11/01 | 19:01 | 32.169 | 2/11/01 | 19:11 | 40.666  | 2/11/01 | 17:29 | 53.376  | 2/11/01 | 16:23 | 30.5249 |
| 2/11/01 | 21:15 | 56.093 | 2/11/01 | 22:48 | 17.864 | 2/11/01 | 23:01 | 32.133 | 2/11/01 | 23:11 | 40.6234 | 2/11/01 | 21:29 | 53.399  | 2/11/01 | 20:23 | 30.4921 |
| 2/12/01 | 1:15  | 56.053 | 2/12/01 | 2:48  | 17.844 | 2/12/01 | 3:01  | 32.110 | 2/12/01 | 3:11  | 40.6037 | 2/12/01 | 1:29  | 53.3465 | 2/12/01 | 0:23  | 30.479  |
| 2/12/01 | 5:15  | 56.037 | 2/12/01 | 6:48  | 17.828 | 2/12/01 | 7:01  | 32.090 | 2/12/01 | 7:11  | 40.6004 | 2/12/01 | 5:29  | 53.3432 | 2/12/01 | 4:23  | 30.4659 |
| 2/12/01 | 9:15  | 55.984 | 2/12/01 | 10:48 | 17.815 | 2/12/01 | 11:01 | 32.090 | 2/12/01 | 11:11 | 40.607  | 2/12/01 | 9:29  | 53.3268 | 2/12/01 | 8:23  | 30.4757 |
| 2/12/01 | 13:15 | 56.004 | 2/12/01 | 14:48 | 17.805 | 2/12/01 | 15:01 | 32.083 | 2/12/01 | 15:11 | 40.6004 | 2/12/01 | 13:29 | 53.2874 | 2/12/01 | 12:23 | 30.4921 |
| 2/12/01 | 17:15 | 56.024 | 2/12/01 | 18:48 | 17.789 | 2/12/01 | 19:01 | 32.073 | 2/12/01 | 19:11 | 40.5873 | 2/12/01 | 17:29 | 53.3104 | 2/12/01 | 16:23 | 30.4856 |
| 2/12/01 | 21:15 | 56.014 | 2/12/01 | 22:48 | 17.779 | 2/12/01 | 23:01 | 32.057 | 2/12/01 | 23:11 | 40.5807 | 2/12/01 | 21:29 | 53.3465 | 2/12/01 | 20:23 | 30.4823 |
| 2/13/01 | 1:15  | 56.017 | 2/13/01 | 2:48  | 17.769 | 2/13/01 | 3:01  | 32.037 | 2/13/01 | 3:11  | 40.5643 | 2/13/01 | 1:29  | 53.3727 | 2/13/01 | 0:23  | 30.479  |
| 2/13/01 | 5:15  | 56.056 | 2/13/01 | 6:48  | 17.753 | 2/13/01 | 7:01  | 32.018 | 2/13/01 | 7:11  | 40.5413 | 2/13/01 | 5:29  | 53.399  | 2/13/01 | 4:23  | 30.4692 |
| 2/13/01 | 9:15  | 56.060 | 2/13/01 | 10:48 | 17.736 | 2/13/01 | 11:01 | 31.995 | 2/13/01 | 11:11 | 40.5118 | 2/13/01 | 9:29  | 53.4154 | 2/13/01 | 8:23  | 30.4659 |
| 2/13/01 | 13:15 | 56.145 | 2/13/01 | 14:48 | 17.717 | 2/13/01 | 15:01 | 31.959 | 2/13/01 | 15:11 | 40.4757 | 2/13/01 | 13:29 | 53.4416 | 2/13/01 | 12:23 | 30.4626 |
| 2/13/01 | 17:15 | 56.161 | 2/13/01 | 18:48 | 17.707 | 2/13/01 | 19:01 | 31.929 | 2/13/01 | 19:11 | 40.6759 | 2/13/01 | 17:29 | 53.4711 | 2/13/01 | 16:23 | 30.456  |
| 2/13/01 | 21:15 | 56.115 | 2/13/01 | 22:48 | 18.186 | 2/13/01 | 23:01 | 31.900 | 2/13/01 | 23:11 | 40.5938 | 2/13/01 | 21:29 | 53.4613 | 2/13/01 | 20:23 | 30.3937 |
| 2/14/01 | 1:15  | 56.109 | 2/14/01 | 2:48  | 18.156 | 2/14/01 | 3:01  | 31.867 | 2/14/01 | 3:11  | 40.5971 | 2/14/01 | 1:29  | 53.4711 | 2/14/01 | 0:23  | 30.3642 |
| 2/14/01 | 5:15  | 56.161 | 2/14/01 | 6:48  | 18.100 | 2/14/01 | 7:01  | 31.834 | 2/14/01 | 7:11  | 40.5217 | 2/14/01 | 5:29  | 53.481  | 2/14/01 | 4:23  | 30.3248 |
| 2/14/01 | 9:15  | 56.109 | 2/14/01 | 10:48 | 18.048 | 2/14/01 | 11:01 | 31.818 | 2/14/01 | 11:11 | 40.4888 | 2/14/01 | 9:29  | 53.458  | 2/14/01 | 8:23  | 30.2559 |
| 2/14/01 | 13:15 | 56.024 | 2/14/01 | 14:48 | 17.920 | 2/14/01 | 15:01 | 31.811 | 2/14/01 | 15:11 | 40.4659 | 2/14/01 | 13:29 | 53.4547 | 2/14/01 | 12:23 | 30.2165 |
| 2/14/01 | 17:15 | 56.053 | 2/14/01 | 18:48 | 17.480 | 2/14/01 | 19:01 | 31.791 | 2/14/01 | 19:11 | 40.3215 | 2/14/01 | 17:29 | 53.4711 | 2/14/01 | 16:23 | 30.1903 |
| 2/14/01 | 21:15 | 56.011 | 2/14/01 | 22:48 | 17.441 | 2/14/01 | 23:01 | 31.785 | 2/14/01 | 23:11 | 40.3248 | 2/14/01 | 21:29 | 53.4777 | 2/14/01 | 20:23 | 30.1608 |
| 2/15/01 | 1:15  | 56.030 | 2/15/01 | 2:48  | 17.398 | 2/15/01 | 3:01  | 31.755 | 2/15/01 | 3:11  | 40.3117 | 2/15/01 | 1:29  | 53.4941 | 2/15/01 | 0:23  | 30.1247 |
| 2/15/01 | 5:15  | 56.079 | 2/15/01 | 6:48  | 17.359 | 2/15/01 | 7:01  | 31.732 | 2/15/01 | 7:11  | 40.3018 | 2/15/01 | 5:29  | 53.4514 | 2/15/01 | 4:23  | 30.0722 |
| 2/15/01 | 9:15  | 56.040 | 2/15/01 | 10:48 | 17.306 | 2/15/01 | 11:01 | 31.716 | 2/15/01 | 11:11 | 40.3051 | 2/15/01 | 9:29  | 53.4646 | 2/15/01 | 8:23  | 30.0427 |
| 2/15/01 | 13:15 | 56.089 | 2/15/01 | 14:48 | 17.274 | 2/15/01 | 15:01 | 31.693 | 2/15/01 | 15:11 | 40.292  | 2/15/01 | 13:29 | 53.4678 | 2/15/01 | 12:23 | 30.0131 |

|         | DW06  |        |         | SB01         |        |         | SB09  |        |         | SB16  |         |         | SB18  |          |         | SB19  |         |
|---------|-------|--------|---------|--------------|--------|---------|-------|--------|---------|-------|---------|---------|-------|----------|---------|-------|---------|
| Date    | Time  | Depth  | Date    | Time         | Depth  | Date    | Time  | Depth  | Date    | Time  | Depth   | Date    | Time  | Depth    | Date    | Time  | Depth   |
| 2/15/01 | 17.15 | 56 112 | 2/15/01 | 10.10        | 17 2/1 | 2/15/01 | 10.01 | 21 670 | 2/15/01 | 10.11 | 40.2854 | 2/15/01 | 17.20 | 52 /219  | 2/15/01 | 16.22 | 20.0672 |
| 2/15/01 | 21.15 | 56.020 | 2/15/01 | 10.40        | 17.241 | 2/15/01 | 22.01 | 21 662 | 2/15/01 | 22.11 | 40.2034 | 2/15/01 | 21.20 | 52 45 47 | 2/15/01 | 20.23 | 29.9072 |
| 2/15/01 | 21.15 | 55 968 | 2/15/01 | 22.40        | 17.200 | 2/15/01 | 23.01 | 31.660 | 2/15/01 | 20.11 | 40.2022 | 2/15/01 | 1.29  | 53 5030  | 2/15/01 | 0.23  | 29.9500 |
| 2/16/01 | 5.15  | 55 886 | 2/16/01 | 6:48         | 17.176 | 2/16/01 | 7:01  | 31.667 | 2/16/01 | 7.11  | 40.3346 | 2/16/01 | 5.20  | 53 5597  | 2/16/01 | 4.23  | 29.9473 |
| 2/16/01 | 0.15  | 55 810 | 2/16/01 | 10:40        | 17.140 | 2/16/01 | 11.01 | 31.007 | 2/16/01 | 11.11 | 40.3340 | 2/16/01 | 0.20  | 53 6516  | 2/16/01 | 8.23  | 20.0738 |
| 2/10/01 | 9.15  | 55 827 | 2/16/01 | 11.40        | 17.102 | 2/16/01 | 15:01 | 31.700 | 2/16/01 | 15.11 | 40.4101 | 2/16/01 | 13.29 | 53 7566  | 2/10/01 | 12.23 | 29.9730 |
| 2/16/01 | 17.15 | 55 801 | 2/16/01 | 14.40        | 17.170 | 2/16/01 | 10.01 | 31.720 | 2/16/01 | 10.11 | 40.4320 | 2/16/01 | 17.29 | 53 7598  | 2/16/01 | 16.23 | 30.0033 |
| 2/16/01 | 21.15 | 55 764 | 2/16/01 | 22.48        | 17 165 | 2/16/01 | 23.01 | 31.735 | 2/16/01 | 23.11 | 40.4757 | 2/16/01 | 21.20 | 53 7002  | 2/16/01 | 20.23 | 30.0033 |
| 2/10/01 | 1.15  | 55 7/5 | 2/10/01 | 22.40        | 17.103 | 2/10/01 | 20.01 | 31.743 | 2/10/01 | 20.11 | 40.4050 | 2/10/01 | 1.23  | 53 8/10  | 2/10/01 | 0.23  | 30.073  |
| 2/17/01 | 5.15  | 55 758 | 2/17/01 | 2.40<br>6·48 | 17.102 | 2/17/01 | 7.01  | 31 752 | 2/17/01 | 7.11  | 40.5055 | 2/17/01 | 5.20  | 53 8/51  | 2/17/01 | 1.23  | 30.023  |
| 2/17/01 | 0.15  | 55 771 | 2/17/01 | 10:40        | 17.103 | 2/17/01 | 11.01 | 31.702 | 2/17/01 | 11.11 | 40.5104 | 2/17/01 | 0.20  | 53 8386  | 2/17/01 | 8.23  | 30.023  |
| 2/17/01 | 13.15 | 55 892 | 2/17/01 | 14.48        | 17.102 | 2/17/01 | 15:01 | 31 749 | 2/17/01 | 15.11 | 40 5643 | 2/17/01 | 13.20 | 53 855   | 2/17/01 | 12.23 | 30.0295 |
| 2/17/01 | 17.15 | 55 951 | 2/17/01 | 18.48        | 17.100 | 2/17/01 | 10:01 | 31 736 | 2/17/01 | 10.11 | 40 5315 | 2/17/01 | 17.20 | 53 7795  | 2/17/01 | 16.23 | 29 9902 |
| 2/17/01 | 21.15 | 55 909 | 2/17/01 | 22.48        | 17 136 | 2/17/01 | 23.01 | 31 699 | 2/17/01 | 23.11 | 40.4987 | 2/17/01 | 21.29 | 53 7172  | 2/17/01 | 20.23 | 29.9705 |
| 2/18/01 | 1.15  | 55 899 | 2/18/01 | 2:48         | 17.100 | 2/18/01 | 3.01  | 31 663 | 2/18/01 | 3.11  | 40.4367 | 2/18/01 | 1.29  | 53 7074  | 2/18/01 | 0.23  | 29.9508 |
| 2/18/01 | 5.15  | 55 925 | 2/18/01 | 6·48         | 17 103 | 2/18/01 | 7.01  | 31 627 | 2/18/01 | 7.11  | 40 4101 | 2/18/01 | 5.29  | 53 6581  | 2/18/01 | 4.23  | 29.9245 |
| 2/18/01 | 9.15  | 55 955 | 2/18/01 | 10.48        | 17.093 | 2/18/01 | 11.01 | 31 621 | 2/18/01 | 11.11 | 40 4003 | 2/18/01 | 9.29  | 53 5761  | 2/18/01 | 8.23  | 29 8983 |
| 2/18/01 | 13.15 | 56 096 | 2/18/01 | 14.48        | 17.000 | 2/18/01 | 15:01 | 31 552 | 2/18/01 | 15.11 | 40.3379 | 2/18/01 | 13:29 | 53 5269  | 2/18/01 | 12.23 | 29.8753 |
| 2/18/01 | 17:15 | 56.184 | 2/18/01 | 18:48        | 17.047 | 2/18/01 | 19:01 | 31.483 | 2/18/01 | 19:11 | 40.2526 | 2/18/01 | 17:29 | 53.3825  | 2/18/01 | 16:23 | 29.8097 |
| 2/18/01 | 21:15 | 56,165 | 2/18/01 | 22:48        | 17.021 | 2/18/01 | 23:01 | 31,430 | 2/18/01 | 23:11 | 40.1804 | 2/18/01 | 21:29 | 53,2743  | 2/18/01 | 20:23 | 29,7605 |
| 2/19/01 | 1:15  | 56.142 | 2/19/01 | 2:48         | 16.998 | 2/19/01 | 3:01  | 31.378 | 2/19/01 | 3:11  | 40.1181 | 2/19/01 | 1:29  | 53.2054  | 2/19/01 | 0:23  | 29.7277 |
| 2/19/01 | 5:15  | 56.125 | 2/19/01 | 6:48         | 16.972 | 2/19/01 | 7:01  | 31.329 | 2/19/01 | 7:11  | 40.0591 | 2/19/01 | 5:29  | 53.1299  | 2/19/01 | 4:23  | 29.6982 |
| 2/19/01 | 9:15  | 56.053 | 2/19/01 | 10:48        | 16.962 | 2/19/01 | 11:01 | 31.306 | 2/19/01 | 11:11 | 40.0361 | 2/19/01 | 9:29  | 53.1463  | 2/19/01 | 8:23  | 29.6916 |
| 2/19/01 | 13:15 | 56.198 | 2/19/01 | 14:48        | 16.952 | 2/19/01 | 15:01 | 31.293 | 2/19/01 | 15:11 | 40.023  | 2/19/01 | 13:29 | 53.1562  | 2/19/01 | 12:23 | 29.6982 |
| 2/19/01 | 17:15 | 56.158 | 2/19/01 | 18:48        | 16.946 | 2/19/01 | 19:01 | 31.273 | 2/19/01 | 19:11 | 40.0066 | 2/19/01 | 17:29 | 53.166   | 2/19/01 | 16:23 | 29.7113 |
| 2/19/01 | 21:15 | 56.043 | 2/19/01 | 22:48        | 16.978 | 2/19/01 | 23:01 | 31.270 | 2/19/01 | 23:11 | 40.0033 | 2/19/01 | 21:29 | 53.1595  | 2/19/01 | 20:23 | 29.6883 |
| 2/20/01 | 1:15  | 56.011 | 2/20/01 | 2:48         | 16.962 | 2/20/01 | 3:01  | 31.263 | 2/20/01 | 3:11  | 40.0066 | 2/20/01 | 1:29  | 53.1299  | 2/20/01 | 0:23  | 29.6949 |
| 2/20/01 | 5:15  | 55.984 | 2/20/01 | 6:48         | 16.903 | 2/20/01 | 7:01  | 31.266 | 2/20/01 | 7:11  | 40.0066 | 2/20/01 | 5:29  | 53.143   | 2/20/01 | 4:23  | 29.6719 |
| 2/20/01 | 9:15  | 55.919 | 2/20/01 | 10:48        | 16.831 | 2/20/01 | 11:01 | 31.283 | 2/20/01 | 11:11 | 40.0492 | 2/20/01 | 9:29  | 53.1988  | 2/20/01 | 8:23  | 29.6686 |
| 2/20/01 | 13:15 | 55.951 | 2/20/01 | 14:48        | 16.880 | 2/20/01 | 15:01 | 31.296 | 2/20/01 | 15:11 | 40.0755 | 2/20/01 | 13:29 | 53.3465  | 2/20/01 | 12:23 | 29.6883 |
| 2/20/01 | 17:15 | 55.945 | 2/20/01 | 18:48        | 16.864 | 2/20/01 | 19:01 | 31.302 | 2/20/01 | 19:11 | 40.0853 | 2/20/01 | 17:29 | 53.3793  | 2/20/01 | 16:23 | 29.6883 |
| 2/20/01 | 21:15 | 55.869 | 2/20/01 | 22:48        | 16.860 | 2/20/01 | 23:01 | 31.325 | 2/20/01 | 23:11 | 40.1115 | 2/20/01 | 21:29 | 53.4318  | 2/20/01 | 20:23 | 29.6883 |
| 2/21/01 | 1:15  | 55.866 | 2/21/01 | 2:48         | 16.837 | 2/21/01 | 3:01  | 31.322 | 2/21/01 | 3:11  | 40.1345 | 2/21/01 | 1:29  | 53.4711  | 2/21/01 | 0:23  | 29.6883 |
| 2/21/01 | 5:15  | 55.856 | 2/21/01 | 6:48         | 16.791 | 2/21/01 | 7:01  | 31.329 | 2/21/01 | 7:11  | 40.1444 | 2/21/01 | 5:29  | 53.4646  | 2/21/01 | 4:23  | 29.6719 |
| 2/21/01 | 9:15  | 55.860 | 2/21/01 | 10:48        | 16.768 | 2/21/01 | 11:01 | 31.322 | 2/21/01 | 11:11 | 40.1542 | 2/21/01 | 9:29  | 53.4711  | 2/21/01 | 8:23  | 29.6522 |
| 2/21/01 | 13:15 | 55.942 | 2/21/01 | 14:48        | 16.778 | 2/21/01 | 15:01 | 31.293 | 2/21/01 | 15:11 | 40.128  | 2/21/01 | 13:29 | 53.4547  | 2/21/01 | 12:23 | 29.6358 |
| 2/21/01 | 17:15 | 55.981 | 2/21/01 | 18:48        | 16.762 | 2/21/01 | 19:01 | 31.263 | 2/21/01 | 19:11 | 40.0984 | 2/21/01 | 17:29 | 53.3629  | 2/21/01 | 16:23 | 29.5899 |
| 2/21/01 | 21:15 | 56.004 | 2/21/01 | 22:48        | 16.739 | 2/21/01 | 23:01 | 31.230 | 2/21/01 | 23:11 | 40.0623 | 2/21/01 | 21:29 | 53.3169  | 2/21/01 | 20:23 | 29.5538 |
|         | DW06  |        |         | SB01  |        |         | SB09  |        |         | SB16  |         |         | SB18  |         |         | SB19  |         |
|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|---------|---------|-------|---------|---------|-------|---------|
| Date    | Time  | Depth   | Date    | Time  | Depth   | Date    | Time  | Depth   |
| 2/22/01 | 1.15  | 55 997 | 2/22/01 | 2.48  | 16 726 | 2/22/01 | 3.01  | 31 198 | 2/22/01 | 3.11  | 40.0262 | 2/22/01 | 1.20  | 53 2072 | 2/22/01 | 0.23  | 29 5144 |
| 2/22/01 | 5.15  | 56 004 | 2/22/01 | 6:48  | 16 703 | 2/22/01 | 7.01  | 31 155 | 2/22/01 | 7.11  | 30 0803 | 2/22/01 | 5.20  | 53 2110 | 2/22/01 | 4.23  | 29.4783 |
| 2/22/01 | 9.15  | 55 971 | 2/22/01 | 10:48 | 16 693 | 2/22/01 | 11.01 | 31 135 | 2/22/01 | 11.11 | 39 9639 | 2/22/01 | 9.20  | 53 1759 | 2/22/01 | 8.23  | 29.4488 |
| 2/22/01 | 13:15 | 56,102 | 2/22/01 | 14:48 | 16.680 | 2/22/01 | 15:01 | 31,109 | 2/22/01 | 15:11 | 39,9409 | 2/22/01 | 13:29 | 53,1529 | 2/22/01 | 12:23 | 29.4488 |
| 2/22/01 | 17:15 | 56.129 | 2/22/01 | 18:48 | 16,703 | 2/22/01 | 19:01 | 31.079 | 2/22/01 | 19:11 | 39,9049 | 2/22/01 | 17:29 | 53.0643 | 2/22/01 | 16:23 | 29,4193 |
| 2/22/01 | 21:15 | 56.004 | 2/22/01 | 22:48 | 16.670 | 2/22/01 | 23:01 | 31.063 | 2/22/01 | 23:11 | 39.8885 | 2/22/01 | 21:29 | 52.9265 | 2/22/01 | 20:23 | 29.4094 |
| 2/23/01 | 1:15  | 56.132 | 2/23/01 | 2:48  | 16.644 | 2/23/01 | 3:01  | 31.053 | 2/23/01 | 3:11  | 39.8819 | 2/23/01 | 1:29  | 52.8806 | 2/23/01 | 0:23  | 29.4094 |
| 2/23/01 | 5:15  | 56.135 | 2/23/01 | 6:48  | 16.621 | 2/23/01 | 7:01  | 31.040 | 2/23/01 | 7:11  | 39.872  | 2/23/01 | 5:29  | 52.8314 | 2/23/01 | 4:23  | 29.3996 |
| 2/23/01 | 9:15  | 56.132 | 2/23/01 | 10:48 | 16.594 | 2/23/01 | 11:01 | 31.024 | 2/23/01 | 11:11 | 39.8556 | 2/23/01 | 9:29  | 52.8182 | 2/23/01 | 8:23  | 29.3865 |
| 2/23/01 | 13:15 | 56.115 | 2/23/01 | 14:48 | 16.470 | 2/23/01 | 15:01 | 30.984 | 2/23/01 | 15:11 | 39.8097 | 2/23/01 | 13:29 | 52.9101 | 2/23/01 | 12:23 | 29.3668 |
| 2/23/01 | 17:15 | 56.161 | 2/23/01 | 18:48 | 16.722 | 2/23/01 | 19:01 | 30.925 | 2/23/01 | 19:11 | 39.7474 | 2/23/01 | 17:29 | 52.9724 | 2/23/01 | 16:23 | 29.3077 |
| 2/23/01 | 21:15 | 56.204 | 2/23/01 | 22:48 | 16.785 | 2/23/01 | 23:01 | 30.869 | 2/23/01 | 23:11 | 39.685  | 2/23/01 | 21:29 | 53.0053 | 2/23/01 | 20:23 | 29.252  |
| 2/24/01 | 1:15  | 56.171 | 2/24/01 | 2:48  | 16.903 | 2/24/01 | 3:01  | 30.820 | 2/24/01 | 3:11  | 39.626  | 2/24/01 | 1:29  | 53.0118 | 2/24/01 | 0:23  | 29.229  |
| 2/24/01 | 5:15  | 56.234 | 2/24/01 | 6:48  | 16.847 | 2/24/01 | 7:01  | 30.771 | 2/24/01 | 7:11  | 39.5833 | 2/24/01 | 5:29  | 53.0381 | 2/24/01 | 4:23  | 29.2192 |
| 2/24/01 | 9:15  | 56.253 | 2/24/01 | 10:48 | 16.926 | 2/24/01 | 11:01 | 30.699 | 2/24/01 | 11:11 | 39.5144 | 2/24/01 | 9:29  | 53.084  | 2/24/01 | 8:23  | 29.1765 |
| 2/24/01 | 13:15 | 56.362 | 2/24/01 | 14:48 | 16.834 | 2/24/01 | 15:01 | 30.614 | 2/24/01 | 15:11 | 39.4127 | 2/24/01 | 13:29 | 53.002  | 2/24/01 | 12:23 | 29.1503 |
| 2/24/01 | 17:15 | 56.401 | 2/24/01 | 18:48 | 16.762 | 2/24/01 | 19:01 | 30.568 | 2/24/01 | 19:11 | 39.3471 | 2/24/01 | 17:29 | 52.6804 | 2/24/01 | 16:23 | 29.0223 |
| 2/24/01 | 21:15 | 56.345 | 2/24/01 | 22:48 | 16.706 | 2/24/01 | 23:01 | 30.509 | 2/24/01 | 23:11 | 39.6096 | 2/24/01 | 21:29 | 52.5984 | 2/24/01 | 20:23 | 28.96   |
| 2/25/01 | 1:15  | 55.653 | 2/25/01 | 2:48  | 16.253 | 2/25/01 | 3:01  | 30.541 | 2/25/01 | 3:11  | 39.2881 | 2/25/01 | 1:29  | 52.4409 | 2/25/01 | 0:23  | 28.7303 |
| 2/25/01 | 5:15  | 55.446 | 2/25/01 | 6:48  | 16.178 | 2/25/01 | 7:01  | 30.587 | 2/25/01 | 7:11  | 39.4127 | 2/25/01 | 5:29  | 52.6804 | 2/25/01 | 4:23  | 29.0289 |
| 2/25/01 | 9:15  | 55.420 | 2/25/01 | 10:48 | 16.178 | 2/25/01 | 11:01 | 30.656 | 2/25/01 | 11:11 | 39.5112 | 2/25/01 | 9:29  | 52.8543 | 2/25/01 | 8:23  | 29.1011 |
| 2/25/01 | 13:15 | 55.528 | 2/25/01 | 14:48 | 16.175 | 2/25/01 | 15:01 | 30.715 | 2/25/01 | 15:11 | 39.5965 | 2/25/01 | 13:29 | 53.0053 | 2/25/01 | 12:23 | 29.1634 |
| 2/25/01 | 17:15 | 55.577 | 2/25/01 | 18:48 | 16.148 | 2/25/01 | 19:01 | 30.735 | 2/25/01 | 19:11 | 39.6555 | 2/25/01 | 17:29 | 53.0348 | 2/25/01 | 16:23 | 29.1896 |
| 2/25/01 | 21:15 | 55.577 | 2/25/01 | 22:48 | 16.138 | 2/25/01 | 23:01 | 30.751 | 2/25/01 | 23:11 | 39.685  | 2/25/01 | 21:29 | 53.0873 | 2/25/01 | 20:23 | 29.1995 |
| 2/26/01 | 1:15  | 55.571 | 2/26/01 | 2:48  | 16.145 | 2/26/01 | 3:01  | 30.764 | 2/26/01 | 3:11  | 39.7211 | 2/26/01 | 1:29  | 53.0938 | 2/26/01 | 0:23  | 29.2028 |
| 2/26/01 | 5:15  | 55.591 | 2/26/01 | 6:48  | 16.138 | 2/26/01 | 7:01  | 30.768 | 2/26/01 | 7:11  | 39.7244 | 2/26/01 | 5:29  | 53.0938 | 2/26/01 | 4:23  | 29.1929 |
| 2/26/01 | 9:15  | 55.597 | 2/26/01 | 10:48 | 16.122 | 2/26/01 | 11:01 | 30.758 | 2/26/01 | 11:11 | 39.7408 | 2/26/01 | 9:29  | 53.0709 | 2/26/01 | 8:23  | 29.1798 |
| 2/26/01 | 13:15 | 55.709 | 2/26/01 | 14:48 | 16.184 | 2/26/01 | 15:01 | 30.745 | 2/26/01 | 15:11 | 39.7375 | 2/26/01 | 13:29 | 53.0774 | 2/26/01 | 12:23 | 29.1732 |
| 2/26/01 | 17:15 | 55.735 | 2/26/01 | 18:48 | 16.188 | 2/26/01 | 19:01 | 30.722 | 2/26/01 | 19:11 | 39.7244 | 2/26/01 | 17:29 | 53.0217 | 2/26/01 | 16:23 | 29.147  |
| 2/26/01 | 21:15 | 55.686 | 2/26/01 | 22:48 | 16.079 | 2/26/01 | 23:01 | 30.715 | 2/26/01 | 23:11 | 39.7146 | 2/26/01 | 21:29 | 52.979  | 2/26/01 | 20:23 | 29.1306 |
| 2/27/01 | 1:15  | 55.643 | 2/27/01 | 2:48  | 16.020 | 2/27/01 | 3:01  | 30.702 | 2/27/01 | 3:11  | 39.7211 | 2/27/01 | 1:29  | 53.0643 | 2/27/01 | 0:23  | 29.124  |
| 2/27/01 | 5:15  | 55.653 | 2/27/01 | 6:48  | 15.961 | 2/27/01 | 7:01  | 30.689 | 2/27/01 | 7:11  | 39.7178 | 2/27/01 | 5:29  | 53.0545 | 2/27/01 | 4:23  | 29.1043 |
| 2/27/01 | 9:15  | 55.620 | 2/27/01 | 10:48 | 15.928 | 2/27/01 | 11:01 | 30.686 | 2/27/01 | 11:11 | 39.7277 | 2/27/01 | 9:29  | 53.0479 | 2/27/01 | 8:23  | 29.0846 |
| 2/27/01 | 13:15 | 55.610 | 2/27/01 | 14:48 | 15.869 | 2/27/01 | 15:01 | 30.669 | 2/27/01 | 15:11 | 39.7244 | 2/27/01 | 13:29 | 53.0741 | 2/27/01 | 12:23 | 29.0781 |
| 2/27/01 | 17:15 | 55.627 | 2/27/01 | 18:48 | 15.856 | 2/27/01 | 19:01 | 30.653 | 2/27/01 | 19:11 | 39.7211 | 2/27/01 | 17:29 | 53.0741 | 2/27/01 | 16:23 | 29.0518 |
| 2/27/01 | 21:15 | 55.581 | 2/27/01 | 22:48 | 15.787 | 2/27/01 | 23:01 | 30.653 | 2/27/01 | 23:11 | 39.7343 | 2/27/01 | 21:29 | 53.0512 | 2/27/01 | 20:23 | 29.0518 |
| 2/28/01 | 1:15  | 55.584 | 2/28/01 | 2:48  | 15.771 | 2/28/01 | 3:01  | 30.646 | 2/28/01 | 3:11  | 39.7408 | 2/28/01 | 1:29  | 53.0676 | 2/28/01 | 0:23  | 29.0486 |
| 2/28/01 | 5:15  | 55.617 | 2/28/01 | 6:48  | 15.807 | 2/28/01 | 7:01  | 30.623 | 2/28/01 | 7:11  | 39.7244 | 2/28/01 | 5:29  | 53.0446 | 2/28/01 | 4:23  | 29.0387 |

|         | DW06  |        |         | SB01  |        |         | SB09  |        |         | SB16  |         |         | SB18  |         |         | SB19  |         |
|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|---------|---------|-------|---------|---------|-------|---------|
| Date    | Time  | Depth   | Date    | Time  | Depth   | Date    | Time  | Depth   |
| 2/28/01 | 9:15  | 55,610 | 2/28/01 | 10:48 | 15,797 | 2/28/01 | 11:01 | 30,604 | 2/28/01 | 11:11 | 39,7113 | 2/28/01 | 9.29  | 52,9987 | 2/28/01 | 8:23  | 29.0157 |
| 2/28/01 | 13:15 | 55.725 | 2/28/01 | 14:48 | 15,899 | 2/28/01 | 15:01 | 30,568 | 2/28/01 | 15:11 | 39,6686 | 2/28/01 | 13:29 | 52,9593 | 2/28/01 | 12:23 | 28,9895 |
| 2/28/01 | 17:15 | 55.781 | 2/28/01 | 18:48 | 15.984 | 2/28/01 | 19:01 | 30.518 | 2/28/01 | 19:11 | 39.6096 | 2/28/01 | 17:29 | 52.8609 | 2/28/01 | 16:23 | 28.9436 |
| 2/28/01 | 21:15 | 55.784 | 2/28/01 | 22:48 | 16.033 | 2/28/01 | 23:01 | 30.472 | 2/28/01 | 23:11 | 39.5538 | 2/28/01 | 21:29 | 52.7625 | 2/28/01 | 20:23 | 28.9042 |
| 3/1/01  | 1:15  | 55.764 | 3/1/01  | 2:48  | 16.070 | 3/1/01  | 3:01  | 30.427 | 3/1/01  | 3:11  | 39.5046 | 3/1/01  | 1:29  | 52.7034 | 3/1/01  | 0:23  | 28.8681 |
| 3/1/01  | 5:15  | 55.807 | 3/1/01  | 6:48  | 16.148 | 3/1/01  | 7:01  | 30.371 | 3/1/01  | 7:11  | 39.4423 | 3/1/01  | 5:29  | 52.6345 | 3/1/01  | 4:23  | 28.8255 |
| 3/1/01  | 9:15  | 55.791 | 3/1/01  | 10:48 | 16.145 | 3/1/01  | 11:01 | 30.328 | 3/1/01  | 11:11 | 39.3898 | 3/1/01  | 9:29  | 52.5591 | 3/1/01  | 8:23  | 28.7959 |
| 3/1/01  | 13:15 | 55.833 | 3/1/01  | 14:48 | 16.198 | 3/1/01  | 15:01 | 30.285 | 3/1/01  | 15:11 | 39.3438 | 3/1/01  | 13:29 | 52.5197 | 3/1/01  | 12:23 | 28.773  |
| 3/1/01  | 17:15 | 55.827 | 3/1/01  | 18:48 | 16.191 | 3/1/01  | 19:01 | 30.253 | 3/1/01  | 19:11 | 39.3045 | 3/1/01  | 17:29 | 52.4508 | 3/1/01  | 16:23 | 28.7467 |
| 3/1/01  | 21:15 | 55.768 | 3/1/01  | 22:48 | 16.142 | 3/1/01  | 23:01 | 30.223 | 3/1/01  | 23:11 | 39.2717 | 3/1/01  | 21:29 | 52.4409 | 3/1/01  | 20:23 | 28.7402 |
| 3/2/01  | 1:15  | 55.745 | 3/2/01  | 2:48  | 16.106 | 3/2/01  | 3:01  | 30.207 | 3/2/01  | 3:11  | 39.2454 | 3/2/01  | 1:29  | 52.4311 | 3/2/01  | 0:23  | 28.7434 |
| 3/2/01  | 5:15  | 55.705 | 3/2/01  | 6:48  | 16.093 | 3/2/01  | 7:01  | 30.187 | 3/2/01  | 7:11  | 39.2257 | 3/2/01  | 5:29  | 52.4213 | 3/2/01  | 4:23  | 28.7434 |
| 3/2/01  | 9:15  | 55.719 | 3/2/01  | 10:48 | 16.037 | 3/2/01  | 11:01 | 30.171 | 3/2/01  | 11:11 | 39.2159 | 3/2/01  | 9:29  | 52.4213 | 3/2/01  | 8:23  | 28.7467 |
| 3/2/01  | 13:15 | 55.820 | 3/2/01  | 14:48 | 16.060 | 3/2/01  | 15:01 | 30.157 | 3/2/01  | 15:11 | 39.1962 | 3/2/01  | 13:29 | 52.4311 | 3/2/01  | 12:23 | 28.7566 |
| 3/2/01  | 17:15 | 55.827 | 3/2/01  | 18:48 | 16.063 | 3/2/01  | 19:01 | 30.141 | 3/2/01  | 19:11 | 39.1699 | 3/2/01  | 17:29 | 52.4016 | 3/2/01  | 16:23 | 28.75   |
| 3/2/01  | 21:15 | 55.801 | 3/2/01  | 22:48 | 16.043 | 3/2/01  | 23:01 | 30.125 | 3/2/01  | 23:11 | 39.252  | 3/2/01  | 21:29 | 52.395  | 3/2/01  | 20:23 | 28.7533 |
| 3/3/01  | 1:15  | 55.764 | 3/3/01  | 2:48  | 16.030 | 3/3/01  | 3:01  | 30.105 | 3/3/01  | 3:11  | 39.0945 | 3/3/01  | 1:29  | 52.3655 | 3/3/01  | 0:23  | 28.7467 |
| 3/3/01  | 5:15  | 55.751 | 3/3/01  | 6:48  | 15.984 | 3/3/01  | 7:01  | 30.098 | 3/3/01  | 7:11  | 39.1076 | 3/3/01  | 5:29  | 52.3655 | 3/3/01  | 4:23  | 28.75   |
| 3/3/01  | 9:15  | 55.702 | 3/3/01  | 10:48 | 15.922 | 3/3/01  | 11:01 | 30.089 | 3/3/01  | 11:11 | 39.1142 | 3/3/01  | 9:29  | 52.3786 | 3/3/01  | 8:23  | 28.7598 |
| 3/3/01  | 13:15 | 55.791 | 3/3/01  | 14:48 | 15.955 | 3/3/01  | 15:01 | 30.085 | 3/3/01  | 15:11 | 39.3045 | 3/3/01  | 13:29 | 52.4147 | 3/3/01  | 12:23 | 28.7762 |
| 3/3/01  | 17:15 | 55.820 | 3/3/01  | 18:48 | 15.922 | 3/3/01  | 19:01 | 30.079 | 3/3/01  | 19:11 | 39.4259 | 3/3/01  | 17:29 | 52.4081 | 3/3/01  | 16:23 | 28.7762 |
| 3/3/01  | 21:15 | 55.751 | 3/3/01  | 22:48 | 15.856 | 3/3/01  | 23:01 | 30.079 | 3/3/01  | 23:11 | 39.2585 | 3/3/01  | 21:29 | 52.3917 | 3/3/01  | 20:23 | 28.7828 |
| 3/4/01  | 1:15  | 55.705 | 3/4/01  | 2:48  | 15.797 | 3/4/01  | 3:01  | 30.082 | 3/4/01  | 3:11  | 38.8156 | 3/4/01  | 1:29  | 52.3294 | 3/4/01  | 0:23  | 28.7927 |
| 3/4/01  | 5:15  | 55.669 | 3/4/01  | 6:48  | 15.738 | 3/4/01  | 7:01  | 30.089 | 3/4/01  | 7:11  | 38.8517 | 3/4/01  | 5:29  | 52.2802 | 3/4/01  | 4:23  | 28.8123 |
| 3/4/01  | 9:15  | 55.591 | 3/4/01  | 10:48 | 15.604 | 3/4/01  | 11:01 | 30.112 | 3/4/01  | 11:11 | 38.9337 | 3/4/01  | 9:29  | 52.2244 | 3/4/01  | 8:23  | 28.8386 |
| 3/4/01  | 13:15 | 55.682 | 3/4/01  | 14:48 | 15.545 | 3/4/01  | 15:01 | 30.135 | 3/4/01  | 15:11 | 39.5144 | 3/4/01  | 13:29 | 52.3983 | 3/4/01  | 12:23 | 28.8714 |
| 3/4/01  | 17:15 | 56.027 | 3/4/01  | 18:48 | 15.459 | 3/4/01  | 19:01 | 30.154 | 3/4/01  | 19:11 | 39.5407 | 3/4/01  | 17:29 | 52.6214 | 3/4/01  | 16:23 | 28.8911 |
| 3/4/01  | 21:15 | 56.115 | 3/4/01  | 22:48 | 15.604 | 3/4/01  | 23:01 | 30.174 | 3/4/01  | 23:11 | 39.3012 | 3/4/01  | 21:29 | 52.6739 | 3/4/01  | 20:23 | 28.9075 |
| 3/5/01  | 1:15  | 56.165 | 3/5/01  | 2:48  | 15.597 | 3/5/01  | 3:01  | 30.187 | 3/5/01  | 3:11  | 39.2651 | 3/5/01  | 1:29  | 52.7198 | 3/5/01  | 0:23  | 28.9206 |
| 3/5/01  | 5:15  | 56.194 | 3/5/01  | 6:48  | 15.594 | 3/5/01  | 7:01  | 30.197 | 3/5/01  | 7:11  | 39.2848 | 3/5/01  | 5:29  | 52.7329 | 3/5/01  | 4:23  | 28.9206 |
| 3/5/01  | 9:15  | 56.224 | 3/5/01  | 10:48 | 15.515 | 3/5/01  | 11:01 | 30.207 | 3/5/01  | 11:11 | 39.3077 | 3/5/01  | 9:29  | 52.7592 | 3/5/01  | 8:23  | 28.914  |
| 3/5/01  | 13:15 | 56.329 | 3/5/01  | 14:48 | 15.515 | 3/5/01  | 15:01 | 30.217 | 3/5/01  | 15:11 | 39.6621 | 3/5/01  | 13:29 | 52.7559 | 3/5/01  | 12:23 | 28.9173 |
| 3/5/01  | 17:15 | 56.358 | 3/5/01  | 18:48 | 15.538 | 3/5/01  | 19:01 | 30.210 | 3/5/01  | 19:11 | 39.5407 | 3/5/01  | 17:29 | 52.7625 | 3/5/01  | 16:23 | 28.9009 |
| 3/5/01  | 21:15 | 56.270 | 3/5/01  | 22:48 | 15.505 | 3/5/01  | 23:01 | 30.207 | 3/5/01  | 23:11 | 39.3274 | 3/5/01  | 21:29 | 52.7428 | 3/5/01  | 20:23 | 28.8681 |
| 3/6/01  | 1:15  | 56.260 | 3/6/01  | 2:48  | 15.479 | 3/6/01  | 3:01  | 30.197 | 3/6/01  | 3:11  | 39.3143 | 3/6/01  | 1:29  | 52.7493 | 3/6/01  | 0:23  | 28.8517 |
| 3/6/01  | 5:15  | 56.270 | 3/6/01  | 6:48  | 15.459 | 3/6/01  | 7:01  | 30.184 | 3/6/01  | 7:11  | 39.3077 | 3/6/01  | 5:29  | 52.7198 | 3/6/01  | 4:23  | 28.8189 |
| 3/6/01  | 9:15  | 56.253 | 3/6/01  | 10:48 | 15.400 | 3/6/01  | 11:01 | 30.180 | 3/6/01  | 11:11 | 39.2979 | 3/6/01  | 9:29  | 52.7264 | 3/6/01  | 8:23  | 28.7927 |
| 3/6/01  | 13:15 | 56.394 | 3/6/01  | 14:48 | 15.479 | 3/6/01  | 15:01 | 30.151 | 3/6/01  | 15:11 | 39.4521 | 3/6/01  | 13:29 | 52.687  | 3/6/01  | 12:23 | 28.7762 |

| TABLE D.3 | (Cont.) |
|-----------|---------|
|-----------|---------|

|         | DW06  |        |         | SB01  |        |         | SB09  |        |         | SB16  |         |         | SB18  |         |         | SB19  |         |
|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|---------|---------|-------|---------|---------|-------|---------|
| Date    | Time  | Depth   | Date    | Time  | Depth   | Date    | Time  | Depth   |
|         |       |        |         |       |        |         |       |        |         |       |         |         |       |         |         |       |         |
| 3/6/01  | 17:15 | 56.227 | 3/6/01  | 18:48 | 15.502 | 3/6/01  | 19:01 | 30.121 | 3/6/01  | 19:11 | 39.2881 | 3/6/01  | 17:29 | 52.6444 | 3/6/01  | 16:23 | 28.727  |
| 3/6/01  | 21:15 | 56.204 | 3/6/01  | 22:48 | 15.466 | 3/6/01  | 23:01 | 30.098 | 3/6/01  | 23:11 | 39.2782 | 3/6/01  | 21:29 | 52.6148 | 3/6/01  | 20:23 | 28.6909 |
| 3/7/01  | 1:15  | 56.194 | 3/7/01  | 2:48  | 15.453 | 3/7/01  | 3:01  | 30.072 | 3/7/01  | 3:11  | 39.252  | 3/7/01  | 1:29  | 52.5919 | 3/7/01  | 0:23  | 28.668  |
| 3/7/01  | 5:15  | 56.175 | 3/7/01  | 6:48  | 15.430 | 3/7/01  | 7:01  | 30.046 | 3/7/01  | 7:11  | 39.2323 | 3/7/01  | 5:29  | 52.5689 | 3/7/01  | 4:23  | 28.6286 |
| 3/7/01  | 9:15  | 56.168 | 3/7/01  | 10:48 | 15.367 | 3/7/01  | 11:01 | 30.033 | 3/7/01  | 11:11 | 39.229  | 3/7/01  | 9:29  | 52.5623 | 3/7/01  | 8:23  | 28.5991 |
| 3/7/01  | 13:15 | 56.171 | 3/7/01  | 14:48 | 15.400 | 3/7/01  | 15:01 | 30.010 | 3/7/01  | 15:11 | 39.2093 | 3/7/01  | 13:29 | 52.5591 | 3/7/01  | 12:23 | 28.5827 |
| 3/7/01  | 17:15 | 56.138 | 3/7/01  | 18:48 | 15.443 | 3/7/01  | 19:01 | 29.977 | 3/7/01  | 19:11 | 39.1667 | 3/7/01  | 17:29 | 52.5033 | 3/7/01  | 16:23 | 28.5335 |
| 3/7/01  | 21:15 | 56.102 | 3/7/01  | 22:48 | 15.397 | 3/7/01  | 23:01 | 29.948 | 3/7/01  | 23:11 | 39.147  | 3/7/01  | 21:29 | 52.4475 | 3/7/01  | 20:23 | 28.5039 |
| 3/8/01  | 1:15  | 56.083 | 3/8/01  | 2:48  | 15.384 | 3/8/01  | 3:01  | 29.915 | 3/8/01  | 3:11  | 39.1175 | 3/8/01  | 1:29  | 52.4344 | 3/8/01  | 0:23  | 28.4777 |
| 3/8/01  | 5:15  | 56.050 | 3/8/01  | 6:48  | 15.384 | 3/8/01  | 7:01  | 29.879 | 3/8/01  | 7:11  | 39.0879 | 3/8/01  | 5:29  | 52.3786 | 3/8/01  | 4:23  | 28.435  |
| 3/8/01  | 9:15  | 56.033 | 3/8/01  | 10:48 | 15.328 | 3/8/01  | 11:01 | 29.859 | 3/8/01  | 11:11 | 39.0748 | 3/8/01  | 9:29  | 52.3655 | 3/8/01  | 8:23  | 28.4121 |
| 3/8/01  | 13:15 | 56.040 | 3/8/01  | 14:48 | 15.374 | 3/8/01  | 15:01 | 29.843 | 3/8/01  | 15:11 | 39.0551 | 3/8/01  | 13:29 | 52.3852 | 3/8/01  | 12:23 | 28.4055 |
| 3/8/01  | 17:15 | 56.024 | 3/8/01  | 18:48 | 15.443 | 3/8/01  | 19:01 | 29.816 | 3/8/01  | 19:11 | 39.0256 | 3/8/01  | 17:29 | 52.3655 | 3/8/01  | 16:23 | 28.376  |
| 3/8/01  | 21:15 | 56.011 | 3/8/01  | 22:48 | 15.328 | 3/8/01  | 23:01 | 29.806 | 3/8/01  | 23:11 | 39.0256 | 3/8/01  | 21:29 | 52.3655 | 3/8/01  | 20:23 | 28.3563 |
| 3/9/01  | 1:15  | 56.014 | 3/9/01  | 2:48  | 15.230 | 3/9/01  | 3:01  | 29.787 | 3/9/01  | 3:11  | 39.019  | 3/9/01  | 1:29  | 52.3622 | 3/9/01  | 0:23  | 28.3465 |
| 3/9/01  | 5:15  | 56.024 | 3/9/01  | 6:48  | 15.187 | 3/9/01  | 7:01  | 29.770 | 3/9/01  | 7:11  | 38.9961 | 3/9/01  | 5:29  | 52.3327 | 3/9/01  | 4:23  | 28.3235 |
| 3/9/01  | 9:15  | 56.024 | 3/9/01  | 10:48 | 15.154 | 3/9/01  | 11:01 | 29.754 | 3/9/01  | 11:11 | 39.0026 | 3/9/01  | 9:29  | 52.336  | 3/9/01  | 8:23  | 28.294  |
| 3/9/01  | 13:15 | 56.020 | 3/9/01  | 14:48 | 15.295 | 3/9/01  | 15:01 | 29.724 | 3/9/01  | 15:11 | 38.9665 | 3/9/01  | 13:29 | 52.3032 | 3/9/01  | 12:23 | 28.2743 |
| 3/9/01  | 17:15 | 55.961 | 3/9/01  | 18:48 | 15.453 | 3/9/01  | 19:01 | 29.678 | 3/9/01  | 19:11 | 38.9108 | 3/9/01  | 17:29 | 52.2244 | 3/9/01  | 16:23 | 28.2185 |
| 3/9/01  | 21:15 | 55.899 | 3/9/01  | 22:48 | 15.413 | 3/9/01  | 23:01 | 29.642 | 3/9/01  | 23:11 | 38.8714 | 3/9/01  | 21:29 | 52.1785 | 3/9/01  | 20:23 | 28.1759 |
| 3/10/01 | 1:15  | 55.860 | 3/10/01 | 2:48  | 15.233 | 3/10/01 | 3:01  | 29.596 | 3/10/01 | 3:11  | 38.8287 | 3/10/01 | 1:29  | 52.1096 | 3/10/01 | 0:23  | 28.1365 |
| 3/10/01 | 5:15  | 55.807 | 3/10/01 | 6:48  | 15.230 | 3/10/01 | 7:01  | 29.551 | 3/10/01 | 7:11  | 38.7795 | 3/10/01 | 5:29  | 52.0604 | 3/10/01 | 4:23  | 28.0906 |
| 3/10/01 | 9:15  | 55.761 | 3/10/01 | 10:48 | 15.230 | 3/10/01 | 11:01 | 29.514 | 3/10/01 | 11:11 | 38.7402 | 3/10/01 | 9:29  | 52.0079 | 3/10/01 | 8:23  | 28.0479 |
| 3/10/01 | 13:15 | 55.738 | 3/10/01 | 14:48 | 15.374 | 3/10/01 | 15:01 | 29.475 | 3/10/01 | 15:11 | 38.7008 | 3/10/01 | 13:29 | 51.9882 | 3/10/01 | 12:23 | 28.0217 |
| 3/10/01 | 17:15 | 55.705 | 3/10/01 | 18:48 | 15.338 | 3/10/01 | 19:01 | 29.449 | 3/10/01 | 19:11 | 38.6811 | 3/10/01 | 17:29 | 51.9652 | 3/10/01 | 16:23 | 27.9921 |
| 3/10/01 | 21:15 | 55.725 | 3/10/01 | 22:48 | 15.197 | 3/10/01 | 23:01 | 29.429 | 3/10/01 | 23:11 | 38.9633 | 3/10/01 | 21:29 | 51.998  | 3/10/01 | 20:23 | 27.9888 |
| 3/11/01 | 1:15  | 55.768 | 3/11/01 | 2:48  | 15.102 | 3/11/01 | 3:01  | 29.419 | 3/11/01 | 3:11  | 38.8944 | 3/11/01 | 1:29  | 52.0341 | 3/11/01 | 0:23  | 27.9429 |
| 3/11/01 | 5:15  | 55.774 | 3/11/01 | 6:48  | 15.033 | 3/11/01 | 7:01  | 29.396 | 3/11/01 | 7:11  | 38.9075 | 3/11/01 | 5:29  | 52.0407 | 3/11/01 | 4:23  | 27.9003 |
| 3/11/01 | 9:15  | 55.748 | 3/11/01 | 10:48 | 14.961 | 3/11/01 | 11:01 | 29.386 | 3/11/01 | 11:11 | 38.8517 | 3/11/01 | 9:29  | 52.044  | 3/11/01 | 8:23  | 27.8445 |
| 3/11/01 | 13:15 | 55.810 | 3/11/01 | 14:48 | 15.075 | 3/11/01 | 15:01 | 29.360 | 3/11/01 | 15:11 | 38.7992 | 3/11/01 | 13:29 | 52.0243 | 3/11/01 | 12:23 | 27.9298 |
| 3/11/01 | 17:15 | 55.928 | 3/11/01 | 18:48 | 15.161 | 3/11/01 | 19:01 | 29.298 | 3/11/01 | 19:11 | 38.7959 | 3/11/01 | 17:29 | 52.0013 | 3/11/01 | 16:23 | 27.8445 |
| 3/11/01 | 21:15 | 55.928 | 3/11/01 | 22:48 | 15.187 | 3/11/01 | 23:01 | 29.245 | 3/11/01 | 23:11 | 38.8255 | 3/11/01 | 21:29 | 51.998  | 3/11/01 | 20:23 | 27.7854 |
| 3/12/01 | 1:15  | 55.994 | 3/12/01 | 2:48  | 15.138 | 3/12/01 | 3:01  | 29.186 | 3/12/01 | 3:11  | 38.6713 | 3/12/01 | 1:29  | 51.9685 | 3/12/01 | 0:23  | 27.8215 |
| 3/12/01 | 5:15  | 55.873 | 3/12/01 | 6:48  | 15.039 | 3/12/01 | 7:01  | 29.150 | 3/12/01 | 7:11  | 38.5892 | 3/12/01 | 5:29  | 51.8143 | 3/12/01 | 4:23  | 27.7461 |
| 3/12/01 | 9:15  | 55.810 | 3/12/01 | 10:48 | 14.954 | 3/12/01 | 11:01 | 29.127 | 3/12/01 | 11:11 | 38.399  | 3/12/01 | 9:29  | 51.7126 | 3/12/01 | 8:23  | 27.5787 |
| 3/12/01 | 13:15 | 55.850 | 3/12/01 | 14:48 | 14.970 | 3/12/01 | 15:01 | 29.091 | 3/12/01 | 15:11 | 38.376  | 3/12/01 | 13:29 | 51.7192 | 3/12/01 | 12:23 | 27.5459 |
| 3/12/01 | 17:15 | 55.820 | 3/12/01 | 18:48 | 14.918 | 3/12/01 | 19:01 | 29.062 | 3/12/01 | 19:11 | 38.353  | 3/12/01 | 17:29 | 51.6962 | 3/12/01 | 16:23 | 27.5    |
| 3/12/01 | 21:15 | 55.745 | 3/12/01 | 22:48 | 14.836 | 3/12/01 | 23:01 | 29.032 | 3/12/01 | 23:11 | 38.3366 | 3/12/01 | 21:29 | 51.6864 | 3/12/01 | 20:23 | 27.4705 |

|         | DW06  |        |         | SB01  |        |         | SB09  |        |         | SB16  |         |         | SB18  |         |         | SB19  |         |
|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|---------|---------|-------|---------|---------|-------|---------|
| Date    | Time  | Depth   | Date    | Time  | Depth   | Date    | Time  | Depth   |
| 2/12/01 | 1.15  | 55 729 | 2/12/01 | 2.49  | 14 751 | 2/12/01 | 2.01  | 20.006 | 2/12/01 | 2.11  | 29 2126 | 2/12/01 | 1.20  | 51 6732 | 2/12/01 | 0.23  | 27 /211 |
| 2/12/01 | 5.15  | 55 600 | 2/12/01 | 2.40  | 14.731 | 3/13/01 | 7.01  | 29.000 | 2/12/01 | 7.11  | 29 2071 | 3/13/01 | 5.20  | 51 6921 | 2/12/01 | 4.22  | 27.4311 |
| 3/13/01 | 0.15  | 55 650 | 3/13/01 | 10:40 | 14.013 | 3/13/01 | 11.01 | 20.330 | 3/13/01 | 11.11 | 38 3202 | 3/13/01 | 0.29  | 51 6831 | 3/13/01 | 9.23  | 27.4049 |
| 3/13/01 | 13.15 | 55 764 | 3/13/01 | 14.48 | 14 587 | 3/13/01 | 15:01 | 28,990 | 3/13/01 | 15.11 | 38 3399 | 3/13/01 | 13.20 | 51 7553 | 3/13/01 | 12.23 | 27 395  |
| 3/13/01 | 17.15 | 55 751 | 3/13/01 | 18:48 | 14.652 | 3/13/01 | 19.01 | 28.993 | 3/13/01 | 10.11 | 38 353  | 3/13/01 | 17.29 | 51 7913 | 3/13/01 | 16.23 | 27 3917 |
| 3/13/01 | 21.15 | 55 712 | 3/13/01 | 22.48 | 14 564 | 3/13/01 | 23.01 | 28.976 | 3/13/01 | 23.11 | 38 3563 | 3/13/01 | 21.29 | 51 811  | 3/13/01 | 20.23 | 27 3852 |
| 3/14/01 | 1:15  | 55.745 | 3/14/01 | 2:48  | 14.531 | 3/14/01 | 3:01  | 28.957 | 3/14/01 | 3:11  | 38.3366 | 3/14/01 | 1:29  | 51.7618 | 3/14/01 | 0:23  | 27.3589 |
| 3/14/01 | 5:15  | 55,781 | 3/14/01 | 6:48  | 14.570 | 3/14/01 | 7:01  | 28.917 | 3/14/01 | 7:11  | 38,3038 | 3/14/01 | 5:29  | 51,6995 | 3/14/01 | 4:23  | 27.3196 |
| 3/14/01 | 9:15  | 55.804 | 3/14/01 | 10:48 | 14.629 | 3/14/01 | 11:01 | 28.885 | 3/14/01 | 11:11 | 38.271  | 3/14/01 | 9:29  | 51.6371 | 3/14/01 | 8:23  | 27.29   |
| 3/14/01 | 13:15 | 55.863 | 3/14/01 | 14:48 | 14.199 | 3/14/01 | 15:01 | 28.835 | 3/14/01 | 15:11 | 38.2152 | 3/14/01 | 13:29 | 51.5518 | 3/14/01 | 12:23 | 27.2441 |
| 3/14/01 | 17:15 | 55.758 | 3/14/01 | 20:00 | 13.989 | 3/19/01 | 16:00 | 28.259 | 3/19/01 | 16:00 | 38.249  | 3/14/01 | 17:29 | 51.4469 | 3/14/01 | 16:00 | 26.746  |
| 3/14/01 | 20:00 | 55.501 | 3/15/01 | 0:00  | 13.866 | 3/19/01 | 20:00 | 28.233 | 3/19/01 | 20:00 | 38.221  | 3/14/01 | 20:00 | 51.43   | 3/14/01 | 20:00 | 26.705  |
| 3/15/01 | 0:00  | 55.488 | 3/15/01 | 4:00  | 13.824 | 3/20/01 | 0:00  | 28.211 | 3/20/01 | 0:00  | 38.2    | 3/15/01 | 0:00  | 51.455  | 3/15/01 | 0:00  | 26.731  |
| 3/15/01 | 4:00  | 55.453 | 3/15/01 | 8:00  | 13.765 | 3/20/01 | 4:00  | 28.187 | 3/20/01 | 4:00  | 38.174  | 3/15/01 | 4:00  | 51.392  | 3/15/01 | 4:00  | 26.664  |
| 3/15/01 | 8:00  | 55.416 | 3/15/01 | 12:00 | 13.680 | 3/20/01 | 8:00  | 28.165 | 3/20/01 | 8:00  | 38.157  | 3/15/01 | 8:00  | 51.421  | 3/15/01 | 8:00  | 26.654  |
| 3/15/01 | 12:00 | 55.426 | 3/15/01 | 16:00 | 13.577 | 3/20/01 | 12:00 | 28.149 | 3/20/01 | 12:00 | 38.139  | 3/15/01 | 12:00 | 51.423  | 3/15/01 | 12:00 | 26.661  |
| 3/15/01 | 16:00 | 55.396 | 3/15/01 | 20:00 | 13.464 | 3/20/01 | 16:00 | 28.113 | 3/20/01 | 16:00 | 38.09   | 3/15/01 | 16:00 | 51.309  | 3/15/01 | 16:00 | 26.635  |
| 3/15/01 | 20:00 | 55.265 | 3/16/01 | 0:00  | 13.438 | 3/20/01 | 20:00 | 28.086 | 3/20/01 | 20:00 | 38.058  | 3/15/01 | 20:00 | 51.124  | 3/15/01 | 20:00 | 26.618  |
| 3/16/01 | 0:00  | 55.237 | 3/16/01 | 4:00  | 13.429 | 3/21/01 | 0:00  | 28.064 | 3/21/01 | 0:00  | 38.032  | 3/16/01 | 0:00  | 51.079  | 3/16/01 | 0:00  | 26.482  |
| 3/16/01 | 4:00  | 55.229 | 3/16/01 | 8:00  | 13.382 | 3/21/01 | 4:00  | 28.043 | 3/21/01 | 4:00  | 38.01   | 3/16/01 | 4:00  | 51.049  | 3/16/01 | 4:00  | 26.448  |
| 3/16/01 | 8:00  | 55.195 | 3/16/01 | 12:00 | 13.424 | 3/21/01 | 8:00  | 28.023 | 3/21/01 | 8:00  | 37.991  | 3/16/01 | 8:00  | 50.994  | 3/16/01 | 8:00  | 26.501  |
| 3/16/01 | 12:00 | 55.284 | 3/16/01 | 16:00 | 13.607 | 3/21/01 | 12:00 | 28.001 | 3/21/01 | 12:00 | 37.984  | 3/16/01 | 12:00 | 51.241  | 3/16/01 | 12:00 | 26.596  |
| 3/16/01 | 16:00 | 55.316 | 3/16/01 | 20:00 | 13.518 | 3/21/01 | 16:00 | 27.975 | 3/21/01 | 16:00 | 37.941  | 3/16/01 | 16:00 | 51.732  | 3/16/01 | 16:00 | 26.608  |
| 3/16/01 | 20:00 | 55.240 | 3/17/01 | 0:00  | 13.551 | 3/21/01 | 20:00 | 27.949 | 3/21/01 | 20:00 | 37.913  | 3/16/01 | 20:00 | 51.741  | 3/16/01 | 20:00 | 26.589  |
| 3/17/01 | 0:00  | 55.222 | 3/17/01 | 4:00  | 13.588 | 3/22/01 | 0:00  | 27.934 | 3/22/01 | 0:00  | 37.887  | 3/17/01 | 0:00  | 51.766  | 3/17/01 | 0:00  | 26.569  |
| 3/17/01 | 4:00  | 55.225 | 3/17/01 | 8:00  | 13.440 | 3/22/01 | 4:00  | 27.910 | 3/22/01 | 4:00  | 37.864  | 3/17/01 | 4:00  | 51.784  | 3/17/01 | 4:00  | 26.547  |
| 3/17/01 | 8:00  | 55.175 | 3/17/01 | 12:00 | 13.577 | 3/22/01 | 8:00  | 27.895 | 3/22/01 | 8:00  | 37.849  | 3/17/01 | 8:00  | 51.823  | 3/17/01 | 8:00  | 26.535  |
| 3/17/01 | 12:00 | 56.014 | 3/17/01 | 16:00 | 13.577 | 3/22/01 | 12:00 | 27.890 | 3/22/01 | 12:00 | 37.842  | 3/17/01 | 12:00 | 51.848  | 3/17/01 | 12:00 | 26.513  |
| 3/17/01 | 16:00 | 56.037 | 3/17/01 | 20:00 | 13.556 | 3/22/01 | 16:00 | 27.871 | 3/22/01 | 16:00 | 37.819  | 3/17/01 | 16:00 | 51.814  | 3/17/01 | 16:00 | 26.472  |
| 3/17/01 | 20:00 | 55.950 | 3/18/01 | 0:00  | 13.435 | 3/22/01 | 20:00 | 27.861 | 3/22/01 | 20:00 | 37.819  | 3/17/01 | 20:00 | 51.764  | 3/17/01 | 20:00 | 26.443  |
| 3/18/01 | 0:00  | 55.888 | 3/18/01 | 4:00  | 13.393 | 3/23/01 | 0:00  | 27.857 | 3/23/01 | 0:00  | 37.819  | 3/18/01 | 0:00  | 51.771  | 3/18/01 | 0:00  | 26.419  |
| 3/18/01 | 4:00  | 55.917 | 3/18/01 | 8:00  | 13.325 | 3/23/01 | 4:00  | 27.844 | 3/23/01 | 4:00  | 37.801  | 3/18/01 | 4:00  | 51.75   | 3/18/01 | 4:00  | 26.385  |
| 3/18/01 | 8:00  | 55.858 | 3/18/01 | 12:00 | 13.400 | 3/23/01 | 8:00  | 27.840 | 3/23/01 | 8:00  | 37.795  | 3/18/01 | 8:00  | 51.75   | 3/18/01 | 8:00  | 26.361  |
| 3/18/01 | 12:00 | 56.014 | 3/18/01 | 16:00 | 13.532 | 3/23/01 | 12:00 | 27.840 | 3/23/01 | 12:00 | 37.799  | 3/18/01 | 12:00 | 51.707  | 3/18/01 | 12:00 | 26.334  |
| 3/18/01 | 16:00 | 56.032 | 3/18/01 | 20:00 | 13.553 | 3/23/01 | 16:00 | 27.823 | 3/23/01 | 16:00 | 37.778  | 3/18/01 | 16:00 | 51.652  | 3/18/01 | 16:00 | 26.296  |
| 3/18/01 | 20:00 | 55.970 | 3/19/01 | 0:00  | 13.499 | 3/23/01 | 20:00 | 27.835 | 3/23/01 | 20:00 | 37.791  | 3/18/01 | 20:00 | 51.627  | 3/18/01 | 20:00 | 26.274  |
| 3/19/01 | 0:00  | 55.925 | 3/19/01 | 4:00  | 13.457 | 3/24/01 | 0:00  | 27.845 | 3/24/01 | 0:00  | 37.81   | 3/19/01 | 0:00  | 51.588  | 3/19/01 | 0:00  | 26.254  |
| 3/19/01 | 4:00  | 55.917 | 3/19/01 | 8:00  | 13.362 | 3/24/01 | 4:00  | 27.862 | 3/24/01 | 4:00  | 37.836  | 3/19/01 | 4:00  | 51.551  | 3/19/01 | 4:00  | 26.225  |

| TABLE | D.3 | (Cont.) |
|-------|-----|---------|
|-------|-----|---------|

| DW06 SB01 SB09 SB16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SB18         | SB19          |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|--------|
| Date         Time         Depth         Date         Time         Depth         Date         Time         Depth         Date         Depth         Date         Depth         Date         Depth         Date         Time         Depth         Date | Time Depth   | Date Time     | Depth  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |               |        |
| <u>3/19/01 8:00 55.878 3/19/01 12:00 13.532 3/24/01 8:00 27.879 3/24/01 8:00 37.872 3/19/01</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8:00 51.531  | 3/19/01 8:00  | 26.213 |
| <u>3/19/01 12:00 56:009 3/19/01 16:00 13:115 3/24/01 12:00 27:895 3/24/01 12:00 37:902 3/19/01</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12:00 51.513 | 3/19/01 12:00 | 26.199 |
| <u>3/19/01 16:00 56.025 3/19/01 20:00 13.080 3/24/01 16:00 27.888 3/24/01 16:00 37.892 3/19/01</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16:00 51.417 | 3/19/01 16:00 | 26.167 |
| <u>3/19/01 20:00 55.925 3/20/01 0:00 13.066 3/24/01 20:00 27.886 3/24/01 20:00 37.881 3/19/01</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20:00 51.389 | 3/19/01 20:00 | 26.155 |
| <u>3/20/01 0:00 55.873 3/20/01 4:00 13.049 3/25/01 0:00 27.893 3/25/01 0:00 37.887 3/20/01</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0:00 51.378  | 3/20/01 0:00  | 26.148 |
| <u>3/20/01 4:00 55.853 3/20/01 8:00 13.042 3/25/01 4:00 27.874 3/25/01 4:00 37.874 3/20/01</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4:00 51.344  | 3/20/01 4:00  | 26.133 |
| <u>3/20/01 8:00 55.836 3/20/01 12:00 13.036 3/25/01 8:00 27.874 3/25/01 8:00 37.872 3/20/01</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8:00 51.323  | 3/20/01 8:00  | 26.129 |
| <u>3/20/01 12:00 55.984 3/20/01 16:00 13.028 3/25/01 12:00 27.869 3/25/01 12:00 37.874 3/20/01</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12:00 51.284 | 3/20/01 12:00 | 26.121 |
| <u>3/20/01 16:00 55.838 3/20/01 20:00 13.016 3/25/01 16:00 27.852 3/25/01 16:00 37.849 3/20/01</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16:00 51.197 | 3/20/01 16:00 | 26.09  |
| 3/20/01 20:00 55.799 3/21/01 0:00 13.011 3/25/01 20:00 27.842 3/25/01 20:00 37.834 3/20/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20:00 51.156 | 3/20/01 20:00 | 26.085 |
| 3/21/01 0:00 55.791 3/21/01 4:00 13.000 3/26/01 0:00 27.840 3/26/01 0:00 37.829 3/21/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0:00 51.145  | 3/21/01 0:00  | 26.085 |
| 3/21/01 4:00 55.779 3/21/01 8:00 12.976 3/26/01 4:00 27.833 3/26/01 4:00 37.823 3/21/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4:00 51.122  | 3/21/01 4:00  | 26.078 |
| 3/21/01 8:00 55.756 3/21/01 12:00 13.033 3/26/01 8:00 27.828 3/26/01 8:00 37.814 3/21/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8:00 51.106  | 3/21/01 8:00  | 26.078 |
| 3/21/01 12:00 55.746 3/21/01 16:00 13.118 3/26/01 12:00 27.823 3/26/01 12:00 37.816 3/21/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12:00 51.074 | 3/21/01 12:00 | 26.078 |
| 3/21/01 16:00 55.722 3/21/01 20:00 13.094 3/26/01 16:00 27.801 3/26/01 16:00 37.78 3/21/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16:00 51.017 | 3/21/01 16:00 | 26.056 |
| 3/21/01 20:00 55.689 3/22/01 0:00 13.033 3/26/01 20:00 27.777 3/26/01 20:00 37.743 3/21/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20:00 50.962 | 3/21/01 20:00 | 26.056 |
| 3/22/01 0:00 55.677 3/22/01 4:00 13.014 3/27/01 0:00 27.768 3/27/01 0:00 37.728 3/22/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0:00 50.96   | 3/22/01 0:00  | 26.058 |
| 3/22/01 4:00 55.655 3/22/01 8:00 12.969 3/27/01 4:00 27.756 3/27/01 4:00 37.709 3/22/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4:00 50.923  | 3/22/01 4:00  | 26.051 |
| 3/22/01 8:00 55.650 3/22/01 12:00 13.106 3/27/01 8:00 27.746 3/27/01 8:00 37.696 3/22/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8:00 50.912  | 3/22/01 8:00  | 26.056 |
| 3/22/01 12:00 55.650 3/22/01 16:00 12.899 3/27/01 12:00 27.739 3/27/01 12:00 37.687 3/22/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12:00 50.909 | 3/22/01 12:00 | 26.07  |
| 3/22/01 16:00 55.630 3/22/01 20:00 12.534 3/27/01 16:00 27.707 3/27/01 16:00 37.648 3/22/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16:00 50.871 | 3/22/01 16:00 | 26.066 |
| 3/22/01 20:00 55.630 3/23/01 0:00 12.936 3/27/01 20:00 27.686 3/27/01 20:00 37.609 3/22/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20:00 50.866 | 3/22/01 20:00 | 26.08  |
| 3/23/01 0:00 55.642 3/23/01 4:00 12.929 3/28/01 0:00 27.669 3/28/01 0:00 37.579 3/23/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0:00 50.871  | 3/23/01 0:00  | 26.095 |
| 3/23/01 4:00 55.635 3/23/01 8:00 12.929 3/28/01 4:00 27.640 3/28/01 4:00 37.536 3/23/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4:00 50.823  | 3/23/01 4:00  | 26.09  |
| 3/23/01 8:00 55.650 3/23/01 12:00 12.936 3/28/01 8:00 27.601 3/28/01 8:00 37.485 3/23/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8:00 50.823  | 3/23/01 8:00  | 26.102 |
| 3/23/01 12:00 55.652 3/23/01 16:00 12.927 3/28/01 12:00 27.572 3/28/01 12:00 37.444 3/23/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12:00 50.855 | 3/23/01 12:00 | 26.124 |
| 3/23/01 16:00 55.717 3/23/01 20:00 12.934 3/28/01 16:00 27.538 3/28/01 16:00 37.392 3/23/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16:00 50.791 | 3/23/01 16:00 | 26.119 |
| 3/23/01 20:00 55.506 3/24/01 0:00 12.932 3/28/01 20:00 27.512 3/28/01 20:00 37.343 3/23/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20:00 50.852 | 3/23/01 20:00 | 26.15  |
| 3/24/01 0:00 55.444 3/24/01 4:00 12.943 3/29/01 0:00 27.500 3/29/01 0:00 37.332 3/24/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0:00 50.853  | 3/24/01 0:00  | 26.184 |
| 3/24/01 4:00 55.372 3/24/01 8:00 12.960 3/29/01 4:00 27.488 3/29/01 4:00 37.317 3/24/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4:00 50.93   | 3/24/01 4:00  | 26.213 |
| 3/24/01 8:00 55.342 3/24/01 12:00 12:971 3/29/01 8:00 27.478 3/29/01 8:00 37.302 3/24/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8:00 50.983  | 3/24/01 8:00  | 26.245 |
| 3/24/01 12:00 55.833 3/24/01 16:00 12.969 3/29/01 12:00 27.473 3/29/01 12:00 37.295 3/24/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12:00 50.992 | 3/24/01 12:00 | 26.269 |
| 3/24/01 16:00 55.806 3/24/01 20:00 12.969 3/29/01 16:00 27.461 3/29/01 16:00 37.265 3/24/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16:00 50.958 | 3/24/01 16:00 | 26.262 |
| 3/24/01 20:00 55.794 3/25/01 0:00 12.976 3/29/01 20:00 27.454 3/29/01 20:00 37.265 3/24/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20:00 50.917 | 3/24/01 20:00 | 26,269 |
| 3/25/01 0:00 55.799 3/25/01 4:00 12.976 3/30/01 0:00 27.459 3/30/01 0:00 37.265 3/25/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0:00 50.93   | 3/25/01 0:00  | 26.281 |
| 3/25/01 4:00 55.791 3/25/01 8:00 12.979 3/30/01 4:00 27.452 3/30/01 4:00 37.259 3/25/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4:00 50.909  | 3/25/01 4:00  | 26.276 |
| 3/25/01 8:00 55.782 3/25/01 12:00 12.983 3/30/01 8:00 27.452 3/30/01 8:00 37.256 3/25/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8:00 50.889  | 3/25/01 8:00  | 26,291 |
| 3/25/01 12:00 55.893 3/25/01 16:00 12.981 3/30/01 12:00 27.447 3/30/01 12:00 37.248 3/25/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12:00 50.887 | 3/25/01 12:00 | 26.3   |

|         | DW06  |        |         | SB01         |        |         | SB09  |        |         | SB16  |        |         | SB18  |        |         | SB19  |        |
|---------|-------|--------|---------|--------------|--------|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|--------|
| Date    | Time  | Depth  | Date    | Time         | Depth  | Date    | Time  | Depth  | Date    | Time  | Depth  | Date    | Time  | Depth  | Date    | Time  | Depth  |
| 2/25/04 | 16:00 | EE 000 | 2/25/01 | 20.00        | 12 001 | 2/20/01 | 16:00 | 27 420 | 2/20/01 | 16:00 | 27.040 | 2/25/04 | 16.00 | 50.944 | 2/25/04 | 16.00 | 26.200 |
| 3/25/01 | 20.00 | 55 710 | 3/25/01 | 20.00        | 12.901 | 3/30/01 | 20:00 | 27.420 | 3/30/01 | 20:00 | 27.210 | 3/25/01 | 20:00 | 50.041 | 3/25/01 | 20.00 | 20.200 |
| 3/25/01 | 20.00 | 55 724 | 3/20/01 | 4.00         | 12.903 | 3/30/01 | 20.00 | 27.411 | 2/21/01 | 20.00 | 37.2   | 3/25/01 | 20.00 | 50.010 | 3/25/01 | 20.00 | 20.293 |
| 3/26/01 | 4.00  | 55 720 | 3/26/01 | 4.00<br>8:00 | 12.900 | 3/31/01 | 4.00  | 27.403 | 3/31/01 | 4.00  | 37.192 | 3/20/01 | 4.00  | 50.706 | 3/26/01 | 4.00  | 20.303 |
| 3/26/01 | 8.00  | 55 736 | 3/26/01 | 12:00        | 12.900 | 3/31/01 | 8.00  | 27.004 | 3/31/01 | 8:00  | 37.103 | 3/26/01 | 8.00  | 50.730 | 3/26/01 | 8.00  | 20.313 |
| 3/26/01 | 12.00 | 55 736 | 3/26/01 | 16:00        | 12.995 | 3/31/01 | 12:00 | 27.400 | 3/31/01 | 12:00 | 37.134 | 3/26/01 | 12.00 | 50.733 | 3/26/01 | 12.00 | 26.322 |
| 3/26/01 | 12.00 | 55 684 | 3/26/01 | 20.00        | 12.995 | 3/31/01 | 16:00 | 27.432 | 3/31/01 | 16:00 | 37 239 | 3/26/01 | 16:00 | 50 727 | 3/26/01 | 12:00 | 26.323 |
| 3/26/01 | 20.00 | 55 640 | 3/27/01 | 0.00         | 12.000 | 3/31/01 | 20.00 | 27.440 | 3/31/01 | 20.00 | 37.25  | 3/26/01 | 20.00 | 50.686 | 3/26/01 | 20.00 | 26.3   |
| 3/27/01 | 0.00  | 55 630 | 3/27/01 | 4.00         | 12.000 | 4/1/01  | 0.00  | 27.444 | 4/1/01  | 0.00  | 37 254 | 3/27/01 | 0.00  | 50.600 | 3/27/01 | 0.00  | 26.308 |
| 3/27/01 | 4.00  | 55 617 | 3/27/01 | 8.00         | 12.000 | 4/1/01  | 4.00  | 27 437 | 4/1/01  | 4.00  | 37.25  | 3/27/01 | 4.00  | 50.608 | 3/27/01 | 4.00  | 26.308 |
| 3/27/01 | 8.00  | 55 607 | 3/27/01 | 12.00        | 12,000 | 4/1/01  | 8.00  | 27 430 | 4/1/01  | 8:00  | 37 244 | 3/27/01 | 8.00  | 50 613 | 3/27/01 | 8:00  | 26.317 |
| 3/27/01 | 12:00 | 55,600 | 3/27/01 | 16:00        | 12.983 | 4/1/01  | 12:00 | 27.418 | 4/1/01  | 12:00 | 37.228 | 3/27/01 | 12:00 | 50.583 | 3/27/01 | 12:00 | 26.322 |
| 3/27/01 | 16:00 | 55,600 | 3/27/01 | 20:00        | 12.976 | 4/1/01  | 16:00 | 27.394 | 4/1/01  | 16:00 | 37,198 | 3/27/01 | 16:00 | 50.51  | 3/27/01 | 16:00 | 26.303 |
| 3/27/01 | 20:00 | 55.541 | 3/28/01 | 0:00         | 12.976 | 4/1/01  | 20:00 | 27.384 | 4/1/01  | 20:00 | 37.17  | 3/27/01 | 20:00 | 50.462 | 3/27/01 | 20:00 | 26.291 |
| 3/28/01 | 0:00  | 55.536 | 3/28/01 | 4:00         | 12.969 | 4/2/01  | 0:00  | 27.372 | 4/2/01  | 0:00  | 37.159 | 3/28/01 | 0:00  | 50.416 | 3/28/01 | 0:00  | 26.293 |
| 3/28/01 | 4:00  | 55.558 | 3/28/01 | 8:00         | 13.016 | 4/2/01  | 4:00  | 27.367 | 4/2/01  | 4:00  | 37.162 | 3/28/01 | 4:00  | 50.368 | 3/28/01 | 4:00  | 26.274 |
| 3/28/01 | 8:00  | 55.525 | 3/28/01 | 12:00        | 13.200 | 4/2/01  | 8:00  | 27.365 | 4/2/01  | 8:00  | 37.16  | 3/28/01 | 8:00  | 50.274 | 3/28/01 | 8:00  | 26.32  |
| 3/28/01 | 12:00 | 55.314 | 3/28/01 | 16:00        | 12.943 | 4/2/01  | 12:00 | 27.367 | 4/2/01  | 12:00 | 37.164 | 3/28/01 | 12:00 | 50.33  | 3/28/01 | 12:00 | 26.262 |
| 3/28/01 | 16:00 | 55.233 | 3/28/01 | 20:00        | 12.939 | 4/2/01  | 16:00 | 27.355 | 4/2/01  | 16:00 | 37.144 | 3/28/01 | 16:00 | 50.133 | 3/28/01 | 16:00 | 26.216 |
| 3/28/01 | 20:00 | 55.200 | 3/29/01 | 0:00         | 12.932 | 4/2/01  | 20:00 | 27.345 | 4/2/01  | 20:00 | 37.144 | 3/28/01 | 20:00 | 50.108 | 3/28/01 | 20:00 | 26.216 |
| 3/29/01 | 0:00  | 55.190 | 3/29/01 | 4:00         | 12.929 | 4/3/01  | 0:00  | 27.350 | 4/3/01  | 0:00  | 37.144 | 3/29/01 | 0:00  | 50.11  | 3/29/01 | 0:00  | 26.23  |
| 3/29/01 | 4:00  | 55.186 | 3/29/01 | 8:00         | 12.934 | 4/3/01  | 4:00  | 27.343 | 4/3/01  | 4:00  | 37.14  | 3/29/01 | 4:00  | 50.097 | 3/29/01 | 4:00  | 26.237 |
| 3/29/01 | 8:00  | 55.183 | 3/29/01 | 12:00        | 12.932 | 4/3/01  | 8:00  | 27.350 | 4/3/01  | 8:00  | 37.147 | 3/29/01 | 8:00  | 50.094 | 3/29/01 | 8:00  | 26.247 |
| 3/29/01 | 12:00 | 55.188 | 3/29/01 | 16:00        | 12.927 | 4/3/01  | 12:00 | 27.360 | 4/3/01  | 12:00 | 37.164 | 3/29/01 | 12:00 | 50.113 | 3/29/01 | 12:00 | 26.264 |
| 3/29/01 | 16:00 | 55.158 | 3/29/01 | 20:00        | 12.927 | 4/3/01  | 16:00 | 27.377 | 4/3/01  | 16:00 | 37.191 | 3/29/01 | 16:00 | 50.046 | 3/29/01 | 16:00 | 26.262 |
| 3/29/01 | 20:00 | 55.156 | 3/30/01 | 0:00         | 12.932 | 4/3/01  | 20:00 | 27.396 | 4/3/01  | 20:00 | 37.216 | 3/29/01 | 20:00 | 50.069 | 3/29/01 | 20:00 | 26.283 |
| 3/30/01 | 0:00  | 55.171 | 3/30/01 | 4:00         | 12.934 | 4/4/01  | 0:00  | 27.411 | 4/4/01  | 0:00  | 37.25  | 3/30/01 | 0:00  | 50.067 | 3/30/01 | 0:00  | 26.3   |
| 3/30/01 | 4:00  | 55.173 | 3/30/01 | 8:00         | 12.934 | 4/4/01  | 4:00  | 27.418 | 4/4/01  | 4:00  | 37.259 | 3/30/01 | 4:00  | 50.055 | 3/30/01 | 4:00  | 26.315 |
| 3/30/01 | 8:00  | 55.176 | 3/30/01 | 12:00        | 12.941 | 4/4/01  | 8:00  | 27.427 | 4/4/01  | 8:00  | 37.276 | 3/30/01 | 8:00  | 50.058 | 3/30/01 | 8:00  | 26.332 |
| 3/30/01 | 12:00 | 55.173 | 3/30/01 | 16:00        | 12.943 | 4/4/01  | 12:00 | 27.437 | 4/4/01  | 12:00 | 37.287 | 3/30/01 | 12:00 | 50.055 | 3/30/01 | 12:00 | 26.339 |
| 3/30/01 | 16:00 | 55.168 | 3/30/01 | 20:00        | 12.910 | 4/4/01  | 16:00 | 27.425 | 4/4/01  | 16:00 | 37.278 | 3/30/01 | 16:00 | 50.01  | 3/30/01 | 16:00 | 26.417 |
| 3/30/01 | 20:00 | 55.109 | 3/31/01 | 0:00         | 12.920 | 4/4/01  | 20:00 | 27.423 | 4/4/01  | 20:00 | 37.272 | 3/30/01 | 20:00 | 49.989 | 3/30/01 | 20:00 | 26.337 |
| 3/31/01 | 0:00  | 55.086 | 3/31/01 | 4:00         | 12.920 | 4/5/01  | 0:00  | 27.415 | 4/5/01  | 0:00  | 37.263 | 3/31/01 | 0:00  | 49.969 | 3/31/01 | 0:00  | 26.344 |
| 3/31/01 | 4:00  | 55.061 | 3/31/01 | 8:00         | 12.849 | 4/5/01  | 4:00  | 27.401 | 4/5/01  | 4:00  | 37.231 | 3/31/01 | 4:00  | 49.969 | 3/31/01 | 4:00  | 26.354 |
| 3/31/01 | 8:00  | 54.950 | 3/31/01 | 12:00        | 12.946 | 4/5/01  | 8:00  | 27.396 | 4/5/01  | 8:00  | 37.233 | 3/31/01 | 8:00  | 50.005 | 3/31/01 | 8:00  | 26.392 |
| 3/31/01 | 12:00 | 55.059 | 3/31/01 | 16:00        | 12.936 | 4/5/01  | 12:00 | 27.379 | 4/5/01  | 12:00 | 37.216 | 3/31/01 | 12:00 | 50.099 | 3/31/01 | 12:00 | 26.426 |
| 3/31/01 | 16:00 | 55.118 | 3/31/01 | 20:00        | 12.934 | 4/5/01  | 16:00 | 27.358 | 4/5/01  | 16:00 | 37.183 | 3/31/01 | 16:00 | 50.092 | 3/31/01 | 16:00 | 26.431 |
| 3/31/01 | 20:00 | 55.024 | 4/1/01  | 0:00         | 12.929 | 4/5/01  | 20:00 | 27.350 | 4/5/01  | 20:00 | 37.175 | 3/31/01 | 20:00 | 50.094 | 3/31/01 | 20:00 | 26.451 |

| TABLE D.3 | (Cont.) |
|-----------|---------|
|-----------|---------|

|        | DW06  |        |        | SB01  |        |         | SB09  |        |         | SB16  |        |        | SB18  |        |        | SB19  |        |
|--------|-------|--------|--------|-------|--------|---------|-------|--------|---------|-------|--------|--------|-------|--------|--------|-------|--------|
| Date   | Time  | Depth  | Date   | Time  | Depth  | Date    | Time  | Depth  | Date    | Time  | Depth  | Date   | Time  | Depth  | Date   | Time  | Depth  |
| 4/1/01 | 0.00  | 55 034 | 4/1/01 | 4.00  | 12 924 | 4/6/01  | 0.00  | 27 350 | 4/6/01  | 0.00  | 37 168 | 4/1/01 | 0.00  | 50 087 | 4/1/01 | 0.00  | 26 448 |
| 4/1/01 | 4.00  | 55 027 | 4/1/01 | 8.00  | 12.024 | 4/6/01  | 4.00  | 27 324 | 4/6/01  | 4.00  | 37 132 | 4/1/01 | 4.00  | 50.007 | 4/1/01 | 4.00  | 26.443 |
| 4/1/01 | 8.00  | 55 034 | 4/1/01 | 12.00 | 12.022 | 4/6/01  | 8.00  | 27.314 | 4/6/01  | 8.00  | 37 121 | 4/1/01 | 8.00  | 50.035 | 4/1/01 | 8.00  | 26.446 |
| 4/1/01 | 12:00 | 55,146 | 4/1/01 | 16:00 | 12.901 | 4/6/01  | 12:00 | 27.307 | 4/6/01  | 12:00 | 37,108 | 4/1/01 | 12:00 | 50.003 | 4/1/01 | 12:00 | 26.441 |
| 4/1/01 | 16:00 | 55.211 | 4/1/01 | 20:00 | 12.896 | 4/6/01  | 16:00 | 27,283 | 4/6/01  | 16:00 | 37.071 | 4/1/01 | 16:00 | 49,939 | 4/1/01 | 16:00 | 26.417 |
| 4/1/01 | 20:00 | 55.126 | 4/2/01 | 0:00  | 12.892 | 4/6/01  | 20:00 | 27.239 | 4/6/01  | 20:00 | 37.015 | 4/1/01 | 20:00 | 49.914 | 4/1/01 | 20:00 | 26.412 |
| 4/2/01 | 0:00  | 55.096 | 4/2/01 | 4:00  | 12.887 | 4/7/01  | 0:00  | 27.208 | 4/7/01  | 0:00  | 36.97  | 4/2/01 | 0:00  | 49.918 | 4/2/01 | 0:00  | 26.424 |
| 4/2/01 | 4:00  | 55.089 | 4/2/01 | 8:00  | 12.884 | 4/7/01  | 4:00  | 27.193 | 4/7/01  | 4:00  | 36.948 | 4/2/01 | 4:00  | 49.918 | 4/2/01 | 4:00  | 26.426 |
| 4/2/01 | 8:00  | 55.124 | 4/2/01 | 12:00 | 12.889 | 4/7/01  | 8:00  | 27.206 | 4/7/01  | 8:00  | 36.961 | 4/2/01 | 8:00  | 49.928 | 4/2/01 | 8:00  | 26.438 |
| 4/2/01 | 12:00 | 55.233 | 4/2/01 | 16:00 | 12.882 | 4/7/01  | 12:00 | 27.230 | 4/7/01  | 12:00 | 36.994 | 4/2/01 | 12:00 | 49.934 | 4/2/01 | 12:00 | 26.453 |
| 4/2/01 | 16:00 | 55.278 | 4/2/01 | 20:00 | 12.750 | 4/7/01  | 16:00 | 27.247 | 4/7/01  | 16:00 | 37.004 | 4/2/01 | 16:00 | 49.85  | 4/2/01 | 16:00 | 26.443 |
| 4/2/01 | 20:00 | 55.161 | 4/3/01 | 0:00  | 12.708 | 4/7/01  | 20:00 | 27.261 | 4/7/01  | 20:00 | 37.03  | 4/2/01 | 20:00 | 49.811 | 4/2/01 | 20:00 | 26.458 |
| 4/3/01 | 0:00  | 55.159 | 4/3/01 | 4:00  | 12.870 | 4/8/01  | 0:00  | 27.290 | 4/8/01  | 0:00  | 37.069 | 4/3/01 | 0:00  | 49.715 | 4/3/01 | 0:00  | 26.47  |
| 4/3/01 | 4:00  | 55.151 | 4/3/01 | 8:00  | 12.720 | 4/8/01  | 4:00  | 27.300 | 4/8/01  | 4:00  | 37.082 | 4/3/01 | 4:00  | 49.852 | 4/3/01 | 4:00  | 26.477 |
| 4/3/01 | 8:00  | 55.042 | 4/3/01 | 12:00 | 12.873 | 4/8/01  | 8:00  | 27.297 | 4/8/01  | 8:00  | 37.08  | 4/3/01 | 8:00  | 49.784 | 4/3/01 | 8:00  | 26.504 |
| 4/3/01 | 12:00 | 55.029 | 4/3/01 | 16:00 | 12.894 | 4/8/01  | 12:00 | 27.292 | 4/8/01  | 12:00 | 37.071 | 4/3/01 | 12:00 | 49.889 | 4/3/01 | 12:00 | 26.526 |
| 4/3/01 | 16:00 | 55.049 | 4/3/01 | 20:00 | 12.901 | 4/8/01  | 16:00 | 27.278 | 4/8/01  | 16:00 | 37.043 | 4/3/01 | 16:00 | 49.957 | 4/3/01 | 16:00 | 26.55  |
| 4/3/01 | 20:00 | 55.002 | 4/4/01 | 0:00  | 12.910 | 4/8/01  | 20:00 | 27.263 | 4/8/01  | 20:00 | 37.022 | 4/3/01 | 20:00 | 49.966 | 4/3/01 | 20:00 | 26.581 |
| 4/4/01 | 0:00  | 55.002 | 4/4/01 | 4:00  | 12.915 | 4/9/01  | 0:00  | 27.266 | 4/9/01  | 0:00  | 37.024 | 4/4/01 | 0:00  | 50.021 | 4/4/01 | 0:00  | 26.608 |
| 4/4/01 | 4:00  | 55.032 | 4/4/01 | 8:00  | 12.924 | 4/9/01  | 4:00  | 27.259 | 4/9/01  | 4:00  | 37.009 | 4/4/01 | 4:00  | 50.005 | 4/4/01 | 4:00  | 26.615 |
| 4/4/01 | 8:00  | 55.032 | 4/4/01 | 12:00 | 12.929 | 4/9/01  | 8:00  | 27.283 | 4/9/01  | 8:00  | 37.035 | 4/4/01 | 8:00  | 50.037 | 4/4/01 | 8:00  | 26.632 |
| 4/4/01 | 12:00 | 55.077 | 4/4/01 | 16:00 | 12.924 | 4/9/01  | 12:00 | 27.304 | 4/9/01  | 12:00 | 37.067 | 4/4/01 | 12:00 | 50.005 | 4/4/01 | 12:00 | 26.644 |
| 4/4/01 | 16:00 | 55.129 | 4/4/01 | 20:00 | 12.922 | 4/9/01  | 16:00 | 27.314 | 4/9/01  | 16:00 | 37.08  | 4/4/01 | 16:00 | 49.96  | 4/4/01 | 16:00 | 26.637 |
| 4/4/01 | 20:00 | 55.126 | 4/5/01 | 0:00  | 12.927 | 4/9/01  | 20:00 | 27.321 | 4/9/01  | 20:00 | 37.08  | 4/4/01 | 20:00 | 49.934 | 4/4/01 | 20:00 | 26.642 |
| 4/5/01 | 0:00  | 55.141 | 4/5/01 | 4:00  | 12.922 | 4/10/01 | 0:00  | 27.331 | 4/10/01 | 0:00  | 37.095 | 4/5/01 | 0:00  | 49.918 | 4/5/01 | 0:00  | 26.642 |
| 4/5/01 | 4:00  | 55.166 | 4/5/01 | 8:00  | 12.934 | 4/10/01 | 4:00  | 27.329 | 4/10/01 | 4:00  | 37.093 | 4/5/01 | 4:00  | 49.873 | 4/5/01 | 4:00  | 26.632 |
| 4/5/01 | 8:00  | 55.191 | 4/5/01 | 12:00 | 12.929 | 4/10/01 | 8:00  | 27.331 | 4/10/01 | 8:00  | 37.093 | 4/5/01 | 8:00  | 49.845 | 4/5/01 | 8:00  | 26.635 |
| 4/5/01 | 12:00 | 55.231 | 4/5/01 | 16:00 | 12.915 | 4/10/01 | 12:00 | 27.319 | 4/10/01 | 12:00 | 37.078 | 4/5/01 | 12:00 | 49.822 | 4/5/01 | 12:00 | 26.625 |
| 4/5/01 | 16:00 | 55.186 | 4/5/01 | 20:00 | 12.915 | 4/10/01 | 16:00 | 27.280 | 4/10/01 | 16:00 | 37.024 | 4/5/01 | 16:00 | 49.77  | 4/5/01 | 16:00 | 26.61  |
| 4/5/01 | 20:00 | 55.169 | 4/6/01 | 0:00  | 12.913 | 4/10/01 | 20:00 | 27.206 | 4/10/01 | 20:00 | 37.041 | 4/5/01 | 20:00 | 49.765 | 4/5/01 | 20:00 | 26.62  |
| 4/6/01 | 0:00  | 55.171 | 4/6/01 | 4:00  | 12.906 | 4/11/01 | 0:00  | 27.189 | 4/11/01 | 0:00  | 36.996 | 4/6/01 | 0:00  | 49.749 | 4/6/01 | 0:00  | 26.627 |
| 4/6/01 | 4:00  | 55.131 | 4/6/01 | 8:00  | 12.906 | 4/11/01 | 4:00  | 27.162 | 4/11/01 | 4:00  | 37.067 | 4/6/01 | 4:00  | 49.697 | 4/6/01 | 4:00  | 26.603 |
| 4/6/01 | 8:00  | 55.109 | 4/6/01 | 12:00 | 12.913 | 4/11/01 | 8:00  | 27.111 | 4/11/01 | 8:00  | 37.052 | 4/6/01 | 8:00  | 49.692 | 4/6/01 | 8:00  | 26.615 |
| 4/6/01 | 12:00 | 55.096 | 4/6/01 | 16:00 | 12.901 | 4/11/01 | 12:00 | 27.061 | 4/11/01 | 12:00 | 36.819 | 4/6/01 | 12:00 | 49.674 | 4/6/01 | 12:00 | 26.615 |
| 4/6/01 | 16:00 | 55.079 | 4/6/01 | 20:00 | 12.884 | 4/11/01 | 16:00 | 27.015 | 4/11/01 | 16:00 | 36.753 | 4/6/01 | 16:00 | 49.61  | 4/6/01 | 16:00 | 26.589 |
| 4/6/01 | 20:00 | 54.998 | 4/7/01 | 0:00  | 12.875 | 4/11/01 | 20:00 | 26.979 | 4/11/01 | 20:00 | 36.735 | 4/6/01 | 20:00 | 49.484 | 4/6/01 | 20:00 | 26.547 |
| 4/7/01 | 0:00  | 54.893 | 4/7/01 | 4:00  | 12.875 | 4/12/01 | 0:00  | 26.996 | 4/12/01 | 0:00  | 36.783 | 4/7/01 | 0:00  | 49.432 | 4/7/01 | 0:00  | 26.533 |
| 4/7/01 | 4:00  | 54.856 | 4/7/01 | 8:00  | 12.887 | 4/12/01 | 4:00  | 27.022 | 4/12/01 | 4:00  | 36.856 | 4/7/01 | 4:00  | 49.432 | 4/7/01 | 4:00  | 26.547 |

| TABLE D.3 | (Cont.) |
|-----------|---------|
|-----------|---------|

|         | DW06  |        |         | SB01  |        |         | SB09  |        |         | SB16  |        |         | SB18  |        |         | SB19  |        |
|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|--------|
| Date    | Time  | Depth  |
|         |       |        |         |       |        |         |       |        |         |       |        |         |       |        |         |       |        |
| 4/7/01  | 8:00  | 54.898 | 4/7/01  | 12:00 | 12.899 | 4/12/01 | 8:00  | 27.056 | 4/12/01 | 8:00  | 36.929 | 4/7/01  | 8:00  | 49.478 | 4/7/01  | 8:00  | 26.586 |
| 4/7/01  | 12:00 | 54.963 | 4/7/01  | 16:00 | 12.906 | 4/12/01 | 12:00 | 27.080 | 4/12/01 | 12:00 | 37.009 | 4/7/01  | 12:00 | 49.551 | 4/7/01  | 12:00 | 26.627 |
| 4/7/01  | 16:00 | 54.995 | 4/7/01  | 20:00 | 12.915 | 4/12/01 | 16:00 | 27.083 | 4/12/01 | 16:00 | 37.054 | 4/7/01  | 16:00 | 49.58  | 4/7/01  | 16:00 | 26.651 |
| 4/7/01  | 20:00 | 55.024 | 4/8/01  | 0:00  | 12.932 | 4/12/01 | 20:00 | 27.083 | 4/12/01 | 20:00 | 37.084 | 4/7/01  | 20:00 | 49.628 | 4/7/01  | 20:00 | 26.683 |
| 4/8/01  | 0:00  | 55.099 | 4/8/01  | 4:00  | 12.936 | 4/13/01 | 0:00  | 27.090 | 4/13/01 | 0:00  | 37.119 | 4/8/01  | 0:00  | 49.672 | 4/8/01  | 0:00  | 26.729 |
| 4/8/01  | 4:00  | 55.119 | 4/8/01  | 8:00  | 12.941 | 4/13/01 | 4:00  | 27.087 | 4/13/01 | 4:00  | 37.138 | 4/8/01  | 4:00  | 49.697 | 4/8/01  | 4:00  | 26.736 |
| 4/8/01  | 8:00  | 55.104 | 4/8/01  | 12:00 | 12.955 | 4/13/01 | 8:00  | 27.087 | 4/13/01 | 8:00  | 37.16  | 4/8/01  | 8:00  | 49.665 | 4/8/01  | 8:00  | 26.736 |
| 4/8/01  | 12:00 | 55.054 | 4/8/01  | 16:00 | 12.950 | 4/13/01 | 12:00 | 27.080 | 4/13/01 | 12:00 | 37.168 | 4/8/01  | 12:00 | 49.644 | 4/8/01  | 12:00 | 26.741 |
| 4/8/01  | 16:00 | 55.015 | 4/8/01  | 20:00 | 12.953 | 4/13/01 | 16:00 | 27.061 | 4/13/01 | 16:00 | 37.149 | 4/8/01  | 16:00 | 49.596 | 4/8/01  | 16:00 | 26.729 |
| 4/8/01  | 20:00 | 54.972 | 4/9/01  | 0:00  | 12.960 | 4/13/01 | 20:00 | 27.030 | 4/13/01 | 20:00 | 37.127 | 4/8/01  | 20:00 | 49.537 | 4/8/01  | 20:00 | 26.731 |
| 4/9/01  | 0:00  | 54.982 | 4/9/01  | 4:00  | 12.965 | 4/14/01 | 0:00  | 27.022 | 4/14/01 | 0:00  | 37.123 | 4/9/01  | 0:00  | 49.544 | 4/9/01  | 0:00  | 26.743 |
| 4/9/01  | 4:00  | 54.973 | 4/9/01  | 8:00  | 12.981 | 4/14/01 | 4:00  | 27.013 | 4/14/01 | 4:00  | 37.123 | 4/9/01  | 4:00  | 49.526 | 4/9/01  | 4:00  | 26.746 |
| 4/9/01  | 8:00  | 55.015 | 4/9/01  | 12:00 | 12.995 | 4/14/01 | 8:00  | 26.996 | 4/14/01 | 8:00  | 37.114 | 4/9/01  | 8:00  | 49.601 | 4/9/01  | 8:00  | 26.797 |
| 4/9/01  | 12:00 | 55.079 | 4/9/01  | 16:00 | 13.007 | 4/14/01 | 12:00 | 26.984 | 4/14/01 | 12:00 | 37.101 | 4/9/01  | 12:00 | 49.656 | 4/9/01  | 12:00 | 26.828 |
| 4/9/01  | 16:00 | 55.089 | 4/9/01  | 20:00 | 13.012 | 4/14/01 | 16:00 | 26.933 | 4/14/01 | 16:00 | 37.043 | 4/9/01  | 16:00 | 49.651 | 4/9/01  | 16:00 | 26.835 |
| 4/9/01  | 20:00 | 55.082 | 4/10/01 | 0:00  | 13.023 | 4/14/01 | 20:00 | 26.883 | 4/14/01 | 20:00 | 36.976 | 4/9/01  | 20:00 | 49.658 | 4/9/01  | 20:00 | 26.85  |
| 4/10/01 | 0:00  | 55.109 | 4/10/01 | 4:00  | 13.028 | 4/15/01 | 0:00  | 26.853 | 4/15/01 | 0:00  | 36.942 | 4/10/01 | 0:00  | 49.669 | 4/10/01 | 0:00  | 26.869 |
| 4/10/01 | 4:00  | 55.089 | 4/10/01 | 8:00  | 13.035 | 4/15/01 | 4:00  | 26.846 | 4/15/01 | 4:00  | 36.927 | 4/10/01 | 4:00  | 49.644 | 4/10/01 | 4:00  | 26.872 |
| 4/10/01 | 8:00  | 55.089 | 4/10/01 | 12:00 | 13.040 | 4/15/01 | 8:00  | 26.859 | 4/15/01 | 8:00  | 36.946 | 4/10/01 | 8:00  | 49.624 | 4/10/01 | 8:00  | 26.884 |
| 4/10/01 | 12:00 | 55.065 | 4/10/01 | 16:00 | 13.021 | 4/15/01 | 12:00 | 26.880 | 4/15/01 | 12:00 | 36.987 | 4/10/01 | 12:00 | 49.587 | 4/10/01 | 12:00 | 26.869 |
| 4/10/01 | 16:00 | 55.035 | 4/10/01 | 20:00 | 13.000 | 4/15/01 | 16:00 | 26.892 | 4/15/01 | 16:00 | 37.004 | 4/10/01 | 16:00 | 49.605 | 4/10/01 | 16:00 | 26.84  |
| 4/10/01 | 20:00 | 55.010 | 4/11/01 | 0:00  | 13.068 | 4/15/01 | 20:00 | 26.902 | 4/15/01 | 20:00 | 37.039 | 4/10/01 | 20:00 | 49.564 | 4/10/01 | 20:00 | 26.799 |
| 4/11/01 | 0:00  | 55.070 | 4/11/01 | 4:00  | 12.948 | 4/16/01 | 0:00  | 26.914 | 4/16/01 | 0:00  | 37.067 | 4/11/01 | 0:00  | 49.594 | 4/11/01 | 0:00  | 26.753 |
| 4/11/01 | 4:00  | 54.973 | 4/11/01 | 8:00  | 12.981 | 4/16/01 | 4:00  | 26.924 | 4/16/01 | 4:00  | 37.088 | 4/11/01 | 4:00  | 49.544 | 4/11/01 | 4:00  | 26.727 |
| 4/11/01 | 8:00  | 55.117 | 4/11/01 | 12:00 | 12.753 | 4/16/01 | 8:00  | 26.955 | 4/16/01 | 8:00  | 37.132 | 4/11/01 | 8:00  | 49.526 | 4/11/01 | 8:00  | 26.608 |
| 4/11/01 | 12:00 | 54.724 | 4/11/01 | 16:00 | 12.661 | 4/16/01 | 12:00 | 26.962 | 4/16/01 | 12:00 | 37.157 | 4/11/01 | 12:00 | 49.204 | 4/11/01 | 12:00 | 26.516 |
| 4/11/01 | 16:00 | 54.662 | 4/11/01 | 20:00 | 12.595 | 4/16/01 | 16:00 | 26.957 | 4/16/01 | 16:00 | 37.16  | 4/11/01 | 16:00 | 49.135 | 4/11/01 | 16:00 | 26.426 |
| 4/11/01 | 20:00 | 54.637 | 4/12/01 | 0:00  | 12.552 | 4/16/01 | 20:00 | 26.957 | 4/16/01 | 20:00 | 37.164 | 4/11/01 | 20:00 | 49.156 | 4/11/01 | 20:00 | 26.383 |
| 4/12/01 | 0:00  | 54.744 | 4/12/01 | 4:00  | 12.522 | 4/17/01 | 0:00  | 26.967 | 4/17/01 | 0:00  | 37.181 | 4/12/01 | 0:00  | 49.281 | 4/12/01 | 0:00  | 26.395 |
| 4/12/01 | 4:00  | 54.901 | 4/12/01 | 8:00  | 12.494 | 4/17/01 | 4:00  | 26.972 | 4/17/01 | 4:00  | 37.198 | 4/12/01 | 4:00  | 49.45  | 4/12/01 | 4:00  | 26.412 |
| 4/12/01 | 8:00  | 55.032 | 4/12/01 | 12:00 | 12.477 | 4/17/01 | 8:00  | 26.991 | 4/17/01 | 8:00  | 37.228 | 4/12/01 | 8:00  | 49.567 | 4/12/01 | 8:00  | 26.424 |
| 4/12/01 | 12:00 | 55.147 | 4/12/01 | 16:00 | 12.456 | 4/17/01 | 12:00 | 27.006 | 4/17/01 | 12:00 | 37.248 | 4/12/01 | 12:00 | 49.667 | 4/12/01 | 12:00 | 26.431 |
| 4/12/01 | 16:00 | 55.194 | 4/12/01 | 20:00 | 12.432 | 4/17/01 | 16:00 | 26.991 | 4/17/01 | 16:00 | 37.241 | 4/12/01 | 16:00 | 49.676 | 4/12/01 | 16:00 | 26.407 |
| 4/12/01 | 20:00 | 55.224 | 4/13/01 | 0:00  | 12.414 | 4/17/01 | 20:00 | 26.972 | 4/17/01 | 20:00 | 37.218 | 4/12/01 | 20:00 | 49.708 | 4/12/01 | 20:00 | 26.39  |
| 4/13/01 | 0:00  | 55.271 | 4/13/01 | 4:00  | 12.400 | 4/18/01 | 0:00  | 26.962 | 4/18/01 | 0:00  | 37.198 | 4/13/01 | 0:00  | 49.759 | 4/13/01 | 0:00  | 26.383 |
| 4/13/01 | 4:00  | 55.303 | 4/13/01 | 8:00  | 12.388 | 4/18/01 | 4:00  | 26.943 | 4/18/01 | 4:00  | 37.175 | 4/13/01 | 4:00  | 49.754 | 4/13/01 | 4:00  | 26.361 |
| 4/13/01 | 8:00  | 55.333 | 4/13/01 | 12:00 | 12.374 | 4/18/01 | 8:00  | 26.926 | 4/18/01 | 8:00  | 37.149 | 4/13/01 | 8:00  | 49.793 | 4/13/01 | 8:00  | 26.354 |
| 4/13/01 | 12:00 | 55.340 | 4/13/01 | 16:00 | 12.355 | 4/18/01 | 12:00 | 26.897 | 4/18/01 | 12:00 | 37.108 | 4/13/01 | 12:00 | 49.775 | 4/13/01 | 12:00 | 26.322 |

|         | DW06  |        |         | SB01  |        |          | SB09          |        |         | SB16  |        |         | SB18              |        |         | SB19  |        |
|---------|-------|--------|---------|-------|--------|----------|---------------|--------|---------|-------|--------|---------|-------------------|--------|---------|-------|--------|
| Date    | Time  | Depth  | Date    | Time  | Depth  | Date     | Time          | Depth  | Date    | Time  | Depth  | Date    | Time              | Depth  | Date    | Time  | Depth  |
| 4/42/04 | 40.00 | 55.000 | 4/42/04 | 20.00 | 40.000 | 4/4.0/04 | 40:00         | 00.040 | 4/40/04 | 10.00 | 07.007 | 4/40/04 | 40.00             | 40.745 | 4/42/04 | 40.00 | 00.004 |
| 4/13/01 | 16:00 | 55.296 | 4/13/01 | 20:00 | 12.338 | 4/18/01  | 16:00         | 26.846 | 4/18/01 | 16:00 | 37.037 | 4/13/01 | 16:00             | 49.715 | 4/13/01 | 16:00 | 26.281 |
| 4/13/01 | 20:00 | 55.201 | 4/14/01 | 0:00  | 12.317 | 4/18/01  | 20:00         | 26.803 | 4/18/01 | 20:00 | 36.974 | 4/13/01 | 20:00             | 49.685 | 4/13/01 | 20:00 | 26.25  |
| 4/14/01 | 0:00  | 55.271 | 4/14/01 | 4:00  | 12.312 | 4/19/01  | 0:00          | 26.764 | 4/19/01 | 0:00  | 30.912 | 4/14/01 | 0:00              | 49.711 | 4/14/01 | 0:00  | 26.245 |
| 4/14/01 | 4.00  | 55.291 | 4/14/01 | 0.00  | 12.319 | 4/19/01  | 4.00          | 20.723 | 4/19/01 | 4.00  | 30.004 | 4/14/01 | 4.00              | 49.711 | 4/14/01 | 4.00  | 20.220 |
| 4/14/01 | 0.00  | 55.291 | 4/14/01 | 12:00 | 12.290 | 4/19/01  | 0.00<br>12:00 | 20.007 | 4/19/01 | 12:00 | 30.790 | 4/14/01 | 12:00             | 49.009 | 4/14/01 | 12:00 | 20.213 |
| 4/14/01 | 12:00 | 55 177 | 4/14/01 | 10.00 | 11.024 | 4/19/01  | 12:00         | 20.001 | 4/19/01 | 12.00 | 30.74  | 4/14/01 | 12.00             | 49.000 | 4/14/01 | 12:00 | 20.109 |
| 4/14/01 | 20.00 | 55.025 | 4/14/01 | 20.00 | 12 120 | 4/19/01  | 20:00         | 20.000 | 4/19/01 | 20.00 | 30.073 | 4/14/01 | 20:00             | 49.002 | 4/14/01 | 20.00 | 20.141 |
| 4/14/01 | 20.00 | 55.035 | 4/15/01 | 0.00  | 12.129 | 4/19/01  | 20.00         | 20.001 | 4/19/01 | 20.00 | 30.034 | 4/14/01 | 20.00             | 49.391 | 4/14/01 | 20:00 | 20.007 |
| 4/15/01 | 4:00  | 51.020 | 4/15/01 | 4.00  | 12.200 | 4/20/01  | 4:00          | 20.009 | 4/20/01 | 4:00  | 30.011 | 4/15/01 | 4:00              | 49.410 | 4/15/01 | 4:00  | 20.000 |
| 4/15/01 | 4.00  | 54.903 | 4/15/01 | 0.00  | 12.211 | 4/20/01  | 4.00          | 20.002 | 4/20/01 | 4.00  | 30.303 | 4/15/01 | 4.00              | 49.434 | 4/15/01 | 4.00  | 20.041 |
| 4/15/01 | 12.00 | 54.094 | 4/15/01 | 12.00 | 12.210 | 4/20/01  | 12:00         | 20.552 | 4/20/01 | 12.00 | 36.560 | 4/15/01 | 12:00             | 49.407 | 4/15/01 | 12:00 | 26.030 |
| 4/15/01 | 12.00 | 55 241 | 4/15/01 | 20.00 | 12.192 | 4/20/01  | 12.00         | 20.000 | 4/20/01 | 12.00 | 36.520 | 4/15/01 | 12.00             | 49.004 | 4/15/01 | 12.00 | 20.075 |
| 4/15/01 | 20.00 | 55 274 | 4/15/01 | 20.00 | 12.100 | 4/20/01  | 20:00         | 26.520 | 4/20/01 | 20.00 | 36 511 | 4/15/01 | 20.00             | 49.007 | 4/15/01 | 20.00 | 20.000 |
| 4/16/01 | 20.00 | 55 321 | 4/16/01 | 4.00  | 12.100 | 4/21/01  | 20.00         | 26.463 | 4/21/01 | 0.00  | 36 537 | 4/16/01 | 20.00             | 49.042 | 4/16/01 | 0.00  | 26.085 |
| 4/16/01 | 4.00  | 55 351 | 4/16/01 | 8.00  | 12.170 | 4/21/01  | 4.00          | 25 488 | 4/21/01 | 4.00  | 36 634 | 4/16/01 | 4.00              | 49 704 | 4/16/01 | 4.00  | 26.000 |
| 4/16/01 | 8.00  | 55 420 | 4/16/01 | 12.00 | 12.100 | 4/21/01  | 8.00          | 26.400 | 4/21/01 | 8.00  | 36 673 | 4/16/01 | 8.00              | 49 765 | 4/16/01 | 8.00  | 26.002 |
| 4/16/01 | 12.00 | 55 462 | 4/16/01 | 16:00 | 12.100 | 4/21/01  | 12.00         | 26.312 | 4/21/01 | 12.00 | 36.52  | 4/16/01 | 12.00             | 49 777 | 4/16/01 | 12.00 | 26 119 |
| 4/16/01 | 16:00 | 55,453 | 4/16/01 | 20:00 | 12.176 | 4/21/01  | 16:00         | 26.385 | 4/21/01 | 16:00 | 36.522 | 4/16/01 | 16:00             | 49.752 | 4/16/01 | 16:00 | 26.104 |
| 4/16/01 | 20:00 | 55,435 | 4/17/01 | 0:00  | 12,181 | 4/21/01  | 20:00         | 26.349 | 4/21/01 | 20:00 | 36.518 | 4/16/01 | 20:00             | 49.743 | 4/16/01 | 20:00 | 26,109 |
| 4/17/01 | 0:00  | 55.472 | 4/17/01 | 4:00  | 12.178 | 4/22/01  | 0:00          | 26.407 | 4/22/01 | 0:00  | 36.574 | 4/17/01 | 0:00              | 49.765 | 4/17/01 | 0:00  | 26.116 |
| 4/17/01 | 4:00  | 55.502 | 4/17/01 | 8:00  | 12.188 | 4/22/01  | 4:00          | 26.371 | 4/22/01 | 4:00  | 36.708 | 4/17/01 | 4:00              | 49.804 | 4/17/01 | 4:00  | 26.126 |
| 4/17/01 | 8:00  | 55.537 | 4/17/01 | 12:00 | 12.190 | 4/22/01  | 8:00          | 26.332 | 4/22/01 | 8:00  | 36.46  | 4/17/01 | 8:00              | 49.836 | 4/17/01 | 8:00  | 26.148 |
| 4/17/01 | 12:00 | 55.572 | 4/17/01 | 16:00 | 12.183 | 4/22/01  | 12:00         | 26.287 | 4/22/01 | 12:00 | 36.408 | 4/17/01 | 12:00             | 49.877 | 4/17/01 | 12:00 | 26.155 |
| 4/17/01 | 16:00 | 55.552 | 4/17/01 | 20:00 | 12.183 | 4/22/01  | 16:00         | 26.226 | 4/22/01 | 16:00 | 36.335 | 4/17/01 | 16:00             | 49.834 | 4/17/01 | 16:00 | 26.133 |
| 4/17/01 | 20:00 | 55.497 | 4/18/01 | 0:00  | 12.178 | 4/22/01  | 20:00         | 26.154 | 4/22/01 | 20:00 | 36.441 | 4/17/01 | 20:00             | 49.768 | 4/17/01 | 20:00 | 26.116 |
| 4/18/01 | 0:00  | 55.475 | 4/18/01 | 4:00  | 12.169 | 4/23/01  | 0:00          | 26.115 | 4/23/01 | 0:00  | 36.298 | 4/18/01 | 0:00              | 49.749 | 4/18/01 | 0:00  | 26.104 |
| 4/18/01 | 4:00  | 55.443 | 4/18/01 | 8:00  | 12.169 | 4/23/01  | 4:00          | 26.082 | 4/23/01 | 4:00  | 36.216 | 4/18/01 | 4:00              | 49.713 | 4/18/01 | 4:00  | 26.085 |
| 4/18/01 | 8:00  | 55.411 | 4/18/01 | 12:00 | 12.162 | 4/23/01  | 8:00          | 26.041 | 4/23/01 | 8:00  | 36.221 | 4/18/01 | 8:00              | 49.665 | 4/18/01 | 8:00  | 26.07  |
| 4/18/01 | 12:00 | 55.351 | 4/18/01 | 16:00 | 12.148 | 4/23/01  | 12:00         | 26.065 | 4/23/01 | 12:00 | 36.266 | 4/18/01 | 12:00             | 49.599 | 4/18/01 | 12:00 | 26.036 |
| 4/18/01 | 16:00 | 55.254 | 4/18/01 | 20:00 | 12.134 | 4/23/01  | 16:00         | 26.067 | 4/23/01 | 16:00 | 36.292 | 4/18/01 | 16:00             | 49.462 | 4/18/01 | 16:00 | 25.986 |
| 4/18/01 | 20:00 | 55.155 | 4/19/01 | 0:00  | 12.122 | 4/23/01  | 20:00         | 26.079 | 4/23/01 | 20:00 | 36.326 | 4/18/01 | 20:00             | 49.375 | 4/18/01 | 20:00 | 25.952 |
| 4/19/01 | 0:00  | 55.080 | 4/19/01 | 4:00  | 12.110 | 4/24/01  | 0:00          | 26.089 | 4/24/01 | 0:00  | 36.361 | 4/19/01 | 0:00              | 49.318 | 4/19/01 | 0:00  | 25.928 |
| 4/19/01 | 4:00  | 55.021 | 4/19/01 | 8:00  | 12.100 | 4/24/01  | 4:00          | 26.091 | 4/24/01 | 4:00  | 36.372 | 4/19/01 | 4:00              | 49.236 | 4/19/01 | 4:00  | 25.899 |
| 4/19/01 | 8:00  | 54.949 | 4/19/01 | 12:00 | 12.091 | 4/24/01  | 8:00          | 26.092 | 4/24/01 | 8:00  | 36.395 | 4/19/01 | 8:00              | 49.163 | 4/19/01 | 8:00  | 25.874 |
| 4/19/01 | 12:00 | 54.882 | 4/19/01 | 16:00 | 12.082 | 4/24/01  | 12:00         | 26.089 | 4/24/01 | 12:00 | 36.408 | 4/19/01 | 12:00             | 49.094 | 4/19/01 | 12:00 | 25.853 |
| 4/19/01 | 16:00 | 54.800 | 4/19/01 | 20:00 | 12.075 | 4/24/01  | 16:00         | 26.063 | 4/24/01 | 16:00 | 36.376 | 4/19/01 | 16:0 <sup>0</sup> | 49.003 | 4/19/01 | 16:00 | 25.823 |
| 4/19/01 | 20:00 | 54.749 | 4/20/01 | 0:00  | 12.075 | 4/24/01  | 20:00         | 26.026 | 4/24/01 | 20:00 | 36.337 | 4/19/01 | 20:00             | 48.964 | 4/19/01 | 20:00 | 25.826 |

|         | DW06  |        |         | SB01  |        |         | SB09  |        |         | SB16  |        |         | SB18  |        |         | SB19  |        |
|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|--------|---------|-------|--------|
| Date    | Time  | Depth  |
| 4/20/01 | 0:00  | 54.754 | 4/20/01 | 4:00  | 12.075 | 4/25/01 | 0:00  | 26.010 | 4/25/01 | 0:00  | 36.316 | 4/20/01 | 0:00  | 48.961 | 4/20/01 | 0:00  | 25.838 |
| 4/20/01 | 4:00  | 54.744 | 4/20/01 | 8:00  | 12.077 | 4/25/01 | 4:00  | 25.985 | 4/25/01 | 4:00  | 36.29  | 4/20/01 | 4:00  | 48.939 | 4/20/01 | 4:00  | 25.845 |
| 4/20/01 | 8:00  | 54.751 | 4/20/01 | 12:00 | 12.079 | 4/25/01 | 8:00  | 25.973 | 4/25/01 | 8:00  | 36.268 | 4/20/01 | 8:00  | 48.964 | 4/20/01 | 8:00  | 25.867 |
| 4/20/01 | 12:00 | 54.766 | 4/20/01 | 16:00 | 12.077 | 4/25/01 | 12:00 | 25.969 | 4/25/01 | 12:00 | 36.27  | 4/20/01 | 12:00 | 48.962 | 4/20/01 | 12:00 | 25.877 |
| 4/20/01 | 16:00 | 54.739 | 4/20/01 | 20:00 | 12.082 | 4/25/01 | 16:00 | 25.942 | 4/25/01 | 16:00 | 36.24  | 4/20/01 | 16:00 | 48.923 | 4/20/01 | 16:00 | 25.865 |
| 4/20/01 | 20:00 | 54.664 | 4/21/01 | 0:00  | 11.726 | 4/25/01 | 20:00 | 25.920 | 4/25/01 | 20:00 | 36.206 | 4/20/01 | 20:00 | 48.895 | 4/20/01 | 20:00 | 25.872 |
| 4/21/01 | 0:00  | 54.771 | 4/21/01 | 4:00  | 11.696 | 4/26/01 | 0:00  | 25.896 | 4/26/01 | 0:00  | 36.18  | 4/21/01 | 0:00  | 48.793 | 4/21/01 | 0:00  | 25.894 |
| 4/21/01 | 4:00  | 54.701 | 4/21/01 | 8:00  | 11.587 | 4/26/01 | 4:00  | 25.872 | 4/26/01 | 4:00  | 36.146 | 4/21/01 | 4:00  | 48.781 | 4/21/01 | 4:00  | 25.797 |
| 4/21/01 | 8:00  | 54.624 | 4/21/01 | 12:00 | 11.870 | 4/26/01 | 8:00  | 25.855 | 4/26/01 | 8:00  | 36.124 | 4/21/01 | 8:00  | 48.994 | 4/21/01 | 8:00  | 25.792 |
| 4/21/01 | 12:00 | 54.862 | 4/21/01 | 16:00 | 11.785 | 4/26/01 | 12:00 | 25.838 | 4/26/01 | 12:00 | 36.1   | 4/21/01 | 12:00 | 49.058 | 4/21/01 | 12:00 | 25.748 |
| 4/21/01 | 16:00 | 54.892 | 4/21/01 | 20:00 | 11.698 | 4/26/01 | 16:00 | 25.817 | 4/26/01 | 16:00 | 36.062 | 4/21/01 | 16:00 | 49.042 | 4/21/01 | 16:00 | 25.664 |
| 4/21/01 | 20:00 | 54.895 | 4/22/01 | 0:00  | 11.524 | 4/26/01 | 20:00 | 25.790 | 4/26/01 | 20:00 | 36.023 | 4/21/01 | 20:00 | 49.053 | 4/21/01 | 20:00 | 25.581 |
| 4/22/01 | 0:00  | 54.930 | 4/22/01 | 4:00  | 11.463 | 4/27/01 | 0:00  | 25.780 | 4/27/01 | 0:00  | 36.008 | 4/22/01 | 0:00  | 49.019 | 4/22/01 | 0:00  | 25.506 |
| 4/22/01 | 4:00  | 54.987 | 4/22/01 | 8:00  | 11.458 | 4/27/01 | 4:00  | 25.771 | 4/27/01 | 4:00  | 35.995 | 4/22/01 | 4:00  | 49.037 | 4/22/01 | 4:00  | 25.458 |
| 4/22/01 | 8:00  | 54.999 | 4/22/01 | 12:00 | 11.460 | 4/27/01 | 8:00  | 25.764 | 4/27/01 | 8:00  | 35.982 | 4/22/01 | 8:00  | 49.012 | 4/22/01 | 8:00  | 25.31  |
| 4/22/01 | 12:00 | 54.833 | 4/22/01 | 16:00 | 11.397 | 4/27/01 | 12:00 | 25.764 | 4/27/01 | 12:00 | 35.973 | 4/22/01 | 12:00 | 48.941 | 4/22/01 | 12:00 | 25.211 |
| 4/22/01 | 16:00 | 54.768 | 4/22/01 | 20:00 | 11.229 | 4/27/01 | 16:00 | 25.749 | 4/27/01 | 16:00 | 35.954 | 4/22/01 | 16:00 | 48.825 | 4/22/01 | 16:00 | 25.104 |
| 4/22/01 | 20:00 | 54.704 | 4/23/01 | 0:00  | 11.036 | 4/27/01 | 20:00 | 25.739 | 4/27/01 | 20:00 | 35.935 | 4/22/01 | 20:00 | 48.761 | 4/22/01 | 20:00 | 25.029 |
| 4/23/01 | 0:00  | 54.684 | 4/23/01 | 4:00  | 11.222 | 4/28/01 | 0:00  | 25.742 | 4/28/01 | 0:00  | 35.932 | 4/23/01 | 0:00  | 48.729 | 4/23/01 | 0:00  | 24.94  |
| 4/23/01 | 4:00  | 54.689 | 4/23/01 | 8:00  | 11.194 | 4/28/01 | 4:00  | 25.747 | 4/28/01 | 4:00  | 35.93  | 4/23/01 | 4:00  | 48.747 | 4/23/01 | 4:00  | 24.896 |
| 4/23/01 | 8:00  | 54.751 | 4/23/01 | 12:00 | 11.182 | 4/28/01 | 8:00  | 25.754 | 4/28/01 | 8:00  | 35.941 | 4/23/01 | 8:00  | 48.822 | 4/23/01 | 8:00  | 24.874 |
| 4/23/01 | 12:00 | 54.838 | 4/23/01 | 16:00 | 11.147 | 4/28/01 | 12:00 | 25.761 | 4/28/01 | 12:00 | 35.95  | 4/23/01 | 12:00 | 48.925 | 4/23/01 | 12:00 | 24.87  |
| 4/23/01 | 16:00 | 54.908 | 4/23/01 | 20:00 | 11.121 | 4/28/01 | 16:00 | 25.754 | 4/28/01 | 16:00 | 35.922 | 4/23/01 | 16:00 | 48.966 | 4/23/01 | 16:00 | 24.85  |
| 4/23/01 | 20:00 | 54.967 | 4/24/01 | 0:00  | 11.107 | 4/28/01 | 20:00 | 25.747 | 4/28/01 | 20:00 | 35.909 | 4/23/01 | 20:00 | 49.014 | 4/23/01 | 20:00 | 24.843 |
| 4/24/01 | 0:00  | 55.027 | 4/24/01 | 4:00  | 11.088 | 4/29/01 | 0:00  | 25.744 | 4/29/01 | 0:00  | 35.909 | 4/24/01 | 0:00  | 49.062 | 4/24/01 | 0:00  | 24.836 |
| 4/24/01 | 4:00  | 55.074 | 4/24/01 | 8:00  | 11.076 | 4/29/01 | 4:00  | 25.747 | 4/29/01 | 4:00  | 35.902 | 4/24/01 | 4:00  | 49.076 | 4/24/01 | 4:00  | 24.819 |
| 4/24/01 | 8:00  | 55.118 | 4/24/01 | 12:00 | 11.067 | 4/29/01 | 8:00  | 25.749 | 4/29/01 | 8:00  | 35.904 | 4/24/01 | 8:00  | 49.124 | 4/24/01 | 8:00  | 24.811 |
| 4/24/01 | 12:00 | 55.138 | 4/24/01 | 16:00 | 11.046 | 4/29/01 | 12:00 | 25.742 | 4/29/01 | 12:00 | 35.894 | 4/24/01 | 12:00 | 49.126 | 4/24/01 | 12:00 | 24.792 |
| 4/24/01 | 16:00 | 55.098 | 4/24/01 | 20:00 | 11.027 | 4/29/01 | 16:00 | 25.730 | 4/29/01 | 16:00 | 35.863 | 4/24/01 | 16:00 | 49.067 | 4/24/01 | 16:00 | 24.746 |
| 4/24/01 | 20:00 | 55.047 | 4/25/01 | 0:00  | 11.013 | 4/29/01 | 20:00 | 25.715 | 4/29/01 | 20:00 | 35.831 | 4/24/01 | 20:00 | 48.985 | 4/24/01 | 20:00 | 24.707 |
| 4/25/01 | 0:00  | 55.042 | 4/25/01 | 4:00  | 10.999 | 4/30/01 | 0:00  | 25.703 | 4/30/01 | 0:00  | 35.814 | 4/25/01 | 0:00  | 48.966 | 4/25/01 | 0:00  | 24.693 |
| 4/25/01 | 4:00  | 55.022 | 4/25/01 | 8:00  | 10.989 | 4/30/01 | 4:00  | 25.694 | 4/30/01 | 4:00  | 35.786 | 4/25/01 | 4:00  | 48.921 | 4/25/01 | 4:00  | 24.664 |
| 4/25/01 | 8:00  | 55.027 | 4/25/01 | 12:00 | 10.989 | 4/30/01 | 8:00  | 25.696 | 4/30/01 | 8:00  | 35.784 | 4/25/01 | 8:00  | 48.946 | 4/25/01 | 8:00  | 24.654 |
| 4/25/01 | 12:00 | 55.040 | 4/25/01 | 16:00 | 10.978 | 4/30/01 | 12:00 | 25.679 | 4/30/01 | 12:00 | 35.751 | 4/25/01 | 12:00 | 48.921 | 4/25/01 | 12:00 | 24.649 |
| 4/25/01 | 16:00 | 55.007 | 4/25/01 | 20:00 | 10.966 | 4/30/01 | 16:00 | 25.662 | 4/30/01 | 16:00 | 35.73  | 4/25/01 | 16:00 | 48.875 | 4/25/01 | 16:00 | 24.627 |
| 4/25/01 | 20:00 | 54.965 | 4/26/01 | 0:00  | 10.961 | 4/30/01 | 20:00 | 25.648 | 4/30/01 | 20:00 | 35.698 | 4/25/01 | 20:00 | 48.829 | 4/25/01 | 20:00 | 24.608 |
| 4/26/01 | 0:00  | 54.957 | 4/26/01 | 4:00  | 10.952 | 5/1/01  | 0:00  | 25.636 | 5/1/01  | 0:00  | 35.67  | 4/26/01 | 0:00  | 48.804 | 4/26/01 | 0:00  | 24.596 |
| 4/26/01 | 4:00  | 54.928 | 4/26/01 | 8:00  | 10.952 | 5/1/01  | 4:00  | 25.621 | 5/1/01  | 4:00  | 35.635 | 4/26/01 | 4:00  | 48.763 | 4/26/01 | 4:00  | 24.579 |

| TABLE D.3 | (Cont.) |
|-----------|---------|
|-----------|---------|

|         | DW06  |        |         | SB01  |        |        | SB09  |        |        | SB16  |        |         | SB18  |        |         | SB19  |        |
|---------|-------|--------|---------|-------|--------|--------|-------|--------|--------|-------|--------|---------|-------|--------|---------|-------|--------|
| Date    | Time  | Depth  | Date    | Time  | Depth  | Date   | Time  | Depth  | Date   | Time  | Depth  | Date    | Time  | Depth  | Date    | Time  | Depth  |
|         |       |        |         |       |        |        |       |        |        |       |        |         |       |        |         |       |        |
| 4/26/01 | 8:00  | 54.920 | 4/26/01 | 12:00 | 10.949 | 5/1/01 | 8:00  | 25.612 | 5/1/01 | 8:00  | 35.618 | 4/26/01 | 8:00  | 48.745 | 4/26/01 | 8:00  | 24.574 |
| 4/26/01 | 12:00 | 54.905 | 4/26/01 | 16:00 | 10.942 | 5/1/01 | 12:00 | 25.602 | 5/1/01 | 12:00 | 35.596 | 4/26/01 | 12:00 | 48.724 | 4/26/01 | 12:00 | 24.565 |
| 4/26/01 | 16:00 | 54.866 | 4/26/01 | 20:00 | 10.935 | 5/1/01 | 16:00 | 25.578 | 5/1/01 | 16:00 | 35.556 | 4/26/01 | 16:00 | 48.663 | 4/26/01 | 16:00 | 24.552 |
| 4/26/01 | 20:00 | 54.823 | 4/27/01 | 0:00  | 10.938 | 5/1/01 | 20:00 | 25.563 | 5/1/01 | 20:00 | 35.519 | 4/26/01 | 20:00 | 48.624 | 4/26/01 | 20:00 | 24.543 |
| 4/27/01 | 0:00  | 54.828 | 4/27/01 | 4:00  | 10.942 | 5/2/01 | 0:00  | 25.554 | 5/2/01 | 0:00  | 35.5   | 4/27/01 | 0:00  | 48.615 | 4/27/01 | 0:00  | 24.552 |
| 4/27/01 | 4:00  | 54.826 | 4/27/01 | 8:00  | 10.945 | 5/2/01 | 4:00  | 25.542 | 5/2/01 | 4:00  | 35.476 | 4/27/01 | 4:00  | 48.614 | 4/27/01 | 4:00  | 24.557 |
| 4/27/01 | 8:00  | 54.833 | 4/27/01 | 12:00 | 10.956 | 5/2/01 | 8:00  | 25.551 | 5/2/01 | 8:00  | 35.482 | 4/27/01 | 8:00  | 48.626 | 4/27/01 | 8:00  | 24.565 |
| 4/27/01 | 12:00 | 54.843 | 4/27/01 | 16:00 | 10.956 | 5/2/01 | 12:00 | 25.556 | 5/2/01 | 12:00 | 35.487 | 4/27/01 | 12:00 | 48.601 | 4/27/01 | 12:00 | 24.579 |
| 4/27/01 | 16:00 | 54.814 | 4/27/01 | 20:00 | 10.959 | 5/2/01 | 16:00 | 25.561 | 5/2/01 | 16:00 | 35.489 | 4/27/01 | 16:00 | 48.557 | 4/27/01 | 16:00 | 24.581 |
| 4/27/01 | 20:00 | 54.786 | 4/28/01 | 0:00  | 10.966 | 5/2/01 | 20:00 | 25.580 | 5/2/01 | 20:00 | 35.508 | 4/27/01 | 20:00 | 48.551 | 4/27/01 | 20:00 | 24.594 |
| 4/28/01 | 0:00  | 54.806 | 4/28/01 | 4:00  | 10.973 | 5/3/01 | 0:00  | 25.600 | 5/3/01 | 0:00  | 35.534 | 4/28/01 | 0:00  | 48.564 | 4/28/01 | 0:00  | 24.611 |
| 4/28/01 | 4:00  | 54.819 | 4/28/01 | 8:00  | 10.985 | 5/3/01 | 4:00  | 25.607 | 5/3/01 | 4:00  | 35.543 | 4/28/01 | 4:00  | 48.557 | 4/28/01 | 4:00  | 24.63  |
| 4/28/01 | 8:00  | 54.851 | 4/28/01 | 12:00 | 10.996 | 5/3/01 | 8:00  | 25.631 | 5/3/01 | 8:00  | 35.571 | 4/28/01 | 8:00  | 48.583 | 4/28/01 | 8:00  | 24.652 |
| 4/28/01 | 12:00 | 54.868 | 4/28/01 | 16:00 | 11.006 | 5/3/01 | 12:00 | 25.648 | 5/3/01 | 12:00 | 35.596 | 4/28/01 | 12:00 | 48.612 | 4/28/01 | 12:00 | 24.676 |
| 4/28/01 | 16:00 | 54.831 | 4/28/01 | 20:00 | 11.011 | 5/3/01 | 16:00 | 25.648 | 5/3/01 | 16:00 | 35.592 | 4/28/01 | 16:00 | 48.573 | 4/28/01 | 16:00 | 24.678 |
| 4/28/01 | 20:00 | 54.816 | 4/29/01 | 0:00  | 11.020 | 5/3/01 | 20:00 | 25.643 | 5/3/01 | 20:00 | 35.601 | 4/28/01 | 20:00 | 48.512 | 4/28/01 | 20:00 | 24.69  |
| 4/29/01 | 0:00  | 54.816 | 4/29/01 | 4:00  | 11.029 | 5/4/01 | 0:00  | 25.665 | 5/4/01 | 0:00  | 35.627 | 4/29/01 | 0:00  | 48.535 | 4/29/01 | 0:00  | 24.71  |
| 4/29/01 | 4:00  | 54.826 | 4/29/01 | 8:00  | 11.039 | 5/4/01 | 4:00  | 25.672 | 5/4/01 | 4:00  | 35.635 | 4/29/01 | 4:00  | 48.523 | 4/29/01 | 4:00  | 24.722 |
| 4/29/01 | 8:00  | 54.836 | 4/29/01 | 12:00 | 11.051 | 5/4/01 | 8:00  | 25.682 | 5/4/01 | 8:00  | 35.648 | 4/29/01 | 8:00  | 48.557 | 4/29/01 | 8:00  | 24.741 |
| 4/29/01 | 12:00 | 54.821 | 4/29/01 | 16:00 | 11.053 | 5/4/01 | 12:00 | 25.686 | 5/4/01 | 12:00 | 35.642 | 4/29/01 | 12:00 | 48.548 | 4/29/01 | 12:00 | 24.746 |
| 4/29/01 | 16:00 | 54.761 | 4/29/01 | 20:00 | 11.060 | 5/4/01 | 16:00 | 25.672 | 5/4/01 | 16:00 | 35.62  | 4/29/01 | 16:00 | 48.523 | 4/29/01 | 16:00 | 24.746 |
| 4/29/01 | 20:00 | 54.724 | 4/30/01 | 0:00  | 11.065 | 5/4/01 | 20:00 | 25.662 | 5/4/01 | 20:00 | 35.603 | 4/29/01 | 20:00 | 48.462 | 4/29/01 | 20:00 | 24.749 |
| 4/30/01 | 0:00  | 54.714 | 4/30/01 | 4:00  | 11.069 | 5/5/01 | 0:00  | 25.653 | 5/5/01 | 0:00  | 35.588 | 4/30/01 | 0:00  | 48.462 | 4/30/01 | 0:00  | 24.758 |
| 4/30/01 | 4:00  | 54.699 | 4/30/01 | 8:00  | 11.084 | 5/5/01 | 4:00  | 25.631 | 5/5/01 | 4:00  | 35.549 | 4/30/01 | 4:00  | 48.436 | 4/30/01 | 4:00  | 24.763 |
| 4/30/01 | 8:00  | 54.702 | 4/30/01 | 12:00 | 11.084 | 5/5/01 | 8:00  | 25.604 | 5/5/01 | 8:00  | 35.517 | 4/30/01 | 8:00  | 48.416 | 4/30/01 | 8:00  | 24.782 |
| 4/30/01 | 12:00 | 54.677 | 4/30/01 | 16:00 | 11.065 | 5/5/01 | 12:00 | 25.592 | 5/5/01 | 12:00 | 35.497 | 4/30/01 | 12:00 | 48.384 | 4/30/01 | 12:00 | 24.773 |
| 4/30/01 | 16:00 | 54.635 | 4/30/01 | 20:00 | 11.086 | 5/5/01 | 16:00 | 25.583 | 5/5/01 | 16:00 | 35.478 | 4/30/01 | 16:00 | 48.309 | 4/30/01 | 16:00 | 24.773 |
| 4/30/01 | 20:00 | 54.595 | 5/1/01  | 0:00  | 11.091 | 5/5/01 | 20:00 | 25.575 | 5/5/01 | 20:00 | 35.467 | 4/30/01 | 20:00 | 48.265 | 4/30/01 | 20:00 | 24.77  |
| 5/1/01  | 0:00  | 54.571 | 5/1/01  | 4:00  | 11.095 | 5/6/01 | 0:00  | 25.571 | 5/6/01 | 0:00  | 35.461 | 5/1/01  | 0:00  | 48.231 | 5/1/01  | 0:00  | 24.773 |
| 5/1/01  | 4:00  | 54.543 | 5/1/01  | 8:00  | 11.124 | 5/6/01 | 4:00  | 25.551 | 5/6/01 | 4:00  | 35.437 | 5/1/01  | 4:00  | 48.183 | 5/1/01  | 4:00  | 24.775 |
| 5/1/01  | 8:00  | 54.511 | 5/1/01  | 12:00 | 11.114 | 5/6/01 | 8:00  | 25.551 | 5/6/01 | 8:00  | 35.435 | 5/1/01  | 8:00  | 48.165 | 5/1/01  | 8:00  | 24.778 |
| 5/1/01  | 12:00 | 54.486 | 5/1/01  | 16:00 | 11.112 | 5/6/01 | 12:00 | 25.561 | 5/6/01 | 12:00 | 35.448 | 5/1/01  | 12:00 | 48.137 | 5/1/01  | 12:00 | 24.782 |
| 5/1/01  | 16:00 | 54.424 | 5/1/01  | 20:00 | 11.119 | 5/6/01 | 16:00 | 25.558 | 5/6/01 | 16:00 | 35.446 | 5/1/01  | 16:00 | 48.053 | 5/1/01  | 16:00 | 24.778 |
| 5/1/01  | 20:00 | 54.369 | 5/2/01  | 0:00  | 11.119 | 5/6/01 | 20:00 | 25.578 | 5/6/01 | 20:00 | 35.474 | 5/1/01  | 20:00 | 48.019 | 5/1/01  | 20:00 | 24.792 |
| 5/2/01  | 0:00  | 54.362 | 5/2/01  | 4:00  | 11.126 | 5/7/01 | 0:00  | 25.609 | 5/7/01 | 0:00  | 35.519 | 5/2/01  | 0:00  | 47.996 | 5/2/01  | 0:00  | 24.804 |
| 5/2/01  | 4:00  | 54.337 | 5/2/01  | 8:00  | 11.138 | 5/7/01 | 4:00  | 25.633 | 5/7/01 | 4:00  | 35.56  | 5/2/01  | 4:00  | 47.957 | 5/2/01  | 4:00  | 24.811 |
| 5/2/01  | 8:00  | 54.360 | 5/2/01  | 12:00 | 11.152 | 5/7/01 | 8:00  | 25.672 | 5/7/01 | 8:00  | 35.612 | 5/2/01  | 8:00  | 47.975 | 5/2/01  | 8:00  | 24.84  |
| 5/2/01  | 12:00 | 54.374 | 5/2/01  | 16:00 | 11.161 | 5/7/01 | 12:00 | 25.696 | 5/7/01 | 12:00 | 35.655 | 5/2/01  | 12:00 | 48.007 | 5/2/01  | 12:00 | 24.867 |
|         |       |        | *       |       |        |        |       |        |        |       |        |         |       |        |         |       |        |

| TABLE D.3 | (Cont.) |
|-----------|---------|
|-----------|---------|

|        | DW06  |        |        | SB01  |        |         | SB09  |        |         | SB16  |        |        | SB18  |        |        | SB19  |        |
|--------|-------|--------|--------|-------|--------|---------|-------|--------|---------|-------|--------|--------|-------|--------|--------|-------|--------|
| Date   | Time  | Depth  | Date   | Time  | Depth  | Date    | Time  | Depth  | Date    | Time  | Depth  | Date   | Time  | Depth  | Date   | Time  | Depth  |
| 5/2/01 | 16:00 | 54 384 | 5/2/01 | 20.00 | 11 182 | 5/7/01  | 16.00 | 25 710 | 5/7/01  | 16.00 | 35.67  | 5/2/01 | 16.00 | 48 023 | 5/2/01 | 16.00 | 24 891 |
| 5/2/01 | 20.00 | 54 407 | 5/3/01 | 0.00  | 11 197 | 5/7/01  | 20.00 | 25 716 | 5/7/01  | 20.00 | 35 678 | 5/2/01 | 20.00 | 48 044 | 5/2/01 | 20.00 | 24 935 |
| 5/3/01 | 0:00  | 54,456 | 5/3/01 | 4:00  | 11.208 | 5/8/01  | 0:00  | 25.730 | 5/8/01  | 0:00  | 35,696 | 5/3/01 | 0:00  | 48.085 | 5/3/01 | 0:00  | 24.974 |
| 5/3/01 | 4:00  | 54.479 | 5/3/01 | 8:00  | 11.232 | 5/8/01  | 4:00  | 25.735 | 5/8/01  | 4:00  | 35.698 | 5/3/01 | 4:00  | 48.082 | 5/3/01 | 4:00  | 24.991 |
| 5/3/01 | 8:00  | 54.506 | 5/3/01 | 12:00 | 11.265 | 5/8/01  | 8:00  | 25.744 | 5/8/01  | 8:00  | 35.711 | 5/3/01 | 8:00  | 48.124 | 5/3/01 | 8:00  | 25.034 |
| 5/3/01 | 12:00 | 54.595 | 5/3/01 | 16:00 | 11.025 | 5/8/01  | 12:00 | 25.744 | 5/8/01  | 12:00 | 35.711 | 5/3/01 | 12:00 | 48.176 | 5/3/01 | 12:00 | 25.066 |
| 5/3/01 | 16:00 | 54.548 | 5/3/01 | 20:00 | 10.907 | 5/8/01  | 16:00 | 25.735 | 5/8/01  | 16:00 | 35.68  | 5/3/01 | 16:00 | 48.069 | 5/3/01 | 16:00 | 25.07  |
| 5/3/01 | 20:00 | 54.548 | 5/4/01 | 0:00  | 10.893 | 5/8/01  | 20:00 | 25.720 | 5/8/01  | 20:00 | 35.652 | 5/3/01 | 20:00 | 47.909 | 5/3/01 | 20:00 | 25.1   |
| 5/4/01 | 0:00  | 54.563 | 5/4/01 | 4:00  | 10.865 | 5/9/01  | 0:00  | 25.718 | 5/9/01  | 0:00  | 35.648 | 5/4/01 | 0:00  | 47.882 | 5/4/01 | 0:00  | 25.107 |
| 5/4/01 | 4:00  | 54.561 | 5/4/01 | 8:00  | 10.919 | 5/9/01  | 4:00  | 25.708 | 5/9/01  | 4:00  | 35.627 | 5/4/01 | 4:00  | 47.861 | 5/4/01 | 4:00  | 25.095 |
| 5/4/01 | 8:00  | 54.556 | 5/4/01 | 12:00 | 11.284 | 5/9/01  | 8:00  | 25.703 | 5/9/01  | 8:00  | 35.618 | 5/4/01 | 8:00  | 47.918 | 5/4/01 | 8:00  | 25.167 |
| 5/4/01 | 12:00 | 54.645 | 5/4/01 | 16:00 | 11.253 | 5/9/01  | 12:00 | 25.691 | 5/9/01  | 12:00 | 35.601 | 5/4/01 | 12:00 | 48.185 | 5/4/01 | 12:00 | 25.131 |
| 5/4/01 | 16:00 | 54.683 | 5/4/01 | 20:00 | 11.255 | 5/9/01  | 16:00 | 25.677 | 5/9/01  | 16:00 | 35.566 | 5/4/01 | 16:00 | 48.121 | 5/4/01 | 16:00 | 25.116 |
| 5/4/01 | 20:00 | 54.521 | 5/5/01 | 0:00  | 11.182 | 5/9/01  | 20:00 | 25.655 | 5/9/01  | 20:00 | 35.525 | 5/4/01 | 20:00 | 48.069 | 5/4/01 | 20:00 | 25.121 |
| 5/5/01 | 0:00  | 54.511 | 5/5/01 | 4:00  | 11.140 | 5/10/01 | 0:00  | 25.650 | 5/10/01 | 0:00  | 35.515 | 5/5/01 | 0:00  | 48.035 | 5/5/01 | 0:00  | 25.121 |
| 5/5/01 | 4:00  | 54.464 | 5/5/01 | 8:00  | 11.126 | 5/10/01 | 4:00  | 25.641 | 5/10/01 | 4:00  | 35.508 | 5/5/01 | 4:00  | 47.996 | 5/5/01 | 4:00  | 25.085 |
| 5/5/01 | 8:00  | 54.439 | 5/5/01 | 12:00 | 11.484 | 5/10/01 | 8:00  | 25.648 | 5/10/01 | 8:00  | 35.51  | 5/5/01 | 8:00  | 47.982 | 5/5/01 | 8:00  | 25.153 |
| 5/5/01 | 12:00 | 54.477 | 5/5/01 | 16:00 | 11.204 | 5/10/01 | 12:00 | 25.641 | 5/10/01 | 12:00 | 35.493 | 5/5/01 | 12:00 | 48.057 | 5/5/01 | 12:00 | 25.114 |
| 5/5/01 | 16:00 | 54.380 | 5/5/01 | 20:00 | 11.206 | 5/10/01 | 16:00 | 25.636 | 5/10/01 | 16:00 | 35.474 | 5/5/01 | 16:00 | 47.909 | 5/5/01 | 16:00 | 25.087 |
| 5/5/01 | 20:00 | 54.355 | 5/6/01 | 0:00  | 11.208 | 5/10/01 | 20:00 | 25.628 | 5/10/01 | 20:00 | 35.452 | 5/5/01 | 20:00 | 47.877 | 5/5/01 | 20:00 | 25.095 |
| 5/6/01 | 0:00  | 54.355 | 5/6/01 | 4:00  | 11.197 | 5/11/01 | 0:00  | 25.583 | 5/11/01 | 0:00  | 35.409 | 5/6/01 | 0:00  | 47.866 | 5/6/01 | 0:00  | 25.104 |
| 5/6/01 | 4:00  | 54.318 | 5/6/01 | 8:00  | 11.204 | 5/11/01 | 4:00  | 25.595 | 5/11/01 | 4:00  | 35.454 | 5/6/01 | 4:00  | 47.831 | 5/6/01 | 4:00  | 25.092 |
| 5/6/01 | 8:00  | 54.313 | 5/6/01 | 12:00 | 11.218 | 5/11/01 | 8:00  | 25.628 | 5/11/01 | 8:00  | 35.502 | 5/6/01 | 8:00  | 47.815 | 5/6/01 | 8:00  | 25.112 |
| 5/6/01 | 12:00 | 54.330 | 5/6/01 | 16:00 | 11.211 | 5/11/01 | 12:00 | 25.657 | 5/11/01 | 12:00 | 35.547 | 5/6/01 | 12:00 | 47.87  | 5/6/01 | 12:00 | 25.136 |
| 5/6/01 | 16:00 | 54.338 | 5/6/01 | 20:00 | 11.218 | 5/11/01 | 16:00 | 25.675 | 5/11/01 | 16:00 | 35.575 | 5/6/01 | 16:00 | 47.852 | 5/6/01 | 16:00 | 25.148 |
| 5/6/01 | 20:00 | 54.375 | 5/7/01 | 0:00  | 11.232 | 5/11/01 | 20:00 | 25.682 | 5/11/01 | 20:00 | 35.599 | 5/6/01 | 20:00 | 47.913 | 5/6/01 | 20:00 | 25.194 |
| 5/7/01 | 0:00  | 54.452 | 5/7/01 | 4:00  | 11.246 | 5/12/01 | 0:00  | 25.696 | 5/12/01 | 0:00  | 35.622 | 5/7/01 | 0:00  | 48     | 5/7/01 | 0:00  | 25.245 |
| 5/7/01 | 4:00  | 54.521 | 5/7/01 | 8:00  | 11.265 | 5/12/01 | 4:00  | 25.698 | 5/12/01 | 4:00  | 35.646 | 5/7/01 | 4:00  | 48.053 | 5/7/01 | 4:00  | 25.286 |
| 5/7/01 | 8:00  | 54.593 | 5/7/01 | 12:00 | 11.286 | 5/12/01 | 8:00  | 25.711 | 5/12/01 | 8:00  | 35.668 | 5/7/01 | 8:00  | 48.135 | 5/7/01 | 8:00  | 25.334 |
| 5/7/01 | 12:00 | 54.643 | 5/7/01 | 16:00 | 11.293 | 5/12/01 | 12:00 | 25.716 | 5/12/01 | 12:00 | 35.683 | 5/7/01 | 12:00 | 48.174 | 5/7/01 | 12:00 | 25.371 |
| 5/7/01 | 16:00 | 54.660 | 5/7/01 | 20:00 | 11.302 | 5/12/01 | 16:00 | 25.706 | 5/12/01 | 16:00 | 35.68  | 5/7/01 | 16:00 | 48.162 | 5/7/01 | 16:00 | 25.392 |
| 5/7/01 | 20:00 | 54.653 | 5/8/01 | 0:00  | 11.314 | 5/12/01 | 20:00 | 25.687 | 5/12/01 | 20:00 | 35.657 | 5/7/01 | 20:00 | 48.172 | 5/7/01 | 20:00 | 25.414 |
| 5/8/01 | 0:00  | 54.665 | 5/8/01 | 4:00  | 11.324 | 5/13/01 | 0:00  | 25.679 | 5/13/01 | 0:00  | 35.646 | 5/8/01 | 0:00  | 48.174 | 5/8/01 | 0:00  | 25.438 |
| 5/8/01 | 4:00  | 54.668 | 5/8/01 | 8:00  | 11.338 | 5/13/01 | 4:00  | 25.670 | 5/13/01 | 4:00  | 35.631 | 5/8/01 | 4:00  | 48.169 | 5/8/01 | 4:00  | 25.446 |
| 5/8/01 | 8:00  | 54.670 | 5/8/01 | 12:00 | 11.352 | 5/13/01 | 8:00  | 25.657 | 5/13/01 | 8:00  | 35.62  | 5/8/01 | 8:00  | 48.183 | 5/8/01 | 8:00  | 25.465 |
| 5/8/01 | 12:00 | 54.660 | 5/8/01 | 16:00 | 11.354 | 5/13/01 | 12:00 | 25.636 | 5/13/01 | 12:00 | 35.592 | 5/8/01 | 12:00 | 48.153 | 5/8/01 | 12:00 | 25.48  |
| 5/8/01 | 16:00 | 54.616 | 5/8/01 | 20:00 | 11.357 | 5/13/01 | 16:00 | 25.624 | 5/13/01 | 16:00 | 35.562 | 5/8/01 | 16:00 | 48.098 | 5/8/01 | 16:00 | 25.472 |
| 5/8/01 | 20:00 | 54.561 | 5/9/01 | 0:00  | 11.364 | 5/13/01 | 20:00 | 25.602 | 5/13/01 | 20:00 | 35.532 | 5/8/01 | 20:00 | 48.069 | 5/8/01 | 20:00 | 25.48  |

|           | DW06         |        |           | SB01  |        |               | SB09         |        |         | SB16  |        |           | SB18  |        |           | SB19  |        |
|-----------|--------------|--------|-----------|-------|--------|---------------|--------------|--------|---------|-------|--------|-----------|-------|--------|-----------|-------|--------|
| Date      | Time         | Depth  | Date      | Time  | Depth  | Date          | Time         | Depth  | Date    | Time  | Depth  | Date      | Time  | Depth  | Date      | Time  | Depth  |
| - 10 10 1 |              |        | - 10 /0 / |       |        | = / / / / 0 / |              |        |         |       |        | = 10 10 1 |       |        | = /2 /2 / |       |        |
| 5/9/01    | 0:00         | 54.546 | 5/9/01    | 4:00  | 11.368 | 5/14/01       | 0:00         | 25.590 | 5/14/01 | 0:00  | 35.515 | 5/9/01    | 0:00  | 48.041 | 5/9/01    | 0:00  | 25.487 |
| 5/9/01    | 4:00         | 54.529 | 5/9/01    | 8:00  | 11.378 | 5/14/01       | 4:00         | 25.585 | 5/14/01 | 4:00  | 35.497 | 5/9/01    | 4:00  | 48.007 | 5/9/01    | 4:00  | 25.489 |
| 5/9/01    | 8:00         | 54.504 | 5/9/01    | 12:00 | 11.385 | 5/14/01       | 8:00         | 25.581 | 5/14/01 | 8:00  | 35.489 | 5/9/01    | 8:00  | 47.98  | 5/9/01    | 8:00  | 25.489 |
| 5/9/01    | 12:00        | 54.474 | 5/9/01    | 16:00 | 11.385 | 5/14/01       | 12:00        | 25.566 | 5/14/01 | 12:00 | 35.469 | 5/9/01    | 12:00 | 47.95  | 5/9/01    | 12:00 | 25.492 |
| 5/9/01    | 16:00        | 54.419 | 5/9/01    | 20:00 | 11.385 | 5/14/01       | 16:00        | 25.554 | 5/14/01 | 16:00 | 35.437 | 5/9/01    | 16:00 | 47.904 | 5/9/01    | 16:00 | 25.487 |
| 5/9/01    | 20:00        | 54.357 | 5/10/01   | 0:00  | 11.394 | 5/14/01       | 20:00        | 25.537 | 5/14/01 | 20:00 | 35.407 | 5/9/01    | 20:00 | 47.838 | 5/9/01    | 20:00 | 25.484 |
| 5/10/01   | 0:00         | 54.357 | 5/10/01   | 4:00  | 11.343 | 5/15/01       | 0:00         | 25.525 | 5/15/01 | 0:00  | 35.381 | 5/10/01   | 0:00  | 47.843 | 5/10/01   | 0:00  | 25.501 |
| 5/10/01   | 4:00         | 54.310 | 5/10/01   | 8:00  | 11.434 | 5/15/01       | 4:00         | 25.506 | 5/15/01 | 4:00  | 35.347 | 5/10/01   | 4:00  | 47.863 | 5/10/01   | 4:00  | 25.504 |
| 5/10/01   | 8:00         | 54.307 | 5/10/01   | 12:00 | 11.451 | 5/15/01       | 8:00         | 25.494 | 5/15/01 | 8:00  | 35.323 | 5/10/01   | 8:00  | 47.854 | 5/10/01   | 8:00  | 25.526 |
| 5/10/01   | 12:00        | 54.335 | 5/10/01   | 16:00 | 11.425 | 5/15/01       | 12:00        | 25.479 | 5/15/01 | 12:00 | 35.297 | 5/10/01   | 12:00 | 47.815 | 5/10/01   | 12:00 | 25.526 |
| 5/10/01   | 16:00        | 54.298 | 5/10/01   | 20:00 | 11.427 | 5/15/01       | 16:00        | 25.462 | 5/15/01 | 16:00 | 35.263 | 5/10/01   | 16:00 | 47.783 | 5/10/01   | 16:00 | 25.535 |
| 5/10/01   | 20.00        | 54.201 | 5/11/01   | 0.00  | 11.279 | 5/15/01       | 20.00        | 25.433 | 5/15/01 | 20.00 | 35.237 | 5/10/01   | 20.00 | 47.747 | 5/10/01   | 20.00 | 25.545 |
| 5/11/01   | 0.00         | 54.200 | 5/11/01   | 4.00  | 11.300 | 5/16/01       | 0.00         | 25.440 | 5/10/01 | 0.00  | 35.222 | 5/11/01   | 0.00  | 47.733 | 5/11/01   | 0.00  | 20.000 |
| 5/11/01   | 4.00         | 54.330 | 5/11/01   | 0.00  | 11.404 | 5/16/01       | 4.00         | 25.443 | 5/16/01 | 4.00  | 35.207 | 5/11/01   | 4.00  | 47.022 | 5/11/01   | 4.00  | 20.00  |
| 5/11/01   | 0.00         | 54.300 | 5/11/01   | 12.00 | 11.404 | 5/16/01       | 12:00        | 25.440 | 5/16/01 | 12:00 | 35.207 | 5/11/01   | 12:00 | 47.090 | 5/11/01   | 12:00 | 25.569 |
| 5/11/01   | 12.00        | 54.402 | 5/11/01   | 20.00 | 11.300 | 5/16/01       | 12.00        | 25.440 | 5/10/01 | 12.00 | 30.Z   | 5/11/01   | 12.00 | 47.907 | 5/11/01   | 12.00 | 25.005 |
| 5/11/01   | 20.00        | 54.497 | 5/11/01   | 20.00 | 11.371 | 5/16/01       | 20:00        | 25.445 | 5/16/01 | 20.00 | 35.179 | 5/11/01   | 20:00 | 47.907 | 5/11/01   | 20.00 | 25.015 |
| 5/12/01   | 20.00        | 54.514 | 5/12/01   | 4.00  | 11.301 | 5/17/01       | 20.00        | 25.445 | 5/17/01 | 20.00 | 35.100 | 5/12/01   | 20.00 | 40.019 | 5/12/01   | 20.00 | 25.025 |
| 5/12/01   | 4.00         | 54 591 | 5/12/01   | 9.00  | 11 25/ | 5/17/01       | 4.00         | 25.450 | 5/17/01 | 4.00  | 35.164 | 5/12/01   | 4.00  | 40.004 | 5/12/01   | 4.00  | 25.037 |
| 5/12/01   | 4.00<br>8.00 | 54.00  | 5/12/01   | 12.00 | 11 352 | 5/17/01       | 4.00<br>8:00 | 25.450 | 5/17/01 | 8.00  | 35 170 | 5/12/01   | 8.00  | 40.002 | 5/12/01   | 8.00  | 25.037 |
| 5/12/01   | 12.00        | 54.626 | 5/12/01   | 12.00 | 11 240 | 5/17/01       | 12:00        | 25.402 | 5/17/01 | 12:00 | 25 197 | 5/12/01   | 12:00 | 40.112 | 5/12/01   | 12:00 | 25.047 |
| 5/12/01   | 12.00        | 54.020 | 5/12/01   | 20.00 | 11 331 | 5/17/01       | 12.00        | 25.472 | 5/17/01 | 12.00 | 35 106 | 5/12/01   | 12.00 | 40.119 | 5/12/01   | 12.00 | 25.047 |
| 5/12/01   | 20.00        | 54 544 | 5/12/01   | 20.00 | 11 32/ | 5/17/01       | 20.00        | 25.403 | 5/17/01 | 20.00 | 35 217 | 5/12/01   | 20.00 | 40.100 | 5/12/01   | 20.00 | 25.032 |
| 5/13/01   | 0.00         | 54 537 | 5/13/01   | 4.00  | 11 310 | 5/18/01       | 0.00         | 25.511 | 5/18/01 | 0.00  | 35 233 | 5/13/01   | 0.00  | 48.035 | 5/13/01   | 0.00  | 25.015 |
| 5/13/01   | 4.00         | 54 527 | 5/13/01   | 8.00  | 11 319 | 5/18/01       | 4.00         | 25 535 | 5/18/01 | 4.00  | 35 245 | 5/13/01   | 4.00  | 48 012 | 5/13/01   | 4.00  | 25.598 |
| 5/13/01   | 8.00         | 54 509 | 5/13/01   | 12.00 | 11 321 | 5/18/01       | 8.00         | 25 549 | 5/18/01 | 8.00  | 35 258 | 5/13/01   | 8.00  | 47 998 | 5/13/01   | 8.00  | 25.550 |
| 5/13/01   | 12.00        | 54 477 | 5/13/01   | 16:00 | 11.310 | 5/18/01       | 12.00        | 25 561 | 5/18/01 | 12.00 | 35 273 | 5/13/01   | 12.00 | 47 955 | 5/13/01   | 12.00 | 25.567 |
| 5/13/01   | 16:00        | 54 422 | 5/13/01   | 20.00 | 11 305 | 5/18/01       | 16:00        | 25.571 | 5/18/01 | 16:00 | 35 271 | 5/13/01   | 16:00 | 47 893 | 5/13/01   | 16:00 | 25.55  |
| 5/13/01   | 20:00        | 54.378 | 5/14/01   | 0:00  | 11.305 | 5/18/01       | 20:00        | 25.585 | 5/18/01 | 20:00 | 35.28  | 5/13/01   | 20:00 | 47.854 | 5/13/01   | 20:00 | 25.547 |
| 5/14/01   | 0:00         | 54.373 | 5/14/01   | 4:00  | 11.307 | 5/19/01       | 0:00         | 25.602 | 5/19/01 | 0:00  | 35,299 | 5/14/01   | 0:00  | 47.868 | 5/14/01   | 0:00  | 25.547 |
| 5/14/01   | 4:00         | 54.370 | 5/14/01   | 8:00  | 11.314 | 5/19/01       | 4:00         | 25.612 | 5/19/01 | 4:00  | 35,308 | 5/14/01   | 4:00  | 47,875 | 5/14/01   | 4:00  | 25.545 |
| 5/14/01   | 8:00         | 54.365 | 5/14/01   | 12:00 | 11.321 | 5/19/01       | 8:00         | 25.634 | 5/19/01 | 8:00  | 35.329 | 5/14/01   | 8:00  | 47.845 | 5/14/01   | 8:00  | 25.543 |
| 5/14/01   | 12:00        | 54,343 | 5/14/01   | 16:00 | 11.319 | 5/19/01       | 12:00        | 25.643 | 5/19/01 | 12:00 | 35.334 | 5/14/01   | 12:00 | 47,827 | 5/14/01   | 12:00 | 25.535 |
| 5/14/01   | 16:00        | 54.286 | 5/14/01   | 20:00 | 11.317 | 5/19/01       | 16:00        | 25.636 | 5/19/01 | 16:00 | 35.312 | 5/14/01   | 16:00 | 47.754 | 5/14/01   | 16:00 | 25.528 |
| 5/14/01   | 20:00        | 54.236 | 5/15/01   | 0:00  | 11.319 | 5/19/01       | 20:00        | 25.631 | 5/19/01 | 20:00 | 35.297 | 5/14/01   | 20:00 | 47.719 | 5/14/01   | 20:00 | 25.528 |
| 5/15/01   | 0:00         | 54.224 | 5/15/01   | 4:00  | 11.319 | 5/20/01       | 0:00         | 25.629 | 5/20/01 | 0:00  | 35.28  | 5/15/01   | 0:00  | 47.694 | 5/15/01   | 0:00  | 25.53  |
| 5/15/01   | 4:00         | 54.189 | 5/15/01   | 8:00  | 11.326 | 5/20/01       | 4:00         | 25.617 | 5/20/01 | 4:00  | 35.256 | 5/15/01   | 4:00  | 47.665 | 5/15/01   | 4:00  | 25.514 |

|         | DW06         |        |         | SB01         |        |         | SB09         |        |         | SB16         |        |         | SB18         |        |         | SB19  |        |
|---------|--------------|--------|---------|--------------|--------|---------|--------------|--------|---------|--------------|--------|---------|--------------|--------|---------|-------|--------|
| Date    | Time         | Depth  | Date    | Time  | Depth  |
| E/4E/04 | 0-00         | E4 450 | E/4E/04 | 10.00        | 11.000 | E/00/04 | 0.00         | 05.005 | E/00/04 | 0.00         | 25.000 | E/4E/04 | 0.00         | 47.000 | E/1E/04 | 0.00  |        |
| 5/15/01 | 8:00         | 54.152 | 5/15/01 | 12:00        | 11.333 | 5/20/01 | 8:00         | 25.605 | 5/20/01 | 8:00         | 35.233 | 5/15/01 | 8:00         | 47.633 | 5/15/01 | 8:00  | 25.514 |
| 5/15/01 | 12:00        | 54.112 | 5/15/01 | 10.00        | 11.331 | 5/20/01 | 12:00        | 20.000 | 5/20/01 | 12:00        | 35.190 | 5/15/01 | 12:00        | 47.590 | 5/15/01 | 12:00 | 25.506 |
| 5/15/01 | 20.00        | 54.002 | 5/15/01 | 20.00        | 11 2/2 | 5/20/01 | 20:00        | 25.000 | 5/20/01 | 20:00        | 35.14  | 5/15/01 | 20:00        | 47.540 | 5/15/01 | 20:00 | 25.500 |
| 5/16/01 | 20.00        | 54.023 | 5/16/01 | 4:00         | 11.343 | 5/20/01 | 20.00        | 25.491 | 5/20/01 | 20.00        | 35.009 | 5/16/01 | 20.00        | 47.532 | 5/16/01 | 20.00 | 25.525 |
| 5/16/01 | 4:00         | 54.020 | 5/16/01 | 4.00         | 11.350 | 5/21/01 | 4:00         | 25.515 | 5/21/01 | 4:00         | 35.093 | 5/16/01 | 4:00         | 47.532 | 5/16/01 | 4:00  | 25.555 |
| 5/16/01 | 4.00<br>8.00 | 54.020 | 5/16/01 | 12:00        | 11.304 | 5/21/01 | 4.00<br>8:00 | 25.557 | 5/21/01 | 4.00<br>8:00 | 35 16/ | 5/16/01 | 4.00<br>8:00 | 47.520 | 5/16/01 | 8.00  | 25.545 |
| 5/16/01 | 12.00        | 54.033 | 5/16/01 | 12.00        | 11.370 | 5/21/01 | 12:00        | 25.504 | 5/21/01 | 12:00        | 25 211 | 5/16/01 | 12:00        | 47.537 | 5/16/01 | 12:00 | 25.50  |
| 5/16/01 | 12.00        | 52 080 | 5/16/01 | 20:00        | 11 202 | 5/21/01 | 12.00        | 25.595 | 5/21/01 | 12.00        | 35 222 | 5/16/01 | 12.00        | 47.520 | 5/16/01 | 12.00 | 25.574 |
| 5/16/01 | 20.00        | 52 075 | 5/17/01 | 20.00        | 11.392 | 5/21/01 | 20.00        | 25.007 | 5/21/01 | 20:00        | 35 252 | 5/16/01 | 20:00        | 47.5   | 5/16/01 | 20.00 | 25.570 |
| 5/17/01 | 20.00        | 53 003 | 5/17/01 | 4.00         | 11.404 | 5/22/01 | 20.00        | 25.020 | 5/22/01 | 20.00        | 35 276 | 5/17/01 | 20.00        | 47.40  | 5/17/01 | 20.00 | 25.000 |
| 5/17/01 | 4.00         | 53 995 | 5/17/01 | 4.00<br>8:00 | 11 437 | 5/22/01 | 4:00         | 25.650 | 5/22/01 | 4:00         | 35 286 | 5/17/01 | 4.00         | 47 507 | 5/17/01 | 4.00  | 25.642 |
| 5/17/01 | 8.00         | 54 020 | 5/17/01 | 12.00        | 11 448 | 5/22/01 | 8.00         | 25.650 | 5/22/01 | 8.00         | 35 203 | 5/17/01 | 8.00         | 47 507 | 5/17/01 | 8.00  | 25.664 |
| 5/17/01 | 12.00        | 54 042 | 5/17/01 | 16:00        | 11 460 | 5/22/01 | 12.00        | 25.663 | 5/22/01 | 12.00        | 35 299 | 5/17/01 | 12.00        | 47 56  | 5/17/01 | 12.00 | 25.004 |
| 5/17/01 | 16:00        | 54 035 | 5/17/01 | 20.00        | 11 479 | 5/22/01 | 16:00        | 25 650 | 5/22/01 | 16:00        | 35 284 | 5/17/01 | 16:00        | 47 571 | 5/17/01 | 16:00 | 25 714 |
| 5/17/01 | 20:00        | 54.087 | 5/18/01 | 0:00         | 11,493 | 5/22/01 | 20:00        | 25.653 | 5/22/01 | 20:00        | 35,289 | 5/17/01 | 20:00        | 47.601 | 5/17/01 | 20:00 | 25.751 |
| 5/18/01 | 0:00         | 54.127 | 5/18/01 | 4:00         | 11.505 | 5/23/01 | 0:00         | 25,660 | 5/23/01 | 0:00         | 35,293 | 5/18/01 | 0:00         | 47.614 | 5/18/01 | 0:00  | 25.773 |
| 5/18/01 | 4:00         | 54.134 | 5/18/01 | 8:00         | 11.526 | 5/23/01 | 4:00         | 25.648 | 5/23/01 | 4:00         | 35.273 | 5/18/01 | 4:00         | 47.628 | 5/18/01 | 4:00  | 25.79  |
| 5/18/01 | 8:00         | 54.152 | 5/18/01 | 12:00        | 11.543 | 5/23/01 | 8:00         | 25.648 | 5/23/01 | 8:00         | 35.263 | 5/18/01 | 8:00         | 47.672 | 5/18/01 | 8:00  | 25.809 |
| 5/18/01 | 12:00        | 54.164 | 5/18/01 | 16:00        | 11.554 | 5/23/01 | 12:00        | 25.648 | 5/23/01 | 12:00        | 35.261 | 5/18/01 | 12:00        | 47.667 | 5/18/01 | 12:00 | 25.831 |
| 5/18/01 | 16:00        | 54.157 | 5/18/01 | 20:00        | 11.569 | 5/23/01 | 16:00        | 25.658 | 5/23/01 | 16:00        | 35.269 | 5/18/01 | 16:00        | 47.656 | 5/18/01 | 16:00 | 25.845 |
| 5/18/01 | 20:00        | 54.157 | 5/19/01 | 0:00         | 11.587 | 5/23/01 | 20:00        | 25.663 | 5/23/01 | 20:00        | 35.271 | 5/18/01 | 20:00        | 47.676 | 5/18/01 | 20:00 | 25.882 |
| 5/19/01 | 0:00         | 54.191 | 5/19/01 | 4:00         | 11.601 | 5/24/01 | 0:00         | 25.665 | 5/24/01 | 0:00         | 35.282 | 5/19/01 | 0:00         | 47.692 | 5/19/01 | 0:00  | 25.911 |
| 5/19/01 | 4:00         | 54.206 | 5/19/01 | 8:00         | 11.627 | 5/24/01 | 4:00         | 25.663 | 5/24/01 | 4:00         | 35.282 | 5/19/01 | 4:00         | 47.692 | 5/19/01 | 4:00  | 25.923 |
| 5/19/01 | 8:00         | 54.232 | 5/19/01 | 12:00        | 11.637 | 5/24/01 | 8:00         | 25.684 | 5/24/01 | 8:00         | 35.299 | 5/19/01 | 8:00         | 47.74  | 5/19/01 | 8:00  | 25.947 |
| 5/19/01 | 12:00        | 54.239 | 5/19/01 | 16:00        | 11.646 | 5/24/01 | 12:00        | 25.689 | 5/24/01 | 12:00        | 35.319 | 5/19/01 | 12:00        | 47.733 | 5/19/01 | 12:00 | 25.959 |
| 5/19/01 | 16:00        | 54.187 | 5/19/01 | 20:00        | 11.658 | 5/24/01 | 16:00        | 25.699 | 5/24/01 | 16:00        | 35.327 | 5/19/01 | 16:00        | 47.681 | 5/19/01 | 16:00 | 25.959 |
| 5/19/01 | 20:00        | 54.145 | 5/20/01 | 0:00         | 11.667 | 5/24/01 | 20:00        | 25.711 | 5/24/01 | 20:00        | 35.342 | 5/19/01 | 20:00        | 47.642 | 5/19/01 | 20:00 | 25.976 |
| 5/20/01 | 0:00         | 54.117 | 5/20/01 | 4:00         | 11.670 | 5/25/01 | 0:00         | 25.723 | 5/25/01 | 0:00         | 35.362 | 5/20/01 | 0:00         | 47.633 | 5/20/01 | 0:00  | 25.983 |
| 5/20/01 | 4:00         | 54.083 | 5/20/01 | 8:00         | 11.677 | 5/25/01 | 4:00         | 25.730 | 5/25/01 | 4:00         | 35.366 | 5/20/01 | 4:00         | 47.58  | 5/20/01 | 4:00  | 25.969 |
| 5/20/01 | 8:00         | 54.043 | 5/20/01 | 12:00        | 11.679 | 5/25/01 | 8:00         | 25.745 | 5/25/01 | 8:00         | 35.379 | 5/20/01 | 8:00         | 47.534 | 5/20/01 | 8:00  | 25.964 |
| 5/20/01 | 12:00        | 53.978 | 5/20/01 | 16:00        | 11.679 | 5/25/01 | 12:00        | 25.757 | 5/25/01 | 12:00        | 35.392 | 5/20/01 | 12:00        | 47.48  | 5/20/01 | 12:00 | 25.947 |
| 5/20/01 | 16:00        | 53.896 | 5/20/01 | 20:00        | 11.319 | 5/25/01 | 16:00        | 25.757 | 5/25/01 | 16:00        | 35.394 | 5/20/01 | 16:00        | 47.398 | 5/20/01 | 16:00 | 25.918 |
| 5/20/01 | 20:00        | 53.837 | 5/21/01 | 0:00         | 11.611 | 5/25/01 | 20:00        | 25.761 | 5/25/01 | 20:00        | 35.388 | 5/20/01 | 20:00        | 47.204 | 5/20/01 | 20:00 | 25.857 |
| 5/21/01 | 0:00         | 53.886 | 5/21/01 | 4:00         | 11.630 | 5/26/01 | 0:00         | 25.764 | 5/26/01 | 0:00         | 35.379 | 5/21/01 | 0:00         | 47.388 | 5/21/01 | 0:00  | 25.908 |
| 5/21/01 | 4:00         | 53.943 | 5/21/01 | 8:00         | 11.658 | 5/26/01 | 4:00         | 25.761 | 5/26/01 | 4:00         | 35.375 | 5/21/01 | 4:00         | 47.459 | 5/21/01 | 4:00  | 25.937 |
| 5/21/01 | 8:00         | 54.001 | 5/21/01 | 12:00        | 11.663 | 5/26/01 | 8:00         | 25.759 | 5/26/01 | 8:00         | 35.368 | 5/21/01 | 8:00         | 47.507 | 5/21/01 | 8:00  | 25.964 |
| 5/21/01 | 12:00        | 54.068 | 5/21/01 | 16:00        | 11.649 | 5/26/01 | 12:00        | 25.764 | 5/26/01 | 12:00        | 35.36  | 5/21/01 | 12:00        | 47.601 | 5/21/01 | 12:00 | 25.995 |

|         | DW06  |        |         | SB01         |        |         | SB09  |        |         | SB16         |        |         | SB18  |        |         | SB19  |        |
|---------|-------|--------|---------|--------------|--------|---------|-------|--------|---------|--------------|--------|---------|-------|--------|---------|-------|--------|
| Date    | Time  | Depth  | Date    | Time         | Depth  | Date    | Time  | Depth  | Date    | Time         | Depth  | Date    | Time  | Depth  | Date    | Time  | Depth  |
| 5/21/01 | 16:00 | 54 10F | 5/21/01 | 20.00        | 11 652 | 5/26/01 | 16:00 | 25 766 | 5/26/01 | 16:00        | 25 255 | 5/21/01 | 16:00 | 47 506 | 5/21/01 | 16:00 | 26.012 |
| 5/21/01 | 20.00 | 54.105 | 5/21/01 | 20.00        | 11.000 | 5/20/01 | 20:00 | 25.700 | 5/20/01 | 20:00        | 25 247 | 5/21/01 | 20:00 | 47.090 | 5/21/01 | 20:00 | 20.012 |
| 5/22/01 | 20.00 | 54.117 | 5/22/01 | 4.00         | 11.000 | 5/27/01 | 20.00 | 25.700 | 5/27/01 | 20.00        | 35 351 | 5/22/01 | 20.00 | 47.033 | 5/22/01 | 20.00 | 26.056 |
| 5/22/01 | 4.00  | 54 145 | 5/22/01 | 4.00<br>8:00 | 11.670 | 5/27/01 | 4.00  | 25.771 | 5/27/01 | 4.00         | 35 349 | 5/22/01 | 4:00  | 47.642 | 5/22/01 | 4:00  | 26.050 |
| 5/22/01 | 8.00  | 54 147 | 5/22/01 | 12.00        | 11.686 | 5/27/01 | 8.00  | 25 783 | 5/27/01 | 4.00<br>8.00 | 35 355 | 5/22/01 | 8:00  | 47.66  | 5/22/01 | 8.00  | 26.068 |
| 5/22/01 | 12.00 | 54 140 | 5/22/01 | 16:00        | 11.632 | 5/27/01 | 12.00 | 25 788 | 5/27/01 | 12.00        | 35 351 | 5/22/01 | 12.00 | 47 651 | 5/22/01 | 12.00 | 26.000 |
| 5/22/01 | 16:00 | 54 145 | 5/22/01 | 20.00        | 11.653 | 5/27/01 | 16:00 | 25 788 | 5/27/01 | 16:00        | 35 347 | 5/22/01 | 16:00 | 47 628 | 5/22/01 | 16:00 | 26.000 |
| 5/22/01 | 20:00 | 54,117 | 5/23/01 | 0:00         | 11.672 | 5/27/01 | 20:00 | 25.788 | 5/27/01 | 20:00        | 35.332 | 5/22/01 | 20:00 | 47.603 | 5/22/01 | 20:00 | 26.095 |
| 5/23/01 | 0:00  | 54.130 | 5/23/01 | 4:00         | 11.665 | 5/28/01 | 0:00  | 25.795 | 5/28/01 | 0:00         | 35.345 | 5/23/01 | 0:00  | 47.642 | 5/23/01 | 0:00  | 26.104 |
| 5/23/01 | 4:00  | 54.092 | 5/23/01 | 8:00         | 11.693 | 5/28/01 | 4:00  | 25.810 | 5/28/01 | 4:00         | 35.353 | 5/23/01 | 4:00  | 47.583 | 5/23/01 | 4:00  | 26.09  |
| 5/23/01 | 8:00  | 54.070 | 5/23/01 | 12:00        | 11.698 | 5/28/01 | 8:00  | 25.829 | 5/28/01 | 8:00         | 35.377 | 5/23/01 | 8:00  | 47.58  | 5/23/01 | 8:00  | 26.095 |
| 5/23/01 | 12:00 | 54.048 | 5/23/01 | 16:00        | 11.684 | 5/28/01 | 12:00 | 25.843 | 5/28/01 | 12:00        | 35.433 | 5/23/01 | 12:00 | 47.569 | 5/23/01 | 12:00 | 26.102 |
| 5/23/01 | 16:00 | 54.055 | 5/23/01 | 20:00        | 11.693 | 5/28/01 | 16:00 | 25.858 | 5/28/01 | 16:00        | 35.439 | 5/23/01 | 16:00 | 47.592 | 5/23/01 | 16:00 | 26.124 |
| 5/23/01 | 20:00 | 54.073 | 5/24/01 | 0:00         | 11.700 | 5/28/01 | 20:00 | 25.875 | 5/28/01 | 20:00        | 35.45  | 5/23/01 | 20:00 | 47.605 | 5/23/01 | 20:00 | 26.143 |
| 5/24/01 | 0:00  | 54.083 | 5/24/01 | 4:00         | 11.707 | 5/29/01 | 0:00  | 25.894 | 5/29/01 | 0:00         | 35.474 | 5/24/01 | 0:00  | 47.612 | 5/24/01 | 0:00  | 26.158 |
| 5/24/01 | 4:00  | 54.088 | 5/24/01 | 8:00         | 11.729 | 5/29/01 | 4:00  | 25.909 | 5/29/01 | 4:00         | 35.495 | 5/24/01 | 4:00  | 47.619 | 5/24/01 | 4:00  | 26.167 |
| 5/24/01 | 8:00  | 54.107 | 5/24/01 | 12:00        | 11.762 | 5/29/01 | 8:00  | 25.928 | 5/29/01 | 8:00         | 35.515 | 5/24/01 | 8:00  | 47.665 | 5/24/01 | 8:00  | 26.191 |
| 5/24/01 | 12:00 | 54.132 | 5/24/01 | 16:00        | 11.387 | 5/29/01 | 12:00 | 25.937 | 5/29/01 | 12:00        | 35.525 | 5/24/01 | 12:00 | 47.676 | 5/24/01 | 12:00 | 26.213 |
| 5/24/01 | 16:00 | 54.140 | 5/24/01 | 20:00        | 11.138 | 5/29/01 | 16:00 | 25.937 | 5/29/01 | 16:00        | 35.51  | 5/24/01 | 16:00 | 47.471 | 5/24/01 | 16:00 | 26.233 |
| 5/24/01 | 20:00 | 54.174 | 5/25/01 | 0:00         | 11.674 | 5/29/01 | 20:00 | 25.933 | 5/29/01 | 20:00        | 35.5   | 5/24/01 | 20:00 | 47.256 | 5/24/01 | 20:00 | 26.25  |
| 5/25/01 | 0:00  | 54.199 | 5/25/01 | 4:00         | 11.766 | 5/30/01 | 0:00  | 25.938 | 5/30/01 | 0:00         | 35.495 | 5/25/01 | 0:00  | 47.727 | 5/25/01 | 0:00  | 26.269 |
| 5/25/01 | 4:00  | 54.199 | 5/25/01 | 8:00         | 11.809 | 5/30/01 | 4:00  | 25.913 | 5/30/01 | 4:00         | 35.454 | 5/25/01 | 4:00  | 47.729 | 5/25/01 | 4:00  | 26.276 |
| 5/25/01 | 8:00  | 54.204 | 5/25/01 | 12:00        | 11.823 | 5/30/01 | 8:00  | 25.916 | 5/30/01 | 8:00         | 35.452 | 5/25/01 | 8:00  | 47.754 | 5/25/01 | 8:00  | 26.298 |
| 5/25/01 | 12:00 | 54.222 | 5/25/01 | 16:00        | 11.806 | 5/30/01 | 12:00 | 25.911 | 5/30/01 | 12:00        | 35.437 | 5/25/01 | 12:00 | 47.765 | 5/25/01 | 12:00 | 26.312 |
| 5/25/01 | 16:00 | 54.197 | 5/25/01 | 20:00        | 11.809 | 5/30/01 | 16:00 | 25.882 | 5/30/01 | 16:00        | 35.405 | 5/25/01 | 16:00 | 47.72  | 5/25/01 | 16:00 | 26.317 |
| 5/25/01 | 20:00 | 54.175 | 5/26/01 | 0:00         | 11.818 | 5/30/01 | 20:00 | 25.868 | 5/30/01 | 20:00        | 35.4   | 5/25/01 | 20:00 | 47.72  | 5/25/01 | 20:00 | 26.329 |
| 5/26/01 | 0:00  | 54.160 | 5/26/01 | 4:00         | 11.830 | 5/31/01 | 0:00  | 25.882 | 5/31/01 | 0:00         | 35.424 | 5/26/01 | 0:00  | 47.715 | 5/26/01 | 0:00  | 26.337 |
| 5/26/01 | 4:00  | 54.155 | 5/26/01 | 8:00         | 11.851 | 5/31/01 | 4:00  | 25.887 | 5/31/01 | 4:00         | 35.431 | 5/26/01 | 4:00  | 47.722 | 5/26/01 | 4:00  | 26.342 |
| 5/26/01 | 8:00  | 54.133 | 5/26/01 | 12:00        | 11.853 | 5/31/01 | 8:00  | 25.901 | 5/31/01 | 8:00         | 35.448 | 5/26/01 | 8:00  | 47.674 | 5/26/01 | 8:00  | 26.346 |
| 5/26/01 | 12:00 | 54.113 | 5/26/01 | 16:00        | 11.865 | 5/31/01 | 12:00 | 25.906 | 5/31/01 | 12:00        | 35.465 | 5/26/01 | 12:00 | 47.685 | 5/26/01 | 12:00 | 26.356 |
| 5/26/01 | 16:00 | 54.095 | 5/26/01 | 20:00        | 11.868 | 5/31/01 | 16:00 | 25.904 | 5/31/01 | 16:00        | 35.467 | 5/26/01 | 16:00 | 47.663 | 5/26/01 | 16:00 | 26.371 |
| 5/26/01 | 20:00 | 54.080 | 5/27/01 | 0:00         | 11.879 | 5/31/01 | 20:00 | 25.906 | 5/31/01 | 20:00        | 35.484 | 5/26/01 | 20:00 | 47.647 | 5/26/01 | 20:00 | 26.388 |
| 5/27/01 | 0:00  | 54.098 | 5/27/01 | 4:00         | 11.893 | 6/1/01  | 0:00  | 25.901 | 6/1/01  | 0:00         | 35.493 | 5/27/01 | 0:00  | 47.674 | 5/27/01 | 0:00  | 26.404 |
| 5/27/01 | 4:00  | 54.083 | 5/27/01 | 8:00         | 11.908 | 6/1/01  | 4:00  | 25.884 | 6/1/01  | 4:00         | 35.482 | 5/27/01 | 4:00  | 47.644 | 5/27/01 | 4:00  | 26.414 |
| 5/27/01 | 8:00  | 54.078 | 5/27/01 | 12:00        | 11.931 | 6/1/01  | 8:00  | 25.872 | 6/1/01  | 8:00         | 35.478 | 5/27/01 | 8:00  | 47.674 | 5/27/01 | 8:00  | 26.429 |
| 5/27/01 | 12:00 | 54.063 | 5/27/01 | 16:00        | 11.931 | 6/1/01  | 12:00 | 25.851 | 6/1/01  | 12:00        | 35.456 | 5/27/01 | 12:00 | 47.683 | 5/27/01 | 12:00 | 26.443 |
| 5/27/01 | 16:00 | 54.036 | 5/27/01 | 20:00        | 11.941 | 6/1/01  | 16:00 | 25.817 | 6/1/01  | 16:00        | 35.409 | 5/27/01 | 16:00 | 47.637 | 5/27/01 | 16:00 | 26.458 |
| 5/27/01 | 20:00 | 54.001 | 5/28/01 | 0:00         | 11.955 | 6/1/01  | 20:00 | 25.752 | 6/1/01  | 20:00        | 35.351 | 5/27/01 | 20:00 | 47.642 | 5/27/01 | 20:00 | 26.475 |

|         | DW06  |        |         | SB01  |        |        | SB09  |        |        | SB16  |        |         | SB18  |        |         | SB19  |        |
|---------|-------|--------|---------|-------|--------|--------|-------|--------|--------|-------|--------|---------|-------|--------|---------|-------|--------|
| Date    | Time  | Depth  | Date    | Time  | Depth  | Date   | Time  | Depth  | Date   | Time  | Depth  | Date    | Time  | Depth  | Date    | Time  | Depth  |
|         |       |        | _ / / / |       |        |        |       |        |        |       |        |         |       |        |         |       |        |
| 5/28/01 | 0:00  | 54.036 | 5/28/01 | 4:00  | 11.969 | 6/2/01 | 0:00  | 25.767 | 6/2/01 | 0:00  | 35.377 | 5/28/01 | 0:00  | 47.649 | 5/28/01 | 0:00  | 26.501 |
| 5/28/01 | 4:00  | 54.054 | 5/28/01 | 8:00  | 11.990 | 6/2/01 | 4:00  | 25.757 | 6/2/01 | 4:00  | 35.383 | 5/28/01 | 4:00  | 47.656 | 5/28/01 | 4:00  | 26.521 |
| 5/28/01 | 8:00  | 54.071 | 5/28/01 | 12:00 | 12.009 | 6/2/01 | 8:00  | 25.769 | 6/2/01 | 8:00  | 35.403 | 5/28/01 | 8:00  | 47.706 | 5/28/01 | 8:00  | 26.55  |
| 5/28/01 | 12:00 | 54.118 | 5/28/01 | 16:00 | 12.021 | 6/2/01 | 12:00 | 25.766 | 6/2/01 | 12:00 | 35.416 | 5/28/01 | 12:00 | 47.749 | 5/28/01 | 12:00 | 26.572 |
| 5/28/01 | 16:00 | 54.113 | 5/28/01 | 20:00 | 12.035 | 6/2/01 | 16:00 | 25.754 | 6/2/01 | 16:00 | 35.407 | 5/28/01 | 16:00 | 47.715 | 5/28/01 | 16:00 | 26.591 |
| 5/28/01 | 20:00 | 54.110 | 5/29/01 | 0:00  | 12.054 | 6/2/01 | 20:00 | 25.742 | 6/2/01 | 20:00 | 35.394 | 5/28/01 | 20:00 | 47.754 | 5/28/01 | 20:00 | 26.627 |
| 5/29/01 | 0:00  | 54.160 | 5/29/01 | 4:00  | 12.073 | 6/3/01 | 0:00  | 25.737 | 6/3/01 | 0:00  | 35.394 | 5/29/01 | 0:00  | 47.797 | 5/29/01 | 0:00  | 26.661 |
| 5/29/01 | 4:00  | 54.192 | 5/29/01 | 8:00  | 12.096 | 6/3/01 | 4:00  | 25.716 | 6/3/01 | 4:00  | 35.373 | 5/29/01 | 4:00  | 47.806 | 5/29/01 | 4:00  | 26.678 |
| 5/29/01 | 8:00  | 54.200 | 5/29/01 | 12:00 | 12.110 | 6/3/01 | 8:00  | 25.675 | 6/3/01 | 8:00  | 35.349 | 5/29/01 | 8:00  | 47.829 | 5/29/01 | 8:00  | 26.7   |
| 5/29/01 | 12:00 | 54.232 | 5/29/01 | 16:00 | 12.122 | 6/3/01 | 12:00 | 25.648 | 6/3/01 | 12:00 | 35.338 | 5/29/01 | 12:00 | 47.857 | 5/29/01 | 12:00 | 26.71  |
| 5/29/01 | 16:00 | 54.187 | 5/29/01 | 20:00 | 12.124 | 6/3/01 | 16:00 | 25.634 | 6/3/01 | 16:00 | 35.334 | 5/29/01 | 16:00 | 47.811 | 5/29/01 | 16:00 | 26.71  |
| 5/29/01 | 20:00 | 54.143 | 5/30/01 | 0:00  | 12.143 | 6/3/01 | 20:00 | 25.617 | 6/3/01 | 20:00 | 35.308 | 5/29/01 | 20:00 | 47.781 | 5/29/01 | 20:00 | 26.71  |
| 5/30/01 | 0:00  | 54.140 | 5/30/01 | 4:00  | 12.096 | 6/4/01 | 0:00  | 25.366 | 6/4/01 | 0:00  | 35.536 | 5/30/01 | 0:00  | 47.772 | 5/30/01 | 0:00  | 26.719 |
| 5/30/01 | 4:00  | 54.078 | 5/30/01 | 8:00  | 12.105 | 6/4/01 | 4:00  | 24.549 | 6/4/01 | 4:00  | 35.543 | 5/30/01 | 4:00  | 47.754 | 5/30/01 | 4:00  | 26.702 |
| 5/30/01 | 8:00  | 54.061 | 5/30/01 | 12:00 | 12.216 | 6/4/01 | 8:00  | 24.568 | 6/4/01 | 8:00  | 35.523 | 5/30/01 | 8:00  | 47.727 | 5/30/01 | 8:00  | 26.729 |
| 5/30/01 | 12:00 | 54.051 | 5/30/01 | 16:00 | 12.223 | 6/4/01 | 12:00 | 24.544 | 6/4/01 | 12:00 | 35.42  | 5/30/01 | 12:00 | 47.829 | 5/30/01 | 12:00 | 26.789 |
| 5/30/01 | 16:00 | 54.021 | 5/30/01 | 20:00 | 12.018 | 6/4/01 | 16:00 | 24.515 | 6/4/01 | 16:00 | 35.226 | 5/30/01 | 16:00 | 47.834 | 5/30/01 | 16:00 | 26.714 |
| 5/30/01 | 20:00 | 54.011 | 5/31/01 | 0:00  | 12.051 | 6/4/01 | 20:00 | 24.510 | 6/4/01 | 20:00 | 35.174 | 5/30/01 | 20:00 | 47.701 | 5/30/01 | 20:00 | 26.579 |
| 5/31/01 | 0:00  | 54.041 | 5/31/01 | 4:00  | 12.021 | 6/5/01 | 0:00  | 24.430 | 6/5/01 | 0:00  | 35.155 | 5/31/01 | 0:00  | 47.637 | 5/31/01 | 0:00  | 26.644 |
| 5/31/01 | 4:00  | 54.048 | 5/31/01 | 8:00  | 12.063 | 6/5/01 | 4:00  | 24.732 | 6/5/01 | 4:00  | 35.114 | 5/31/01 | 4:00  | 47.583 | 5/31/01 | 4:00  | 26.634 |
| 5/31/01 | 8:00  | 54.068 | 5/31/01 | 12:00 | 12.035 | 6/5/01 | 8:00  | 25.017 | 6/5/01 | 8:00  | 35.168 | 5/31/01 | 8:00  | 47.727 | 5/31/01 | 8:00  | 26.634 |
| 5/31/01 | 12:00 | 54.083 | 5/31/01 | 16:00 | 12.011 | 6/5/01 | 12:00 | 24.621 | 6/5/01 | 12:00 | 35.437 | 5/31/01 | 12:00 | 47.752 | 5/31/01 | 12:00 | 26.627 |
| 5/31/01 | 16:00 | 54.088 | 5/31/01 | 20:00 | 11.981 | 6/5/01 | 16:00 | 24.416 | 6/5/01 | 16:00 | 35.142 | 5/31/01 | 16:00 | 47.742 | 5/31/01 | 16:00 | 26.613 |
| 5/31/01 | 20:00 | 54.102 | 6/1/01  | 0:00  | 11.969 | 6/5/01 | 20:00 | 24.310 | 6/5/01 | 20:00 | 35.355 | 5/31/01 | 20:00 | 47.774 | 5/31/01 | 20:00 | 26.613 |
| 6/1/01  | 0:00  | 54.118 | 6/1/01  | 4:00  | 11.943 | 6/6/01 | 0:00  | 24.016 | 6/6/01 | 0:00  | 35.323 | 6/1/01  | 0:00  | 47.802 | 6/1/01  | 0:00  | 26.603 |
| 6/1/01  | 4:00  | 54.092 | 6/1/01  | 8:00  | 11.962 | 6/6/01 | 4:00  | 23.922 | 6/6/01 | 4:00  | 35.312 | 6/1/01  | 4:00  | 47.774 | 6/1/01  | 4:00  | 26.574 |
| 6/1/01  | 8:00  | 54.080 | 6/1/01  | 12:00 | 11.945 | 6/6/01 | 8:00  | 23.895 | 6/6/01 | 8:00  | 35.304 | 6/1/01  | 8:00  | 47.763 | 6/1/01  | 8:00  | 26.564 |
| 6/1/01  | 12:00 | 54.043 | 6/1/01  | 16:00 | 11.849 | 6/6/01 | 12:00 | 23.890 | 6/6/01 | 12:00 | 34.86  | 6/1/01  | 12:00 | 47.729 | 6/1/01  | 12:00 | 26.53  |
| 6/1/01  | 16:00 | 53.884 | 6/1/01  | 20:00 | 11.272 | 6/6/01 | 16:00 | 23.777 | 6/6/01 | 16:00 | 34.968 | 6/1/01  | 16:00 | 47.635 | 6/1/01  | 16:00 | 26.489 |
| 6/1/01  | 20:00 | 53.884 | 6/2/01  | 0:00  | 11.807 | 6/6/01 | 20:00 | 23.726 | 6/6/01 | 20:00 | 34.935 | 6/1/01  | 20:00 | 47.359 | 6/1/01  | 20:00 | 26.436 |
| 6/2/01  | 0:00  | 53.954 | 6/2/01  | 4:00  | 11.778 | 6/7/01 | 0:00  | 23.671 | 6/7/01 | 0:00  | 34.927 | 6/2/01  | 0:00  | 47.658 | 6/2/01  | 0:00  | 26.426 |
| 6/2/01  | 4:00  | 53.976 | 6/2/01  | 8:00  | 11.792 | 6/7/01 | 4:00  | 23.630 | 6/7/01 | 4:00  | 34.903 | 6/2/01  | 4:00  | 47.688 | 6/2/01  | 4:00  | 26.38  |
| 6/2/01  | 8:00  | 54.011 | 6/2/01  | 12:00 | 11.776 | 6/7/01 | 8:00  | 23.586 | 6/7/01 | 8:00  | 34.89  | 6/2/01  | 8:00  | 47.74  | 6/2/01  | 8:00  | 26.344 |
| 6/2/01  | 12:00 | 54.041 | 6/2/01  | 16:00 | 11.703 | 6/7/01 | 12:00 | 23.562 | 6/7/01 | 12:00 | 34.879 | 6/2/01  | 12:00 | 47.758 | 6/2/01  | 12:00 | 26.298 |
| 6/2/01  | 16:00 | 54.011 | 6/2/01  | 20:00 | 11.682 | 6/7/01 | 16:00 | 23.536 | 6/7/01 | 16:00 | 34.847 | 6/2/01  | 16:00 | 47.722 | 6/2/01  | 16:00 | 26.235 |
| 6/2/01  | 20:00 | 53.984 | 6/3/01  | 0:00  | 11.663 | 6/7/01 | 20:00 | 23.483 | 6/7/01 | 20:00 | 34.808 | 6/2/01  | 20:00 | 47.704 | 6/2/01  | 20:00 | 26.189 |
| 6/3/01  | 0:00  | 53.998 | 6/3/01  | 4:00  | 11.637 | 6/8/01 | 0:00  | 23.442 | 6/8/01 | 0:00  | 34.789 | 6/3/01  | 0:00  | 47.745 | 6/3/01  | 0:00  | 26.155 |
| 6/3/01  | 4:00  | 54.008 | 6/3/01  | 8:00  | 11.435 | 6/8/01 | 4:00  | 23.898 | 6/8/01 | 4:00  | 34.761 | 6/3/01  | 4:00  | 47.72  | 6/3/01  | 4:00  | 26.087 |

| TABLE D.3 | (Cont.) |
|-----------|---------|
|-----------|---------|

|        | DW06  |        |        | SB01  |        |         | SB09  |        |         | SB16  |         |        | SB18  |        |        | SB19  |        |
|--------|-------|--------|--------|-------|--------|---------|-------|--------|---------|-------|---------|--------|-------|--------|--------|-------|--------|
| Date   | Time  | Depth  | Date   | Time  | Depth  | Date    | Time  | Depth  | Date    | Time  | Depth   | Date   | Time  | Depth  | Date   | Time  | Depth  |
| 0/0/04 | 0.00  | 54.004 | 0/0/04 | 40.00 | 44.000 | 0/0/04  | 0.00  | 04.407 | 0/0/04  | 0.00  | 0.4 700 | 0/0/04 | 0.00  | 47 500 | 0/0/04 | 0.00  | 05.000 |
| 6/3/01 | 8:00  | 54.001 | 6/3/01 | 12:00 | 11.602 | 6/8/01  | 8:00  | 24.197 | 6/8/01  | 8:00  | 34.739  | 6/3/01 | 8:00  | 47.596 | 6/3/01 | 8:00  | 25.983 |
| 6/3/01 | 12:00 | 53.956 | 6/3/01 | 16:00 | 11.531 | 6/8/01  | 12:00 | 24.406 | 6/8/01  | 12:00 | 34.729  | 6/3/01 | 12:00 | 47.743 | 6/3/01 | 12:00 | 25.964 |
| 6/3/01 | 16:00 | 53.966 | 6/3/01 | 20:00 | 11.435 | 6/8/01  | 16:00 | 24.505 | 6/8/01  | 16:00 | 34.69   | 6/3/01 | 16:00 | 47.681 | 6/3/01 | 16:00 | 25.894 |
| 6/3/01 | 20:00 | 53.944 | 6/4/01 | 0:00  | 11.208 | 6/8/01  | 20:00 | 24.503 | 6/8/01  | 20:00 | 34.643  | 6/3/01 | 20:00 | 47.66  | 6/3/01 | 20:00 | 25.826 |
| 6/4/01 | 0:00  | 53.909 | 6/4/01 | 4:00  | 11.100 | 6/9/01  | 0:00  | 24.484 | 6/9/01  | 0:00  | 34.619  | 6/4/01 | 0:00  | 47.464 | 6/4/01 | 0:00  | 25.601 |
| 6/4/01 | 4:00  | 53.922 | 6/4/01 | 8:00  | 11.018 | 6/9/01  | 4:00  | 24.457 | 6/9/01  | 4:00  | 34.584  | 6/4/01 | 4:00  | 47.452 | 6/4/01 | 4:00  | 25.528 |
| 6/4/01 | 8:00  | 53.932 | 6/4/01 | 12:00 | 11.121 | 6/9/01  | 8:00  | 24.452 | 6/9/01  | 8:00  | 34.561  | 6/4/01 | 8:00  | 47.464 | 6/4/01 | 8:00  | 25.465 |
| 6/4/01 | 12:00 | 53.954 | 6/4/01 | 16:00 | 11.001 | 6/9/01  | 12:00 | 24.445 | 6/9/01  | 12:00 | 34.526  | 6/4/01 | 12:00 | 47.589 | 6/4/01 | 12:00 | 25.388 |
| 6/4/01 | 16:00 | 53.937 | 6/4/01 | 20:00 | 10.921 | 6/9/01  | 16:00 | 24.443 | 6/9/01  | 16:00 | 34.485  | 6/4/01 | 16:00 | 47.621 | 6/4/01 | 16:00 | 25.271 |
| 6/4/01 | 20:00 | 53.922 | 6/5/01 | 0:00  | 10.855 | 6/9/01  | 20:00 | 24.414 | 6/9/01  | 20:00 | 34.432  | 6/4/01 | 20:00 | 47.601 | 6/4/01 | 20:00 | 25.167 |
| 6/5/01 | 0:00  | 53.937 | 6/5/01 | 4:00  | 10.780 | 6/10/01 | 0:00  | 24.394 | 6/10/01 | 0:00  | 34.386  | 6/5/01 | 0:00  | 47.615 | 6/5/01 | 0:00  | 25.078 |
| 6/5/01 | 4:00  | 53.914 | 6/5/01 | 8:00  | 10.728 | 6/10/01 | 4:00  | 24.365 | 6/10/01 | 4:00  | 34.337  | 6/5/01 | 4:00  | 47.603 | 6/5/01 | 4:00  | 24.981 |
| 6/5/01 | 8:00  | 53.979 | 6/5/01 | 12:00 | 10.839 | 6/10/01 | 8:00  | 24.348 | 6/10/01 | 8:00  | 34.315  | 6/5/01 | 8:00  | 47.631 | 6/5/01 | 8:00  | 24.93  |
| 6/5/01 | 12:00 | 53.986 | 6/5/01 | 16:00 | 10.575 | 6/10/01 | 12:00 | 24.324 | 6/10/01 | 12:00 | 34.272  | 6/5/01 | 12:00 | 47.733 | 6/5/01 | 12:00 | 25.017 |
| 6/5/01 | 16:00 | 54.029 | 6/5/01 | 20:00 | 10.344 | 6/10/01 | 16:00 | 24.303 | 6/10/01 | 16:00 | 34.229  | 6/5/01 | 16:00 | 47.692 | 6/5/01 | 16:00 | 24.765 |
| 6/5/01 | 20:00 | 54.007 | 6/6/01 | 0:00  | 10.149 | 6/10/01 | 20:00 | 24.291 | 6/10/01 | 20:00 | 34.19   | 6/5/01 | 20:00 | 47.553 | 6/5/01 | 20:00 | 24.548 |
| 6/6/01 | 0:00  | 53.910 | 6/6/01 | 4:00  | 10.034 | 6/11/01 | 0:00  | 24.274 | 6/11/01 | 0:00  | 34.165  | 6/6/01 | 0:00  | 47.45  | 6/6/01 | 0:00  | 24.395 |
| 6/6/01 | 4:00  | 53.825 | 6/6/01 | 8:00  | 10.050 | 6/11/01 | 4:00  | 24.254 | 6/11/01 | 4:00  | 34.143  | 6/6/01 | 4:00  | 47.432 | 6/6/01 | 4:00  | 24.303 |
| 6/6/01 | 8:00  | 53.885 | 6/6/01 | 12:00 | 10.156 | 6/11/01 | 8:00  | 24.254 | 6/11/01 | 8:00  | 34.124  | 6/6/01 | 8:00  | 47.484 | 6/6/01 | 8:00  | 24.33  |
| 6/6/01 | 12:00 | 53.967 | 6/6/01 | 16:00 | 10.060 | 6/11/01 | 12:00 | 24.242 | 6/11/01 | 12:00 | 34.098  | 6/6/01 | 12:00 | 47.669 | 6/6/01 | 12:00 | 24.276 |
| 6/6/01 | 16:00 | 53.991 | 6/6/01 | 20:00 | 9.996  |         |       |        |         |       |         | 6/6/01 | 16:00 | 47.656 | 6/6/01 | 16:00 | 24.175 |
| 6/6/01 | 20:00 | 53.996 | 6/7/01 | 0:00  | 9.935  |         |       |        |         |       |         | 6/6/01 | 20:00 | 47.626 | 6/6/01 | 20:00 | 24.09  |
| 6/7/01 | 0:00  | 54.036 | 6/7/01 | 4:00  | 9.897  |         |       |        |         |       |         | 6/7/01 | 0:00  | 47.615 | 6/7/01 | 0:00  | 24.017 |
| 6/7/01 | 4:00  | 54.041 | 6/7/01 | 8:00  | 9.864  |         |       |        |         |       |         | 6/7/01 | 4:00  | 47.61  | 6/7/01 | 4:00  | 23.95  |
| 6/7/01 | 8:00  | 54.066 | 6/7/01 | 12:00 | 9.838  |         |       |        |         |       |         | 6/7/01 | 8:00  | 47.635 | 6/7/01 | 8:00  | 23.894 |
| 6/7/01 | 12:00 | 54.086 | 6/7/01 | 16:00 | 9.746  |         |       |        |         |       |         | 6/7/01 | 12:00 | 47.663 | 6/7/01 | 12:00 | 23.843 |
| 6/7/01 | 16:00 | 54.076 | 6/7/01 | 20:00 | 9.732  |         |       |        |         |       |         | 6/7/01 | 16:00 | 47.596 | 6/7/01 | 16:00 | 23.787 |
| 6/7/01 | 20:00 | 54.056 | 6/8/01 | 0:00  | 9.709  |         |       |        |         |       |         | 6/7/01 | 20:00 | 47.587 | 6/7/01 | 20:00 | 23.734 |
| 6/8/01 | 0:00  | 54.061 | 6/8/01 | 4:00  | 9.687  |         |       |        |         |       |         | 6/8/01 | 0:00  | 47.574 | 6/8/01 | 0:00  | 23.698 |
| 6/8/01 | 4:00  | 54.051 | 6/8/01 | 8:00  | 9.680  |         |       |        |         |       |         | 6/8/01 | 4:00  | 47.558 | 6/8/01 | 4:00  | 23.652 |
| 6/8/01 | 8:00  | 54.059 | 6/8/01 | 12:00 | 9.673  |         |       |        |         |       |         | 6/8/01 | 8:00  | 47.562 | 6/8/01 | 8:00  | 23.62  |
| 6/8/01 | 12:00 | 54.079 | 6/8/01 | 16:00 | 9.638  |         |       |        |         |       |         | 6/8/01 | 12:00 | 47.549 | 6/8/01 | 12:00 | 23.591 |
| 6/8/01 | 16:00 | 54.059 | 6/8/01 | 20:00 | 9.624  |         |       |        |         |       |         | 6/8/01 | 16:00 | 47.5   | 6/8/01 | 16:00 | 23.557 |
| 6/8/01 | 20:00 | 54.007 | 6/9/01 | 0:00  | 9.617  |         |       |        |         |       |         | 6/8/01 | 20:00 | 47.439 | 6/8/01 | 20:00 | 23.521 |
| 6/9/01 | 0:00  | 54.002 | 6/9/01 | 4:00  | 9.610  |         |       |        |         |       |         | 6/9/01 | 0:00  | 47.416 | 6/9/01 | 0:00  | 23.504 |
| 6/9/01 | 4:00  | 53.992 | 6/9/01 | 8:00  | 9.610  |         |       |        |         |       |         | 6/9/01 | 4:00  | 47.4   | 6/9/01 | 4:00  | 23.48  |
| 6/9/01 | 8:00  | 53.980 | 6/9/01 | 12:00 | 9.610  |         |       |        |         |       |         | 6/9/01 | 8:00  | 47.393 | 6/9/01 | 8:00  | 23.461 |
| 6/9/01 | 12:00 | 53.970 | 6/9/01 | 16:00 | 9.589  |         |       |        |         |       |         | 6/9/01 | 12:00 | 47.357 | 6/9/01 | 12:00 | 23.441 |

| TABLE   | D.3 (Co | ont.)  |         |       |       |      |      |       |      |      |       |         |       |        |         |       |        |
|---------|---------|--------|---------|-------|-------|------|------|-------|------|------|-------|---------|-------|--------|---------|-------|--------|
| DW06    |         | SB01   |         |       | SB09  |      | SB16 |       | SB18 |      |       |         | SB19  |        |         |       |        |
| Date    | Time    | Depth  | Date    | Time  | Depth | Date | Time | Depth | Date | Time | Depth | Date    | Time  | Depth  | Date    | Time  | Depth  |
| 6/9/01  | 16:00   | 53.920 | 6/9/01  | 20:00 | 9.584 |      |      |       |      |      |       | 6/9/01  | 16:00 | 47.288 | 6/9/01  | 16:00 | 23.415 |
| 6/9/01  | 20:00   | 53.856 | 6/10/01 | 0:00  | 9.582 |      |      |       |      |      |       | 6/9/01  | 20:00 | 47.224 | 6/9/01  | 20:00 | 23.393 |
| 6/10/01 | 0:00    | 53.825 | 6/10/01 | 4:00  | 9.577 |      |      |       |      |      |       | 6/10/01 | 0:00  | 47.188 | 6/10/01 | 0:00  | 23.373 |
| 6/10/01 | 4:00    | 53.783 | 6/10/01 | 8:00  | 9.591 |      |      |       |      |      |       | 6/10/01 | 4:00  | 47.128 | 6/10/01 | 4:00  | 23.352 |
| 6/10/01 | 8:00    | 53.788 | 6/10/01 | 12:00 | 9.624 |      |      |       |      |      |       | 6/10/01 | 8:00  | 47.128 | 6/10/01 | 8:00  | 23.352 |
| 6/10/01 | 12:00   | 53.741 | 6/10/01 | 16:00 | 9.549 |      |      |       |      |      |       | 6/10/01 | 12:00 | 47.078 | 6/10/01 | 12:00 | 23.327 |
| 6/10/01 | 16:00   | 53.689 | 6/10/01 | 20:00 | 9.572 |      |      |       |      |      |       | 6/10/01 | 16:00 | 46.996 | 6/10/01 | 16:00 | 23.318 |
| 6/10/01 | 20:00   | 53.652 | 6/11/01 | 0:00  | 9.579 |      |      |       |      |      |       | 6/10/01 | 20:00 | 46.982 | 6/10/01 | 20:00 | 23.318 |
| 6/11/01 | 0:00    | 53.647 | 6/11/01 | 4:00  | 9.584 |      |      |       |      |      |       | 6/11/01 | 0:00  | 46.959 | 6/11/01 | 0:00  | 23.323 |
| 6/11/01 | 4:00    | 53.637 | 6/11/01 | 8:00  | 9.600 |      |      |       |      |      |       | 6/11/01 | 4:00  | 46.936 | 6/11/01 | 4:00  | 23.325 |
| 6/11/01 | 8:00    | 53.639 |         |       |       |      |      |       |      |      |       | 6/11/01 | 8:00  | 46.92  | 6/11/01 | 8:00  | 23.33  |
| 6/11/01 | 12:00   | 53.627 |         |       |       |      |      |       |      |      |       |         |       |        | 6/11/01 | 12:00 | 23.335 |

TABLE D.4 Water level depths in piezometers for the period of automated monitoring from May 8, 2001, to June 11, 2001.

|                    |       |        | Depth (ft BGL) |        |
|--------------------|-------|--------|----------------|--------|
| Date               | Time  | SB22   | SB31           | SB34   |
| 5/8/01             | 12:00 | 33.521 | 24.621         | 14.117 |
| 5/8/01             | 16:00 | 33.491 | 24.632         | 14.131 |
| 5/8/01             | 20:00 | 33.466 | 24.636         | 14.124 |
| 5/9/01             | 0:00  | 33.462 | 24.643         | 14.131 |
| 5/9/01             | 4:00  | 33.443 | 24.649         | 14.138 |
| 5/9/01             | 8:00  | 33.439 | 24.656         | 14.145 |
| 5/9/01             | 12:00 | 33.416 | 24.667         | 14.156 |
| 5/9/01             | 16:00 | 33.386 | 24.674         | 14.154 |
| 5/9/01             | 20:00 | 33.345 | 24.671         | 14.154 |
| 5/10/01            | 0:00  | 33.357 | 24.680         | 14.161 |
| 5/10/01            | 4:00  | 33.382 | 24.722         | 14.174 |
| 5/10/01            | 8:00  | 33.357 | 24.689         | 14.172 |
| 5/10/01            | 12:00 | 33.334 | 24.700         | 14.191 |
| 5/10/01            | 16:00 | 33.318 | 24.711         | 14.195 |
| 5/10/01            | 20:00 | 33.306 | 24.716         | 14.198 |
| 5/11/01            | 0:00  | 33.268 | 24.665         | 14.179 |
| 5/11/01            | 4:00  | 33.329 | 24.678         | 14.147 |
| 5/11/01            | 8:00  | 33.366 | 24.687         | 14.156 |
| 5/11/01            | 12:00 | 33.402 | 24.687         | 14.153 |
| 5/11/01            | 16:00 | 33.414 | 24.682         | 14.156 |
| 5/11/01            | 20:00 | 33.420 | 24.669         | 14.138 |
| 5/12/01            | 0:00  | 33.446 | 24.660         | 14.133 |
| 5/12/01            | 4:00  | 33.450 | 24.649         | 14.124 |
| 5/12/01            | 8:00  | 33.462 | 24.640         | 14.117 |
| 5/12/01            | 12:00 | 33.473 | 24.638         | 14.119 |
| 5/12/01            | 16:00 | 33.455 | 24.634         | 14.117 |
| 5/12/01            | 20:00 | 33.418 | 24.623         | 14.103 |
| 5/13/01            | 0:00  | 33.416 | 24.614         | 14.096 |
| 5/13/01            | 4:00  | 33.402 | 24.610         | 14.094 |
| 5/13/01            | 8:00  | 33.395 | 24.607         | 14.089 |
| 5/13/01            | 12:00 | 33.370 | 24.607         | 14.089 |
| 5/13/01            | 16:00 | 33.340 | 24.605         | 14.089 |
| 5/13/01            | 20:00 | 33.320 | 24.598         | 14.082 |
| 5/14/01            | 0:00  | 33.315 | 24.598         | 14.082 |
| 5/14/01            | 4:00  | 33.313 | 24.601         | 14.082 |
| 5/14/01            | 8:00  | 33.313 | 24.603         | 14.084 |
| 5/14/01            | 12:00 | 33.302 | 24.607         | 14.091 |
| 5/14/01            | 16:00 | 33.208 | 24.012         | 14.093 |
| 5/14/01            | 20:00 | 33.245 | 24.012         | 14.093 |
| 5/15/01            | 0:00  | 33.236 | 24.614         | 14.096 |
| 5/15/01            | 4:00  | 33.211 | 24.014         | 14.090 |
| 5/15/01            | 0.00  | 33.19Z | 24.010         | 14.098 |
| 5/15/01<br>5/15/01 | 12:00 | 33.183 | 24.623         | 14.109 |
| 5/15/01            | 00.01 | 33.151 | 24.029         | 14.112 |
| 5/15/01            | 20:00 | 33.140 | 24.636         | 14.114 |

|         |       |        | Depth (ft BGL) |        |
|---------|-------|--------|----------------|--------|
| Date    | Time  | SB22   | SB31           | SB34   |
| 5/16/01 | 0:00  | 33.142 | 24.640         | 14.121 |
| 5/16/01 | 4:00  | 33.137 | 24.647         | 14.130 |
| 5/16/01 | 8:00  | 33.149 | 24.658         | 14.141 |
| 5/16/01 | 12:00 | 33.149 | 24.669         | 14.148 |
| 5/16/01 | 16:00 | 33.126 | 24.680         | 14.167 |
| 5/16/01 | 20:00 | 33.126 | 24.691         | 14.174 |
| 5/17/01 | 0:00  | 33.131 | 24.702         | 14.178 |
| 5/17/01 | 4:00  | 33.135 | 24.713         | 14.194 |
| 5/17/01 | 8:00  | 33.153 | 24.727         | 14.213 |
| 5/17/01 | 12:00 | 33.172 | 24.742         | 14.231 |
| 5/17/01 | 16:00 | 33.163 | 24.758         | 14.238 |
| 5/17/01 | 20:00 | 33.206 | 24.778         | 14.263 |
| 5/18/01 | 0:00  | 33.222 | 24.793         | 14.280 |
| 5/18/01 | 4:00  | 33.222 | 24.806         | 14.291 |
| 5/18/01 | 8:00  | 33.236 | 24.824         | 14.312 |
| 5/18/01 | 12:00 | 33.247 | 24.842         | 14.332 |
| 5/18/01 | 16:00 | 33.242 | 24.855         | 14.344 |
| 5/18/01 | 20:00 | 33.249 | 24.870         | 14.357 |
| 5/19/01 | 0:00  | 33.274 | 24.890         | 14.376 |
| 5/19/01 | 4:00  | 33.281 | 24.901         | 14.392 |
| 5/19/01 | 8:00  | 33.302 | 24.919         | 14.406 |
| 5/19/01 | 12:00 | 33.315 | 24,939         | 14.436 |
| 5/19/01 | 16:00 | 33.279 | 24,946         | 14.443 |
| 5/19/01 | 20:00 | 33.263 | 24.957         | 14.447 |
| 5/20/01 | 0:00  | 33.258 | 24.968         | 14.459 |
| 5/20/01 | 4:00  | 33.231 | 24.972         | 14.466 |
| 5/20/01 | 8:00  | 33.215 | 24.979         | 14.468 |
| 5/20/01 | 12:00 | 33.179 | 24.985         | 14.477 |
| 5/20/01 | 16:00 | 33.144 | 24.983         | 14.488 |
| 5/20/01 | 20:00 | 33.069 | 24.877         | 14.412 |
| 5/21/01 | 0:00  | 33.137 | 24.937         | 14.419 |
| 5/21/01 | 4:00  | 33.179 | 24.941         | 14.422 |
| 5/21/01 | 8:00  | 33.220 | 24.946         | 14.433 |
| 5/21/01 | 12:00 | 33.256 | 24.954         | 14.449 |
| 5/21/01 | 16:00 | 33.265 | 24.957         | 14.447 |
| 5/21/01 | 20:00 | 33.274 | 24.959         | 14.445 |
| 5/22/01 | 0:00  | 33.293 | 24.968         | 14.458 |
| 5/22/01 | 4:00  | 33.290 | 24.968         | 14.461 |
| 5/22/01 | 8:00  | 33.288 | 24.970         | 14.460 |
| 5/22/01 | 12:00 | 33.295 | 24.976         | 14.474 |
| 5/22/01 | 16:00 | 33.311 | 25.001         | 14.479 |
| 5/22/01 | 20:00 | 33.277 | 24.972         | 14.456 |
| 5/23/01 | 0:00  | 33.290 | 24.979         | 14.465 |
| 5/23/01 | 4:00  | 33.263 | 24.977         | 14.470 |
| 5/23/01 | 8:00  | 33.256 | 24.979         | 14.470 |
| 5/23/01 | 12:00 | 33.256 | 24.988         | 14.488 |
| 5/23/01 | 16:00 | 33.270 | 24,994         | 14.486 |

|         |       |        | Depth (ft BGL) |        |
|---------|-------|--------|----------------|--------|
| Date    | Time  | SB22   | SB31           | SB34   |
| 5/23/01 | 20:00 | 33 279 | 25 001         | 14 488 |
| 5/24/01 | 0.00  | 33 290 | 25.001         | 14 497 |
| 5/24/01 | 4.00  | 33 288 | 25.016         | 14 504 |
| 5/24/01 | 8:00  | 33.306 | 25.027         | 14.522 |
| 5/24/01 | 12:00 | 33.329 | 25.041         | 14.534 |
| 5/24/01 | 16:00 | 33.322 | 24.996         | 14,543 |
| 5/24/01 | 20:00 | 33.338 | 25.025         | 14,543 |
| 5/25/01 | 0:00  | 33.368 | 25.069         | 14,564 |
| 5/25/01 | 4:00  | 33.366 | 25.080         | 14.564 |
| 5/25/01 | 8:00  | 33.377 | 25.092         | 14.575 |
| 5/25/01 | 12:00 | 33.395 | 25.109         | 14.598 |
| 5/25/01 | 16:00 | 33.384 | 25.123         | 14.605 |
| 5/25/01 | 20:00 | 33.377 | 25.131         | 14.612 |
| 5/26/01 | 0:00  | 33.377 | 25.138         | 14.617 |
| 5/26/01 | 4:00  | 33.373 | 25.149         | 14.626 |
| 5/26/01 | 8:00  | 33.368 | 25.156         | 14.639 |
| 5/26/01 | 12:00 | 33.373 | 25.171         | 14.656 |
| 5/26/01 | 16:00 | 33,366 | 25.180         | 14.665 |
| 5/26/01 | 20:00 | 33.366 | 25.187         | 14.662 |
| 5/27/01 | 0:00  | 33.379 | 25.198         | 14.681 |
| 5/27/01 | 4:00  | 33.375 | 25.211         | 14.688 |
| 5/27/01 | 8:00  | 33.393 | 25.222         | 14.702 |
| 5/27/01 | 12:00 | 33.398 | 25.235         | 14.720 |
| 5/27/01 | 16:00 | 33.386 | 25.251         | 14.741 |
| 5/27/01 | 20:00 | 33.386 | 25.260         | 14.745 |
| 5/28/01 | 0:00  | 33.400 | 25.271         | 14.755 |
| 5/28/01 | 4:00  | 33.411 | 25.286         | 14.771 |
| 5/28/01 | 8:00  | 33.446 | 25.302         | 14.789 |
| 5/28/01 | 12:00 | 33.473 | 25.324         | 14.817 |
| 5/28/01 | 16:00 | 33.468 | 25.339         | 14.830 |
| 5/28/01 | 20:00 | 33.480 | 25.357         | 14.839 |
| 5/29/01 | 0:00  | 33.516 | 25.374         | 14.853 |
| 5/29/01 | 4:00  | 33.530 | 25.390         | 14.869 |
| 5/29/01 | 8:00  | 33.557 | 25.408         | 14.895 |
| 5/29/01 | 12:00 | 33.571 | 25.425         | 14.911 |
| 5/29/01 | 16:00 | 33.539 | 25.436         | 14.920 |
| 5/29/01 | 20:00 | 33.528 | 25.443         | 14.927 |
| 5/30/01 | 0:00  | 33.546 | 25.454         | 14.941 |
| 5/30/01 | 4:00  | 33.493 | 25.450         | 14.929 |
| 5/30/01 | 8:00  | 33.509 | 25.461         | 14.945 |
| 5/30/01 | 12:00 | 33.509 | 25.489         | 14.943 |
| 5/30/01 | 16:00 | 33.484 | 25.470         | 14.931 |
| 5/30/01 | 20:00 | 33.459 | 25.408         | 14.899 |
| 5/31/01 | 0:00  | 33.512 | 25.412         | 14.899 |
| 5/31/01 | 4:00  | 33.507 | 25.390         | 14.878 |
| 5/31/01 | 8:00  | 33.537 | 25.386         | 14.867 |
| 5/31/01 | 12:00 | 33.544 | 25.363         | 14.846 |

|         |              |                  | Depth (ft BGL) |        |
|---------|--------------|------------------|----------------|--------|
| Date    | Time         | SB22             | SB31           | SB34   |
| 5/31/01 | 16:00        | 33.544           | 25.337         | 14.823 |
| 5/31/01 | 20:00        | 33.555           | 25.317         | 14.798 |
| 6/1/01  | 0:00         | 33.564           | 25.293         | 14.784 |
| 6/1/01  | 4:00         | 33.546           | 25.268         | 14.754 |
| 6/1/01  | 8:00         | 33.541           | 25.253         | 14.740 |
| 6/1/01  | 12:00        | 33.519           | 25.233         | 14.733 |
| 6/1/01  | 16:00        | 33.466           | 25.213         | 14.712 |
| 6/1/01  | 20:00        | 33.414           | 25.133         | 14.634 |
| 6/2/01  | 0:00         | 33.484           | 25.138         | 14.622 |
| 6/2/01  | 4:00         | 33.484           | 25.102         | 14.599 |
| 6/2/01  | 8:00         | 33.509           | 25.074         | 14.581 |
| 6/2/01  | 12:00        | 33.521           | 25.045         | 14.572 |
| 6/2/01  | 16:00        | 33.507           | 25.014         | 14.542 |
| 6/2/01  | 20:00        | 33.487           | 24,983         | 14.512 |
| 6/3/01  | 0:00         | 33.503           | 24.961         | 14.491 |
| 6/3/01  | 4.00         | 33 491           | 24 932         | 14 477 |
| 6/3/01  | 8:00         | 33 455           | 24 857         | 14 427 |
| 6/3/01  | 12:00        | 33 439           | 24 857         | 14 402 |
| 6/3/01  | 16:00        | 33 457           | 24 819         | 14.358 |
| 6/3/01  | 20:00        | 33 430           | 24.777         | 14 307 |
| 6/4/01  | 0.00         | 33 341           | 24 634         | 14 185 |
| 6/4/01  | 4:00         | 33 345           | 24.004         | 14.105 |
| 6/4/01  | 4.00<br>8:00 | 33 270           | 24.505         | 14.110 |
| 6/4/01  | 12:00        | 33 265           | 24.444         | 13 966 |
| 6/4/01  | 12:00        | 33 1/2           | 24.309         | 13.844 |
| 6/4/01  | 20:00        | 33 090           | 24.303         | 13 773 |
| 6/5/01  | 20:00        | 33.058           | 24.210         | 13 700 |
| 6/5/01  | 4:00         | 33.005           | 24.150         | 13.637 |
| 6/5/01  | 4.00<br>8:00 | 32 004           | 24.003         | 13.554 |
| 6/5/01  | 12:00        | 33 012           | 24.004         | 13.534 |
| 6/5/01  | 12:00        | 32.057           | 23.853         | 13 /35 |
| 6/5/01  | 20.00        | 32.880           | 23.002         | 13 223 |
| 6/6/01  | 20:00        | 32,807           | 23.750         | 13.00/ |
| 6/6/01  | 4:00         | 32.007           | 23.304         | 13.034 |
| 6/6/01  | 4.00         | 32.661           | 23.400         | 12 0/2 |
| 6/6/01  | 12:00        | 32.001           | 23.404         | 12.942 |
| 6/6/01  | 12:00        | 32.710           | 23.451         | 12.905 |
| 6/6/01  | 20:00        | 32.047           | 23.331         | 12.910 |
| 6/7/01  | 20.00        | 32.592           | 23.201         | 12.000 |
| 6/7/01  | 0.00<br>1·00 | 32.000           | 23.213         | 12.700 |
| 6/7/01  | 4.00<br>8.00 | 32.021           | 23.100         | 12.740 |
| 6/7/01  | 12.00        | 32.432           | 23.117         | 12.707 |
| 6/7/01  | 16:00        | 32.404           | 23.077         | 12.031 |
| 6/7/01  | 20.00        | 32.421<br>20 270 | 23.042         | 12.041 |
| 6/8/01  | 20.00        | 32.370           | 23.000         | 12.004 |
| 6/9/01  | 0.00         | 32.337           | 22.970         | 12.009 |
|         | //           | · 2· 7 · 7· 76   | 111111         | 10 510 |

|         |              | Depth (ft BGL) |        |        |  |  |  |  |
|---------|--------------|----------------|--------|--------|--|--|--|--|
| Date    | Time         | SB22           | SB31   | SB34   |  |  |  |  |
| 6/8/01  | 12:00        | 22.206         | 22.019 | 12 525 |  |  |  |  |
| 6/8/01  | 12.00        | 32.290         | 22.910 | 12.525 |  |  |  |  |
| 6/8/01  | 20:00        | 32.201         | 22.502 | 12.004 |  |  |  |  |
| 6/9/01  | 20.00        | 32.210         | 22.007 | 12.400 |  |  |  |  |
| 6/9/01  | 4:00         | 32.207         | 22.070 | 12.473 |  |  |  |  |
| 6/9/01  | 4.00<br>8:00 | 32.101         | 22.003 | 12.405 |  |  |  |  |
| 6/9/01  | 12:00        | 32.105         | 22.003 | 12.405 |  |  |  |  |
| 6/9/01  | 12:00        | 32.140         | 22.003 | 12.400 |  |  |  |  |
| 6/9/01  | 20:00        | 32.104         | 22.005 | 12.401 |  |  |  |  |
| 6/10/01 | 0.00         | 32.000         | 22.000 | 12.443 |  |  |  |  |
| 6/10/01 | 4:00         | 31 994         | 22.002 | 12.442 |  |  |  |  |
| 6/10/01 | 4.00<br>8:00 | 31 962         | 22.043 | 12.407 |  |  |  |  |
| 6/10/01 | 12:00        | 31 953         | 22.000 | 12.417 |  |  |  |  |
| 6/10/01 | 16:00        | 31 919         | 22.047 | 12.440 |  |  |  |  |
| 6/10/01 | 20:00        | 31 899         | 22.004 | 12.440 |  |  |  |  |
| 6/11/01 | 0.00         | 31 887         | 22.000 | 12.420 |  |  |  |  |
| 6/11/01 | 4:00         | 31 873         | 22.000 | 12.431 |  |  |  |  |
| 6/11/01 | 8.00         | 31 869         | 22.007 | 12.400 |  |  |  |  |
| 6/11/01 | 12:00        | 01.000         | 22.070 | 12.442 |  |  |  |  |

TABLE D.5 Water level depths in piezometers for the period of automated monitoring from November 21, 2002, to January 17, 2003.

|          |       |        |        |        | Depth (ft BGI | _)     |        |        |
|----------|-------|--------|--------|--------|---------------|--------|--------|--------|
| Date     | Time  | SB09   | SB16   | SB49   | SB60          | SB62   | SB63   | SB64   |
| 11/21/02 | 16:00 | 32.182 | 39.875 | 43.143 | 54.053        | 33.265 | 21.309 | 21.762 |
| 11/21/02 | 20:00 | 32.208 | 39.905 | 43.206 | 54.124        | 33.286 | 21.347 | 21.784 |
| 11/22/02 | 0:00  | 32.228 | 39.926 | 43.173 | 54.106        | 33.247 | 21.334 | 21.760 |
| 11/22/02 | 4:00  | 32.234 | 39.931 | 43.157 | 54.088        | 33.240 | 21.352 | 21.750 |
| 11/22/02 | 8:00  | 32.243 | 39.938 | 43.161 | 54.095        | 33.247 | 21.336 | 21.769 |
| 11/22/02 | 12:00 | 32.247 | 39.942 | 43.112 | 54.044        | 33.200 | 21.299 | 21.731 |
| 11/22/02 | 16:00 | 32.234 | 39.917 | 43.008 | 53.928        | 33.154 | 21.236 | 21.701 |
| 11/22/02 | 20:00 | 32.219 | 39.880 | 42.937 | 53.841        | 33.131 | 21.185 | 21.687 |
| 11/23/02 | 0:00  | 32.208 | 39.850 | 42.902 | 53.784        | 33.127 | 21.123 | 21.680 |
| 11/23/02 | 4:00  | 32.206 | 39.843 | 42.963 | 53.846        | 33.191 | 21.149 | 21.718 |
| 11/23/02 | 8:00  | 32.221 | 39.864 | 43.072 | 53.964        | 33.260 | 21.224 | 21.762 |
| 11/23/02 | 12:00 | 32.238 | 39.887 | 43.091 | 53.987        | 33.233 | 21.252 | 21.745 |
| 11/23/02 | 16:00 | 32.245 | 39.889 | 43.058 | 53.957        | 33.219 | 21.247 | 21.740 |
| 11/23/02 | 20:00 | 32.254 | 39.894 | 43.067 | 53.971        | 33.228 | 21.238 | 21.740 |
| 11/24/02 | 0:00  | 32.265 | 39.908 | 43.081 | 53,983        | 33.228 | 21.258 | 21.738 |
| 11/24/02 | 4:00  | 32.276 | 39.917 | 43.098 | 54.001        | 33.237 | 21.277 | 21.740 |
| 11/24/02 | 8:00  | 32.284 | 39.928 | 43,140 | 54.047        | 33.267 | 21.288 | 21.762 |
| 11/24/02 | 16:00 | 32.328 | 39.982 | 43.239 | 54,168        | 33.309 | 21.387 | 21.784 |
| 11/24/02 | 20:00 | 32.356 | 40.021 | 43,291 | 54.238        | 33.318 | 21.433 | 21.801 |
| 11/25/02 | 0:00  | 32.385 | 40.053 | 43,293 | 54.254        | 33,290 | 21.458 | 21.782 |
| 11/25/02 | 4:00  | 32.402 | 40.079 | 43.298 | 54.273        | 33,297 | 21.478 | 21.789 |
| 11/25/02 | 8:00  | 32.413 | 40.086 | 43.260 | 54.234        | 33.270 | 21.462 | 21.762 |
| 11/25/02 | 12:00 | 32.424 | 40.100 | 43,249 | 54.225        | 33.265 | 21.444 | 21.757 |
| 11/25/02 | 16:00 | 32.420 | 40.088 | 43.164 | 54.131        | 33.230 | 21.378 | 21.733 |
| 11/25/02 | 20:00 | 32.418 | 40.083 | 43.152 | 54.108        | 33.235 | 21.355 | 21.733 |
| 11/26/02 | 0:00  | 32.422 | 40.083 | 43.147 | 54.099        | 33.240 | 21.339 | 21,733 |
| 11/26/02 | 4:00  | 32.422 | 40.079 | 43.121 | 54.063        | 33.242 | 21.320 | 21.731 |
| 11/26/02 | 8:00  | 32.428 | 40.079 | 43.154 | 54.099        | 33.270 | 21.362 | 21,753 |
| 11/26/02 | 12:00 | 32.446 | 40.100 | 43.220 | 54,163        | 33,293 | 21.392 | 21.765 |
| 11/26/02 | 16:00 | 32 463 | 40 120 | 43 260 | 54 211        | 33 313 | 21 426 | 21 782 |
| 11/26/02 | 20.00 | 32 483 | 40 141 | 43 258 | 54 218        | 33 295 | 21 433 | 21 753 |
| 11/27/02 | 0:00  | 32,496 | 40.155 | 43.258 | 54.222        | 33.288 | 21.442 | 21.758 |
| 11/27/02 | 4:00  | 32.502 | 40.162 | 43.220 | 54,181        | 33.263 | 21.410 | 21.745 |
| 11/27/02 | 8:00  | 32.504 | 40.162 | 43.206 | 54,168        | 33.272 | 21.415 | 21.748 |
| 11/27/02 | 12:00 | 32.502 | 40.153 | 43.147 | 54.095        | 33.226 | 21.350 | 21.716 |
| 11/27/02 | 16:00 | 32,483 | 40.114 | 43.036 | 53.973        | 33,191 | 21.270 | 21.692 |
| 11/27/02 | 20:00 | 32.478 | 40.097 | 43.051 | 53.971        | 33.217 | 21.264 | 21.707 |
| 11/28/02 | 0.00  | 32 472 | 40 079 | 43 034 | 53 941        | 33 212 | 21 243 | 21 702 |
| 11/28/02 | 4.00  | 32 470 | 40 070 | 43 043 | 53 944        | 33 226 | 21 227 | 21 714 |
| 11/28/02 | 8:00  | 32.476 | 40.077 | 43.088 | 53,992        | 33,260 | 21.271 | 21.736 |
| 11/28/02 | 12.00 | 32,479 | 40.072 | 43.067 | 53,967        | 33,230 | 21,264 | 21.714 |
| 11/28/02 | 16:00 | 32 463 | 40.037 | 42 982 | 53 871        | 33 198 | 21 179 | 21 685 |
| 11/28/02 | 20.00 | 32 444 | 30 003 | 42 909 | 53 779        | 33 157 | 21 108 | 21.665 |
| 11/29/02 | 0.00  | 32,415 | 39,940 | 42,845 | 53,697        | 33,134 | 21.037 | 21.656 |
| 11/29/02 | 4.00  | 32 380 | 39 880 | 42 775 | 53 596        | 33 120 | 20.985 | 21 644 |
| 11/29/02 | 8:00  | 32.365 | 39.857 | 42.815 | 53.626        | 33.166 | 20.964 | 21.675 |

|          |       | Depth (ft BGL) |        |        |        |        |        |        |  |
|----------|-------|----------------|--------|--------|--------|--------|--------|--------|--|
| Date     | Time  | SB09           | SB16   | SB49   | SB60   | SB62   | SB63   | SB64   |  |
| 11/29/02 | 12:00 | 32.363         | 39.854 | 42.859 | 53.676 | 33.182 | 21.019 | 21.673 |  |
| 11/29/02 | 16:00 | 32.354         | 39.843 | 42.852 | 53.663 | 33,180 | 20.998 | 21.687 |  |
| 11/29/02 | 20:00 | 32.363         | 39.854 | 42.918 | 53.740 | 33.224 | 21.044 | 21.709 |  |
| 11/30/02 | 0:00  | 32.378         | 39.868 | 42.980 | 53.816 | 33.249 | 21.090 | 21,726 |  |
| 11/30/02 | 4:00  | 32.407         | 39.912 | 43.121 | 53.980 | 33.327 | 21.207 | 21.782 |  |
| 11/30/02 | 8:00  | 32.448         | 39.970 | 43.220 | 54.108 | 33.362 | 21.289 | 21.797 |  |
| 11/30/02 | 12:00 | 32.483         | 40.019 | 43.249 | 54.159 | 33.339 | 21.333 | 21.785 |  |
| 11/30/02 | 16:00 | 32,496         | 40.035 | 43.216 | 54.133 | 33.314 | 21.326 | 21.765 |  |
| 11/30/02 | 20:00 | 32.518         | 40.058 | 43.227 | 54.149 | 33.309 | 21.333 | 21.760 |  |
| 12/1/02  | 0:00  | 32.528         | 40.074 | 43.213 | 54.140 | 33.298 | 21.342 | 21.753 |  |
| 12/1/02  | 4:00  | 32.526         | 40.067 | 43.147 | 54.069 | 33.254 | 21.298 | 21,729 |  |
| 12/1/02  | 8:00  | 32.517         | 40.053 | 43.076 | 53.985 | 33.233 | 21.241 | 21.712 |  |
| 12/1/02  | 12:00 | 32.502         | 40.021 | 42.977 | 53.859 | 33.173 | 21.141 | 21.675 |  |
| 12/1/02  | 16:00 | 32.470         | 39.961 | 42.876 | 53.738 | 33.150 | 21.060 | 21.656 |  |
| 12/1/02  | 20:00 | 32.455         | 39.933 | 42.885 | 53.729 | 33.175 | 21.035 | 21.675 |  |
| 12/2/02  | 0:00  | 32.439         | 39.903 | 42.855 | 53.688 | 33.159 | 21.022 | 21.666 |  |
| 12/2/02  | 4:00  | 32.413         | 39.861 | 42.810 | 53.628 | 33.141 | 20.951 | 21.654 |  |
| 12/2/02  | 8:00  | 32.404         | 39.847 | 42.866 | 53.679 | 33.196 | 21.003 | 21.690 |  |
| 12/2/02  | 12:00 | 32.428         | 39.884 | 43.034 | 53.857 | 33.293 | 21.113 | 21.751 |  |
| 12/2/02  | 16:00 | 32.465         | 39.938 | 43.173 | 54.040 | 33.364 | 21.214 | 21.797 |  |
| 12/2/02  | 20:00 | 32.517         | 40.014 | 43.305 | 54.206 | 33.397 | 21.360 | 21.809 |  |
| 12/3/02  | 0:00  | 32.561         | 40.077 | 43.352 | 54.289 | 33.390 | 21.411 | 21.814 |  |
| 12/3/02  | 4:00  | 32.596         | 40.123 | 43.385 | 54.346 | 33.385 | 21.459 | 21.814 |  |
| 12/3/02  | 8:00  | 32.629         | 40.169 | 43.409 | 54.392 | 33.390 | 21.504 | 21.821 |  |
| 12/3/02  | 12:00 | 32.651         | 40.201 | 43.369 | 54.362 | 33.339 | 21.488 | 21.780 |  |
| 12/3/02  | 16:00 | 32.653         | 40.206 | 43.296 | 54.284 | 33.316 | 21.441 | 21.758 |  |
| 12/3/02  | 20:00 | 32.670         | 40.225 | 43.322 | 54.302 | 33.334 | 21.470 | 21.770 |  |
| 12/4/02  | 0:00  | 32.677         | 40.234 | 43.272 | 54.243 | 33.298 | 21.429 | 21.746 |  |
| 12/4/02  | 4:00  | 32.670         | 40.222 | 43.223 | 54.188 | 33.288 | 21.402 | 21.739 |  |
| 12/4/02  | 8:00  | 32.679         | 40.227 | 43.263 | 54.225 | 33.328 | 21.416 | 21.761 |  |
| 12/4/02  | 12:00 | 32.688         | 40.238 | 43.230 | 54.184 | 33.298 | 21.386 | 21.744 |  |
| 12/4/02  | 16:00 | 32.683         | 40.229 | 43.199 | 54.147 | 33.295 | 21.377 | 21.739 |  |
| 12/4/02  | 20:00 | 32.690         | 40.234 | 43.223 | 54.163 | 33.328 | 21.370 | 21.748 |  |
| 12/5/02  | 0:00  | 32.705         | 40.250 | 43.253 | 54.202 | 33.339 | 21.393 | 21.761 |  |
| 12/5/02  | 4:00  | 32.709         | 40.257 | 43.237 | 54.186 | 33.321 | 21.383 | 21.751 |  |
| 12/5/02  | 8:00  | 32.714         | 40.262 | 43.258 | 54.206 | 33.334 | 21.400 | 21.758 |  |
| 12/5/02  | 12:00 | 32.722         | 40.271 | 43.232 | 54.188 | 33.309 | 21.404 | 21.746 |  |
| 12/5/02  | 16:00 | 32.712         | 40.252 | 43.161 | 54.101 | 33.288 | 21.322 | 21.724 |  |
| 12/5/02  | 20:00 | 32.712         | 40.243 | 43.159 | 54.092 | 33.302 | 21.313 | 21.732 |  |
| 12/6/02  | 0:00  | 32.716         | 40.248 | 43.168 | 54.092 | 33.307 | 21.311 | 21.736 |  |
| 12/6/02  | 4:00  | 32.714         | 40.238 | 43.147 | 54.067 | 33.300 | 21.290 | 21.715 |  |
| 12/6/02  | 8:00  | 32.709         | 40.227 | 43.138 | 54.056 | 33.298 | 21.269 | 21.724 |  |
| 12/6/02  | 12:00 | 32.703         | 40.210 | 43.074 | 53.980 | 33.251 | 21.230 | 21.700 |  |
| 12/6/02  | 16:00 | 32.681         | 40.171 | 42.999 | 53.889 | 33.238 | 21.160 | 21.678 |  |
| 12/6/02  | 20:00 | 32.668         | 40.151 | 43.027 | 53.903 | 33.268 | 21.171 | 21.702 |  |
| 12/7/02  | 0:00  | 32.674         | 40.153 | 43.074 | 53.948 | 33.293 | 21.178 | 21.702 |  |
| 12/7/02  | 4:00  | 32.677         | 40.153 | 43.083 | 53.960 | 33.300 | 21.180 | 21.715 |  |
| 12/7/02  | 8:00  | 32.683         | 40.159 | 43.133 | 54.021 | 33.330 | 21.237 | 21.744 |  |

|          |       | Depth (ft BGL) |        |        |        |        |        |        |  |
|----------|-------|----------------|--------|--------|--------|--------|--------|--------|--|
| Date     | Time  | SB09           | SB16   | SB49   | SB60   | SB62   | SB63   | SB64   |  |
| 12/7/02  | 12:00 | 32.696         | 40.173 | 43.140 | 54.033 | 33.316 | 21.246 | 21.736 |  |
| 12/7/02  | 16:00 | 32.692         | 40.166 | 43.102 | 53.994 | 33.307 | 21.208 | 21,724 |  |
| 12/7/02  | 20:00 | 32.701         | 40.171 | 43.142 | 54.035 | 33.328 | 21.247 | 21,741 |  |
| 12/8/02  | 0:00  | 32.716         | 40.192 | 43.194 | 54.092 | 33.358 | 21.125 | 21.753 |  |
| 12/8/02  | 4:00  | 32.736         | 40.215 | 43.249 | 54.159 | 33.376 | 21.302 | 21.773 |  |
| 12/8/02  | 8:00  | 32.762         | 40.252 | 43.343 | 54.273 | 33.422 | 21.391 | 21.802 |  |
| 12/8/02  | 12:00 | 32.797         | 40.301 | 43.388 | 54.339 | 33.397 | 21.443 | 21.790 |  |
| 12/8/02  | 16:00 | 32.814         | 40.324 | 43.378 | 54.344 | 33.397 | 21.466 | 21.790 |  |
| 12/8/02  | 20:00 | 32.836         | 40.349 | 43.388 | 54.366 | 33.390 | 21.471 | 21.785 |  |
| 12/9/02  | 0:00  | 32.847         | 40.363 | 43.338 | 54.316 | 33.353 | 21.469 | 21.758 |  |
| 12/9/02  | 4:00  | 32.849         | 40.363 | 43.296 | 54.266 | 33.344 | 21.427 | 21.751 |  |
| 12/9/02  | 8:00  | 32.847         | 40.356 | 43.258 | 54.220 | 33.339 | 21.400 | 21.746 |  |
| 12/9/02  | 12:00 | 32.840         | 40.345 | 43.185 | 54.133 | 33.293 | 21.350 | 21.712 |  |
| 12/9/02  | 16:00 | 32.823         | 40.308 | 43.116 | 54.042 | 33.284 | 21.276 | 21.686 |  |
| 12/9/02  | 20:00 | 32.810         | 40.284 | 43.105 | 54.014 | 33.289 | 21.270 | 21.705 |  |
| 12/10/02 | 0:00  | 32.801         | 40.264 | 43.098 | 53.996 | 33.296 | 21.224 | 21.710 |  |
| 12/10/02 | 4:00  | 32.790         | 40.240 | 43.058 | 53.948 | 33.277 | 21.197 | 21.695 |  |
| 12/10/02 | 8:00  | 32.784         | 40.224 | 43.067 | 53.951 | 33.296 | 21.192 | 21.705 |  |
| 12/10/02 | 12:00 | 32.777         | 40.213 | 43.055 | 53.932 | 33.284 | 21.203 | 21.700 |  |
| 12/10/02 | 16:00 | 32.762         | 40.183 | 43.017 | 53.882 | 33.275 | 21.137 | 21.693 |  |
| 12/10/02 | 20:00 | 32.753         | 40.169 | 43.024 | 53.882 | 33.286 | 21.133 | 21.700 |  |
| 12/11/02 | 0:00  | 32.744         | 40.155 | 43.013 | 53.864 | 33.277 | 21.128 | 21.695 |  |
| 12/11/02 | 4:00  | 32.738         | 40.136 | 43.006 | 53.855 | 33.277 | 21.105 | 21.698 |  |
| 12/11/02 | 8:00  | 32.733         | 40.127 | 43.020 | 53.868 | 33.298 | 21.105 | 21.710 |  |
| 12/11/02 | 12:00 | 32.733         | 40.125 | 43.024 | 53.871 | 33.286 | 21.094 | 21.703 |  |
| 12/11/02 | 16:00 | 32.729         | 40.113 | 43.020 | 53.868 | 33.300 | 21.073 | 21.708 |  |
| 12/11/02 | 20:00 | 32.733         | 40.120 | 43.053 | 53.905 | 33.312 | 21.114 | 21.715 |  |
| 12/12/02 | 0:00  | 32.740         | 40.125 | 43.074 | 53.932 | 33.326 | 21.144 | 21.720 |  |
| 12/12/02 | 4:00  | 32.746         | 40.134 | 43.095 | 53.960 | 33.339 | 21.144 | 21.727 |  |
| 12/12/02 | 8:00  | 32.757         | 40.143 | 43.123 | 53.992 | 33.351 | 21.160 | 21.737 |  |
| 12/12/02 | 12:00 | 32.768         | 40.155 | 43.116 | 53.994 | 33.332 | 21.165 | 21.722 |  |
| 12/12/02 | 16:00 | 32.768         | 40.155 | 43.121 | 53.998 | 33.355 | 21.153 | 21.739 |  |
| 12/12/02 | 20:00 | 32.777         | 40.164 | 43.128 | 54.005 | 33.346 | 21.167 | 21.732 |  |
| 12/13/02 | 0:00  | 32.779         | 40.164 | 43.112 | 53.989 | 33.337 | 21.179 | 21.722 |  |
| 12/13/02 | 4:00  | 32.779         | 40.162 | 43.114 | 53.985 | 33.340 | 21.147 | 21.725 |  |
| 12/13/02 | 8:00  | 32.779         | 40.153 | 43.093 | 53.962 | 33.332 | 21.133 | 21.717 |  |
| 12/13/02 | 12:00 | 32.788         | 40.164 | 43.119 | 53.992 | 33.340 | 21.149 | 21.727 |  |
| 12/13/02 | 16:00 | 32.788         | 40.162 | 43.116 | 53.992 | 33.349 | 21.160 | 21.727 |  |
| 12/13/02 | 20:00 | 32.799         | 40.171 | 43.140 | 54.019 | 33.355 | 21.195 | 21.739 |  |
| 12/14/02 | 0:00  | 32.810         | 40.185 | 43.175 | 54.060 | 33.374 | 21.208 | 21.744 |  |
| 12/14/02 | 4:00  | 32.818         | 40.192 | 43.161 | 54.046 | 33.351 | 21.195 | 21.730 |  |
| 12/14/02 | 8:00  | 32.821         | 40.196 | 43.147 | 54.042 | 33.356 | 21.176 | 21.734 |  |
| 12/14/02 | 12:00 | 32.827         | 40.199 | 43.135 | 54.021 | 33.330 | 21.201 | 21.720 |  |
| 12/14/02 | 16:00 | 32.816         | 40.180 | 43.112 | 53.994 | 33.344 | 21.153 | 21.727 |  |
| 12/14/02 | 20:00 | 32.823         | 40.187 | 43.147 | 54.026 | 33.365 | 21.183 | 21.739 |  |
| 12/15/02 | 0:00  | 32.825         | 40.183 | 43.109 | 53.992 | 33.335 | 21.158 | 21.727 |  |
| 12/15/02 | 4:00  | 32.818         | 40.166 | 43.081 | 53.953 | 33.321 | 21.126 | 21.713 |  |
| 12/15/02 | 8:00  | 32.816         | 40.164 | 43.095 | 53.969 | 33.342 | 21.126 | 21.725 |  |

|          |       | Depth (ft BGL) |        |        |        |        |        |        |  |
|----------|-------|----------------|--------|--------|--------|--------|--------|--------|--|
| Date     | Time  | SB09           | SB16   | SB49   | SB60   | SB62   | SB63   | SB64   |  |
| 12/15/02 | 12:00 | 32.810         | 40.143 | 43.031 | 53.893 | 33.289 | 21.092 | 21.683 |  |
| 12/15/02 | 16:00 | 32.792         | 40.115 | 43.005 | 53.864 | 33.303 | 21.039 | 21.698 |  |
| 12/15/02 | 20:00 | 32.792         | 40.115 | 43.032 | 53.887 | 33.342 | 21.053 | 21.713 |  |
| 12/16/02 | 0:00  | 32.801         | 40.125 | 43.074 | 53.935 | 33.356 | 21.106 | 21.717 |  |
| 12/16/02 | 4:00  | 32.797         | 40.115 | 43.032 | 53.887 | 33.307 | 21.064 | 21.698 |  |
| 12/16/02 | 8:00  | 32.801         | 40.120 | 43.076 | 53.941 | 33.360 | 21.060 | 21.732 |  |
| 12/16/02 | 12:00 | 32.810         | 40.134 | 43.090 | 53.951 | 33.344 | 21.099 | 21.717 |  |
| 12/16/02 | 16:00 | 32.810         | 40.129 | 43.079 | 53.944 | 33.349 | 21.080 | 21.722 |  |
| 12/16/02 | 20:00 | 32.821         | 40.141 | 43.114 | 53.978 | 33.360 | 21.103 | 21.737 |  |
| 12/17/02 | 0:00  | 32.825         | 40.143 | 43.090 | 53.953 | 33.335 | 21.115 | 21.722 |  |
| 12/17/02 | 4:00  | 32.812         | 40.115 | 43.034 | 53.891 | 33.303 | 21.044 | 21.703 |  |
| 12/17/02 | 8:00  | 32.790         | 40.076 | 42.963 | 53.807 | 33.270 | 20.989 | 21.679 |  |
| 12/17/02 | 12:00 | 32.760         | 40.016 | 42.852 | 53.676 | 33.208 | 20.943 | 21.640 |  |
| 12/17/02 | 16:00 | 32.712         | 39.951 | 42.800 | 53.596 | 33.229 | 20.824 | 21.657 |  |
| 12/17/02 | 20:00 | 32.703         | 39.942 | 42.855 | 53.642 | 33.266 | 20.840 | 21.679 |  |
| 12/18/02 | 0:00  | 32.699         | 39.937 | 42.857 | 53.651 | 33.257 | 20.847 | 21.667 |  |
| 12/18/02 | 4:00  | 32.692         | 39.928 | 42.892 | 53.688 | 33.291 | 20.852 | 21.698 |  |
| 12/18/02 | 8:00  | 32.698         | 39.940 | 42.975 | 53.777 | 33.342 | 20.879 | 21.727 |  |
| 12/18/02 | 12:00 | 32.723         | 39.972 | 43.029 | 53.850 | 33.347 | 20.959 | 21.737 |  |
| 12/18/02 | 16:00 | 32.749         | 40.009 | 43.119 | 53.960 | 33.400 | 21.019 | 21.761 |  |
| 12/18/02 | 20:00 | 32.790         | 40.069 | 43.225 | 54.097 | 33.436 | 21.120 | 21.786 |  |
| 12/19/02 | 0:00  | 32.825         | 40.115 | 43.258 | 54.154 | 33.432 | 21.172 | 21.790 |  |
| 12/19/02 | 4:00  | 32.855         | 40.159 | 43.312 | 54.229 | 33.450 | 21.223 | 21.805 |  |
| 12/19/02 | 8:00  | 32.882         | 40.194 | 43.312 | 54.241 | 33.427 | 21.243 | 21.786 |  |
| 12/19/02 | 12:00 | 32.903         | 40.224 | 43.284 | 54.213 | 33.386 | 21.252 | 21.759 |  |
| 12/19/02 | 16:00 | 32.912         | 40.229 | 43.248 | 54.177 | 33.393 | 21.218 | 21.752 |  |
| 12/19/02 | 20:00 | 32.932         | 40.252 | 43.279 | 54.211 | 33.409 | 21.248 | 21.761 |  |
| 12/20/02 | 0:00  | 32.949         | 40.275 | 43.274 | 54.202 | 33.393 | 21.248 | 21.754 |  |
| 12/20/02 | 4:00  | 32.962         | 40.287 | 43.272 | 54.204 | 33.397 | 21.259 | 21.752 |  |
| 12/20/02 | 8:00  | 32.973         | 40.298 | 43.274 | 54.206 | 33.400 | 21.261 | 21.759 |  |
| 12/20/02 | 12:00 | 32.984         | 40.315 | 43.263 | 54.188 | 33.377 | 21.268 | 21.747 |  |
| 12/20/02 | 16:00 | 32.993         | 40.324 | 43.263 | 54.190 | 33.400 | 21.245 | 21.735 |  |
| 12/20/02 | 20:00 | 33.011         | 40.345 | 43.300 | 54.236 | 33.420 | 21.291 | 21.761 |  |
| 12/21/02 | 0:00  | 33.030         | 40.368 | 43.293 | 54.238 | 33.402 | 21.287 | 21.752 |  |
| 12/21/02 | 4:00  | 33.039         | 40.377 | 43.288 | 54.227 | 33.393 | 21.285 | 21.749 |  |
| 12/21/02 | 8:00  | 33.041         | 40.379 | 43.265 | 54.204 | 33.390 | 21.287 | 21.742 |  |
| 12/21/02 | 12:00 | 33.039         | 40.370 | 43.178 | 54.106 | 33.326 | 21.230 | 21.706 |  |
| 12/21/02 | 16:00 | 33.026         | 40.352 | 43.197 | 54.115 | 33.386 | 21.186 | 21.740 |  |
| 12/21/02 | 20:00 | 33.047         | 40.379 | 43.305 | 54.234 | 33.444 | 21.273 | 21.774 |  |
| 12/22/02 | 0:00  | 33.082         | 40.426 | 43.397 | 54.346 | 33.469 | 21.365 | 21.793 |  |
| 12/22/02 | 4:00  | 33.111         | 40.465 | 43.425 | 54.396 | 33.471 | 21.390 | 21.798 |  |
| 12/22/02 | 8:00  | 33.144         | 40.509 | 43.482 | 54.474 | 33.485 | 21.454 | 21.796 |  |
| 12/22/02 | 12:00 | 33.174         | 40.551 | 43.470 | 54.476 | 33.453 | 21.472 | 21.783 |  |
| 12/22/02 | 16:00 | 33.191         | 40.571 | 43.456 | 54.474 | 33.462 | 21.472 | 21.788 |  |
| 12/22/02 | 20:00 | 33.213         | 40.597 | 43.470 | 54.499 | 33.467 | 21.506 | 21.796 |  |
| 12/23/02 | 0:00  | 33.239         | 40.632 | 43.487 | 54.515 | 33.471 | 21.513 | 21.791 |  |
| 12/23/02 | 4:00  | 33.259         | 40.659 | 43.489 | 54.526 | 33.471 | 21.532 | 21.796 |  |
| 12/23/02 | 8:00  | 33.270         | 40.671 | 43.461 | 54.492 | 33.439 | 21.509 | 21.776 |  |

|          |       | Depth (ft BGL) |        |        |        |        |        |        |  |
|----------|-------|----------------|--------|--------|--------|--------|--------|--------|--|
| Date     | Time  | SB09           | SB16   | SB49   | SB60   | SB62   | SB63   | SB64   |  |
| 12/23/02 | 12:00 | 33.289         | 40.692 | 43.444 | 54.474 | 33.414 | 21.541 | 21.754 |  |
| 12/23/02 | 16:00 | 33.287         | 40.687 | 43.390 | 54.414 | 33.425 | 21.463 | 21.757 |  |
| 12/23/02 | 20:00 | 33.292         | 40.687 | 43.359 | 54.371 | 33.414 | 21.458 | 21.742 |  |
| 12/24/02 | 0:00  | 33.296         | 40.687 | 43.347 | 54.339 | 33.407 | 21.440 | 21.723 |  |
| 12/24/02 | 4:00  | 33.292         | 40.673 | 43.284 | 54.273 | 33.391 | 21.385 | 21.725 |  |
| 12/24/02 | 8:00  | 33.285         | 40.659 | 43.265 | 54.243 | 33.393 | 21.376 | 21.728 |  |
| 12/24/02 | 12:00 | 33.285         | 40.650 | 43.246 | 54.209 | 33.379 | 21.328 | 21.713 |  |
| 12/24/02 | 16:00 | 33.265         | 40.620 | 43.199 | 54.142 | 33.374 | 21.275 | 21.715 |  |
| 12/24/02 | 20:00 | 33.268         | 40.615 | 43.246 | 54.190 | 33.418 | 21.292 | 21.735 |  |
| 12/25/02 | 0:00  | 33.276         | 40.622 | 43.274 | 54.227 | 33.427 | 21.312 | 21.742 |  |
| 12/25/02 | 4:00  | 33.289         | 40.636 | 43.310 | 54.264 | 33.446 | 21.344 | 21.759 |  |
| 12/25/02 | 8:00  | 33.307         | 40.657 | 43.373 | 54.341 | 33.481 | 21.383 | 21.786 |  |
| 12/25/02 | 12:00 | 33.325         | 40.678 | 43.376 | 54.346 | 33.448 | 21.392 | 21.764 |  |
| 12/25/02 | 16:00 | 33.335         | 40.689 | 43.380 | 54.355 | 33.467 | 21.401 | 21.769 |  |
| 12/25/02 | 20:00 | 33.353         | 40.710 | 43.421 | 54.403 | 33.485 | 21.438 | 21.788 |  |
| 12/26/02 | 0:00  | 33.370         | 40.731 | 43.432 | 54.421 | 33.474 | 21.443 | 21.779 |  |
| 12/26/02 | 4:00  | 33.385         | 40.750 | 43.439 | 54.430 | 33.467 | 21.456 | 21.783 |  |
| 12/26/02 | 8:00  | 33.401         | 40.763 | 43.442 | 54.446 | 33.481 | 21.459 | 21.786 |  |
| 12/26/02 | 12:00 | 33.412         | 40.777 | 43.421 | 54.419 | 33.446 | 21.475 | 21.759 |  |
| 12/26/02 | 16:00 | 33.412         | 40.773 | 43.385 | 54.378 | 33.453 | 21.424 | 21.762 |  |
| 12/26/02 | 20:00 | 33.418         | 40.777 | 43.395 | 54.380 | 33.467 | 21.440 | 21.769 |  |
| 12/27/02 | 0:00  | 33.420         | 40.775 | 43.355 | 54.334 | 33.437 | 21.401 | 21.749 |  |
| 12/27/02 | 4:00  | 33.423         | 40.775 | 43.364 | 54.334 | 33.462 | 21.411 | 21.762 |  |
| 12/27/02 | 8:00  | 33.420         | 40.766 | 43.331 | 54.300 | 33.446 | 21.385 | 21.747 |  |
| 12/27/02 | 12:00 | 33.425         | 40.768 | 43.331 | 54.293 | 33.430 | 21.385 | 21.733 |  |
| 12/27/02 | 16:00 | 33.418         | 40.757 | 43.319 | 54.280 | 33.453 | 21.335 | 21.752 |  |
| 12/27/02 | 20:00 | 33.425         | 40.757 | 43.336 | 54.298 | 33.460 | 21.374 | 21.754 |  |
| 12/28/02 | 0:00  | 33.414         | 40.733 | 43.272 | 54.216 | 33.419 | 21.310 | 21.730 |  |
| 12/28/02 | 4:00  | 33.394         | 40.699 | 43.227 | 54.158 | 33.411 | 21.253 | 21.716 |  |
| 12/28/02 | 8:00  | 33.383         | 40.678 | 43.234 | 54.152 | 33.427 | 21.246 | 21.730 |  |
| 12/28/02 | 12:00 | 33.386         | 40.676 | 43.234 | 54.152 | 33.418 | 21.251 | 21.723 |  |
| 12/28/02 | 16:00 | 33.377         | 40.657 | 43.218 | 54.129 | 33.427 | 21.223 | 21.720 |  |
| 12/28/02 | 20:00 | 33.383         | 40.659 | 43.248 | 54.167 | 33.448 | 21.253 | 21.740 |  |
| 12/29/02 | 0:00  | 33.379         | 40.650 | 43.218 | 54.129 | 33.423 | 21.200 | 21.723 |  |
| 12/29/02 | 4:00  | 33.357         | 40.606 | 43.149 | 54.046 | 33.386 | 21.148 | 21.701 |  |
| 12/29/02 | 8:00  | 33.335         | 40.569 | 43.107 | 53.987 | 33.372 | 21.127 | 21.694 |  |
| 12/29/02 | 12:00 | 33.305         | 40.520 | 43.046 | 53.900 | 33.336 | 21.059 | 21.665 |  |
| 12/29/02 | 16:00 | 33.261         | 40.458 | 42.989 | 53.823 | 33.340 | 20.979 | 21.667 |  |
| 12/29/02 | 20:00 | 33.242         | 40.426 | 42.975 | 53.793 | 33.331 | 20.967 | 21.660 |  |
| 12/30/02 | 0:00  | 33.220         | 40.396 | 42.980 | 53.788 | 33.345 | 20.933 | 21.672 |  |
| 12/30/02 | 4:00  | 33.211         | 40.379 | 43.010 | 53.825 | 33.366 | 20.924 | 21.686 |  |
| 12/30/02 | 8:00  | 33.224         | 40.398 | 43.130 | 53.960 | 33.449 | 20.983 | 21.742 |  |
| 12/30/02 | 12:00 | 33.268         | 40.458 | 43.277 | 54.136 | 33.495 | 21.139 | 21.781 |  |
| 12/30/02 | 16:00 | 33.307         | 40.514 | 43.378 | 54.280 | 33.538 | 21.228 | 21.808 |  |
| 12/30/02 | 20:00 | 33.357         | 40.581 | 43.458 | 54.401 | 33.552 | 21.303 | 21.820 |  |
| 12/31/02 | 0:00  | 33.399         | 40.636 | 43.484 | 54.451 | 33.534 | 21.390 | 21.805 |  |
| 12/31/02 | 4:00  | 33.423         | 40.666 | 43.479 | 54.458 | 33.513 | 21.404 | 21.798 |  |
| 12/31/02 | 8:00  | 33.442         | 40.692 | 43.470 | 54.458 | 33.508 | 21.418 | 21.801 |  |

|          |       | Depth (ft BGL) |        |        |        |        |        |        |  |
|----------|-------|----------------|--------|--------|--------|--------|--------|--------|--|
| Date     | Time  | SB09           | SB16   | SB49   | SB60   | SB62   | SB63   | SB64   |  |
| 12/31/02 | 12:00 | 33.458         | 40.710 | 43.413 | 54.394 | 33.469 | 21.402 | 21.769 |  |
| 12/31/02 | 16:00 | 33.453         | 40.699 | 43.347 | 54.312 | 33.455 | 21.340 | 21.755 |  |
| 12/31/02 | 20:00 | 33.462         | 40.701 | 43.329 | 54.284 | 33.453 | 21.319 | 21.750 |  |
| 1/1/03   | 0:00  | 33.464         | 40.699 | 43.296 | 54.238 | 33.430 | 21.287 | 21.730 |  |
| 1/1/03   | 4:00  | 33.464         | 40.694 | 43.303 | 54.243 | 33.453 | 21.278 | 21.747 |  |
| 1/1/03   | 8:00  | 33.469         | 40.699 | 43.336 | 54.268 | 33.478 | 21.310 | 21.757 |  |
| 1/1/03   | 12:00 | 33.486         | 40.719 | 43.350 | 54.284 | 33.462 | 21.313 | 21.750 |  |
| 1/1/03   | 16:00 | 33.497         | 40.733 | 43.378 | 54.323 | 33.499 | 21.345 | 21.776 |  |
| 1/1/03   | 20:00 | 33.512         | 40.754 | 43.413 | 54.359 | 33.513 | 21.351 | 21.784 |  |
| 1/2/03   | 0:00  | 33.536         | 40.782 | 43.454 | 54.410 | 33.525 | 21.395 | 21.791 |  |
| 1/2/03   | 4:00  | 33.549         | 40.798 | 43.456 | 54.423 | 33.515 | 21.425 | 21.789 |  |
| 1/2/03   | 8:00  | 33.564         | 40.817 | 43.472 | 54.451 | 33.525 | 21.454 | 21.791 |  |
| 1/2/03   | 12:00 | 33.584         | 40.842 | 43.461 | 54.449 | 33.497 | 21.454 | 21.779 |  |
| 1/2/03   | 16:00 | 33.588         | 40.847 | 43.435 | 54.417 | 33.506 | 21.420 | 21.774 |  |
| 1/2/03   | 20:00 | 33.606         | 40.865 | 43.470 | 54.462 | 33.527 | 21.441 | 21.791 |  |
| 1/3/03   | 0:00  | 33.623         | 40.891 | 43.482 | 54.476 | 33.525 | 21.464 | 21.776 |  |
| 1/3/03   | 4:00  | 33.630         | 40.898 | 43.461 | 54.451 | 33.504 | 21.464 | 21.776 |  |
| 1/3/03   | 8:00  | 33.636         | 40.900 | 43.439 | 54.423 | 33.483 | 21.448 | 21.762 |  |
| 1/3/03   | 12:00 | 33.639         | 40.905 | 43.397 | 54.375 | 33.472 | 21.429 | 21.752 |  |
| 1/3/03   | 16:00 | 33.608         | 40.868 | 43.291 | 54.254 | 33.439 | 21.324 | 21.725 |  |
| 1/3/03   | 20:00 | 33.595         | 40.847 | 43.286 | 54.236 | 33.463 | 21.310 | 21.735 |  |
| 1/4/03   | 0:00  | 33.584         | 40.824 | 43.255 | 54.188 | 33.442 | 21.262 | 21.718 |  |
| 1/4/03   | 4:00  | 33.571         | 40.798 | 43.248 | 54.172 | 33.447 | 21.251 | 21.723 |  |
| 1/4/03   | 8:00  | 33.575         | 40.798 | 43.321 | 54.238 | 33.502 | 21.285 | 21.757 |  |
| 1/4/03   | 12:00 | 33.578         | 40.794 | 43.255 | 54.170 | 33.430 | 21.240 | 21.716 |  |
| 1/4/03   | 16:00 | 33.560         | 40.768 | 43.270 | 54.181 | 33.488 | 21.224 | 21.747 |  |
| 1/4/03   | 20:00 | 33.586         | 40.798 | 43.383 | 54.312 | 33.539 | 21.308 | 21.764 |  |
| 1/5/03   | 0:00  | 33.606         | 40.819 | 43.383 | 54.325 | 33.518 | 21.315 | 21.776 |  |
| 1/5/03   | 4:00  | 33.619         | 40.831 | 43.404 | 54.350 | 33.532 | 21.333 | 21.789 |  |
| 1/5/03   | 8:00  | 33.632         | 40.842 | 43.409 | 54.359 | 33.523 | 21.343 | 21.774 |  |
| 1/5/03   | 12:00 | 33.649         | 40.868 | 43.435 | 54.391 | 33.529 | 21.381 | 21.784 |  |
| 1/5/03   | 16:00 | 33.671         | 40.891 | 43.489 | 54.455 | 33.571 | 21.411 | 21.806 |  |
| 1/5/03   | 20:00 | 33.706         | 40.942 | 43.590 | 54.581 | 33.606 | 21.496 | 21.830 |  |
| 1/6/03   | 0:00  | 33.752         | 41.006 | 43.659 | 54.688 | 33.615 | 21.580 | 21.849 |  |
| 1/6/03   | 4:00  | 33.789         | 41.055 | 43.675 | 54.739 | 33.608 | 21.649 | 21.842 |  |
| 1/6/03   | 8:00  | 33.822         | 41.101 | 43.696 | 54.782 | 33.617 | 21.677 | 21.849 |  |
| 1/6/03   | 12:00 | 33.854         | 41.147 | 43.685 | 54.784 | 33.578 | 21.736 | 21.825 |  |
| 1/6/03   | 16:00 | 33.859         | 41.157 | 43.619 | 54.709 | 33.566 | 21.661 | 21.815 |  |
| 1/6/03   | 20:00 | 33.861         | 41.152 | 43.555 | 54.627 | 33.534 | 21.656 | 21.784 |  |
| 1/7/03   | 0:00  | 33.859         | 41.145 | 43.479 | 54.533 | 33.504 | 21.608 | 21.757 |  |
| 1/7/03   | 4:00  | 33.846         | 41.122 | 43.416 | 54.446 | 33.479 | 21.537 | 21.738 |  |
| 1/7/03   | 8:00  | 33.826         | 41.092 | 43.371 | 54.375 | 33.490 | 21.475 | 21.742 |  |
| 1/7/03   | 12:00 | 33.815         | 41.069 | 43.333 | 54.312 | 33.458 | 21.434 | 21.725 |  |
| 1/7/03   | 16:00 | 33.774         | 41.011 | 43.248 | 54.200 | 33.442 | 21.306 | 21.704 |  |
| 1/7/03   | 20:00 | 33.756         | 40.979 | 43.244 | 54.181 | 33.451 | 21.299 | 21.708 |  |
| 1/8/03   | 0:00  | 33.739         | 40.944 | 43.230 | 54.149 | 33.449 | 21.244 | 21.708 |  |
| 1/8/03   | 4:00  | 33.719         | 40.907 | 43.199 | 54.113 | 33.442 | 21.203 | 21.699 |  |
| 1/8/03   | 8:00  | 33.691         | 40.861 | 43.161 | 54.051 | 33.428 | 21.171 | 21.691 |  |

|         |       |        |        |        | Depth (ft BGI | _)     |        |        |
|---------|-------|--------|--------|--------|---------------|--------|--------|--------|
| Date    | Time  | SB09   | SB16   | SB49   | SB60          | SB62   | SB63   | SB64   |
| 1/8/03  | 12:00 | 33.660 | 40.807 | 43.105 | 53.971        | 33.391 | 21.118 | 21.667 |
| 1/8/03  | 16:00 | 33.628 | 40.759 | 43.095 | 53.941        | 33.421 | 21.061 | 21.677 |
| 1/8/03  | 20:00 | 33.626 | 40.754 | 43.171 | 54.024        | 33.463 | 21.073 | 21.713 |
| 1/9/03  | 0:00  | 33.641 | 40.768 | 43.227 | 54.094        | 33.486 | 21.121 | 21.735 |
| 1/9/03  | 4:00  | 33.656 | 40.780 | 43.260 | 54.142        | 33.493 | 21.146 | 21.740 |
| 1/9/03  | 8:00  | 33.678 | 40.810 | 43.355 | 54.259        | 33.553 | 21.203 | 21.786 |
| 1/9/03  | 12:00 | 33.711 | 40.854 | 43.416 | 54.343        | 33.551 | 21.304 | 21.772 |
| 1/9/03  | 16:00 | 33.730 | 40.875 | 43.409 | 54.350        | 33.548 | 21.299 | 21.779 |
| 1/9/03  | 20:00 | 33.759 | 40.909 | 43.465 | 54.433        | 33.578 | 21.377 | 21.803 |
| 1/10/03 | 0:00  | 33.785 | 40.939 | 43.482 | 54.460        | 33.571 | 21.393 | 21.798 |
| 1/10/03 | 4:00  | 33.804 | 40.965 | 43.489 | 54.474        | 33.571 | 21.397 | 21.803 |
| 1/10/03 | 8:00  | 33.835 | 41.009 | 43.571 | 54.567        | 33.617 | 21.464 | 21.832 |
| 1/10/03 | 12:00 | 33.863 | 41.046 | 43.569 | 54.579        | 33.585 | 21.510 | 21.808 |
| 1/10/03 | 16:00 | 33.878 | 41.062 | 43.548 | 54.558        | 33.583 | 21.514 | 21.806 |
| 1/10/03 | 20:00 | 33.894 | 41.083 | 43.557 | 54.570        | 33,585 | 21.523 | 21.813 |
| 1/11/03 | 0:00  | 33.909 | 41.101 | 43.560 | 54.572        | 33.580 | 21.530 | 21.806 |
| 1/11/03 | 4:00  | 33.922 | 41.118 | 43.555 | 54.567        | 33.571 | 21.535 | 21.784 |
| 1/11/03 | 8:00  | 33.935 | 41.134 | 43.553 | 54.563        | 33.578 | 21.551 | 21.803 |
| 1/11/03 | 12:00 | 33.950 | 41.152 | 43.555 | 54.572        | 33.567 | 21.567 | 21.798 |
| 1/11/03 | 16:00 | 33.948 | 41.152 | 43.508 | 54.517        | 33.560 | 21.516 | 21.786 |
| 1/11/03 | 20:00 | 33.963 | 41.168 | 43.553 | 54.561        | 33.597 | 21.539 | 21.810 |
| 1/12/03 | 0:00  | 33.977 | 41.184 | 43.567 | 54,583        | 33,590 | 21.562 | 21.813 |
| 1/12/03 | 4:00  | 33.979 | 41.189 | 43.517 | 54.524        | 33.555 | 21.526 | 21.786 |
| 1/12/03 | 8:00  | 33.977 | 41.187 | 43.496 | 54,499        | 33.564 | 21.516 | 21.786 |
| 1/12/03 | 12:00 | 33.966 | 41.175 | 43.442 | 54.426        | 33.525 | 21.466 | 21.752 |
| 1/12/03 | 16:00 | 33.935 | 41.141 | 43.357 | 54.321        | 33.502 | 21.384 | 21.733 |
| 1/12/03 | 20:00 | 33.929 | 41.127 | 43.406 | 54.362        | 33.553 | 21.413 | 21.764 |
| 1/13/03 | 0:00  | 33.933 | 41.124 | 43.421 | 54.375        | 33.557 | 21.413 | 21.769 |
| 1/13/03 | 4:00  | 33.942 | 41.127 | 43.435 | 54.394        | 33.564 | 21.427 | 21.774 |
| 1/13/03 | 8:00  | 33.957 | 41.138 | 43.482 | 54.446        | 33.580 | 21.457 | 21.789 |
| 1/13/03 | 12:00 | 33.963 | 41.143 | 43.449 | 54.410        | 33.555 | 21.450 | 21.772 |
| 1/13/03 | 16:00 | 33.929 | 41.108 | 43.352 | 54.293        | 33.516 | 21.349 | 21.740 |
| 1/13/03 | 20:00 | 33.931 | 41.104 | 43.404 | 54.343        | 33.557 | 21.352 | 21.767 |
| 1/14/03 | 0:00  | 33.948 | 41.115 | 43.477 | 54.428        | 33.604 | 21.413 | 21.796 |
| 1/14/03 | 4:00  | 33.979 | 41.150 | 43.581 | 54.554        | 33.638 | 21.505 | 21.835 |
| 1/14/03 | 8:00  | 34.016 | 41.203 | 43.668 | 54.670        | 33.661 | 21.590 | 21.852 |
| 1/14/03 | 12:00 | 34.046 | 41.240 | 43.656 | 54.682        | 33.622 | 21.619 | 21.823 |
| 1/14/03 | 16:00 | 34.049 | 41.238 | 43.557 | 54.579        | 33.578 | 21.551 | 21.786 |
| 1/14/03 | 20:00 | 34.062 | 41.252 | 43.581 | 54.593        | 33.615 | 21.572 | 21.810 |
| 1/15/03 | 0:00  | 34.073 | 41.266 | 43.574 | 54.586        | 33.601 | 21.585 | 21.798 |
| 1/15/03 | 4:00  | 34.073 | 41.263 | 43.543 | 54.551        | 33.583 | 21.551 | 21.791 |
| 1/15/03 | 8:00  | 34.073 | 41.261 | 43.524 | 54.522        | 33.580 | 21.500 | 21.772 |
| 1/15/03 | 12:00 | 34.066 | 41.254 | 43.470 | 54.455        | 33.537 | 21.503 | 21.762 |
| 1/15/03 | 16:00 | 34.016 | 41.189 | 43.350 | 54.300        | 33.507 | 21.407 | 21.730 |
| 1/15/03 | 20:00 | 34.007 | 41.173 | 43.404 | 54.341        | 33.569 | 21.384 | 21.767 |
| 1/16/03 | 0:00  | 33.998 | 41.152 | 43.392 | 54.325        | 33.542 | 21.370 | 21.750 |
| 1/16/03 | 4:00  | 33.990 | 41.138 | 43.413 | 54.341        | 33.576 | 21.370 | 21.772 |
| 1/16/03 | 8:00  | 34.009 | 41.157 | 43.522 | 54.467        | 33.631 | 21.439 | 21.818 |

34.101

34.112

34.120

41.261

41.273

41.284

#### Depth (ft BGL) SB09 SB16 SB49 SB60 SB62 SB63 Date Time SB64 1/16/03 12:00 34.046 41.203 43.595 54.567 33.648 21.501 21.825 1/16/03 16:00 34.066 41.224 43.595 54.579 33.634 21.533 21.820 1/16/03 20:00 34.086 41.244 43.593 54.588 33.625 21.553 21.813

43.578

43.585

43.588

54.567

54.581

54.590

33.611

33.622

33.627

21.549

21.551

21.567

#### TABLE D.5 (Cont.)

1/17/03

1/17/03

1/17/03

0:00

4:00

8:00

21.806

21.808

21.813

Appendix E:

# Piezometer Construction Diagrams

| Argonne Nati               | ional Laboratory             | Sand Point ID: SB22                                                                             |
|----------------------------|------------------------------|-------------------------------------------------------------------------------------------------|
| Project: Everest           | Ground Elevation: 1148.3 ft  | Rig: Argonne 40-ton CPT                                                                         |
| Depth in Feet: 63          | Reference Elevation: 1147.87 | ft Driller: Kurt Spokas                                                                         |
| Completion Date: 3/26/2001 | Location: Easting: 2036110   | 6.87 Northing: 500456.09                                                                        |
| Depth in Feet Well Co      | nstruction                   | <b>Construction Details</b>                                                                     |
|                            | 12-<br>wit                   | inch Diameter Cast Iron Cover Bolted to Flange<br>h Rubber Gasket                               |
| -5 -                       | 2-ii<br>Ad                   | nch "J" Type Locking Cap on 2x6-inch PVC<br>apter on 2-inch Diameter Riser                      |
| -10                        | 12-<br>Су                    | inch Diameter x 24-inch Deep Galvanized Steel<br>linder (Skirt)                                 |
| -15                        | 28-                          | inch Diameter x 30-inch Deep Concrete Vault                                                     |
|                            | Tre                          | emie Grouted Bentonite Slurry in 4-inch Annulus<br>m Surface to 20 ft BGL                       |
| -20                        | 1-iı<br>Su                   | nch Schedule 40, Threaded PVC Riser from<br>rface to 58 ft BGL                                  |
| -25                        |                              |                                                                                                 |
| -30 -                      | Tre                          | amie Grouted Bentonite Slurry in 2.25-inch                                                      |
| -35                        | An                           | nulus from 20-56 ft BGL                                                                         |
|                            |                              |                                                                                                 |
| -40                        |                              |                                                                                                 |
| -45                        |                              |                                                                                                 |
| -50                        |                              |                                                                                                 |
|                            |                              |                                                                                                 |
|                            | Sa<br>1-ii<br>Sc             | nd Pack from 50-63 ft BGL<br>nch Slotted (0.10") Schedule 40 PVC Well<br>reep from 58-63 ft BGL |
|                            | Sa Sa                        | crificial CPT Tip Plug                                                                          |
|                            |                              |                                                                                                 |
|                            |                              |                                                                                                 |

| LICATION OF WATER WELL       Freedom       Ex       NL       NL       Section Number       To what with a single Number         Mission and direction from meases lown or oby street address of well Hocated within bit?       NK       Very Section 1000       Section Number       T       4       Section Number         WK corner of Sth and Located Street.       Every Section Number       To what number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                        | WATER WE                         | L RECORD Form WWC                       | -5 KSA 82              | a-1212 ID           | No. EVSB-22                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|----------------------------------|-----------------------------------------|------------------------|---------------------|---------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description         Date is a first interval of the state attracts of well in Casta Winn bit?         T         A         S         R         LS           NM CORDER : USDA/CCC         RM States Boot States Boot States Attracts of the state                                                                                                                        | 1 LOCATIO                 | N OF WAT               | ER WELL: Fract                   | ion                                     | Sect                   | on Number           | Township N                            | umber                                   | Range Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Hance and erection from nearest town or ofly street address of well Hocated within thy? WA Corner of Sth. and Locatust Street, Reverent, KS WATER WELL OWNER: USDA/CCCC WATER WELL OWNER: USDA/CCC ARAS STOP 0513-Room 4714-5, 1400 Independece Avel, SW Board of Apriculture. Division of Water Resources AR, Stadras, Star 20 Code Water Well OWNER: USDA/CCCC ARAS STOP 0513-Room 4714-5, 1400 Independece Avel, SW Board of Apriculture. Division of Water Resources AR, Stadras, SCANTON, WILL ADDEPTH OF COMPLETE WELL 63  AR V: N SECTION BOX  USDA STATUS STATUS WITHER EVEL. 56.0. It. below land stutions measured on modelyr. 0.4/05/01  Depth(s) Stanowakier Encountered 1606.1. the after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | County: B                 | LOWN                   | S                                | W 1/4 NE 1/4 NW                         | 1/4                    | 29                  | T 4                                   | S                                       | R 10 (EV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Image St. Address Set STOP OGC         Description Control         Description Control <thdescription control<="" th="">         Description Con</thdescription>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Distance an               | d direction            | from nearest town or cit         | y street address of well if loca        | ated within city       | ?                   |                                       |                                         | $\smile$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RH St. Address, Box # : STOP 0513-Room 4714-St. 1400 Independece Ave  , SK Beard of Apriculture, Division of Water Resources Application Number: <ul> <li>Address, Box # : STOP 0513-Room 4714-St. 1400 Independece Ave  , SK Beard of Apriculture, Division of Water Resources Application Number:</li> <li>Address, Box # : STOP 0513-Room 4714-St. 1400 Independece Ave  , SK Beard of Apriculture, Division of Water Resources Application Number:</li> <li>Address, Box # : STOP 0513-Room 4714-St. 1400 Independece Ave  , SK Beard of Apriculture, Division of Water Resources Application Number:</li> <li>Address, Box # : Stop 0513-Room 4714-St. 1400 Independence Ave  , SK Beard of Apriculture, Division of Water Resources Application Number:</li> <li>Address, Box # : Stop 0513-Room 4714-St. 1400 Independence Ave  , SK Beard of Apriculture, Division of Water Resources Application Number:</li> <li>Address, Box # : Stop 0513-Room 4714-St. 1400 Independence Ave, I, and</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 WATER V                 | WELL OWN               | IER: USDA/CCC                    | Street, Everest,                        | <u>N</u> 3             |                     |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Increase used to control with H_L       Miles Line Control with H_L       Miles Line Control with H_L         AN X* IN SECTION BDX.       Depths ( foundwater Encountered 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RR#, St. Ad<br>City State | dress, Box<br>7IP Code | # STOP 0513-F                    | toom 4714-S, 1400                       | Independe              | ce Ave              | SW Board of Ag                        | riculture, [                            | Division of Water Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AN 'S' IN SECTION BOX:<br>AN 'S' IN SECTION BOX:<br>BIRK ASING USED. S Wrought Ion 'S Concrete US CASING CONC.<br>ANS 'S HAURISM. CLIMPECT AND 'S AN 'S 'S Elergias:<br>BIRK ASING USED. S Elergias:<br>BIRK ASING USED. S Elergias:<br>AN 'S' IN SECTION BOX:<br>BIRK ASING USED. S Elergias:<br>AN 'S' IN SECTION BOX:<br>BIRK ASING USED. S Elergias:<br>AN 'S' IN SECTION BOX:<br>BIRK ASING USED. AN 'S 'S THON' CLIMPECT AND 'S AN 'S                                                                                                                                                                                                                                                                        | 2 LOCATE                  |                        | Washington                       | DC 20250-0513                           | 63                     | 4 . EI EV/          |                                       | 32                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WELL'S STATC WHETELEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AN "X" IN                 |                        | BOX: Denth(s)                    | Groundwater Encountered                 | 1 60                   |                     | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 4 3 C                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Image: Second                                      |                           | Ņ                      |                                  | STATIC WATER LEVEL                      | 6.0. ft belov          | v land surfac       | e measured on mo                      | <br>/dav/vr                             | 0//05/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Image: Second                                      | <b>A</b>                  |                        | !                                | Pump test data: Well wat                | or was                 | ft                  | after                                 | houre r                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Image: Section framework in the section of the section framework in the severify framework in thesection framework in the secting framework                                       |                           | NW X                   |                                  | M/A com: Well wat                       | or was                 |                     |                                       | bours r                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| g         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 1                      | Bore Ho                          | a Diameter $5.25$ in t                  | 22 -                   | 68 4                | and 3.25                              | nours p                                 | in the <b>63</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1       1       1       1       1       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | 1                      |                                  | ATED TO BE LISED AS                     |                        | 99                  | Air conditioning                      | • • • • • •                             | in. το                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| - SW SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 11                      | 1                      | 1 Do                             | mestic 3 Feedlot 6                      | Oil field water        | supply              | 9 Dewstering                          |                                         | ther (Specify below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sinter State       Was a chemical/backer/sciological sample submitted to Department? Yes       No. X If yes, mo/daylyrs as public with the department? Yes       No. X If yes, mo/daylyrs as public with the department? Yes         TYPE OF BLANK CASING USED:       5 Wrought iron       8 Concrete lile       CASING JOINTS: Glaud Clamped         TStell       3 RMP (SR)       6 Asbestos-Coment       9 Other (specify below)       Weided Clamped         TStell       3 RMP (SR)       6 Asbestos-Coment       9 Other (specify below)       Weided Clamped         TStell       3 Statimes stell       5 Florglass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | SW                     | _ SE   2  rrig                   | nation 4 Industrial 7                   | Domestic (lawr         | & carden) 1         | 0 Monitoring well                     | Wat                                     | er Level Monitorin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| I         I         Was a chemical/calculociogical sample submitted to Department? Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | 500   -                |                                  |                                         | Domostic (iam          | a galaon) i         | o morntoring wen.                     |                                         | ** . ******* . ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| S         Imited         Water Well Disinferded? Yes         No. X           TYPE OF BLAK CASING USED:         5 Wrought iron         8 Concrete tile         CASING JOINTS: GluedClamped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>*</b>                  | i                      | Was a ch                         | nemical/bacteriological sample si       | ubmitted to Dep        | artment? Yes        | s NoX                                 | .; If yes, r                            | no/day/yrs sample was sub-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ITYPE OF BLANK CASING USED:       5 Wrought iron       8 Concrete tile       CASING JOINTS: Glued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | Ş                      | mitted                           |                                         |                        | Wate                | er Well Disinfected?                  | Yes                                     | No X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 Stell     3 HMP (SH)     6 Abbetos-Cament     9 Other (specify balow)     Weided       Bink casing diameter     1, in, to     58, .t, Dia     in, to     in, to     in, to       Casing height above land surface FLUSH, MOUNT, in, weight     is 5, tt, Dia     in, to     is 5, tt, Dia     in, to       1 Steel     3 Stainless steel     5 Eiberglass     OVC     10 Abbetos-coment       2 Brass     4 Galvanized steel     5 Eiberglass     OVC     10 Abbetos-coment       1 Steel     3 Stainless steel     5 Eiberglass     OVC     10 Abbetos-coment       2 Brass     4 Galvanized steel     6 Concrete tile     9 ABS     12 None used (open hole)       9 Continuous stot     Wile wrapped     9 Bas     8 Saw cut     11 None (open hole)       1 Continuous stot     From.     5 dauzed wrapped     9 Drilled holes     10 Other (specify)       2 Louvered shutter     From.     ft to     ft, from     ft to     ft, from       GROUT MATERIAL:     1 Neat cement     2 Cement grout     3 Bentonite     4 Other       GROUT MATERIAL:     1 Neat cement     2 Cement grout     3 Bentonite     4 Other       1 Septic tank     4 Lateral lines     7 Pit privy     11 Fuel storage     15 Oli weil(Gas weil       1 Sever tank     5 Ceses pool     8 Sewage legoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 TYPE OF                 | - BLANK C              | ASING USED:                      | 5 Wrought iron                          | 8 Concre               | te tile             | CASING JO                             | INTS: Glue                              | əd Clamped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CPVC       4 ABS       7 Fiberglass       Treeded         Bisink casing diameter       1, in, to.       58t, Dia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 Steel                   |                        | 3 RMP (SR)                       | 6 Asbestos-Cement                       | 9 Other (              | specify belo        | ow)                                   | Weld                                    | ded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Biank casing diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2PVC                      |                        | 4 ABS                            | 7 Fiberglass                            |                        | • • • • • • • • • • |                                       | Thre                                    | aded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Casing height above land surface, <b>PLUBA, MOURT</b> : In, weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Blank casir               | ng diameter            | in. to .                         |                                         |                        | to                  | ft., Dia                              |                                         | in. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TYPE OF SCREEN OR PERFORATION MATERIAL:       15 berglass       5 Fiberglass       10 Abbestos-cement         1 Steel       3 Statiless steel       6 Concrete tile       9 ABS       12 None (specify)       12 None (specify)         2 Brass       4 Galvanized steel       6 Concrete tile       9 ABS       12 None (specify)       11 None (specify)         SCREEN OR PERFORATION OPENINGS ARE:       5 Gauzed wrapped       8 Saw cut       11 None (specify)       11 None (specify)         1 Continuous slot       Control Key punched       8 Saw cut       11 None (specify)       11 None (specify)         2 Couvered shutter       Key punched       8 Saw cut       11 None (specify)       11 None (specify)         3 CREEN-OR PERFORATEO INTERVALS: From       .56       .16       .63       .16, From       .16         GROUT MATERIAL:       1 Neat cement       2 Cement grout       3 Bentonite       4 Other       .16       .16         GROUT MATERIAL:       1 Neat cement       2 Cement grout       3 Bentonite       4 Other       .16       .16       .16       .16       .16       .16       .16       .16       .16       .16       .16       .16       .16       .16       .16       .16       .16       .16       .16       .16       .16       .16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Casing heig               | ght above I            | and surface Flush Mo             | unt. in., weight                        |                        | lbs                 | ./ft. Wall thickness                  | or gauge N                              | loSch. 40. PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 Steel       3 Stainless steel       5 Fiberglass       5 RMP (SR)       11 Other (specify)         2 Brass       4 Galvanized steel       6 Concrete tile       9 ABS       12 None used (open hole)         SCREEN OR PERFORATION OPENINGS ARE:       5 Gauzed wrapped       8 Saw cut       11 None (open hole)         1 Continuous slot       OMII slot       6 Wile wrapped       9 Difield holes       10 Other (specify)         1 Control Suiture       Key punched       7 Torch cut       10 Other (specify)       tt         SCREEN-PERFORATED INTERVALS: From       56th, From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TYPE OF                   | SCREEN (               | R PERFORATION MAT                | TERIAL:                                 | $\overline{O}$         | ;                   | 10 Ast                                | estos-cen                               | nent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2 Brass       4 Galvanized steel       6 Concrete tile       9 ABS       12 None used (open hole)         SCREEN OR DEFRORATION OPENINGS ARE:       5 Gauzed wrapped       8 Saw cut       11 None (open hole)         2 Louvered shutter       Y Key punched       7 Torch cut       10 Other (specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 Steel                   |                        | 3 Stainless steel                | 5 Fiberglass                            | 8 RM                   | P (SR)              | 11 Oth                                | er (specify                             | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SCREEN OR PERFORATION OPENINGS ARE:       5 Gauzed wrapped       8 Saw cut       11 None (open hole)         1 Continuous sidt       6 Wile wrapped       9 Drilled holes       10 Other (specify)       1t.         SCREEN-PERFORATED INTERVALS: From.       58       tt. to       63.       tt. prom       tt. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 Brass                   | S                      | 4 Galvanized steel               | 6 Concrete tile                         | 9 ABS                  |                     | 12 Nor                                | e used (o                               | pen hole)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1 Continuous slot       GMIII slot       6 Wire wrapped       9 Drilled holes         2 Louverde shutter       Torch cut       10 Other (specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SCREEN (                  | OR PERFC               | RATION OPENINGS A                | RE: 5 Gau                               | zed wrapped            |                     | 8 Saw cut                             |                                         | 11 None (open hole)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2 Lovered shufter       ** Key punched       7 Torch cut       10 Other (specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 Conti                   | nuous slot             | 3 Mill slot                      | 6 Wire                                  | wrapped                |                     | 9 Drilled holes                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SCREEN-PERFORATED INTERVALS: From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 Louve                   | ered shutte            | r 4 Key punch                    | ed 7 Toro                               | h cut                  |                     | 10 Other (specify                     | ()                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| From.       ft. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SCREEN-R                  | PERFORA                | ED INTERVALS: From               |                                         |                        | ft., Fror           | n <u>.</u>                            | ft. f                                   | to 🗖                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GRAVEL PACK INTERVALS: From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                        | From                             | ft. to                                  |                        | ft., Fror           | n                                     | ft.                                     | to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| GROUT MATERIAL:       1 Neat cement       2 Cement grout       3 Bentonite       4 Other       1, from       1, to       1, from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (                         | SHAVEL P               | ACK INTERVALS: From              |                                         |                        | ft., Fror           | m <b>-</b>                            | ft. f                                   | to <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| GROUT MATERIAL:       1 Noat cement       2 Cement grout       3 Bentonite       4 Other         Grout Intervals:       From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                        | FIOI                             | It. to .                                |                        | π., Fror            | n                                     | π.                                      | to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Grout Intervals: From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 GROUT                   | MATERIAL               | : 1 Neat cement                  | 2 Cement grout                          | 3 Benton               | te 4                | Other                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| What is the nearest source of possible contamination:       10 Livestock pens       14 Abandoned water well         1 Septic tank       4 Lateral lines       7 Pit privy       11 Fuel storage       15 Oil well/Gas well         2 Sewer lines       5 Cess pool       8 Sewage lagoon       12 Fertilizer storage       16 Other (specify below)         3 Watertight sewer lines       6 Seepage pit       9 Feedyard       13 insecticide storage <b>Field &amp; Road</b> . Run-off .         Direction from well?       North       How many feet?       30*         FROM       TO       LITHOLOGIC LOG       FROM       TO       PLUGGING INTERVALS         0       3*       12*       Clay       30*         12*       301       Sand and Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Grout Inte                | rvals: Fro             | πft. to .                        | <b>56</b> ft., From                     | ft.                    | to                  | ft., From                             |                                         | ft. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 Septic tank       4 Lateral lines       7 Pit privy       11 Fuel storage       15 Oil well/Gas well         2 Sewer lines       5 Cess pool       8 Sewage lagoon       12 Fortilizer storage       16 Other (specify below)         3 Wateright sewer lines       6 Seepage pit       9 Feedyard       13 insecticide storage       If e Other (specify below)         Direction from well?       North       How many feet?       30*         FROM       TO       LITHOLOGIC LOG       FROM       TO       PLUGGING INTERVALS         0       3*       Top Soil       0       12*       30*       30*         30*       40*       Silty Clay, (Dry)       0       0       0         40*       60*       Silty Clay, (Dry)       0       0       0         40*       60*       Silty Clay, Bluish (Dry)       0       0       0         62       63       Silty Clay, Bluish (Dry)       0       0       0       0         62       63       Silty Clay, Bluish (Dry)       0       0       0       0       0         62       63       Silty Clay, Bluish (Dry)       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | What is the               | e nearest s            | ource of possible contar         | nination:                               |                        | 10 Lives            | stock pens                            | 14 A                                    | bandoned water well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2 Sewer lines       5 Cess pool       8 Sewage lagoon       12 Fertilizer storage       16 Other (specify below)         3 Watertight sewer lines       6 Sepage pit       9 Feedyard       13 Insecticide storage       Field. & Road. Run-off.         Direction from well?       North       How many feet?       30"         FROM       TO       LITHOLOGIC LOG       FROM       TO       PLUGGING INTERVALS         0       3"       Top Soil       -       -       -         3'       12"       Clay       -       -       -         12'       30"       Sand and Clay       -       -       -       -         40"       Silty Clay, (Dry)       -       -       -       -       -         40"       61.5       Silty Clay, Bluish (Dry)       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td< td=""><td>1 Septie</td><td>c tank</td><td>4 Lateral lines</td><td>7 Pit privy</td><td>/</td><td>11 Fuel</td><td>storage</td><td>15 C</td><td>Dil well/Gas well</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 Septie                  | c tank                 | 4 Lateral lines                  | 7 Pit privy                             | /                      | 11 Fuel             | storage                               | 15 C                                    | Dil well/Gas well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3 Watertight sewer lines 6 Seepage pit       9 Feedyard       13 Insecticide storage       Bield & Road Run-off.         Direction from well?       North       How many feet?       30'         FROM       TO       LITHOLOGIC LOG       FROM       TO       PLUGGING INTERVALS         0       3'       Top Soil       -       -       -         3'       12'       Clay       -       -       -         12'       30'       Sand and Clay       -       -       -         30'       40'       Silty Clay, (Dry)       -       -       -         40'       60'       Silty Clay, (Met)       -       -       -         61.       52       Sandy Clay, (Wet)       -       -       -         62       63       Silty Clay, Bluish (Dry)       -       -       -       -         62       63       Silty Clay, Bluish (Dry)       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 Sewe                    | er lines               | 5 Cess pool                      | 8 Sewage                                | agoon                  | 12 Ferti            | lizer storage                         | 16 (                                    | Other (specify below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Direction from well?       North       How many feet?       30'         FROM       TO       LITHOLOGIC LOG       FROM       TO       PLUGGING INTERVALS         0       3'       Top Soil       0       12'       Clay       0         3'       12'       Clay       0       12'       Sand and Clay       0       0'         30'       40'       Silty Clay, (Dry)       0'       0'       0'       0'       0'         40'       60'       Silty Sand (Wet)       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'       0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 Wate                    | rtight sewe            | r lines 6 Seepage pit            | 9 Feedya                                | rd                     | 13 Insec            | cticide storage                       | Field                                   | & Road Run-off.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FROM       TO       LITHOLOGIC LOG       FROM       TO       PLUGGING INTERVALS         0       3'       Top Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Direction fi              | rom well?              | North                            |                                         |                        | How ma              | any feet? 30"                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0       3'       Top Soil         3'       12'       Clay         12'       30'       Sand and Clay         30'       40'       Silty Clay, (Dry)         40'       60'       Silty Sand (Wet)         61.       52       Sandy Clay (Wet)         62       63       Silty Clay, Bluish (Dry)         62       63       Silty Clay, Bluish (Dry)         64       0       0         62       63       Silty Clay, Bluish (Dry)         62       63       Silty Clay, Bluish (Dry)         64       0       0         65       0       0         66       0       0         7       0       0         62       0       0         63       Silty Clay, Bluish (Dry)       0         64       0       0         7       0       0         7       0       0         7       0       0         8       0       0         9       0       0         9       0       0         9       0       0         9       0       0 <td>FROM</td> <td>TO</td> <td>LITHOLO</td> <td>GIC LOG</td> <td>FROM</td> <td>то</td> <td>PLU</td> <td>GGING I</td> <td>NTERVALS</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FROM                      | TO                     | LITHOLO                          | GIC LOG                                 | FROM                   | то                  | PLU                                   | GGING I                                 | NTERVALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3'       12'       Clay         12'       30'       Sand and Clay         30'       40'       Silty Clay, (Dry)         40'       60'       Silty Clay, (Dry)         40'       60'       Silty Clay, (Wet)         61.       62       Sandy Clay, (Wet)         62       63       Silty Clay, Bluish (Dry)         62       63       Silty Clay, Bluish (Dry)         60'       60'       60'         61.       62       63         62       63       Silty Clay, Bluish (Dry)         60'       60'       60'         61.       60'       60'         62       63       Silty Clay, Bluish (Dry)         60'       60'       60'         61.       60'       60'         62       63       Silty Clay, Bluish (Dry)         60'       60'       60'         61.       60'       60'         62'       63'       Silty Clay, Bluish (Dry)         60'       60'       60'         61.       60'       60'         62'       63'       60'         63'       60'       60'         64'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                         | 3'                     | Top Soil                         | · · · · · · · · · · · · · · · · · · ·   |                        |                     |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12'       30'       Sand and Clay       10'         30'       40'       Silty Clay, (Dry)       10'         40'       60'       Silt (Dry)       10'         60'       61.5       Silty Sand (Wet)       10'         61.5       62       Sandy Clay (Wet)       10'         62       63       Silty Clay, Bluish (Dry)       10'         62       63       Silty Clay, Bluish (Dry)       10'         60'       60'       60'       60'         61.5       62       63       Silty Clay, Bluish (Dry)       10'         62       63       Silty Clay, Bluish (Dry)       10'       10'         60'       60'       60'       60'       60'         61.5       62       63       Silty Clay, Bluish (Dry)       10'         62       63       Silty Clay, Bluish (Dry)       10'       10'         60'       61'       61'       60'       10'       10'         70'       70'       70'       70'       10'       10'         90'       90'       10'       10'       10'       10'         90'       90'       10'       10'       10'       10' <td>31</td> <td>12'</td> <td>Clay</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31                        | 12'                    | Clay                             |                                         |                        |                     |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30'       40'       Silty Clay, (Dry)         40'       60'       Silt (Dry)         60'       61.5       Silty Sand (Wet)         61.5       62       Sandy Clay (Wet)         62       63       Silty Clay, Bluish (Dry)         60'       61.5       62         62       63       Silty Clay, Bluish (Dry)         60'       61.5       62         62       63       Silty Clay, Bluish (Dry)         60'       61.5       62         62       63       Silty Clay, Bluish (Dry)         60'       61.5       62         62       63       Silty Clay, Bluish (Dry)         60'       61.5       62         62       63       Silty Clay, Bluish (Dry)         60'       61.5       62         7       CONTRACTOR'S OR LANDOWNER'S CERTIFICATION: This water well was (1) constructed, (2) reconstructed, or (3) plugged under my jurisdiction and was sompleted on (mo/day/year)         9       03/26/01       and this record is true to the best of my knowledge and belief. Kansas         Vater Well Contractor's Licence No. 680       This Water Well Record was completed on (mo/day/yr)       04/13/01         INSTRUCTIONS: Use typewriter or ball point pen. <u>PLEASE PRESS FIRMLY</u> and <u>PRINT</u> clearly. Please fill i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12'                       | 30'                    | Sand and Clay                    |                                         |                        |                     |                                       |                                         | . LO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40'       60'       S11t (Dry)         60'       61.\$ S11ty Sand (Wet)       50'         61.\$ 62       Sandy Clay (Wet)       50'         62       63       S11ty Clay, Bluish (Dry)       50'         62       63       S11ty Clay, Bluish (Dry)       50'         62       63'       S11ty Clay, Bluish (Dry)       50'         64'       50'       50'         62'       63'       S11ty Clay, Bluish (Dry)         64'       50'       50'         65'       50'       50'         66'       50'       50'         67'       50'       50'         68'       50'       50'         7'       50'       50'         7'       50'       50'         7'       50'       50'         7'       50'       50'         7'       50'       50'         7'       50'       50'         80'       50'       50'         7'       50'       50'         80'       50'       50'         80'       50'       50'         80'       50'       50'         80'       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30'                       | 40"                    | Silty Clay, (I                   | . (v <del>.</del>                       |                        |                     |                                       |                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 60'       61-S       Silty Sand (Wet)         61-S       62       Sandy Clay (Wet)         62       63       Silty Clay, Bluish (Dry)         64       64       64         65       64       64         66       63       Silty Clay, Bluish (Dry)         62       63       Silty Clay, Bluish (Dry)         64       64       64         65       65       65         7       64       65         7       64       65         7       64       65         8       65       65         8       65       66         9       65       66         9       65       66         9       9       65         9       9       64       13         9       9       9       9         9       9       9       9         9       9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 401                       | 60'                    | Silt (Dry)                       |                                         |                        |                     |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 61.5       62       Sandy Clay (Wet)         62       63       Silty Clay, Bluish (Dry)         64       64       65         65       64       65         66       67       68         7       South (Structed)       63         7       64       65         7       65       65         7       65       66         7       65       67         7       65       67         7       65       67         7       67       67         7       67       67         8       67       67         8       67       67         8       67       67         8       67       67         8       67       67         8       67<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 601                       | 61 5                   | Silty Sand (W                    | <b>(</b> +)                             |                        |                     |                                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 62       63       Silty Clay, Bluish (Dry)         63       Silty Clay, Bluish (Dry)       64         64       63       Silty Clay, Bluish (Dry)         65       64       64         66       Silty Clay, Bluish (Dry)       64         7       CONTRACTOR'S OR LANDOWNER'S CERTIFICATION: This water well was (1) constructed, (2) reconstructed, or (3) plugged under my jurisdiction and was sompleted on (mo/day/year)       03/26/01         9       Signature)       and this record is true to the best of my knowledge and belief. Kansas Water Well Contractor's Licence No. 680       This Water Well Record was completed on (mo/day/yr) 04/13/01         INSTRUCTIONS: Use typewriter or ball point pen. <u>PLEASE PRESS FIRMLY and PHINT clearly. Please fill in blanks, underline or cicle the correct answers. Sum to prescopier to Kansas Up agreent of Health and Environment 620         INSTRUCTIONS: Use typewriter or ball point pen. <u>PLEASE PRESS FIRMLY and PHINT (NUMER) (NUMUL ON NUMER)       Sum of thealth</u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1 5                      | 62                     | Sincy Same (H                    | +)                                      |                        |                     |                                       | 20                                      | N. Contraction of the second s |
| 62       63       STITY Clay, Bluish (Dry)         62       63       STITY Clay, Bluish (Dry)         62       63       Stiry Clay, Bluish (Dry)         62       63       Stiry Clay, Bluish (Dry)         62       63       Stiry Clay, Bluish (Dry)         64       64       64         65       64       64         65       64       64         65       64       64         66       64       64         7       CONTRACTOR'S OR LANDOWNER'S CERTIFICATION: This water well was 1 constructed, (2) reconstructed, or (3) plugged under my jurisdiction and was sompleted on (mo/day/year)       03/26/01         60       64       64       64         7       CONTRACTOR'S OR LANDOWNER'S CERTIFICATION: This water well was 1 constructed, (2) reconstructed, or (3) plugged under my jurisdiction and was sompleted on (mo/day/year)       04/13/01         1       moder the business name of <b>Delta Environmental</b> by (signature)         INSTRUCTIONS: Use typewriter or ball point pen. <u>PLEASE PRESS FIRMLY and PRINT</u> clearly. Please fill in blanks, underline or circle the correct answers. Sum top precoler to Kansas US and the and the provement of the provement top the provement top the provement of the provement top the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | - 62                   | Sandy Clay (W                    |                                         |                        |                     | Š.                                    | <del>&amp; ~~</del> ~                   | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CONTRACTOR'S OR LANDOWNER'S CERTIFICATION: This water well was 1 constructed, (2) reconstructed, or (3) plugged under my jurisdiction and was completed on (mo/day/year) 03/26/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | 63                     | Silty Clay, B                    | Luish (Dry)                             |                        |                     | ~                                     | X to a                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CONTRACTOR'S OR LANDOWNER'S CERTIFICATION: This water well was 1 constructed, (2) reconstructed, or (3) plugged under my jurisdiction and was completed on (mo/day/year) 03/26/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                        |                                  |                                         |                        |                     | X                                     | a b                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONTRACTOR'S OR LANDOWNER'S CERTIFICATION: This water well was 1 constructed, (2) reconstructed, or (3) plugged under my jurisdiction and was completed on (mo/day/year) 03/26/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                        |                                  |                                         |                        |                     |                                       | 2 60                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONTRACTOR'S OR LANDOWNER'S CERTIFICATION: This water well was (1) constructed, (2) reconstructed, or (3) plugged under my jurisdiction and was sompleted on (mo/day/year) 03/26/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                        |                                  |                                         |                        |                     |                                       | <u> </u>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONTRACTOR'S OR LANDOWNER'S CERTIFICATION: This water well was constructed, (2) reconstructed, or (3) plugged under my jurisdiction and was completed on (mo/day/year) 03/26/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                        | -                                |                                         |                        |                     |                                       | á                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONTRACTOR'S OR LANDOWNER'S CERTIFICATION: This water well was 1 constructed, (2) reconstructed, or (3) plugged under my jurisdiction and was<br>scompleted on (mo/day/year) 03/26/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        |                                  |                                         |                        |                     |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONTRACTORS OF LANDOWNER'S CERTIFICATION: This water well was 1) constructed, (2) reconstructed, or (3) plugged under my jurisdiction and was completed on (mo/day/year) 03/26/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 00175                   | 0705-0                 |                                  |                                         |                        |                     | + KO4                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| completed on (mo/day/year) 03/26/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CONTRA                    | CTOR'S O               | H LANDOWNER'S CER                | I IFICATION: This water well v          | was (1) constru        | icted, (2) red      | constructed, or (3)                   | olugged ur                              | ider my jurisdiction and was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Water Well Contractor's Licence No. 680. This Water Well Record was completed on (mo/day/yr) 04/13/61.<br>Inder the business name of <b>Delta Environmental</b> by (signature) by | completed o               | on (mo/day/            | year) 03/26/01                   | • • • • • • • • • • • • • • • • • • • • |                        | ind this reco       | ord is true to the be                 | st of my kr                             | owledge and belief. Kansas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Inder the business name of Delta Environmental by (signature) by (       | Water Well                | Contractor'            | s Licence No 680                 | This Water W                            | ell Record wa          | s completed         | on (mo/day/yr) 04                     | +/13/01                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| INSTRUCTIONS: Use typewriter or ball point pen. PLEASE PRESS FIRMLY and PRINT clearly. Please fill in blanks, underline or circle the correct answers. Swift top free-copies to Kansas Usersment of Health and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | under the bu              | usiness nar            | ne of <b>Delta Envi</b>          | ronmental                               |                        | by (s               | ignature)                             | 15                                      | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| The interview of the set type mean of the point period and the private and the private means the priva       |                           |                        | viter or hall point one BI ELCER | RESS EIRNI Vand PRINT-In-th             | e fill in ble-tie un t |                     | ha                                    | $\neq \nearrow$                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ETYTOTTOTTOTTOTTOTTOTTOTTOTTOTTOTTOTTOTTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | INST LITER I              | INS   AA LUCA          |                                  | a new didition constructions            | manus preside rindo    | una or circla the   | CONTRACT BORINGER BORISIAS            | man and a start                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Argonne Natio              | onal Laboratory                 | Sand Point ID: SB31                                               |
|----------------------------|---------------------------------|-------------------------------------------------------------------|
| Project: Everest           | Ground Elevation: 1142.76 ft    | Rig: Argonne 40-ton CPT                                           |
| Depth in Feet: 67          | Reference Elevation: 1142.26 ft | Driller: Kurt Spokas                                              |
| Completion Date: 3/26/2001 | Location: Easting: 2035907.34   | Northing: 499045.20                                               |
| Depth in Feet Well Con     | ostruction                      | Construction Details                                              |
|                            | 12-inch<br>with Ru              | Diameter Cast Iron Cover Bolted to Flange<br>bber Gasket          |
| -5                         | 2-inch "<br>Adapte              | J" Type Locking Cap on 2x6-inch PVC<br>r on 2-inch Diameter Riser |
| -10 -10                    | 12-inch<br>Cylinde              | Diameter x 24-inch Deep Galvanized Steel<br>r (Skirt)             |
|                            | 28-inch                         | Diameter x 30-inch Deep Concrete Vault                            |
|                            | Tremie<br>from Su               | Grouted Bentonite Slurry in 4-inch Annulus<br>Irface to 20 ft BGL |
| -20                        | 1-inch Surface                  | Schedule 40, Threaded PVC Riser from to 57 ft BGL                 |
| -25                        |                                 |                                                                   |
| -30                        | Tremie                          | Grouted Bentonite Slurry in 2.25-inch                             |
| -35 -                      |                                 |                                                                   |
| -40                        |                                 |                                                                   |
| -45                        |                                 |                                                                   |
| -50 -                      |                                 |                                                                   |
| -55                        | Sand P                          | ack from 55-67 ft BGL                                             |
| -60                        | 1-inch S<br>Screen              | Slotted (0.10") Schedule 40 PVC Well<br>from 57-67 ft BGL         |
|                            | Sacrific                        | ial CPT Tip Plug                                                  |
|                            |                                 |                                                                   |

|                                                                                                                                                                                          |                                                                                                                                                                                                                          | WAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ER WELL RECOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D Form WW                                                                                                                                                                  | C-5 KSA 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2a-1212 ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NoEV                                                                                                                                                                  | SB-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 1 LOCATI                                                                                                                                                                                 | ON OF WA                                                                                                                                                                                                                 | TER WELL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                            | See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ction Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Townshi                                                                                                                                                               | p Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Range Number                            |
| County:                                                                                                                                                                                  | Brown                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SW 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SE 1/4 N                                                                                                                                                                   | W 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Т                                                                                                                                                                     | 4 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R 18 (ENV                               |
| Distance a                                                                                                                                                                               | and direction                                                                                                                                                                                                            | from nearest tow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | wn or city street add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dress of well if lo                                                                                                                                                        | cated within ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ty?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| Nort                                                                                                                                                                                     | h side (                                                                                                                                                                                                                 | of Pine str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ceet & 370'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | West of 8t                                                                                                                                                                 | h Street,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Everest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . KS                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| 2 WATER                                                                                                                                                                                  | WELL OW                                                                                                                                                                                                                  | NER : USDA/CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| RR#. St. A                                                                                                                                                                               | ddress. Box                                                                                                                                                                                                              | # STOP 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 513-Room 471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4-s, 1400                                                                                                                                                                  | Independe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nce Ave.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SW Board o                                                                                                                                                            | Agriculturo F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Division of Water Reserves              |
| City, State                                                                                                                                                                              | ZIP Code                                                                                                                                                                                                                 | Washing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ton, DC 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 250-0513                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lee nve,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Applicati                                                                                                                                                             | on Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Division of Water Resources             |
| 3 LOCATE                                                                                                                                                                                 | WELLISIC                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ADI ETED WELL                                                                                                                                                              | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 ELEV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                       | 2 761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| AN "Y"                                                                                                                                                                                   |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dootb(c) Groundwa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tor Encountered                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n. ELEV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATION: 114                                                                                                                                                            | 2.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • • • • • • • • • • • • • • • • • • • • |
|                                                                                                                                                                                          | N                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VELUS STATIC WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                            | 6 16 <sup>1</sup> 4 hal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · <b>37</b> · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 2                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ft.                                     |
| 1                                                                                                                                                                                        | 1                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NELLO STATIC WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | w lano surta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ce measured on                                                                                                                                                        | mo/day/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 04/05/01                                |
|                                                                                                                                                                                          | NUA/                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pump te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | est data: Well wa                                                                                                                                                          | ater was . M/.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>a.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | atter                                                                                                                                                                 | hours p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oumping                                 |
|                                                                                                                                                                                          | - NW  -                                                                                                                                                                                                                  | - NE     E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Est. Yield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gpm: Well wa                                                                                                                                                               | ater was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | after                                                                                                                                                                 | hours p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pumping                                 |
| 0                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bore Hole Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>525</b> . in.                                                                                                                                                           | to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>21</b> ft.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and3.                                                                                                                                                                 | •25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | in. to 67                               |
| ₩                                                                                                                                                                                        | ~                                                                                                                                                                                                                        | E \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WELL WATER TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BE USED AS:                                                                                                                                                                | 5 Public water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 Air conditioni                                                                                                                                                      | ng 11 lr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | njection well                           |
| i i                                                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 Domestic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 Feedlot                                                                                                                                                                  | 6 Oil field wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9 Dewatering                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Other (Specify below)                   |
|                                                                                                                                                                                          | - SW   -                                                                                                                                                                                                                 | - SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 Irrigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 Industrial                                                                                                                                                               | 7 Domestic (law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n & garden)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 Monitoring w                                                                                                                                                       | ell Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Level Monitoring                        |
|                                                                                                                                                                                          |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
|                                                                                                                                                                                          |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | was a chemical/bact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eriological sample                                                                                                                                                         | submitted to De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | partment? Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s No                                                                                                                                                                  | . 🕰 . ; If yes, n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | no/day/yrs sample was sub-              |
| E TYPE C                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Viewelst inco                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | er Well Disinfec                                                                                                                                                      | ted? Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No X                                    |
|                                                                                                                                                                                          |                                                                                                                                                                                                                          | ASING USED:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vrought iron                                                                                                                                                               | 8 Concr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ete tile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CASING                                                                                                                                                                | JOINTS: Glue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ed Clamped                              |
|                                                                                                                                                                                          | 1                                                                                                                                                                                                                        | 3 HMP (SH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sbestos-Cemen                                                                                                                                                              | t 9 Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (specify belo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ow)                                                                                                                                                                   | Weld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ded                                     |
|                                                                                                                                                                                          |                                                                                                                                                                                                                          | 4 ABS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iberglass                                                                                                                                                                  | · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • • • • • • • • • • • • •                                                                                                                                             | ( Thre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | aded                                    |
| Blank cas                                                                                                                                                                                | sing diamete                                                                                                                                                                                                             | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ft., Dia                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft., Dia                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | in. to                                  |
| Casing he                                                                                                                                                                                | eight above                                                                                                                                                                                                              | and surface. Filu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ish Mount in., v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | veight                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lbs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ./ft. Wall thickne                                                                                                                                                    | ess or gauge N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o. Sch. 40 PVC                          |
| TYPE OF                                                                                                                                                                                  | SCREEN                                                                                                                                                                                                                   | OR PERFORATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ON MATERIAL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                            | (7) V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                    | Ashestos-com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ent                                     |
| 1 Stee                                                                                                                                                                                   | el                                                                                                                                                                                                                       | 3 Stainless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | steel 5 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iberglass                                                                                                                                                                  | 8 RM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IP (SR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                    | Other (specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lent                                    |
| 2 Bras                                                                                                                                                                                   | SS                                                                                                                                                                                                                       | 4 Galvanize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d steel 6 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Concrete tile                                                                                                                                                              | 9 AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                    | None used (or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pen hole)                               |
| SCREEN                                                                                                                                                                                   | OR PERFO                                                                                                                                                                                                                 | DRATION OPEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | INGS ARE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 Ga                                                                                                                                                                       | uzed wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 Saw cut                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11 None (onen hele)                     |
| 1 Con                                                                                                                                                                                    | tinuous slot                                                                                                                                                                                                             | Эміш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | slot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 Wir                                                                                                                                                                      | re wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9 Drilled ho                                                                                                                                                          | les                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TT None (open hole)                     |
| 2 Lou                                                                                                                                                                                    | vered shutte                                                                                                                                                                                                             | er 4 Key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y punched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 To                                                                                                                                                                       | rch cut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 Other (sp                                                                                                                                                          | ecify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ft                                      |
| SCREEN                                                                                                                                                                                   | -PERFORA                                                                                                                                                                                                                 | TED INTERVALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S: From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57 ft. to                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 ft Fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m                                                                                                                                                                     | <i>+</i> •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>^</b>                                |
|                                                                                                                                                                                          |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ••••••••••••••••••••••••••••••••••••••• |
| 1                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft Fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m                                                                                                                                                                     | ft 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · ·                             |
|                                                                                                                                                                                          | GRAVEL P                                                                                                                                                                                                                 | ACK INTERVALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft., Fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m                                                                                                                                                                     | ft. t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0ft.                                    |
|                                                                                                                                                                                          | GRAVEL P                                                                                                                                                                                                                 | ACK INTERVALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft., Fro<br>7 ft., Fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0ft.<br>0ft.<br>0ft.                    |
| 6 CROUT                                                                                                                                                                                  | GRAVEL P                                                                                                                                                                                                                 | ACK INTERVALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 ft., From<br>7 ft., From<br>ft., From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m                                                                                                                                                                     | ft. t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                       |
| 6 GROUT                                                                                                                                                                                  | GRAVEL P                                                                                                                                                                                                                 | ACK INTERVALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55 ft. to<br>ft. to<br>ft. to                                                                                                                                              | 3Bento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft., From<br>7 ft., From<br>ft., From<br>hite 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m                                                                                                                                                                     | ft. t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                       |
| 6 GROUT<br>Grout Int                                                                                                                                                                     | GRAVEL P<br>MATERIA<br>ervals: Fro                                                                                                                                                                                       | ACK INTERVALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 ft. to<br>5 ft. to<br>Cement grout<br>5ft., From                                                                                                                         | 3Bento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft., From<br>7 ft., From<br>ft., From<br>hite 4<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m<br>m<br>Other<br>ft., Frorr                                                                                                                                         | ft. t<br>ft. t<br>ft. t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                       |
| 6 GROUT<br>Grout Int<br>What is ti                                                                                                                                                       | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s                                                                                                                                                                       | ACK INTERVALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 ft. to<br>5 ft. to<br>coment grout<br>5ft., From                                                                                                                         | 3Bento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft., Fro<br>7ft., Fro<br>ft., Fro<br>nite 4<br>to<br>10 Live                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m<br>m<br>Other<br>tt., From<br>stock pens                                                                                                                            | ft. t<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                       |
| 6 GROUT<br>Grout Int<br>What is th<br>1 Sep                                                                                                                                              | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s<br>tic tank                                                                                                                                                           | ACK INTERVALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                            | 3Bentoi<br>.ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft., Froi<br>7ft., Froi<br>ft., Froi<br>nite 4<br>to<br>10 Live<br>11 Fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m<br>m<br>Other<br>tt., From<br>stock pens<br>storage                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                       |
| 6 GROUT<br>Grout Int<br>What is th<br>1 Sep<br>2 Sew                                                                                                                                     | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s<br>tic tank<br>ver lines                                                                                                                                              | ACK INTERVALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>ft. to<br>ft. to<br>Coment grout<br>ft., From<br>7 Pit priv<br>8 Sewag                                                                                           | 3Bento<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ft., Fro<br>7ft., Fro<br>ft., Fro<br>nite 4<br>to<br>10 Live<br>11 Fuel<br>12 Fert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m<br>m<br>Other<br>t., From<br>stock pens<br>storage<br>ilizer storage                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                       |
| 6 GROUT<br>Grout Int<br>What is ti<br>1 Sep<br>2 Sew<br>3 Vat                                                                                                                            | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s<br>tic tank<br>ver lines<br>ertight sewe                                                                                                                              | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                            | 3Bento<br>.ft<br>.ft<br>yy<br>je lagoon<br>ard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>nite 4<br>to<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mm<br>Othertt., From<br>stock pens<br>storage<br>ilizer storage                                                                                                       | 14 A<br>15 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                       |
| 6 GROUT<br>Grout Int<br>What is th<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction                                                                                                               | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?                                                                                                               | ACK INTERVALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to<br>Sement grout<br>5ft., From<br>7 Pit priv<br>8 Sewag<br>9 Feedy                                                                            | 3Bento<br>.ft<br>Wy<br>ge lagoon<br>aard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>hite 4<br>to<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mft., From<br>stock pens<br>storage<br>illizer storage<br>cticide storage                                                                                             | 14 A<br>15 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                       |
| 6 GROUT<br>Grout Int<br>What is th<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FBOM                                                                                                       | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?                                                                                                                | ACK INTERVALS<br>.: 1 Neat cer<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to<br>Sement grout<br>5ft., From<br>7 Pit privi<br>8 Sewag<br>9 Feedy                                                                           | 3Bento<br>.ft<br>.ft<br>yy<br>je lagoon<br>iard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>ft., Fro<br>ft., Fro<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mft., From<br>stock pens<br>storage<br>illizer storage<br>cticide storage<br>any feet? 36                                                                             | 14 A<br>15 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                       |
| 6 GROUT<br>Grout Int<br>What is ti<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0                                                                                                  | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO                                                                                                          | ACK INTERVALS<br>1 Neat cer<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to<br>Sement grout<br>5ft., From<br>7 Pit priv<br>8 Sewag<br>9 Feedy                                                                            | 3Bento<br>Bento<br>.ft<br>yy<br>je lagoon<br>ard<br>FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ft., Fro.<br>7 ft., Fro.<br>ft., Fro.<br>ft., Fro.<br><br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse.<br>How ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mft., From<br>stock pens<br>storage<br>lilizer storage<br>cticide storage<br>any feet? 36                                                                             | 14 A<br>15 C<br>16 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       |
| 6 GROUT<br>Grout Int<br>What is ti<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0                                                                                                  | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>ver lines<br>ertight sewe<br>from well?<br>TO<br>3                                                                                                    | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.,<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepag<br>East<br><br>Top Soll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | From.         From.           S:         From.           From.         From.           ment         2 C           . ft. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ft. to<br>55 ft. to<br>ft. to<br>Coment grout<br>5ft., From<br>7 Pit privi<br>8 Sewag<br>9 Feedy                                                                           | Benton     ft      yy     je lagoon     ard      FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>nite 4<br>to<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m<br>To Other<br>to Other<br>stock pens<br>storage<br>ilizer storage<br>cticide storage<br>any feet? 36                                                               | 14 A<br>15 C<br>16 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       |
| 6 GROUT<br>Grout Int<br>What is ti<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0                                                                                                  | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br>xxxx2                                                                                           | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepag<br>East<br>Li'<br>Top Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to<br>Cement grout<br>5ft., From<br>7 Pit priv<br>8 Sewag<br>9 Feedy                                                                            | vy<br>je lagoon<br>ard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>nite 4<br>to<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mft., From<br>stock pens<br>storage<br>lilizer storage<br>clicide storage<br>any feet? 36                                                                             | 14 A<br>15 C<br>16 C<br>15 <b>J</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                       |
| 6 GROUT<br>Grout Int<br>What is ti<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3 XXX<br>3                                                                                    | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br>xxx£1xy<br>20                                                                                   | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepar<br>East<br>Li<br>Top Soil<br>4<br>4<br>Lateral<br>Li<br>Li<br>Li<br>Top Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | From.       From.         S:       From.         From.       From.         ment       2 C         . ft. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ft. to<br>55 ft. to<br>ft. to<br>Cement grout<br>5ft., From<br>7 Pit priv<br>8 Sewag<br>9 Feedy                                                                            | yy<br>je lagoon<br>ard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>nite 4<br>to<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How m<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mft., From<br>stock pens<br>stock pens<br>storage<br>ilizer storage<br>cticide storage<br>any feet? 36                                                                | 14 A<br>15 C<br>16 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       |
| 6 GROUT<br>Grout Int<br>What is ti<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3 XXX<br>3<br>20                                                                              | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearests<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br>xxx£1xy<br>20<br>40                                                                              | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepag<br>East<br>Li<br>Top Soil<br>HXXXXXXXX<br>Clay & S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to<br>Cement grout<br>5ft., From<br>7 Pit prin<br>8 Sewag<br>9 Feedy                                                                            | A ge lagoon<br>ard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>nite 4<br>to<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mft., From<br>stock pens<br>storage<br>ilizer storage<br>cticide storage<br>any feet? 36                                                                              | 14 A<br>15 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                       |
| 6 GROUT<br>Grout Int<br>What is th<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3<br>3<br>20<br>40                                                                            | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br><b>xxxElay</b><br>20<br>40<br>52.5                                                               | ACK INTERVALS<br>1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cesepa<br>East<br>LI<br>Top Soil<br>XXXXXXXXX<br>Clay<br>Clay & S.<br>Silty Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to<br>Sement grout<br>5ft., From<br>7 Pit privi<br>8 Sewag<br>9 Feedy                                                                           | OBento<br>OBento<br>.ft<br>.ft<br>.ft<br>.ft<br>.ft<br>.ft<br>.ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>ft., Fro<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How me<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mft., From<br>stock pens<br>storage<br>illizer storage<br>cticide storage<br>any feet? 36                                                                             | 14 A<br>15 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                       |
| 6 GROUT<br>Grout Int<br>What is th<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3 XXXX<br>3<br>20<br>40<br>52 - 5                                                             | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br>ccccclag<br>20<br>40<br>52.5<br>57                                                              | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepag<br>East<br>Li'<br>Top Soil<br>#xxxxxxxx<br>Clay<br>Clay & S<br>Silty Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to<br>Comment grout<br>5ft., From<br>7 Pit privi-<br>8 Sewag<br>9 Feedy                                                                         | 3Bento<br>yy<br>je lagoon<br>ard<br>FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>nite 4<br>to<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How me<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m<br>m<br>Other<br>stock pens<br>storage<br>illizer storage<br>cticide storage<br>any feet? 36                                                                        | 14 A<br>15 C<br>16 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       |
| 6 GROUT<br>Grout Int<br>What is ti<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3xxx<br>3<br>20<br>40<br>52,5<br>57                                                           | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br>xxx£1xy<br>20<br>40<br>52.5<br>57<br>67                                                         | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepag<br>East<br>Li'<br>Top Soil<br>kixxxxxxx<br>Clay<br>Clay & S.<br>Silty Cli<br>Sandy Cli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to<br>Cement grout<br>5ft., From<br>7 Pit priv<br>8 Sewag<br>9 Feedy                                                                            | vy<br>je lagoon<br>ard<br>FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>nite 4<br>to<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mft., From<br>stock pens<br>storage<br>lilizer storage<br>cticide storage<br>any feet? 36                                                                             | 14 A<br>15 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                       |
| 6 GROUT<br>Grout Int<br>What is ti<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3xxx<br>3<br>20<br>40<br>52,5<br>57                                                           | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br>xxx £1xy<br>20<br>40<br>52.5<br>57<br>67                                                        | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepag<br>East<br>LI'<br>Top Soil<br>source of possible<br>(Lateral<br>Clay<br>Clay<br>Clay<br>Clay & S.<br>Silty Cl.<br>Sandy Cl.<br>Sand (We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to<br>Cement grout<br>5ft., From<br>7 Pit priv<br>8 Sewag<br>9 Feedy                                                                            | vy<br>je lagoon<br>ard<br>FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>ft., Fro<br>ft., Fro<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How m<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mft., From<br>stock pens<br>stock pens<br>storage<br>lilizer storage<br>cticide storage<br>any feet? 36                                                               | 14 A<br>15 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                       |
| 6 GROUT<br>Grout Int<br>What is ti<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3<br>20<br>40<br>52,5<br>57                                                                   | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br>xxx£1xy<br>20<br>40<br>52.5<br>57<br>67                                                         | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepar<br>East<br>Li<br>Top Soil<br>U<br>Clay & S.<br>Silty Cl.<br>Sandy Cl.<br>Sand (We:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to<br>Cement grout<br>5ft., From<br>7 Pit priv<br>8 Sewag<br>9 Feedy                                                                            | ry<br>je lagoon<br>ard<br>FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>nite 4<br>to<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How me<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mft., From<br>stock pens<br>stock pens<br>storage<br>ilizer storage<br>cticide storage<br>any feet? 36                                                                | 14 A<br>15 C<br>16 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       |
| 6 GROUT<br>Grout Int<br>What is th<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3<br>3<br>20<br>40<br>52.5<br>57                                                              | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br>xxx£1xy<br>20<br>40<br>52.5<br>57<br>67                                                         | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepa<br>East<br>Li<br>Top Soil<br>WXXXXXXXX<br>Clay<br>Clay & S.<br>Silty Cl.<br>Sandy Cl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to<br>Cement grout<br>5ft., From<br>7 Pit prin<br>8 Sewag<br>9 Feedy                                                                            | ry<br>ge lagoon<br>ard<br>FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>nite 4<br>to<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mft., From<br>stock pens<br>storage<br>ilizer storage<br>cticide storage<br>any feet? 36                                                                              | 14 A<br>15 C<br>16 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       |
| 6 GROUT<br>Grout Int<br>What is th<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3<br>3<br>20<br>40<br>52.5<br>57                                                              | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepag<br>East<br>Ll'<br>Top Soil<br>ktxxxxxxx<br>Clay<br>Clay & S.<br>Silty Cl<br>Sandy Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to<br>Cement grout<br>5ft., From<br>7 Pit prin<br>8 Sewag<br>9 Feedy                                                                            | Vy<br>ge lagoon<br>rard<br>FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>nite 4<br>to<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mft., From<br>stock pens<br>storage<br>illizer storage<br>cticide storage<br>any feet? 36                                                                             | 14 A<br>15 C<br>16 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       |
| 6 GROUT<br>Grout Int<br>What is th<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3xxx<br>3<br>20<br>40<br>52.5<br>57                                                           | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br>coccelar<br>20<br>40<br>52.5<br>57<br>67                                                         | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepag<br>East<br>LT<br>Top Soil<br>Xxxxxxxx<br>Clay<br>Clay & S.<br>Silty Cl.<br>Sand (We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | From<br>From<br>From<br>From<br>From<br>to<br>From<br>Construction<br>From<br>Construction<br>From<br>Construction<br>From<br>Construction<br>From<br>Construction<br>From<br>Construction<br>From<br>Construction<br>From<br>Construction<br>From<br>From<br>From<br>From<br>Construction<br>From<br>From<br>Construction<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>From. | ft. to<br>55 ft. to<br>ft. to<br>Cement grout<br>5ft., From<br>7 Pit prin<br>8 Sewag<br>9 Feedy                                                                            | G     Bento     ft      yy     je lagoon     rard      FROM      in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>ft., Fro<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How me<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m<br>mft., From<br>stock pens<br>storage<br>lilizer storage<br>any feet? 36                                                                                           | 14 A<br>15 C<br>16 C<br>15 J<br>PLUGGING IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                       |
| 6 GROUT<br>Grout Int<br>What is ti<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3<br>20<br>40<br>52.5<br>57                                                                   | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br>cxxx£1xy<br>20<br>40<br>52.5<br>57<br>67                                                         | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepag<br>East<br>Li<br>Top Soil<br>kixxxxxxx<br>Clay<br>Clay & S.<br>Silty Cl.<br>Sandy Cla<br>Sand (We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to<br>Cement grout<br>5ft., From<br>7 Pit priv<br>8 Sewag<br>9 Feedy<br>                                                                        | // 3Bento<br>.ft<br>// ye lagoon<br>ard<br>FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>nite 4<br>to<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How m<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m<br>m                                                                                                                                                                | 14 A<br>15 C<br>16 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       |
| 6 GROUT<br>Grout Int<br>What is ti<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3xxx<br>3<br>20<br>40<br>52.5<br>57                                                           | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br>xxx£1xy<br>20<br>40<br>52.5<br>57<br>67                                                         | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepag<br>East<br>LI'<br>Top Soil<br>MXXXXXXX<br>Clay<br>Clay & S.<br>Silty Cl.<br>Sandy Cl.<br>Sand (We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to<br>Comment grout<br>5ft., From<br>7 Pit priv<br>8 Sewag<br>9 Feedy<br>                                                                       | /y<br>je lagoon<br>ard<br>FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>ft., Fro<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How m<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m<br>m<br>Other<br>stock pens<br>storage<br>storage<br>cticide storage<br>any feet? 36                                                                                | 14 A<br>15 C<br>16 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       |
| 6 GROUT<br>Grout Int<br>What is th<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3<br>3<br>20<br>40<br>52.5<br>57                                                              | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br><b>xxxElxy</b><br>20<br>40<br>52.5<br>57<br>67                                                   | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepag<br>East<br>Li<br>Top Soil<br>WXXXXXXX<br>Clay<br>Clay & S.<br>Silty Cl.<br>Sandy Clay<br>Sand (Wester<br>Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to<br>Cement grout<br>5ft., From<br>7 Pit prin<br>8 Sewag<br>9 Feedy                                                                            | ry<br>ge lagoon<br>ard<br>FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft., Fro.<br>7 ft., Fro.<br>ft., Fro.<br>ft., Fro.<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How me<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mft., From<br>stock pens<br>stock pens<br>storage<br>ilizer storage<br>cticide storage<br>any feet? 36                                                                | 14 A<br>15 C<br>16 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                       |
| 6 GROUT<br>Grout Int<br>What is th<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3xxxx<br>3<br>20<br>40<br>52.5<br>57<br>7<br>7 CONTR                                          | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br>cxxxElxy<br>20<br>40<br>52.5<br>57<br>67<br>67                                                   | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepa<br>East<br>Li<br>Top Soil<br>WXXXXXXXX<br>Clay<br>Clay & S.<br>Silty Cl.<br>Sandy Cl.<br>Sand (Weither<br>Clay<br>Clay & S.<br>Silty Cl.<br>Sand (Weither)<br>Clay<br>Clay & S.<br>Silty Cl.<br>Sand (Weither)<br>Clay<br>Clay & S.<br>Silty Cl.<br>Sand (Weither)<br>Clay<br>Clay & S.<br>Silty Cl.<br>Sand (Weither)<br>Clay<br>Clay<br>Clay & S.<br>Silty Cl.<br>Sand (Weither)<br>Clay<br>Clay<br>Clay & S.<br>Silty Cl.<br>Sand (Weither)<br>Clay<br>Clay<br>Clay & S.<br>Silty Cl.<br>Sand (Weither)<br>Clay<br>Clay<br>Clay<br>Clay & S.<br>Silty Cl.<br>Sand (Weither)<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay          | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to<br>Cement grout<br>5ft., From<br>7 Pit prin<br>8 Sewag<br>9 Feedy<br>                                                                        | A gradient of the second secon | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>nite 4<br>to<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mm<br>mft., From<br>stock pens<br>storage<br>ilizer storage<br>cticide storage<br>any feet? 36                                                                        | 14 A<br>15 C<br>16 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o                                       |
| 6 GROUT<br>Grout Int<br>What is th<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3<br>320<br>40<br>52.5<br>57<br>7<br>7 CONTR<br>completed                                     | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewee<br>from well?<br>TO<br>3<br>3<br>3<br>3<br>40<br>52.5<br>57<br>67<br>67<br>ACTOR'S O<br>on (mo/day)                         | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepag<br>East<br>LI'<br>Top Soil<br>ktxxxxxxxx<br>Clay<br>Clay & S.<br>Silty Cl.<br>Sandy Cl.<br>Sand (We:<br>Clay<br>Clay & S.<br>Silty Cl.<br>Sand (We:<br>Clay<br>Clay & S.<br>Sand (We:<br>Clay<br>Clay<br>Clay & S.<br>Clay<br>Clay & S.<br>Sand (We:<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay | From<br>S: From<br>From<br>From<br>From<br>from<br>From<br>from<br>From<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from<br>from                                                                     | ft. to<br>55 ft. to<br>ft. to<br>Cement grout<br>7 Pit prin<br>8 Sewag<br>9 Feedy<br>                                                                                      | A gradient of the second secon | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>nite 4<br>to<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mft., From<br>stock pens<br>storage<br>lilizer storage<br>cticide storage<br>any feet? 3(                                                                             | 14 A<br>15 C<br>16 C<br>16 C<br>16 C<br>16 C<br>16 C<br>16 C<br>16 C<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o                                       |
| 6 GROUT<br>Grout Int<br>What is th<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3xxx<br>3<br>20<br>40<br>52.5<br>57<br>57<br>7<br>CONTR<br>completed<br>Water Wall            | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br>coccelary<br>20<br>40<br>52.5<br>57<br>67<br>67<br>ACTOR'S O<br>on (mo/day)                      | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepag<br>East<br>LI<br>Top Soll<br>HXXXXXXXX<br>Clay<br>Clay & S.<br>Silty Cl.<br>Sandy Cl.<br>Sand (We<br>R LANDOWNER<br>year) 03/26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft. to<br>55 ft. to<br>ft. to<br>Cement grout<br>5ft., From<br>7 Pit privi-<br>8 Sewag<br>9 Feedy<br>                                                                      | G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G      | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>nite 4<br>to<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How ma<br>TO<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mft., From<br>stock pens<br>storage<br>lilizer storage<br>cticide storage<br>any feet? 36<br>constructed, or<br>rd is true to the                                     | 14 A<br>15 C<br>16 C<br>16 C<br>15 <b>Γ</b><br>PLUGGING IN<br>PLUGGING IN<br>(3) plugged un<br>0 Δ/1 K /r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o                                       |
| 6 GROUT<br>Grout Int<br>What is the<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3 XXX2<br>3<br>20<br>40<br>52.5<br>57<br>7<br>CONTR<br>completed<br>Water Well               | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br>cxxx£1xy<br>20<br>40<br>52.5<br>57<br>67<br>67<br>ACTOR'S O<br>on (mo/day)<br>I Contractor'     | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepag<br>East<br>Li<br>Top Sol1<br>XXXXXXXX<br>Clay & S.<br>Silty Cl.<br>Sandy Cl.<br>Sand (We<br>R LANDOWNER<br>Year)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | From<br>From<br>From<br>From<br>From<br>From<br>From<br>From<br>Solution<br>Ge pit<br>THOLOGIC LOG<br>XXXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXX<br>K<br>XXXXX<br>K<br>XXXXX<br>K<br>XXXXX<br>K<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                            | G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G      | ft., Fro<br>7 ft., Fro<br>nite 4<br>to<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How ma<br>TO<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mft., From<br>stock pens<br>storage<br>lilizer storage<br>cticide storage<br>any feet? 36<br>constructed, or<br>or (mo/day/yr)                                        | 14 A<br>15 C<br>16 C<br>16 C<br>17 C<br>18 C<br>19 C<br>19 C<br>19 C<br>19 C<br>19 C<br>19 C<br>19 C<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o                                       |
| 6 GROUT<br>Grout Int<br>What is ti<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3xxx<br>3<br>20<br>40<br>52.5<br>57<br>7<br>7 CONTR<br>completed<br>Water Well<br>under the t | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br>20<br>40<br>52.5<br>57<br>67<br>67<br>ACTOR'S O<br>on (mo/day,<br>I Contractor'<br>pusiness nar | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepag<br>East<br>Li'<br>Top Soil<br>\$<br>\$<br>Clay & S.<br>Silty Cl.<br>Sandy Cl.<br>Sand (We<br>Clay & S.<br>Silty Cl.<br>Sand (Sand & Sand & Sa                                                                                                                                                                                                                                                                                                                                                                                                                             | From<br>From<br>From<br>From<br>From<br>e contamination:<br>I lines<br>pool<br>ge pit<br>THOLOGIC LOG<br>XXXXX<br>AUX<br>AUX<br>AUX<br>AUX<br>AUX<br>AUX<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ft. to<br>55 ft. to<br>ft. to<br>Cement grout<br>7 Pit privi-<br>8 Sewag<br>9 Feedy<br><br>7 Pit privi-<br>8 Sewag<br>9 Feedy<br><br>This water well<br>This Water V<br>al | Sento     S      | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mft., From<br>stock pens<br>storage<br>lilizer storage<br>cticide storage<br>any feet? 36<br>constructed, or<br>or (mo/day/yr)<br>lignature)                          | (3) plugged un<br>best of my kn<br>04/16/C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o                                       |
| 6 GROUT<br>Grout Int<br>What is ti<br>1 Sep<br>2 Sew<br>3 Vat<br>Direction<br>FROM<br>0<br>3xxx<br>3<br>20<br>40<br>52.5<br>57<br>7<br>7 CONTR<br>completed<br>Water Well<br>under the t | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>rer lines<br>ertight sewe<br>from well?<br>TO<br>3<br>20<br>40<br>52.5<br>57<br>67<br>67<br>ACTOR'S O<br>on (mo/day,<br>I Contractor'<br>pusiness nar | ACK INTERVALS<br>.: 1 Neat cer<br>mQ.<br>source of possible<br>4 Lateral<br>5 Cess p<br>r lines 6 Seepag<br>East<br>Li'<br>Top Soill<br>state control of the second<br>Clay & S.<br>Silty Cl.<br>Sandy Cl.<br>Sandy Cl.<br>Sandy Cl.<br>Sand (We<br>Clay & S.<br>Silty Cl.<br>Sandy Cl.<br>Sand (We<br>Clay & S.<br>Silty Cl.<br>Sand (We<br>Silty Cl.<br>Sand (We<br>Silty Cl.<br>Sand (We<br>Silty Cl.<br>Sand (We<br>Silty Cl.<br>Sand (We<br>Silty Cl.<br>Silty Cl.<br>Sand (We<br>Silty Cl.<br>Silty Cl.                                                                                                                                                                                                                                               | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                            | G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G     G      | ft., Fro<br>7 ft., Fro<br>ft., Fro<br>nite 4<br>to<br>10 Live<br>11 Fuel<br>12 Fert<br>13 Inse<br>How ma<br>TO<br>TO<br>Unite<br>Unite<br>How ma<br>TO<br>Unite<br>How ma<br>TO<br>Unite<br>How ma<br>TO<br>Unite<br>How ma<br>TO<br>How ma<br>How ma<br>TO<br>How ma<br>TO<br>How ma<br>How ma<br>TO<br>How ma<br>How ma<br>How ma<br>TO<br>How ma<br>How ma<br>TO<br>How ma<br>How ma<br>Ho | mft., From<br>stock pens<br>storage<br>lilizer storage<br>cticide storage<br>any feet? 3(<br>constructed, or<br>or (mo/day/yr)<br>lignature)<br>correct answers. Stat | 14 A           15 C           16 C           16 C           17 D           18 D           19 D           10 D           10 D           10 D           11 D           12 D           13 D           10 D | o                                       |
| Argonne N                  | ational Laboratory              | Sand Point ID: SB34                                                             |   |
|----------------------------|---------------------------------|---------------------------------------------------------------------------------|---|
| Project: Everest           | Ground Elevation: 1132.         | 1 ft Rig: Argonne 40-ton CPT                                                    |   |
| Depth in Feet: 53          | <b>Reference Elevation: 113</b> | 1.73 ft Driller: Kurt Spokas                                                    |   |
| Completion Date: 3/29/2001 | Location: Easting: 203          | 5807.43 Northing: 499722.40                                                     |   |
| Depth in Feet Well         | Construction                    | <b>Construction Details</b>                                                     |   |
|                            |                                 | 12-inch Diameter Cast Iron Cover Bolted to Flange with Rubber Gasket            | 3 |
| -5 -                       |                                 | 2-inch "J" Type Locking Cap on 2x6-inch PVC<br>Adapter on 2-inch Diameter Riser |   |
| -10                        |                                 | 12-inch Diameter x 24-inch Deep Galvanized Stee Cylinder (Skirt)                | I |
| -15                        |                                 | 28-inch Diameter x 30-inch Deep Concrete Vault                                  | t |
|                            |                                 | Tremie Grouted Bentonite Slurry in 4-inch Annulus<br>from Surface to 20 ft BGL  | 3 |
| -20                        |                                 | 1-inch Schedule 40, Threaded PVC Riser from<br>Surface to 46 ft BGL             |   |
| -25 -                      |                                 |                                                                                 |   |
| -30 -                      |                                 | Tremie Grouted Bentonite Slurry in 2.25-inch                                    |   |
| -35 —                      |                                 | Annulus from 20-44 ft BGL                                                       |   |
|                            |                                 |                                                                                 |   |
| -40                        |                                 |                                                                                 |   |
| -45                        |                                 | Sand Pack from 44-53 ft BGL                                                     |   |
|                            |                                 | 1-inch Slotted (0.10") Schedule 40 PVC Well<br>Screen from 46-53 ft BGL         |   |
|                            |                                 | Sacrificial CPT Tip Plug                                                        |   |
|                            | .4 <b>89</b> .                  |                                                                                 |   |
|                            |                                 |                                                                                 |   |

|                                                                                                                                       |                                                                                                                                                                                                                                                                                    | WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TER WELL RE                                                                                                                                                                                                             | CORD                                                                                                                                                                                                           | Form WWC-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 KSA 828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a-1212 ID 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | loEVSB-34_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 1 LOCATIO                                                                                                                             | ON OF WA                                                                                                                                                                                                                                                                           | TER WELL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fraction                                                                                                                                                                                                                |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Secti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Township Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Range Number                                                                                                        |
| County:                                                                                                                               | Brown                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NW V                                                                                                                                                                                                                    | 4 SE                                                                                                                                                                                                           | 14 NW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | т 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R 18 (EM                                                                                                            |
| Distance ar                                                                                                                           | nd direction                                                                                                                                                                                                                                                                       | from nearest to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | own or city stre                                                                                                                                                                                                        | et address                                                                                                                                                                                                     | s of well if loca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ted within city                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |
| 30' So                                                                                                                                | with of                                                                                                                                                                                                                                                                            | Main Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ALL & 405"                                                                                                                                                                                                              | West                                                                                                                                                                                                           | of 8th St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | root E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | arost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |
| 2 WATER                                                                                                                               | WELL OW                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                         | WEBL                                                                                                                                                                                                           | or oth st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ieel, E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | verear,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |
|                                                                                                                                       | diana Day                                                                                                                                                                                                                                                                          | H CTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0512 8                                                                                                                                                                                                                  | 1717                                                                                                                                                                                                           | a 1/00 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OTT Decard of Acris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |
| City, State,                                                                                                                          | ZIP Code                                                                                                                                                                                                                                                                           | Washi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | USI3-ROOM<br>Ington, DC                                                                                                                                                                                                 | 2025                                                                                                                                                                                                           | s, 1400 1<br>0–0513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ndepender                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nce Ave,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SW Board of Agrici<br>Application Nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mber:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Division of Water Resources                                                                                         |
| 3 LOCATE                                                                                                                              | WELL'S LO                                                                                                                                                                                                                                                                          | CATION WITH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 DEPTH OF                                                                                                                                                                                                              | COMPLE                                                                                                                                                                                                         | TED WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ft. ELEVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TION:1132.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |
| AN "X" I                                                                                                                              | N SECTION                                                                                                                                                                                                                                                                          | BOX:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Depth(s) Grou<br>WELL'S STAT                                                                                                                                                                                            | Indwater E                                                                                                                                                                                                     | ncountered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1<br>.69. ft. belov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .46 ft.<br>v land surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ft. 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4/05/01                                                                                                             |
| Pump test data: Well water was . N/A ft. after hours pumping                                                                          |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                         |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |
|                                                                                                                                       | NWNE Est. Yield                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                         |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |
| 0                                                                                                                                     |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bore Hole Dia                                                                                                                                                                                                           | meter 🤉                                                                                                                                                                                                        | • 40 in. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in. to 53 ft.                                                                                                       |
| ž W                                                                                                                                   | 1                                                                                                                                                                                                                                                                                  | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WELL WATER                                                                                                                                                                                                              | R TO BE L                                                                                                                                                                                                      | JSED AS: 5 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Public water s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | upply 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Air conditioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | njection well                                                                                                       |
|                                                                                                                                       | i                                                                                                                                                                                                                                                                                  | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 Domesti                                                                                                                                                                                                               | c 3Fe                                                                                                                                                                                                          | edlot 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dil field water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | supply 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dewatering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>(12</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Other (Specify below)                                                                                               |
|                                                                                                                                       | - SW  -                                                                                                                                                                                                                                                                            | - SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 Irrigation                                                                                                                                                                                                            | 4 In                                                                                                                                                                                                           | dustrial 7 [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Domestic (lawn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | & garden) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | arer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level Honitoring                                                                                                    |
|                                                                                                                                       |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Was a chemica                                                                                                                                                                                                           | al/bacteriolo                                                                                                                                                                                                  | oical sample su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bmitted to Dep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | artment? Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No. X .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lf ves. r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | no/day/yrs sample was sub-                                                                                          |
| <u>'</u>                                                                                                                              |                                                                                                                                                                                                                                                                                    | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mitted                                                                                                                                                                                                                  |                                                                                                                                                                                                                | gioar campio co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Well Disinfected?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No. X                                                                                                               |
| 5 TYPE O                                                                                                                              | F BLANK C                                                                                                                                                                                                                                                                          | ASING USED:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                         | 5 Wrou                                                                                                                                                                                                         | aht iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 Concre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | te tile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CASING JOIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TS: Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ed Clamped                                                                                                          |
| 1 Stee                                                                                                                                |                                                                                                                                                                                                                                                                                    | 3 RMP (S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B)                                                                                                                                                                                                                      | 6 Asbe                                                                                                                                                                                                         | stos-Cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9 Other (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | specify below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | v) .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                     |
| 2PVC                                                                                                                                  |                                                                                                                                                                                                                                                                                    | 4 ABS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                         | 7 Fiber                                                                                                                                                                                                        | olass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chahad                                                                                                              |
| Black cas                                                                                                                             | ina diamoto                                                                                                                                                                                                                                                                        | . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | l in to                                                                                                                                                                                                                 | 46                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | # Die                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in the                                                                                                              |
| Biarik Cas                                                                                                                            |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                         |                                                                                                                                                                                                                | .n., Dia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |
| Casing he                                                                                                                             | ight above i                                                                                                                                                                                                                                                                       | and surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • • • • • • • • • • • • • •                                                                                                                                                                                             | . in., weigi                                                                                                                                                                                                   | nt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>A</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ibs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ft. Wall thickness or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gauge I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 105СП40. РУС                                                                                                        |
| TYPE OF                                                                                                                               | SCREEN (                                                                                                                                                                                                                                                                           | OR PERFORA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TION MATERIA                                                                                                                                                                                                            | AL:                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COPVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 Asbes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tos-cen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nent                                                                                                                |
| 1 Stee                                                                                                                                | 1                                                                                                                                                                                                                                                                                  | 3 Stainles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s steel                                                                                                                                                                                                                 | 5 Fiber                                                                                                                                                                                                        | glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 RM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P (SR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (specify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )                                                                                                                   |
| 2 Bras                                                                                                                                | S                                                                                                                                                                                                                                                                                  | 4 Galvani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | zed steel                                                                                                                                                                                                               | 6 Conc                                                                                                                                                                                                         | rete tile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 ABS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | used (o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pen hole)                                                                                                           |
| SCREEN                                                                                                                                | OR PERFO                                                                                                                                                                                                                                                                           | DRATION OPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NINGS ARE:                                                                                                                                                                                                              |                                                                                                                                                                                                                | 5 Gauz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ed wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 Saw cut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11 None (open hole)                                                                                                 |
| 1 Cont                                                                                                                                | tinuous slot                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fill slot                                                                                                                                                                                                               |                                                                                                                                                                                                                | 6 Wire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 Drilled holes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |
| 2 Louv                                                                                                                                | vered shutte                                                                                                                                                                                                                                                                       | er 4K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | key punched                                                                                                                                                                                                             | 1.0                                                                                                                                                                                                            | 7 Torci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 CUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 Other (specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ••••••••••••••••••••••••••••••••••••••                                                                              |
| SCREEN                                                                                                                                | PERFORA                                                                                                                                                                                                                                                                            | TED INTERVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LS: From                                                                                                                                                                                                                |                                                                                                                                                                                                                | ft. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft., From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | to                                                                                                                  |
|                                                                                                                                       |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                         |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |
|                                                                                                                                       |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | From                                                                                                                                                                                                                    | • • • • • • • • •                                                                                                                                                                                              | ft. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft., From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | toft.                                                                                                               |
|                                                                                                                                       | GRAVEL P                                                                                                                                                                                                                                                                           | ACK INTERVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | From                                                                                                                                                                                                                    |                                                                                                                                                                                                                | ft. to<br>ft. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3ft., From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ft.<br>ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to                                                                                                                  |
|                                                                                                                                       | GRAVEL P                                                                                                                                                                                                                                                                           | ACK INTERVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | From<br>LS: From<br>From                                                                                                                                                                                                |                                                                                                                                                                                                                | ft. to<br>ft. to<br>ft. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 ft., From<br>ft., From<br>ft., From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l<br>l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ft.<br>ft.<br>ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to                                                                                                                  |
| 6 GROUT                                                                                                                               | GRAVEL P                                                                                                                                                                                                                                                                           | ACK INTERVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | From<br>LS: From<br>From                                                                                                                                                                                                |                                                                                                                                                                                                                | ft. to<br>ft. to<br>ft. to<br>ent arout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3Bentoni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ft., From<br>3 ft., From<br>ft., From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )<br>)<br>)<br>Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ft.<br>ft.<br>ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | toft.<br>toft.<br>toft.                                                                                             |
| 6 GROUT                                                                                                                               | GRAVEL P<br>MATERIA                                                                                                                                                                                                                                                                | ACK INTERVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | From<br>LS: From<br>From                                                                                                                                                                                                | 2 Cem<br>44                                                                                                                                                                                                    | ft. to<br>ft. to<br>ft. to<br>ent grout<br>ft. From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bentoni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft., From<br>3 ft., From<br>ft., From<br>ite 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00<br>00<br>Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ft.<br>ft.<br>ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to                                                                                                                  |
| 6 GROUT<br>Grout Inte                                                                                                                 | GRAVEL P<br>MATERIA<br>ervals: Fro                                                                                                                                                                                                                                                 | ACK INTERVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | From<br>LS: From<br>From<br>cement<br>Q ft. to                                                                                                                                                                          | 2 Cem<br>44                                                                                                                                                                                                    | ft. to        ft. to        ft. to       ent grout       ft.,     From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bentoni<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft., From<br>3 ft., From<br>ft., From<br>ite 4<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ft.<br>ft.<br>ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th                                                                                                   | GRAVEL P<br>MATERIA<br>ervals: Fro<br>ne nearest s                                                                                                                                                                                                                                 | ACK INTERVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | From<br>From<br>From                                                                                                                                                                                                    | 2 Cem<br>44                                                                                                                                                                                                    | ft. to<br>ft. to<br>ent grout<br>ft., From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bentoni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft., From<br>3 ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dther                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ft.<br>ft.<br>ft.<br><br>14 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | toft.<br>toft.<br>toft.<br>toft.<br>toft.<br>Abandoned water well                                                   |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sept                                                                                         | GRAVEL P<br>MATERIA<br>ervals: Fro<br>ne nearest s<br>tic tank                                                                                                                                                                                                                     | ACK INTERVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | From<br>LS: From<br>From<br>cement<br>Qft. to<br>ible contaminati<br>ral lines                                                                                                                                          | 2 Cem<br>44                                                                                                                                                                                                    | ft. to<br>ft. to<br>ent grout<br>ft., From<br>7 Pit privy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bentoni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft., From<br>ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ft.<br>ft.<br>ft.<br><br>14 /<br>15 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sept<br>2 Sew                                                                                | GRAVEL P<br>MATERIA<br>ervals: Fro<br>ne nearest s<br>lic tank<br>er lines                                                                                                                                                                                                         | ACK INTERVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | From<br>From<br>cement<br>Q. ft. to<br>ible contaminati<br>ral lines<br>s pool                                                                                                                                          | 2 Cem<br>44                                                                                                                                                                                                    | ft. to<br>ft. to<br>ft. to<br>ent grout<br>ft., From<br>7 Pit privy<br>8 Sewage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bentoni<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft., From<br>ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dther<br>tock pens<br>storage<br>zer storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ft.<br>ft.<br>ft.<br><br>14 A<br>15 (<br>16 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sept<br>2 Sew<br>3 Wate                                                                      | GRAVEL P<br>MATERIA<br>ervals: Fro<br>ne nearest s<br>tic tank<br>er lines<br>ertight sewe                                                                                                                                                                                         | ACK INTERVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | From<br>From<br>From<br>cement<br>0ft. to<br>ible contaminati<br>ral lines<br>s pool<br>page pit                                                                                                                        | 2 Cem<br>44                                                                                                                                                                                                    | ft. to<br>ft. to<br>ft. to<br>ant grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5<br>3Bentoni<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ft., From<br><b>3</b> ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dther<br>tock pens<br>storage<br>zer storage<br>ticide storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft.<br>ft.<br>ft.<br><br>14 A<br>15 (<br>16 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | toft.<br>toft.<br>toft.<br>ft. toft.<br>Abandoned water well<br>Di well/Gas well<br>Other (specify below)           |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sepi<br>2 Sew<br>3 Wate<br>Direction                                                         | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?                                                                                                                                                                           | ACK INTERVA<br>.: 1 Neat of<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | From<br>From<br>cement<br>Q. ft. to<br>ible contaminati<br>ral lines<br>s pool<br>page pit                                                                                                                              | 2 Cem<br>44                                                                                                                                                                                                    | ft. to<br>ft. to<br>mt grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bentoni<br>.ft.<br>lagoon<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft., From<br><b>3</b> ft., From<br>tt., From<br>ite <b>4</b><br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dther<br>Dther<br>tock pens<br>storage<br>zer storage<br>ticide storage<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft.<br>ft.<br>ft.<br><br>14 A<br>15 (<br>16 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | toft.<br>toft.<br>toft.<br>toft.<br>ft. toft.<br>Abandoned water well<br>Dil well/Gas well<br>Dther (specify below) |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sept<br>2 Sew<br>3 Wate<br>Direction<br>FROM                                                 | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO                                                                                                                                                                     | ACK INTERVA<br>.: 1 Neat c<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | From<br>From<br>cernent<br>Q. ft. to<br>ible contaminati<br>ral lines<br>s pool<br>page pit                                                                                                                             | 2 Cem<br>44                                                                                                                                                                                                    | ft. to<br>ft. to<br>ant grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentoni<br>Bentoni<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft., From<br>3ft., From<br>tt., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Othertt., From<br>tock pens<br>storage<br>zer storage<br>licide storage<br>hy feet? 52 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ft.<br>ft.<br>ft.<br><br>14 /<br>15 (<br>16 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sept<br>2 Sew<br>3 Wate<br>Direction<br>FROM                                                 | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO                                                                                                                                                                     | ACK INTERVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | From<br>From<br>cernent<br>Q. ft. to<br>ible contaminati<br>ral lines<br>s pool<br>page pit                                                                                                                             | 2 Cem<br>44                                                                                                                                                                                                    | ft. to<br>ft. to<br>ant grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentoni<br>ft.<br>lagoon<br>d<br>FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other<br>tock pens<br>storage<br>zer storage<br>ticide storage<br>hy feet? 52 <sup>1</sup><br>PLUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft.<br>ft.<br>ft.<br><br>14 <i>A</i><br>15 (<br>16 (<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sept<br>2 Sew<br>3 Wate<br>Direction<br>FROM                                                 | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO                                                                                                                                                                     | ACK INTERVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | From<br>From<br>cernent<br>Qft. to<br>ible contaminati<br>ral lines<br>s pool<br>page pit<br>LITHOLOGIC                                                                                                                 | 2 Cem<br>44<br>on:                                                                                                                                                                                             | ft. to<br>ft. to<br>ant grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentoni<br>Bentoni<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tt, From<br>ft, From<br>ft, From<br>ft, From<br>ft, From<br>ft, From<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ft.<br>ft.<br>ft.<br><br>14 A<br>15 C<br>16 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sept<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>9320<br>0                                    | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>TO<br>31<br>42                                                                                                                                                  | ACK INTERVA<br>.: 1 Neat of<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | From<br>LS: From<br>From<br>bible contaminati<br>real lines<br>s pool<br>page pit<br>LITHOLOGIC                                                                                                                         | 2 Cern<br>44<br>oon:                                                                                                                                                                                           | ft. to<br>ft. to<br>ent grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentoni<br>Bentoni<br>ft.<br>lagoon<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ft., From<br><b>3</b> ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Other<br>Other<br>tock pens<br>storage<br>zer storage<br>ticide storage<br>hy feet? 52 <sup>1</sup><br>PLUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft.<br>ft.<br><br>14 /<br>15 (<br>16 (<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sept<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>9300<br>0<br>3 T                             | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>TO<br>3<br>42                                                                                                                                                   | ACK INTERVA<br>.: 1 Neat c<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | From<br>From<br>From<br>cement<br>0ft. to<br>ible contaminati<br>ral lines<br>s pool<br>page pit<br>LITHOLOGIC                                                                                                          | 2 Cern<br>44<br>oon:                                                                                                                                                                                           | ft. to<br>ft. to<br>ant grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentoni<br>Bentoni<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tt., From<br>ft., F | Other<br>tock pens<br>storage<br>zer storage<br>ticide storage<br>hy feet? 52<br>PLUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ft.<br>ft.<br><br>14 <i>A</i><br>15 (<br>16 (<br><br>GING I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sepi<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>9300<br>0<br>3 <sup>1</sup><br>42            | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>itic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>3<br>42<br>42<br>46<br>40                                                                                                                                      | ACK INTERVA<br>.: 1 Neat of<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | From<br>From<br>From<br>cement<br>0. ft. to<br>ible contaminati<br>iral lines<br>s pool<br>page pit<br>LITHOLOGIC<br>CONTRACTOR<br>LITHOLOGIC<br>CONTRACTOR<br>LITHOLOGIC<br>CONTRACTOR<br>LITHOLOGIC                   | 2 Cerm<br>2 Cerm<br>44<br>oon:<br>LOG<br>ay                                                                                                                                                                    | ft. to<br>ft. to<br>ant grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentoni<br>Bentoni<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft., From<br>3 ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Otherft., From<br>tock pens<br>storage<br>zer storage<br>licide storage<br>ny feet? 52 *<br>PLUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ft.<br>ft.<br><br>14 /<br>15 (<br>16 (<br><br>GING I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sepi<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>9320<br>0<br>3 <sup>1</sup><br>42<br>46      | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>XXXXXX<br>3 <sup>1</sup><br>42<br>46 <sup>1</sup><br>53 <sup>1</sup>                                                                                            | ACK INTERVA<br>.: 1 Neat c<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | From<br>From<br>From<br>cement<br>0. ft. to<br>ible contaminati<br>ral lines<br>s pool<br>page pit<br>LITHOLOGIC<br>XXXXXXXXXXX<br>L<br>LAY<br>D Silty Cl<br>et)                                                        | 2 Cerm.<br>44.<br>                                                                                                                                                                                             | ft. to<br>ft. to<br>ant grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentoni<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft., From<br><b>3</b> ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Otherft., From<br>tock pens<br>storage<br>zer storage<br>licide storage<br>hy feet? 52 "<br>PLUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ft.<br>ft.<br><br>14 /<br>15 (<br>16 (<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sept<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>9300<br>0<br>3 <sup>1</sup><br>42<br>46      | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>3"<br>42<br>46"<br>53"                                                                                                                                          | ACK INTERVA<br>.: 1 Neat c<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | From<br>LS: From<br>From<br>cement<br>0ft.to<br>bile contaminati<br>ral lines<br>\$ pool<br>page pit<br>LITHOLOGIC<br>XXXXXXXXXX<br>L<br>LTHOLOGIC<br>XXXXXXXXXX<br>L<br>D Silty Cl<br>at)                              | 2 Cem<br>44<br>44<br>LOG                                                                                                                                                                                       | ft. to<br>ft. to<br>ant grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentoni<br>ft.<br>lagoon<br>d<br>FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ft., From<br><b>3</b> tt., From<br>tt., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dother                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ft.<br>ft.<br><br>14 /<br>15 (<br>16 (<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sept<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>93x<br>0<br>3 <sup>1</sup><br>42<br>46       | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>TO<br>31<br>42<br>46<br>53                                                                                                                                      | ACK INTERVA<br>.: 1 Neat c<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | From<br>From<br>From<br>cement<br>0ft. to<br>ible contaminati<br>ral lines<br>s pool<br>page pit<br>LITHOLOGIC<br>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                  | 2 Cern<br>44<br>001:<br>LOG<br>2000                                                                                                                                                                            | ft. to<br>ft. to<br>ent grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentoni<br>Bentoni<br>ft.<br>Iagoon<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ft., From<br><b>3</b> ft., From<br>ft., From<br>ft., From<br><br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dther<br>Dther<br>tock pens<br>storage<br>zer storage<br>ticide storage<br>hy feet? 52 <sup>1</sup><br>PLUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft.<br>ft.<br><br>14 4<br>15 0<br>16 0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sept<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>9300<br>31<br>42<br>46                       | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>TO<br>3 <sup>†</sup><br>42<br>46 <sup>†</sup><br>53 <sup>†</sup>                                                                                                | ACK INTERVA<br>.: 1 Neat c<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | From<br>From<br>From<br>cement<br>0ft. to<br>ible contaminati<br>ral lines<br>s pool<br>page pit<br>LITHOLOGIC<br>LITHOLOGIC<br>LITHOLOGIC<br>LITHOLOGIC<br>LITHOLOGIC<br>LITHOLOGIC                                    | 2 Cerm<br>2 Cerm<br>44<br>001:                                                                                                                                                                                 | ft. to<br>ft. to<br>ant grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentoni<br>Bentoni<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft., From<br>3ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Other<br>Dther<br>tock pens<br>storage<br>zer storage<br>ticide storage<br>hy feet? 52<br>PLUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft.<br>ft.<br><br>14 /<br>15 (<br>16 (<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sepi<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>9300<br>0<br>3'<br>42<br>46                  | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>XXXXXXX<br>3<br>42<br>46<br>53                                                                                                                                  | ACK INTERVA<br>.: 1 Neat c<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | From<br>From<br>From<br>cement<br>0. ft. to<br>ible contaminati<br>ral lines<br>s pool<br>page pit<br>LITHOLOGIC<br>LITHOLOGIC<br>LITHOLOGIC<br>LITHOLOGIC<br>LITHOLOGIC                                                | 2 Cerm<br>2 Cerm<br>44<br>0on:                                                                                                                                                                                 | ft. to<br>ft. to<br>ant grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentoni<br>Bentoni<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft., From<br>3ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dotherft., From<br>tock pens<br>storage<br>zer storage<br>licide storage<br>ny feet? 52 *<br>PLUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ft.<br>ft.<br><br>14 /<br>15 (<br>16 (<br><br>GING 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sepi<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>9320<br>0<br>3 <sup>1</sup><br>42<br>46      | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>3<br>42<br>46<br>53                                                                                                                                             | ACK INTERVA<br>.: 1 Neat of<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | From<br>From<br>From<br>cement<br>0. ft. to<br>ible contaminati<br>ral lines<br>s pool<br>page pit<br>LITHOLOGIC<br>XXXXXXXXX<br>L<br>LTHOLOGIC<br>XXXXXXXXX<br>L<br>D Silty Cl                                         | 2 Cerm<br>2 Cerm<br>44<br>0on:                                                                                                                                                                                 | ft. to<br>ft. to<br>ant grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentoni<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft., From<br>3 ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dotherft., From<br>tock pens<br>storage<br>zer storage<br>licide storage<br>hy feet? 52 *<br>PLUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GING I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to                                                                                                                  |
| 6 GROUT<br>Grout Into<br>What is th<br>1 Sepi<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>93x0<br>0<br>3 1<br>42<br>46                 | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>3'<br>42<br>46'<br>53'                                                                                                                                          | ACK INTERVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | From<br>LS: From<br>From<br>cement<br>Q. ft. to<br>bibe contaminati<br>ral lines<br>\$ pool<br>page pit<br>LITHOLOGIC<br>XXXXXXXXXX<br>L<br>LAY<br>D. Silty Cl<br>at)                                                   | 2 Cem<br>44<br>44<br>000:                                                                                                                                                                                      | ft. to<br>ft. to<br>ant grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SBentoni<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ft., From<br>3 ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Otherft., From<br>tock pens<br>storage<br>zer storage<br>licide storage<br>hy feet? 52 *<br>PLUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GING I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sept<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>0<br>3 <sup>1</sup><br>42<br>46              | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>3"<br>42<br>46"<br>53"                                                                                                                                          | ACK INTERVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | From<br>From<br>From<br>cement<br>0. ft. to<br>ible contaminati<br>ible contaminati<br>s pool<br>page pit<br>LITHOLOGIC<br>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                         | 2 Cem<br>44<br>601:<br>LOG<br>2000                                                                                                                                                                             | ft. to<br>ft. to<br>ent grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentoni<br>Bentoni<br>ft.<br>Iagoon<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ft., From<br>3ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dther<br>Dther<br>tock pens<br>storage<br>zer storage<br>ticide storage<br>py feet? 52 <sup>1</sup><br>PLUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GING I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sept<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>93x<br>0<br>3 <sup>1</sup><br>42<br>46       | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>3"<br>42<br>46"<br>53"                                                                                                                                          | ACK INTERVA<br>.: 1 Neat of<br>source of possion<br>4 Late<br>5 Cess<br>r lines 6 Seep<br>East<br>Top Soll<br>Silty Cl<br>Sand (We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | From<br>From<br>From<br>ble contaminati<br>ible contaminati<br>s pool<br>page pit<br>LITHOLOGIC<br>LITHOLOGIC<br>LITHOLOGIC<br>LITHOLOGIC<br>LITHOLOGIC<br>LITHOLOGIC                                                   | 2 Cerm<br>2 Cerm<br>44<br>001:                                                                                                                                                                                 | ft. to<br>ft. to<br>ent grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentoni<br>Bentoni<br>ft.<br>Iagoon<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ft., From<br>3ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Other<br>Dther<br>tock pens<br>storage<br>zer storage<br>ticide storage<br>present for the stora | GING I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sepi<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>9300<br>3'<br>42<br>46                       | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>XXXXXX<br>3 <sup>†</sup><br>42<br>46 <sup>†</sup><br>53 <sup>†</sup>                                                                                            | ACK INTERVA<br>.: 1 Neat c<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | From<br>From<br>From<br>cement<br>0. ft. to<br>ible contaminati<br>ral lines<br>s pool<br>page pit<br>LITHOLOGIC<br>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                | 2 Cerm<br>2 Cerm<br>44<br>on:                                                                                                                                                                                  | ft. to<br>ft. to<br>ent grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentoni<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft., From<br>3 ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dther<br>Dther<br>tock pens<br>storage<br>zer storage<br>licide storage<br>ny feet? 52 <sup>1</sup><br>PLUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GING 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sepi<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>932<br>0<br>3 <sup>1</sup><br>42<br>46       | GRAVEL P<br>MATERIA<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>XXXXXX<br>3 <sup>1</sup><br>42<br>46 <sup>1</sup><br>53 <sup>1</sup>                                                                                             | ACK INTERVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | From<br>From<br>From<br>cement<br>0. ft. to<br>ible contaminati<br>ral lines<br>s pool<br>page pit<br>LITHOLOGIC<br>CONTRACTOR<br>L<br>LITHOLOGIC<br>CONTRACTOR<br>L<br>LITHOLOGIC<br>CONTRACTOR<br>L<br>LITHOLOGIC     | 2 Cerm<br>2 Cerm<br>44<br>0on:                                                                                                                                                                                 | ft. to<br>ft. to<br>ant grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bentoni<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft., From<br>3 ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dotherft., From<br>tock pens<br>storage<br>zer storage<br>licide storage<br>ny feet? 52 *<br>PLUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GING I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to                                                                                                                  |
| 6 GROUT<br>Grout Into<br>What is th<br>1 Sept<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>93x0<br>0<br>31<br>42<br>46                  | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>3"<br>42<br>46"<br>53"<br>46"<br>53"                                                                                                                            | ACK INTERVA<br>.: 1 Neat c<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | From<br>LS: From<br>From<br>cement<br>0. ft. to<br>bile contaminati<br>ral lines<br>\$ pool<br>page pit<br>LITHOLOGIC<br>XXXXXXXXX<br>L<br>D Silty Cl<br>at)<br>ER'S CERTIFIC                                           | 2 Cem<br>44<br>001:<br>44<br>ATION: Tr                                                                                                                                                                         | ft. to<br>ft. to<br>ent grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bentoni<br>Bentoni<br>ft.<br>lagoon<br>d<br>FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ft., From<br>3ft., From<br>ft., From<br>ft., From<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Other<br>Other<br>tock pens<br>storage<br>zer storage<br>ticide storage<br>ny feet? 52<br>PLUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GING I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sept<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>0<br>3 <sup>1</sup><br>42<br>46              | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>31<br>42<br>46<br>53<br>46<br>53<br>46<br>53<br>40<br>C                                                                                                         | ACK INTERVA<br>.: 1 Neat of<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | From<br>From<br>From<br>cement<br>0. ft. to<br>ible contaminati<br>ral lines<br>s pool<br>page pit<br>LITHOLOGIC<br>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                | 2 Cerm<br>44<br>001:<br>LOG<br>22 Cerm<br>44<br>44<br>20<br>44<br>20<br>44<br>20<br>44<br>20<br>44<br>20<br>44<br>20<br>44<br>20<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44 | ft. to<br>ft. to<br>ent grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bentoni<br>Bentoni<br>ft.<br>Iagoon<br>d<br>FROM<br>as(1) constru-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ft., From<br>3ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dther<br>Dther<br>tock pens<br>storage<br>zer storage<br>ticide storage<br>py feet? 52 <sup>1</sup><br>PLUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft.<br>ft.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sepi<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br><b>93x</b><br>0<br>3<br><b>1</b><br>42<br>46 | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>3'<br>42<br>46'<br>53'<br>42<br>46'<br>53'<br>ACTOR'S C<br>on (mo/day                                                                                           | ACK INTERVA<br>.: 1 Neat of<br>source of possion<br>4 Late<br>5 Cession<br>East<br>Top Soli<br>Silty Ci<br>Sand (We<br>Sand (We<br>R LANDOWNE<br>R LANDOWNE<br>S Licence No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | From<br>From<br>From<br>ble contaminati<br>ible contaminati<br>s pool<br>page pit<br>LITHOLOGIC<br>LITHOLOGIC<br>LITHOLOGIC<br>LITHOLOGIC<br>ER'S CERTIFIC,<br>3/29/01<br>680                                           | 2 Cerm<br>2 Cerm<br>44<br>001:<br>LOG<br><b>8</b><br><b>9</b><br><b>9</b><br><b>9</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b>  | ft. to<br>ft. to<br>ent grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar<br>9 Feedyar<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>                       | Bentoni<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft., From<br>3ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Other<br>Dither<br>tock pens<br>storage<br>zer storage<br>ticide storage<br>hy feet? 52 *<br>PLUG<br>PLUG<br>Onstructed, or (3) plu<br>rd is true to the best<br>on fmo/dav/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ft.<br>ft.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is th<br>1 Sepi<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>930<br>0<br>3'<br>42<br>46<br>               | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>XXXXXX<br>3<br>42<br>46<br>53<br>42<br>46<br>53<br>7<br>42<br>46<br>7<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | ACK INTERVA<br>.: 1 Neat of<br>source of possi<br>4 Late<br>5 Cess<br>r lines 6 Seeg<br>East<br>Top Soil<br>Silty Cl<br>Sandy to<br>Sandy to<br>Sand | From<br>From<br>From<br>coment<br>0. ft. to<br>ible contaminati<br>ral lines<br>s pool<br>page pit<br>LITHOLOGIC<br>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                | 2 Cerm<br>2 Cerm<br>44<br>on:<br>LOG<br><b>ay</b>                                                                                                                                                              | ft. to f                                                                                                                                                                                                                                                                                                                                                         | Bentoni<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft., From<br>3ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO<br><br>Low ma<br>TO<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GING I<br>GING I<br>GING I<br>GING I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | to                                                                                                                  |
| 6 GROUT<br>Grout Inte<br>What is the<br>1 Sepi<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>932<br>0<br>3 1<br>42<br>46<br>             | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>tic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>XXXXXX<br>42<br>46 <sup>1</sup><br>53 <sup>1</sup><br>42<br>46 <sup>1</sup><br>53 <sup>1</sup><br>ACTOR'S C<br>on (mo/day<br>I Contractor<br>pusiness na        | ACK INTERVA<br>.: 1 Neat (<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | From<br>LS: From<br>From<br>Prom<br>Prom<br>Q. ft. to<br>ble contaminati<br>ral lines<br>\$ pool<br>page pit<br>LITHOLOGIC<br>XXXXXXXXX<br>Lay<br>D. Silty Cl<br>at)<br>ER'S CERTIFIC.<br>3/29/01<br>680<br>A Environm  | 2 Cem<br>44<br>                                                                                                                                                                                                | ft. to<br>k ft. to<br>ant grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bentoni<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft., From<br>3ft., From<br>ft., From<br>ite 4<br>to<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Otherft, From<br>tock pens<br>storage<br>zer storage<br>ilcide storage<br>ny feet? 52 '<br>PLUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GING I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to                                                                                                                  |
| 6 GROUT<br>Grout Into<br>What is th<br>1 Sepi<br>2 Sew<br>3 Wate<br>Direction<br>FROM<br>93x0<br>0<br>3 T<br>42<br>46<br>             | GRAVEL P<br>MATERIAI<br>ervals: Fro<br>he nearest s<br>itic tank<br>er lines<br>ertight sewe<br>from well?<br>TO<br>3'<br>42<br>46'<br>53'<br>A22<br>46'<br>53'<br>ACTOR'S C<br>on (mo/day<br>I Contractor<br>pusiness na                                                          | ACK INTERVA<br>.: 1 Neat of<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | From<br>LS: From<br>From<br>From<br>Comment<br>0. ft. to<br>bile contaminati<br>ral lines<br>\$ pool<br>page pit<br>LITHOLOGIC<br>XXXXXXXXX<br>L<br>D Silty Cl<br>at)<br>ER'S CERTIFIC,<br>3/29/01<br>680<br>a Environm | 2 Cem<br>44<br>001:<br>44<br>ay<br>ATION: Tr<br>ental                                                                                                                                                          | ft. to<br>ft. to<br>ft. to<br>ant grout<br>ft., From<br>7 Pit privy<br>8 Sewage<br>9 Feedyar<br>9 Feedyar<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | Bentoni<br>Bentoni<br>ft.<br>Iagoon<br>d<br>FROM<br>FROM<br>Bentoni<br>ft.<br>Iagoon<br>d<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>F | ft., From<br>3ft., From<br>ft., From<br>ft., From<br>10 Lives<br>11 Fuel<br>12 Fertil<br>13 Insec<br>How ma<br>TO<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Other<br>Other<br>tock pens<br>storage<br>zer storage<br>bicide storage<br>PLUG<br>PLUG<br>PLUG<br>PLUG<br>onstructed, or (3) plu<br>rd is true to the best<br>on (mo/day/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GING I<br>GING I | to                                                                                                                  |

# Piezometer SB49: Everest, KS

NE 1/4 of NE 1/4 of NE 1/4 of Section 30, Twp. 4 South, Rge. 18 East Brown County, State of Kansas

Date: 11/12/02

#### WELL HEAD PROTECTION

12" Morrison Brothers, Co. Model 418XA flush mount cover. Top of casing fitted with a (J-Plug) Morrison Brothers, Co. Model 678XA and a screened vent with a locking pipe plug and padlock.

#### CONCRETE PAD

Must be a minimum of 8" thick and extend at least 8" larger than the flush mount (28" minimum). Sloped to prevent pooling of water and vegetation around well and to allow for placement of a surveyor pin.

#### **IMPERVIOUS GROUT**

The well must be grouted with impervious grout and must be tremied in the hole, with clean fresh water, to have a minimum density of 9.4 lbs. per gallon.

#### WELL CASING

Well casing shall terminate as high as possible inside the flush mount and be capped with a (J-Plug) Morrison Brothers, Co. Model 678XA locking plug and padlock.

1" PVC 160 psi (SDR) 26 or thicker threaded casing and Mill Slot (0.010") well screen.

#### HOLE SIZE

The hole must be at least 4" in diameter for the top 20' and grouted to the base of the flush mount.

#### **GRAVEL / SAND PACK**

Gravel/sand pack screen size and gradation shall be determined based upon the grain size and gradation of portion or portions of the aquifer to be screened. Gravel pack shall be designed to stabilize the aquifer material and permit the fine fraction to move into the well during development. Gravel/sand pack shall extend to at least 2' above screen.

#### CONTRACTOR LICENSING

All wells must be constructed under the direction of a licensed water well contractor as specified under the Kansas Department of Health and Environment.

#### REGISTRATION



# Piezometer SB60: Everest, KS

NE 1/4 of NE 1/4 of NE 1/4 of Section 30, Twp. 4 South, Rge. 18 East Brown County, State of Kansas

Date: 11/10/02 and 11/11/02

#### WELL HEAD PROTECTION

12" Morrison Brothers, Co. Model 418XA flush mount cover. Top of casing fitted with a (J-Plug) Morrison Brothers, Co. Model 678XA and a screened vent with a locking pipe plug and padlock.

#### CONCRETE PAD

Must be a minimum of 8" thick and extend at least 8" larger than the flush mount (28" minimum). Sloped to prevent pooling of water and vegetation around well and to allow for placement of a surveyor pin.

#### **IMPERVIOUS GROUT**

The well must be grouted with impervious grout and must be tremied in the hole, with clean fresh water, to have a minimum density of 9.4 lbs. per gallon.

#### WELL CASING

Well casing shall terminate as high as possible inside the flush mount and be capped with a (J-Plug) Morrison Brothers, Co. Model 678XA locking plug and padlock.

1" PVC 160 psi (SDR) 26 or thicker threaded casing and Mill Slot (0.010") well screen.

#### HOLE SIZE

The hole must be at least 4" in diameter for the top 20' and grouted to the base of the flush mount.

#### **GRAVEL / SAND PACK**

Gravel/sand pack screen size and gradation shall be determined based upon the grain size and gradation of portion or portions of the aquifer to be screened. Gravel pack shall be designed to stabilize the aquifer material and permit the fine fraction to move into the well during development. Gravel/sand pack shall extend to at least 2' above screen.

#### CONTRACTOR LICENSING

All wells must be constructed under the direction of a licensed water well contractor as specified under the Kansas Department of Health and Environment.

#### REGISTRATION



Everest, Kansas, QuickSite<sup>®</sup> Investigation Phase II Report Version 00, 05/09/03

# Piezometer SB62: Everest, KS

NE 1/4 of NW 1/4 of NE 1/4 of Section 30, Twp. 4 North, Rge. 18 East Brown County, State of Kansas

Date: 11/12/02

#### WELL HEAD PROTECTION

8" PVC Casing extending 3' AGL with a locking cap. Top of casing fitted with a (J-Plug) Morrison Brothers, Co. Model 678XA and a screened vent with a locking pipe plug and padlock.

#### CONCRETE PAD

Must be a minimum of 8" thick and extend at least 8" larger than the mount (28" minimum). Sloped to prevent pooling of water and vegetation around well and to allow for placement of a surveyor pin.

#### **IMPERVIOUS GROUT**

The well must be grouted with impervious grout that must be tremied in the hole, with clean fresh water, to have a minimum density of 9.4 lbs. per gallon. Grout must extend from the top of the bentonite chips to 3' BGL.

#### WELL CASING

Well casing shall terminate as high as possible inside the mount and be capped with a (J-Plug) Morrison Brothers, Co. Model 678XA locking plug and padlock.

1" PVC 160 psi(SDR) 26 or thicker threaded casing and Mill Slot (0.010") well screen.

#### HOLE SIZE

The hole must be at least 4" in diameter for the top 20' and grouted to the base of the surface mount.

#### **GRAVEL / SAND PACK**

Gravel/sand pack screen size and gradation shall be determined based upon the grain size and gradation of portion or portions of the aquifer to be screened. Gravel/sand pack shall be designed to stabilize the aquifer material and permit the fine fraction to move into the well during development. Gravel/sand pack shall extend to at least 2' above the screen apertures.

#### CONTRACTOR LICENSING

All wells must be constructed under the direction of a licensed water well contractor as specified under the Kansas Department of Health and Environment.

#### REGISTRATION



Everest, Kansas, QuickSite<sup>®</sup> Investigation Phase II Report Version 00, 05/09/03

# Piezometer SB63: Everest, KS

NE 1/4 of NW 1/4 of NE 1/4 of Section 30, Twp. 4 North, Rge. 18 East Brown County, State of Kansas

Date: 11/12/02

#### WELL HEAD PROTECTION

8" PVC Casing extending 3' AGL with a locking cap. Top of casing fitted with a (J-Plug) Morrison Brothers, Co. Model 678XA and a screened vent with a locking pipe plug and padlock.

#### CONCRETE PAD

Must be a minimum of 8" thick and extend at least 8" larger than the mount (28" minimum). Sloped to prevent pooling of water and vegetation around well and to allow for placement of a surveyor pin.

#### **IMPERVIOUS GROUT**

The well must be grouted with impervious grout that must be tremied in the hole, with clean fresh water, to have a minimum density of 9.4 lbs. per gallon. Grout must extend from the top of the bentonite chips to 3' BGL.

#### WELL CASING

Well casing shall terminate as high as possible inside the mount and be capped with a (J-Plug) Morrison Brothers, Co. Model 678XA locking plug and padlock.

1" PVC 160 psi(SDR) 26 or thicker threaded casing and Mill Slot (0.010") well screen.

#### HOLE SIZE

The hole must be at least 4" in diameter for the top 20' and grouted to the base of the surface mount.

#### **GRAVEL / SAND PACK**

Gravel/sand pack screen size and gradation shall be determined based upon the grain size and gradation of portion or portions of the aquifer to be screened. Gravel/sand pack shall be designed to stabilize the aquifer material and permit the fine fraction to move into the well during development. Gravel/sand pack shall extend to at least 2' above the screen apertures.

#### CONTRACTOR LICENSING

All wells must be constructed under the direction of a licensed water well contractor as specified under the Kansas Department of Health and Environment.

#### REGISTRATION



Everest, Kansas, QuickSite<sup>®</sup> Investigation Phase II Report Version 00, 05/09/03

# Piezometer SB64: Everest, KS

SW 1/4 of NW 1/4 of NE 1/4 of Section 30, Twp. 4 North, Rge. 18 East Brown County, State of Kansas

Date: 11/12/02

#### WELL HEAD PROTECTION

8" PVC Casing extending 3' AGL with a locking cap. Top of casing fitted with a (J-Plug) Morrison Brothers, Co. Model 678XA and a screened vent with a locking pipe plug and padlock.

#### CONCRETE PAD

Must be a minimum of 8" thick and extend at least 8" larger than the mount (28" minimum). Sloped to prevent pooling of water and vegetation around well and to allow for placement of a surveyor pin.

#### **IMPERVIOUS GROUT**

The well must be grouted with impervious grout that must be tremied in the hole, with clean fresh water, to have a minimum density of 9.4 lbs. per gallon. Grout must extend from the top of the bentonite chips to 3' BGL.

#### WELL CASING

Well casing shall terminate as high as possible inside the mount and be capped with a (J-Plug) Morrison Brothers, Co. Model 678XA locking plug and padlock.

1" PVC 160 psi(SDR) 26 or thicker threaded casing and Mill Slot (0.010") well screen.

#### HOLE SIZE

The hole must be at least 4" in diameter for the top 20' and grouted to the base of the surface mount.

#### **GRAVEL / SAND PACK**

Gravel/sand pack screen size and gradation shall be determined based upon the grain size and gradation of portion or portions of the aquifer to be screened. Gravel/sand pack shall be designed to stabilize the aquifer material and permit the fine fraction to move into the well during development. Gravel/sand pack shall extend to at least 2' above the screen apertures.

#### CONTRACTOR LICENSING

All wells must be constructed under the direction of a licensed water well contractor as specified under the Kansas Department of Health and Environment.

#### REGISTRATION



Appendix F:

## Groundwater and Surface Water Sample Data

TABLE F.1 Groundwater and surface water samples collected during the second and third sessions of the Phase II investigation at Everest, Kansas.

| Location     | Depth Sample<br>Sample (ft BGL) Date |                   | Sample Description |                                                                                                                                                     |
|--------------|--------------------------------------|-------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Groundwate   | er samples collected in Mar          | ch-April 2001 (se | cond sessior       | n of Phase II work)                                                                                                                                 |
| SB20         | EVSB20-W-12063                       | 56.0-58.0         | 3/7/01             | Good water recovery.                                                                                                                                |
| SB20         | EVSB20-W-12064                       | 58.0-60.5         | 3/7/01             | Good water recovery.                                                                                                                                |
| SB20         | EVSB20-W-12067                       | 60.0-61.5         | 3/7/01             | No description recorded.                                                                                                                            |
| SB20         | EVSB20-W-12068                       | 61.5-65.0         | 3/8/01             | No description recorded.                                                                                                                            |
| SB21         | EVSB21-W-12072                       | 60.0-62.0         | 3/9/01             | Very cold morning with muddy field conditions. Ample, quick water recovery. Water cleared<br>auickly.                                               |
| SB21         | EVSB21-W-12074                       | 64.0-66.0         | 3/9/01             | Good water recovery.                                                                                                                                |
| SB21         | EV12076 - no sample                  | 72.0-74.0         | 3/9/01             | No water at sampling interval; sample not collected.                                                                                                |
| SB22         | EVSB22-W-11985                       | 59.0-62.0         | 3/7/01             | 39°N 40.755 ft; 95°W 25.686 ft.                                                                                                                     |
| SB23         | EVSB23-W-12799                       | 44.0-48.0         | 3/19/01            | No description recorded.                                                                                                                            |
| SB23         | EVSB23-W-12795                       | 48.5-52.9         | 3/19/01            | No description recorded.                                                                                                                            |
| SB24         | E\/SB24_\//_12762                    | 40.0-43.0         | 3/1//01            | No description recorded                                                                                                                             |
| SB24         | EVSB24-W-12762                       | 40.0-48.5         | 3/14/01            | No description recorded                                                                                                                             |
| SD24<br>SB24 | EVSB24-W-12703                       | 44.0-40.0         | 3/14/01            | No description recorded:                                                                                                                            |
| 3D24         | EV3024-W-12707                       | 40.0-55.0         | 3/13/01            |                                                                                                                                                     |
| SB25         | EVSB25-W-12077                       | 46.0-51.0         | 3/13/01            | No description recorded.                                                                                                                            |
| SB26         | EVSB26-W-12801                       | 58.0-63.0         | 3/20/01            | Much suspended sediment.                                                                                                                            |
| SB28         | EVSB28-W-12812                       | 56.0-61.0         | 3/22/01            | Abundant, immediate water recoverv.                                                                                                                 |
| SB28         | EVSB28-W-12815                       | 62.0-64.9         | 3/23/01            | Difficulty pushing from 63.7 to 64.9 ft BGL. Recovered dark brown water with heavy sediment load. Water level = 47.35 ft BGL.                       |
| SB29         | EVSB29-W-12042                       | 53.5-56.5         | 3/27/01            | Slow getting water.                                                                                                                                 |
| SB29         | EVSB29-W-12045                       | 62.2-65.2         | 3/28/01            | Water level = 61.2 ft BGL. Total hole depth = 65.2 ft BGL. Water in hole after 11.5 hr, but very little. Insufficient water for field measurements. |

| Location             | Sample                                             | Depth<br>(ft BGL)                   | Sample<br>Date                | Sample Description                                                                                                                                                                                                         |
|----------------------|----------------------------------------------------|-------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Groundwate           | er samples collected in Ma                         | arch-April 2001 (secon              | d session of                  | Phase II work) (Cont.)                                                                                                                                                                                                     |
| SB30<br>SB30<br>SB30 | EVSB30-W-12807<br>EVSB30-W-12803<br>EVSB30-W-12808 | 59.5-61.0<br>62.0-64.5<br>66.0-68.5 | 3/22/01<br>3/21/01<br>3/22/01 | Sample collected manually with bailer down well. Water level = 46.05 ft BGL.<br>Abundant water.<br>Abundant water recovery after sitting overnight (12 hr).                                                                |
| SB31<br>SB31         | EVSB31-W-11989<br>EVSB31-W-12039                   | 57.0-61.0<br>62.0-67.0              | 3/26/01<br>3/26/01            | No description recorded.<br>No description recorded.                                                                                                                                                                       |
| SB32<br>SB32         | EVSB32-W-12868<br>EVSB32-W-12870                   | 32.8-37.8<br>37.8-42.8              | 3/28/01<br>3/28/01            | Water entered hole quickly. Sample hand-carried to laboratory.<br>Abundant water. Hand-carried to laboratory.                                                                                                              |
| SB33                 | EVSB33-W-12880                                     | 64.0-68.0                           | 3/29/01                       | No description recorded.                                                                                                                                                                                                   |
| SB34<br>SB34         | EVSB34-W-12857<br>EVSB34-W-12854                   | 46.0-49.0<br>49.0-53.0              | 3/28/01<br>3/28/01            | KDHE took 80-mL sample.<br>KDHE took 80-mL sample.                                                                                                                                                                         |
| SB35                 | EVSB35-W-12874                                     | 56.0-59.0                           | 3/31/01                       | Water in 1.5 hr at approximately 50 ft BGL.                                                                                                                                                                                |
| SB36                 | EVSB36-W-12884                                     | 51.5-54.5                           | 3/30/01                       | No description recorded.                                                                                                                                                                                                   |
| SB37<br>SB37<br>SB37 | EVSB37-W-12907<br>EVSB37-W-12909<br>EVSB37-W-12910 | 65.5-70.0<br>70.0-74.0<br>74.0-76.0 | 4/3/01<br>4/4/01<br>4/4/01    | Sand point; temporary set. Oxidized water; sediment settled quickly.<br>Limited water recovery; bailed dry. Sampled after waiting overnight.<br>Very limited water recovery. About 20 mL recovered. No field measurements. |
| SB38                 | EVSB38-W-12892                                     | 54.5-58.5                           | 4/1/01                        | Very difficult, slow water recovery. Water milky gray, settling out quickly. Insufficient water for field parameters                                                                                                       |
| SB38<br>SB38         | EVSB38-W-12888<br>EVSB38-W-12893                   | 63.5-67.5<br>68.9-72.9              | 3/31/01<br>4/1/01             | Stainless steel bailer.<br>Slow water recovery although initially abundant water. Reddish brown, oxidized in color<br>with heavy silt fraction.                                                                            |
| SB39                 | EVSB39-W-12897                                     | 68.2-72.2                           | 4/1/01                        | From pronounced sand zone on ECPT profile.                                                                                                                                                                                 |

| Location   | Sample                     | Depth<br>(ft BGL)    | Sample<br>Date | Sample Description                                                                                                                                                                                 |
|------------|----------------------------|----------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Groundwate | er samples collected in Ma | rch-April 2001 (secc | ond session of | Phase II work) (Cont.)                                                                                                                                                                             |
| SB40       | EVSB40-W-12053             | 60.0-65.0            | 4/2/01         | Water level = 56.5 ft BGL, rising when measured.                                                                                                                                                   |
| SB40       | EVSB40-W-12056             | 64.9-69.9            | 4/2/01         | No description recorded.                                                                                                                                                                           |
| SB41       | EVSB41-W-12898             | 68.0-72.8            | 4/2/01         | Abundant water recovery.                                                                                                                                                                           |
| SB42       | EVSB42-W-12905             | 55.5-60.0            | 4/3/01         | Water very slow coming into hole. Set temporary screen and moved rig. Bailed after<br>crawler moved. Nine feet of water in hole when bailing began. Milky gray water;<br>sediment settled guickly. |
| SB42       | EVSB42-W-12901             | 60.5-65.0            | 4/3/01         | No description recorded.                                                                                                                                                                           |
| SB42       | EVSB42-W-12903             | 65.5-70.0            | 4/3/01         | Abundant water; oxidized.                                                                                                                                                                          |
| SB43       | EVSB43-W-12060             | 39.0-44.0            | 4/3/01         | Much water.                                                                                                                                                                                        |
| SB43       | EVSB43-W-12048             | 44.0-49.0            | 4/3/01         | Slower water.                                                                                                                                                                                      |
| SB43       | EVSB43-W-12051             | 49.0-52.6            | 4/3/01         | Much water, but then none. More water after sitting for a while.                                                                                                                                   |
| SB44       | EVSB44-W-12940             | 52.0-57.0            | 4/4/01         | Poor water recovery. Milky gray color. Piezometer.                                                                                                                                                 |
| SB44       | EVSB44-W-12939             | 57.0-62.0            | 4/4/01         | Good water recovery. Oxidized; sediment settled quickly.                                                                                                                                           |
| SB44       | EVSB44-W-12915             | 62.0-65.0            | 4/4/01         | Moderate water recovery.                                                                                                                                                                           |
| SB44       | EVSB44-W-12911             | 64.6-67.0            | 4/4/01         | Abundant water recovery.                                                                                                                                                                           |
| SB45       | 12934 - no sample          | 47.0-52.0            | 4/5/01         | Sample not collected: no water at depth. Sample ID 12935 (intended as replicate) also voided.                                                                                                      |
| SB45       | EVSB45-W-12932             | 52.0-56.0            | 4/5/01         | Slow water flow. Silty brown.                                                                                                                                                                      |
| SB45       | EVSB45-W-12930             | 56.0-60.0            | 4/5/01         | Much water, muddy with silt.                                                                                                                                                                       |
| SB46       | EVSB46-W-12862             | 55.0-60.0            | 4/4/01         | Much water.                                                                                                                                                                                        |
| SB46       | EVSB46-W-12864             | 60.0-65.0            | 4/4/01         | Much water.                                                                                                                                                                                        |
| SB46       | EVSB46-W-12918             | 65.0-70.0            | 4/4/01         | Much water.                                                                                                                                                                                        |

| Location             | Sample                                             | Depth<br>(ft BGL)                   | Sample<br>Date                | Sample Description                                                                                                                                                                                                                                                                      |
|----------------------|----------------------------------------------------|-------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Groundwat            | er samples collected in Ma                         | arch-April 2001 (secol              | nd session of                 | Phase II work) (Cont.)                                                                                                                                                                                                                                                                  |
| SB47<br>SB47<br>SB47 | EVSB47-W-12921<br>EVSB47-W-12924<br>EVSB47-W-12928 | 62.0-67.0<br>67.0-72.0<br>72.0-76.0 | 4/4/01<br>4/5/01<br>4/5/01    | Much water. Slightly milky appearance.<br>Very slow water flow. Silty water, brown.<br>Much water, sandy/silty, brown color.                                                                                                                                                            |
| SB48                 | EVSB48-W-12941                                     | 59.4-64.4                           | 4/5/01                        | Very slow water. Sediment load heavy, but settled out quickly. Oxidized water.                                                                                                                                                                                                          |
| Groundwat            | er samples collected in No                         | vember 2002 (third s                | ession of Pha                 | se II work)                                                                                                                                                                                                                                                                             |
| SB49                 | EVSB49-W-15854                                     | 46.0-51.0                           | 11/4/02                       | Screened hole. Water level at 43 ft BGL, with hole pushed to 51 ft BGL and 5-ft screen exposed                                                                                                                                                                                          |
| SB49                 | EVSB49-W-13170                                     | 51.0-55.0                           | 11/8/02                       | Ample water recovery, oxidized, moderately turbid.                                                                                                                                                                                                                                      |
| SB49                 | EVSB49-W-15855                                     | 55.0-60.0                           | 11/5/02                       | Screened hole. Water level at 43.3 ft BGL, with hole pushed to 60 ft BGL and 5-ft screen exposed. Location 5 ft north of 46-51 ft BGL sampling location.                                                                                                                                |
| SB50                 | EVSB50-W-13160                                     | 44.2-49.2                           | 11/4/02                       | Approximately 10 ft of water entered rods immediately upon opening. Highly turbid,<br>oxidized water with fine sediment. Collected aliquots immediately for VOC and<br>semivolatiles analyses. Aliquots for tritium and metals collected the following morning<br>due to slow recovery. |
| SB50                 | EVSB50-W-13158                                     | 51.0-54.0                           | 11/4/02                       | Screen (3 ft) open to the formation. Water collected about 4 ft above screen. Abundant                                                                                                                                                                                                  |
| SB50                 | EVSB50-W-13169                                     | 54.0-56.8                           | 11/7/02                       | recovery. Water dark reddish brown, highly turbid, oxidized.<br>Dark brown, highly turbid water. Good recovery.                                                                                                                                                                         |
| SB51<br>SB51         | EVSB51-W-13166<br>EVSB51-W-13167                   | 54.1-59.1<br>59.0-64.0              | 11/6/02<br>11/7/02            | Slow recovery, but consistent. High level of turbidity, oxidized.<br>Middle sand zone. Good recovery. Water dark brown, not oxidized.                                                                                                                                                   |
| SB52<br>SB52<br>SB52 | EVSB52-W-13164<br>EVSB52-W-13173<br>EVSB52-W-13163 | 46.0-51.0<br>52.0-57.0<br>58.0-60.5 | 11/5/02<br>11/8/02<br>11/5/02 | Slow, steady water production from this upper zone. Bailing dry during sampling.<br>Abundant oxidized, turbid water.<br>Sampling interval based on electronic profile. Refusal at depth of 60.5 ft BGL, probably<br>bedrock. Sampled sand zone above bedrock                            |

| Location   | Sample                     | Depth<br>(ft BGL)    | Sample<br>Date | Sample Description                                                                                                                                                                                                        |
|------------|----------------------------|----------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Groundwate | er samples collected in No | vember 2002 (third s | session of Pha | se II work) (Cont.)                                                                                                                                                                                                       |
| SB53       | EVSB53-W-15868             | 21.0-26.0            | 11/5/02        | Screened hole. Water encountered at 21 ft BGL during push. Set screen at indicated depth. Water level prior to sampling at 19.1 ft BGL.                                                                                   |
| SB54       | EVSB54-W-15871             | 17.0-22.0            | 11/6/02        | Screened hole. Water level at 20.1 ft BGL prior to sampling.                                                                                                                                                              |
| SB54       | EVSB54-W-15874             | 22.0-27.0            | 11/6/02        | Screened hole. Water level at 18.92 ft BGL prior to sampling.                                                                                                                                                             |
| SB56       | EVSB56-W-15884             | 15.0-20.0            | 11/8/02        | Screened hole west of Nigh property, near stream. Water level prior to sampling at 17.4 ft BGL.                                                                                                                           |
| SB56       | EVSB56-W-15881             | 22.0-27.0            | 11/7/02        | Screened hole.                                                                                                                                                                                                            |
| SB57       | EVSB57-W-13175             | 32.8-37.8            | 11/9/02        | Ample water recovery. Oxidized, highly turbid, with sediment settling out quickly.                                                                                                                                        |
| SB57       | EVSB57-W-15891             | 39.0-44.0            | 11/9/02        | Sample from intermediate zone according to electronic profile. Dry 30 min after opening screen. Set riser to surface, and sampled about 3 hr later. Water slow to recover. Water level prior to sampling at 31.45 ft BGL. |
| SB57       | EVSB57-W-13177             | 44.2-48.0            | 11/9/02        | Best water recovery to date, with water about 6 ft above screen.                                                                                                                                                          |
| SB58       | EVSB58-W-13180             | 26 5-31 5            | 11/9/02        | No sample description                                                                                                                                                                                                     |
| SB58       | EVSB58-W-13181             | 33 0-38 0            | 11/9/02        | No sample description                                                                                                                                                                                                     |
| SB58       | EVSB58-W-13183             | 38.3-41.3            | 11/10/02       | Dark brown, highly turbid water. Very good recovery.                                                                                                                                                                      |
| SB61       | EV/SB61-W-13187            | 42 9-47 9            | 11/11/02       | Shallow sand zone. Highly turbid, heavy sediment volume, oxidized. Good recovery                                                                                                                                          |
| SB61       | EVSB61-W-13191             | 50 1-55 1            | 11/11/02       | Intermediate sand zone. Dark brown water, highly turbid, good recovery.                                                                                                                                                   |
| SB61       | EVSB61-W-13188             | 56.4-59.3            | 11/11/02       | Deep sand zone. Highly turbid, high sediment content, oxidized. Good recovery.                                                                                                                                            |

Surface water samples collected in March-April 2001 (second session of Phase II work)

SW01 EVSW01-W-12838

3/27/01 South (discharge) end of 3-ft-wide culvert under Main Street, exiting near the bridge abutment near former CCC/USDA facility. Considered to represent water entering former CCC/USDA facility. Background sample. Clear and cold.

| Location    | Sample                      | Depth<br>(ft BGL)      | Sample<br>Date | Sample Description                                                                                                                                                                                                         |
|-------------|-----------------------------|------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surface wat | ter samples collected in Ma | arch-April 2001 (secon | d session of   | f Phase II work) (Cont.)                                                                                                                                                                                                   |
| SW02        | EVSW02-W-12839              | -                      | 3/27/01        | South end of 2.5-ft water passage beneath bridge near former CCC/USDA facility. Water stagnant with algae.                                                                                                                 |
| SW03        | EVSW03-W-12840              | -                      | 3/27/01        | West end of ditch running east-west along south end of former CCC/USDA facility.<br>Standing water, warm, with algae.                                                                                                      |
| SW04        | EVSW04-W-12841              | -                      | 3/27/01        | About 100 ft south of road in grassy waterway. Water visibly moving, 0.5 in. deep.                                                                                                                                         |
| SW05        | EVSW05-W-12842              | -                      | 3/27/01        | About 50 ft south of first tree in the waterway south of the former CCC/USDA facility.<br>Sampling point: first pooled water in temporary stream at discharge end of grassy<br>waterway. Very little flow, ice on surface. |
| SW06        | EVSW06-W-12843              | -                      | 3/27/01        | About 220 ft north of the northern east-west line of fence enclosing the sewage lagoon.<br>About 25 ft north of fence post marking corrugated pipe outflow.                                                                |
| SW07        | EVSW07-W-12844              | -                      | 3/27/01        | Discharge from large metal culvert under Prairie Road. Downgradient from former CCC/USDA facility. Unnamed tributary of Otter Creek. Flow rate: 1 gallon per second.                                                       |
| Surface wat | ter samples collected in No | ovember 2002 (third se | ssion of Pha   | ase II work)                                                                                                                                                                                                               |
| SW08        | EVSW08-W-15848              | -                      | 11/4/02        | First in series of surface water samples collected from the intermittent stream west of the Nigh property.                                                                                                                 |
| SW09        | EVSW09-W-15849              | -                      | 11/4/02        | Approximately 100 ft downstream from SW08.                                                                                                                                                                                 |
| SW10        | EVSW10-W-15850              | -                      | 11/4/02        | Approximately 100 ft downstream from SW09.                                                                                                                                                                                 |
| SW11        | EVSW11-W-15851              | -                      | 11/4/02        | Approximately 100 ft downstream from SW10.                                                                                                                                                                                 |
| SW12        | EVSW12-W-15852              | -                      | 11/4/02        | Approximately 100 ft downstream from SW11.                                                                                                                                                                                 |

| Location | Sample                      | Depth<br>(ft BGL)    | Sample<br>Date  | Temperature<br>(°C) | pН   | Conductivity<br>(μS/cm) | Alkalinity<br>(mg/L) | Nitrate<br>(mg/L) |
|----------|-----------------------------|----------------------|-----------------|---------------------|------|-------------------------|----------------------|-------------------|
| Groundwa | ter samples collected in Ma | arch-April 2001 (sec | cond session of | f Phase II work)    |      |                         |                      |                   |
| SB20     | EVSB20-W-12063              | 56.0-58.0            | 3/7/01          | 14.4                | 6.89 | 730                     | 500+                 | 10                |
| SB20     | EVSB20-W-12064              | 58.0-60.5            | 3/7/01          | 15.1                | 7.12 | 768                     | 225                  | 10                |
| SB20     | EVSB20-W-12067              | 60.0-61.5            | 3/7/01          | 14.1                | 7.21 | 598                     | 275                  | 10                |
| SB20     | EVSB20-W-12068              | 61.5-65.0            | 3/8/01          | 21.7                | 7.32 | 704                     | 300                  | 10                |
| SB21     | EVSB21-W-12072              | 60.0-62.0            | 3/9/01          | 12.0                | 7.13 | 712                     | 210                  | 10                |
| SB21     | EVSB21-W-12074              | 64.0-66.0            | 3/9/01          | 15.8                | 7.24 | 648                     | 250                  | 10                |
| SB22     | EVSB22-W-11985              | 59.0-62.0            | 3/7/01          | 13.1                | 7.53 | 780                     | 260                  | 7.5               |
| SB23     | EVSB23-W-12799              | 44.0-48.0            | 3/19/01         | 16.3                | 7.24 | 724                     | 230                  | 10                |
| SB23     | EVSB23-W-12795              | 48.5-52.9            | 3/19/01         | 15.9                | 6.98 | 760                     | 230                  | < 5               |
| SB23     | EVSB23-W-12796 <sup>a</sup> | 48.5-52.9            | 3/19/01         | 16.1                | 7.18 | 777                     | 230                  | NR <sup>b</sup>   |
| SB24     | EVSB24-W-12762              | 40.0-43.0            | 3/14/01         | 17.5                | 7.01 | 766                     | 330                  | 5                 |
| SB24     | EVSB24-W-12763              | 44.0-48.5            | 3/14/01         | 17.4                | 7.27 | 739                     | 325                  | 5                 |
| SB24     | EVSB24-W-12767              | 48.0-53.0            | 3/15/01         | 18.0                | 7.27 | 753                     | 500+                 | < 10              |
| SB24     | EVSB24-W-12768 <sup>a</sup> | 48.0-53.0            | 3/15/01         | 17.4                | 7.31 | 710                     | 500                  | < 10              |
| SB25     | EVSB25-W-12077              | 46.0-51.0            | 3/13/01         | 20.2                | 7.23 | 698                     | 225                  | 10                |
| SB26     | EVSB26-W-12801              | 58.0-63.0            | 3/20/01         | 17.9                | 7.24 | 322                     | NR                   | 8                 |
| SB26     | EVSB26-W-12802 <sup>a</sup> | 58.0-63.0            | 3/20/01         | 15.9                | 7.33 | 313                     | NR                   | NR                |
| SB28     | EVSB28-W-12812              | 56.0-61.0            | 3/22/01         | 18.4                | 7.42 | 698                     | 300                  | 5                 |
| SB28     | EVSB28-W-12813 <sup>a</sup> | 56.0-61.0            | 3/22/01         | 16.9                | 7.51 | 690                     | 350                  | NR                |
| SB28     | EVSB28-W-12815              | 62.0-64.9            | 3/23/01         | 9.4                 | 8.27 | 683                     | 130                  | 10                |
| SB28     | EVSB28-W-12816 <sup>a</sup> | 62.0-64.9            | 3/23/01         | 10.8                | 8.00 | 674                     | 160                  | NR                |

# TABLE F.2 Field measurements made during collection of groundwater samples and replicates in Phase II at Everest, Kansas.

| Location  | Sample                      | Depth<br>(ft BGL)    | Sample<br>Date  | Temperature<br>(°C) | рН     | Conductivity<br>(μS/cm) | Alkalinity<br>(mg/L) | Nitrate<br>(mg/L) |
|-----------|-----------------------------|----------------------|-----------------|---------------------|--------|-------------------------|----------------------|-------------------|
| Groundwat | ter samples collected in Ma | arch-April 2001 (sec | cond session of | f Phase II work) (  | Cont.) |                         |                      |                   |
| SB29      | EVSB29-W-12042              | 53.5-56.5            | 3/27/01         | 17.3                | 7.21   | 811                     | 280                  | 10                |
| SB29      | EVSB29-W-12043 <sup>a</sup> | 53.5-56.6            | 3/27/01         | 16.8                | 7.35   | 826                     | 250+                 | 10                |
| SB29      | EVSB29-W-12045              | 62.2-65.2            | 3/28/01         | С                   | С      | с                       | С                    | с                 |
| SB30      | EVSB30-W-12807              | 59.5-61.0            | 3/22/01         | 11.2                | 7.49   | 741                     | 240                  | 10                |
| SB30      | EVSB30-W-12811 <sup>a</sup> | 59.5-61.0            | 3/22/01         | 12.6                | 7.59   | 720                     | 350                  | 10                |
| SB30      | EVSB30-W-12803              | 62.0-64.5            | 3/21/01         | 18.8                | 7.46   | 660                     | 340                  | 10                |
| SB30      | EVSB30-W-12804 <sup>a</sup> | 62.0-64.5            | 3/21/01         | 17.7                | 7.60   | 693                     | 250                  | 10+               |
| SB30      | EVSB30-W-12808              | 66.0-68.5            | 3/22/01         | 10.7                | 8.21   | 682                     | 135                  | 10                |
| SB30      | EVSB30-W-12809 <sup>a</sup> | 66.0-68.5            | 3/22/01         | 11.3                | 8.11   | 633                     | NR                   | 10                |
| SB31      | EVSB31-W-11989              | 57.0-61.0            | 3/26/01         | 14.2                | 7.72   | 764                     | 250                  | 10                |
| SB31      | EVSB31-W-12039              | 62.0-67.0            | 3/26/01         | 16.8                | 7.93   | 793                     | 320                  | 4.9               |
| SB31      | EVSB31-W-12040 <sup>a</sup> | 62.0-67.0            | 3/26/01         | 16.5                | 7.89   | 772                     | 300                  | 5                 |
| SB32      | EVSB32-W-12868              | 32.8-37.8            | 3/28/01         | 12.1                | 7.53   | 774                     | 300                  | 10                |
| SB32      | EVSB32-W-12870              | 37.8-42.8            | 3/28/01         | 14.7                | 7.48   | 823                     | 500                  | 5                 |
| SB33      | EVSB33-W-12880              | 64.0-68.0            | 3/29/01         | 17.7                | 7.41   | 763                     | 280                  | 9                 |
| SB33      | EVSB33-W-12881 <sup>a</sup> | 64.0-68.0            | 3/29/01         | 16.4                | 7.59   | 747                     | 320                  | < 10              |
| SB34      | EVSB34-W-12857              | 46.0-49.0            | 3/28/01         | 14.7                | 7.87   | 767                     | 310                  | 2                 |
| SB34      | EVSB34-W-12858 <sup>a</sup> | 46.0-49.0            | 3/28/01         | 14.4                | 7.98   | 749                     | 320                  | 2                 |
| SB34      | EVSB34-W-12854              | 49.0-53.0            | 3/28/01         | 13.2                | 7.57   | 757                     | 500                  | 2                 |
| SB34      | EVSB34-W-12855 <sup>a</sup> | 49.0-53.0            | 3/28/01         | 13.3                | 7.64   | 718                     | 500                  | 2                 |
| SB35      | EVSB35-W-12874              | 56.0-59.0            | 3/31/01         | 13.6                | 7.66   | 740                     | 190                  | < 10              |
| SB36      | EVSB36-W-12884              | 51.5-54.5            | 3/30/01         | 13.3                | 7.35   | 748                     | 375                  | 10                |

| Location | Sample                      | Depth<br>(ft BGL)    | Sample<br>Date  | Temperature<br>(°C) | рН      | Conductivity<br>(μS/cm) | Alkalinity<br>(mg/L) | Nitrate<br>(mg/L) |
|----------|-----------------------------|----------------------|-----------------|---------------------|---------|-------------------------|----------------------|-------------------|
| Groundwa | ter samples collected in Ma | arch-April 2001 (sec | cond session of | f Phase II work) (  | (Cont.) |                         |                      |                   |
| SB37     | EVSB37-W-12907              | 65.5-70.0            | 4/3/01          | 15.5                | 7.61    | 682                     | 255                  | 10+               |
| SB37     | EVSB37-W-12909              | 70.0-74.0            | 4/4/01          | 16.1                | 7.88    | 597                     | 225                  | 7                 |
| SB37     | EVSB37-W-12910              | 74.0-76.0            | 4/4/01          | С                   | с       | С                       | С                    | С                 |
| SB38     | EVSB38-W-12892              | 54.5-58.5            | 4/1/01          | С                   | с       | С                       | С                    | с                 |
| SB38     | EVSB38-W-12888              | 63.5-67.5            | 3/31/01         | 18.1                | 7.32    | 647                     | 250                  | 10                |
| SB38     | EVSB38-W-12893              | 68.9-72.9            | 4/1/01          | 12.8                | 7.83    | 665                     | 250                  | 10                |
| SB39     | EVSB39-W-12897              | 68.2-72.2            | 4/1/01          | 15.1                | 7.65    | 773                     | 300                  | 10                |
| SB40     | EVSB40-W-12053              | 60.0-65.0            | 4/2/01          | 15.5                | 7.19    | 722                     | 500                  | 3                 |
| SB40     | EVSB40-W-12054 <sup>a</sup> | 60.0-65.0            | 4/2/01          | 16.5                | 7.25    | 721                     | 500+                 | 3                 |
| SB40     | EVSB40-W-12056              | 64.9-69.9            | 4/2/01          | 16.8                | 7.06    | 698                     | 500                  | 3                 |
| SB40     | EVSB40-W-12057 <sup>a</sup> | 64.9-65.9            | 4/2/01          | 17.8                | 7.18    | 702                     | 375                  | 4                 |
| SB41     | EVSB41-W-12898              | 68.0-72.8            | 4/2/01          | 18.2                | 7.41    | 716                     | 225                  | 5                 |
| SB42     | EVSB42-W-12905              | 55.5-60.0            | 4/3/01          | 15.3                | 7.66    | 582                     | 190                  | 10                |
| SB42     | EVSB42-W-12901              | 60.5-65.0            | 4/3/01          | 13.3                | 7.46    | 778                     | 275                  | 7                 |
| SB42     | EVSB42-W-12903              | 65.5-70.0            | 4/3/01          | 17.0                | 7.78    | 714                     | 270                  | 5                 |
| SB43     | EVSB43-W-12060              | 39.0-44.0            | 4/3/01          | 15.8                | 7.86    | 690                     | 450                  | 2                 |
| SB43     | EVSB43-W-12061 <sup>a</sup> | 39.0-44.0            | 4/3/01          | 15.6                | 7.89    | 692                     | 350                  | 2                 |
| SB43     | EVSB43-W-12048              | 44.0-49.0            | 4/3/01          | 16.0                | 8.06    | 604                     | 425                  | NR                |
| SB43     | EVSB43-W-12049 <sup>a</sup> | 44.0-49.0            | 4/3/01          | 15.5                | 8.07    | 604                     | 300                  | 2                 |
| SB43     | EVSB43-W-12051              | 49.0-52.6            | 4/3/01          | 15.5                | 7.91    | 636                     | 500+                 | 0                 |
| SB43     | EVSB43-W-12052 <sup>a</sup> | 49.0-52.6            | 4/3/01          | 15.1                | 7.77    | 633                     | 500+                 | 0                 |
| SB44     | EVSB44-W-12940              | 52.0-57.0            | 4/4/01          | С                   | с       | С                       | С                    | с                 |
| SB44     | EVSB44-W-12939              | 57.0-62.0            | 4/4/01          | 16.8                | 7.75    | 642                     | 200                  | 5                 |

| Location | Sample                      | Depth<br>(ft BGL)    | Sample<br>Date | Temperature<br>(°C) | рН     | Conductivity<br>(μS/cm) | Alkalinity<br>(mg/L) | Nitrate<br>(mg/L) |
|----------|-----------------------------|----------------------|----------------|---------------------|--------|-------------------------|----------------------|-------------------|
| Groundwa | ter samples collected in Ma | arch-April 2001 (sec | ond session of | f Phase II work) (  | Cont.) |                         |                      |                   |
| SB44     | EVSB44-W-12915              | 62.0-65.0            | 4/4/01         | 15.3                | 7.72   | 617                     | 250                  | 5                 |
| SB44     | EVSB44-W-12911              | 64.6-67.0            | 4/4/01         | 16.7                | 7.52   | 581                     | 190                  | 5                 |
| SB45     | EVSB45-W-12932              | 52.0-56.0            | 4/5/01         | 18.5                | 7.03   | 734                     | 400                  | trace             |
| SB45     | EVSB45-W-12933 <sup>a</sup> | 52.0-56.0            | 4/5/01         | 18.5                | 6.91   | 713                     | 500+                 | trace             |
| SB45     | EVSB45-W-12930              | 56.0-60.0            | 4/5/01         | 19.2                | 7.06   | 649                     | 260                  | 2                 |
| SB45     | EVSB45-W-12931 <sup>a</sup> | 56.0-60.0            | 4/5/01         | 18.5                | 7.32   | 580                     | 350                  | 2                 |
| SB46     | EVSB46-W-12862              | 55.0-60.0            | 4/4/01         | 13.6                | 6.90   | 546                     | 210                  | 1                 |
| SB46     | EVSB46-W-12863 <sup>a</sup> | 55.0-60.0            | 4/4/01         | 13.6                | 6.92   | 537                     | 225                  | 2                 |
| SB46     | EVSB46-W-12864              | 60.0-65.0            | 4/4/01         | 14.3                | 7.39   | 630                     | 500                  | 1                 |
| SB46     | EVSB46-W-12865 <sup>a</sup> | 60.0-65.0            | 4/4/01         | 14.8                | 7.14   | 662                     | 350                  | 2                 |
| SB46     | EVSB46-W-12918              | 65.0-70.0            | 4/4/01         | 14.7                | 7.09   | 728                     | 500                  | 2                 |
| SB46     | EVSB46-W-12919 <sup>a</sup> | 65.0-70.0            | 4/4/01         | 15.2                | 7.16   | 718                     | 450                  | 2                 |
| SB47     | EVSB47-W-12921              | 62.0-67.0            | 4/4/01         | 16.0                | 7.16   | 595                     | 425                  | 0.5               |
| SB47     | EVSB47-W-12924              | 67.0-72.0            | 4/5/01         | 16.9                | 7.31   | 678                     | 350                  | 2                 |
| SB47     | EVSB47-W-12925 <sup>a</sup> | 67.0-72.0            | 4/5/01         | 17.4                | 7.42   | 584                     | 250                  | 2                 |
| SB47     | EVSB47-W-12928              | 72.0-76.0            | 4/5/01         | 18.8                | 7.09   | 643                     | 250                  | 2                 |
| SB47     | EVSB47-W-12929 <sup>a</sup> | 72.0-76.0            | 4/5/01         | 17.8                | 7.24   | 637                     | 300                  | 2                 |
| SB48     | EVSB48-W-12941              | 59.4-64.4            | 4/5/01         | 23.1                | 7.52   | 748                     | 250                  | 5                 |
| Groundwa | ter samples collected in No | ovember 2002 (third  | session of Pha | ase II work)        |        |                         |                      |                   |
| SB49     | EVSB49-W-15854              | 46.0-51.0            | 11/4/02        | 14.5                | 7.23   | 639                     | 350                  | 5                 |
| SB49     | EVSB49-W-13170              | 51.0-55.0            | 11/8/02        | 18.6                | 7.78   | 641                     | NR                   | NŘ                |
| SB49     | EVSB49-W-15855              | 55.0-60.0            | 11/5/02        | NR                  | 7.05   | 509                     | 500                  | 5                 |

| Location | Sample                      | Depth<br>(ft BGL)   | Sample<br>Date   | Temperature<br>(°C) | е<br>рН | Conductivity<br>(µS/cm) | Alkalinity<br>(mg/L) | Nitrate<br>(mg/L) |
|----------|-----------------------------|---------------------|------------------|---------------------|---------|-------------------------|----------------------|-------------------|
| Groundwa | ter samples collected in No | ovember 2002 (thira | l session of Pha | ase II work) (Co    | ont.)   |                         |                      |                   |
| SB50     | EVSB50-W-13160              | 44.2-49.2           | 11/4/02          | 15.3                | 7.55    | 691                     | NR                   | NR                |
| SB50     | EVSB50-W-13158              | 51.0-54.0           | 11/4/02          | 17.3                | 7.23    | 731                     | NR                   | NR                |
| SB50     | EVSB50-W-13169              | 54.0-56.8           | 11/7/02          | 16.2                | 7.71    | 688                     | NR                   | NR                |
| SB51     | EVSB51-W-13166              | 54.1-59.1           | 11/6/02          | 15.6                | 7.44    | 766                     | NR                   | NR                |
| SB51     | EVSB51-W-13167              | 59.0-64.0           | 11/7/02          | 16.6                | 7.42    | 746                     | NR                   | NR                |
| SB52     | EVSB52-W-13164              | 46.0-51.0           | 11/5/02          | 16.6                | 7.76    | 660                     | NR                   | NR                |
| SB52     | EVSB52-W-13173              | 52.0-57.0           | 11/8/02          | 17.7                | 7.23    | 669                     | NR                   | NR                |
| SB52     | EVSB52-W-13163              | 58.0-60.5           | 11/5/02          | 16.2                | 7.64    | 734                     | NR                   | NR                |
| SB53     | EVSB53-W-15868              | 21.0-26.0           | 11/5/02          | 15.8                | 6.44    | 821                     | 350                  | 0                 |
| SB54     | EVSB54-W-15871              | 17.0-22.0           | 11/6/02          | NR                  | NR      | NR                      | NR                   | NR                |
| SB54     | EVSB54-W-15874              | 22.0-27.0           | 11/6/02          | 13.2                | 7.06    | 554                     | 250                  | 0                 |
| SB56     | EVSB56-W-15884              | 15.0-20.0           | 11/8/02          | NR                  | 6.86    | 613                     | 250                  | 5                 |
| SB56     | EVSB56-W-15881              | 22.0-27.0           | 11/7/02          | 19.0                | 7.13    | 781                     | 250                  | 0                 |
| SB57     | EVSB57-W-13175              | 32.8-37.8           | 11/9/02          | 15.6                | 7.67    | 733                     | NR                   | NR                |
| SB57     | EVSB57-W-15891              | 39.0-44.0           | 11/9/02          | NR                  | 8.00    | 655                     | NR                   | 15                |
| SB57     | EVSB57-W-13177              | 44.2-48.0           | 11/9/02          | 15.3                | 7.66    | 688                     | NR                   | NR                |
| SB58     | EVSB58-W-13180              | 26.5-31.5           | 11/9/02          | 16.8                | 7.68    | 761                     | NR                   | NR                |
| SB58     | EVSB58-W-13181              | 33.0-38.0           | 11/9/02          | 17.1                | 7.77    | 720                     | NR                   | NR                |
| SB58     | EVSB58-W-13183              | 38.3-41.3           | 11/10/02         | 17.7                | 7.27    | 703                     | NR                   | NR                |

| Location             | Sample                                             | Depth<br>(ft BGL)                   | Sample<br>Date                   | Temperature<br>(°C)  | рН                   | Conductivity<br>(µS/cm) | Alkalinity<br>(mg/L) | Nitrate<br>(mg/L) |
|----------------------|----------------------------------------------------|-------------------------------------|----------------------------------|----------------------|----------------------|-------------------------|----------------------|-------------------|
| Groundwat            | er samples collected in No                         | vember 2002 (third                  | session of Pha                   | ase II work) (Cor    | nt.)                 |                         |                      |                   |
| SB61<br>SB61<br>SB61 | EVSB61-W-13187<br>EVSB61-W-13191<br>EVSB61-W-13188 | 42.9-47.9<br>50.1-55.1<br>56.4-59.3 | 11/11/02<br>11/11/02<br>11/11/02 | 16.9<br>16.5<br>18.0 | 7.30<br>7.66<br>7.58 | 636<br>629<br>645       | NR<br>NR<br>NR       | NR<br>NR<br>NR    |

<sup>a</sup> Replicate sample at indicated depth.

<sup>b</sup> NR, not recorded.

<sup>c</sup> Insufficient sample for this analysis.

TABLE F.3 Analytical results for nitrate analyses on groundwater samples collected during the second session of Phase II work at Everest, Kansas.

| Location | Sample         | Depth<br>(ft BGL) | Sample<br>Date | Nitrate<br>(mg/L) |
|----------|----------------|-------------------|----------------|-------------------|
| SB20     | EVSB20-W-12063 | 56.0-58.0         | 3/7/01         | 15.8              |
| SB20     | EVSB20-W-12064 | 58.0-60.5         | 3/7/01         | 15.2 <sup>a</sup> |
| SB20     | EVSB20-W-12068 | 61.5-65.0         | 3/8/01         | 15.7 <sup>a</sup> |
| SB21     | EVSB21-W-12072 | 60.0-62.0         | 3/9/01         | 11.5 <sup>a</sup> |
| SB21     | EVSB21-W-12074 | 64.0-66.0         | 3/9/01         | 11.7 <sup>a</sup> |
| SB22     | EVSB22-W-11985 | 59.0-62.0         | 3/7/01         | 10.8              |
| SB23     | EVSB23-W-12799 | 44.0-48.0         | 3/19/01        | 9.02              |
| SB23     | EVSB23-W-12795 | 48.5-52.9         | 3/19/01        | 6.81              |
| SB24     | EVSB24-W-12762 | 40.0-43.0         | 3/14/01        | 10.4              |
| SB24     | EVSB24-W-12763 | 44.0-48.5         | 3/14/01        | 9.81              |
| SB24     | EVSB24-W-12767 | 48.0-53.0         | 3/15/01        | 12.4              |
| SB25     | EVSB25-W-12077 | 46.0-51.0         | 3/13/01        | 11.8              |
| SB26     | EVSB26-W-12801 | 58.0-63.0         | 3/20/01        | 8.41              |
| SB28     | EVSB28-W-12812 | 56.0-61.0         | 3/22/01        | 10.3              |
| SB28     | EVSB28-W-12815 | 62.0-64.9         | 3/23/01        | 10.5              |
| SB29     | EVSB29-W-12042 | 53.5-56.5         | 3/27/01        | 14.5              |
| SB30     | EVSB30-W-12807 | 59.5-61.0         | 3/22/01        | 14.7              |
| SB30     | EVSB30-W-12803 | 62.0-64.5         | 3/21/01        | 14.2              |
| SB30     | EVSB30-W-12808 | 66.0-68.5         | 3/22/01        | 13.5              |
| SB31     | EVSB31-W-11989 | 57.0-61.0         | 3/26/01        | 7.23              |
| SB31     | EVSB31-W-12039 | 62.0-67.0         | 3/26/01        | 8.33              |
| SB32     | EVSB32-W-12868 | 32.8-37.8         | 3/28/01        | 8.49              |
| SB32     | EVSB32-W-12870 | 37.8-42.8         | 3/28/01        | 9.09              |
| SB33     | EVSB33-W-12880 | 64.0-68.0         | 3/29/01        | 14.1              |
| SB34     | EVSB34-W-12857 | 46.0-49.0         | 3/28/01        | 6.38              |
| SB34     | EVSB34-W-12854 | 49.0-53.0         | 3/28/01        | 6.29              |
| SB37     | EVSB37-W-12907 | 65.5-70.0         | 4/3/01         | 13.1              |
| SB37     | EVSB37-W-12909 | 70.0-74.0         | 4/4/01         | 11.2              |
| SB40     | EVSB40-W-12053 | 60.0-65.0         | 4/2/01         | 13.1              |
| SB40     | EVSB40-W-12056 | 64.9-69.9         | 4/2/01         | 13.3              |

| Location | Sample         | Depth<br>(ft BGL) | Sample<br>Date | Nitrate<br>(mg/L) |
|----------|----------------|-------------------|----------------|-------------------|
| SB41     | EVSB41-W-12898 | 68.0-72.8         | 4/2/01         | 14.6              |
| SB42     | EVSB42-W-12905 | 55.5-60.0         | 4/3/01         | 9.98              |
| SB42     | EVSB42-W-12901 | 60.5-65.0         | 4/3/01         | 15.6              |
| SB42     | EVSB42-W-12903 | 65.5-70.0         | 4/3/01         | 15.6              |
| SB43     | EVSB43-W-12060 | 39.0-44.0         | 4/3/01         | 8.66              |
| SB43     | EVSB43-W-12048 | 44.0-49.0         | 4/3/01         | 9.61              |
| SB43     | EVSB43-W-12051 | 49.0-52.6         | 4/3/01         | 0.97              |
| SB44     | EVSB44-W-12939 | 57.0-62.0         | 4/4/01         | 10.1              |
| SB44     | EVSB44-W-12915 | 62.0-65.0         | 4/4/01         | 9.84              |
| SB44     | EVSB44-W-12911 | 64.6-67.0         | 4/4/01         | 9.89              |
| SB45     | EVSB45-W-12932 | 52.0-56.0         | 4/5/01         | 1.96              |
| SB45     | EVSB45-W-12930 | 56.0-60.0         | 4/5/01         | 9.37              |
| SB46     | EVSB46-W-12862 | 55.0-60.0         | 4/4/01         | 8.18              |
| SB46     | EVSB46-W-12864 | 60.0-65.0         | 4/4/01         | 12.3              |
| SB46     | EVSB46-W-12918 | 65.0-70.0         | 4/4/01         | 14.5              |
| SB47     | EVSB47-W-12921 | 62.0-67.0         | 4/4/01         | 4.26              |
| SB47     | EVSB47-W-12924 | 67.0-72.0         | 4/5/01         | 10.9              |
| SB47     | EVSB47-W-12928 | 72.0-76.0         | 4/5/01         | 12.6              |

<sup>a</sup> Because of a shipping delay, preparation of the sample for analysis was performed after the recommended holding time of 48 hr.

TABLE F.4 Analytical results for tritium in water samples collected during Phase I and Phase II work at Everest, Kansas.

| Location                                                          | Sample                                                               | Depth<br>(ft BGL)                                      | Sample<br>Date                           | Tritium (TU)                                                             |  |  |  |  |  |
|-------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|--|
| Phase I samples with results received too late for Phase I report |                                                                      |                                                        |                                          |                                                                          |  |  |  |  |  |
| DW07<br>DW10<br>SB09<br>SB11                                      | EVDW07-W-11767<br>EVDW10-W-11771<br>EVSB09-W-11741<br>EVSB11-W-11748 | Unknown-59.9<br>Unknown-57.4<br>50.4-56.4<br>48.5-52.5 | 5/23/00<br>5/24/00<br>5/22/00<br>5/21/00 | $3.75 \pm 0.22$<br>$6.66 \pm 0.24$<br>$5.27 \pm 0.20$<br>$1.76 \pm 0.09$ |  |  |  |  |  |
| Phase II gro                                                      | oundwater samples                                                    |                                                        |                                          |                                                                          |  |  |  |  |  |
| SB20<br>SB20                                                      | EVSB20-W-12063<br>EVSB20-W-12068                                     | 56.0-58.0<br>61.5-65.0                                 | 3/7/01<br>3/8/01                         | 6.78 ± 0.24<br>6.67 ± 0.24                                               |  |  |  |  |  |
| SB21<br>SB21                                                      | EVSB21-W-12072<br>EVSB21-W-12074                                     | 60.0-62.0<br>64.0-66.0                                 | 3/9/01<br>3/9/01                         | 1.07 ± 0.13<br>0.61 ± 0.10                                               |  |  |  |  |  |
| SB22                                                              | EVSB22-W-11985                                                       | 59.0-62.0                                              | 3/7/01                                   | $6.4 \pm 0.40$                                                           |  |  |  |  |  |
| SB24                                                              | EVSB24-W-12763                                                       | 44.0-48.5                                              | 3/14/01                                  | 8.7 ± 0.30                                                               |  |  |  |  |  |
| SB25                                                              | EVSB25-W-12077                                                       | 46.0-51.0                                              | 3/13/01                                  | $6.08 \pm 0.23$                                                          |  |  |  |  |  |
| SB26                                                              | EVSB26-W-12801                                                       | 58.0-63.0                                              | 3/20/01                                  | $7.3 \pm 0.30$                                                           |  |  |  |  |  |
| SB28<br>SB28                                                      | EVSB28-W-12812<br>EVSB28-W-12815                                     | 56.0-61.0<br>62.0-68.5                                 | 3/22/01<br>3/23/01                       | 4.37 ± 0.20<br>2.18 ± 0.12                                               |  |  |  |  |  |
| SB29                                                              | EVSB29-W-12042                                                       | 53.5-56.5                                              | 3/27/01                                  | $7.57 \pm 0.28$                                                          |  |  |  |  |  |
| SB30<br>SB30                                                      | EVSB30-W-12807<br>EVSB30-W-12808                                     | 59.5-61.0<br>66.0-68.5                                 | 3/22/01<br>3/22/01                       | 4.12 ± 0.15<br>3.20 ± 0.15                                               |  |  |  |  |  |
| SB31                                                              | EVSB31-W-11989                                                       | 57.0-61.0                                              | 3/26/01                                  | $7.2 \pm 0.27$                                                           |  |  |  |  |  |
| SB32                                                              | EVSB33-W-12868                                                       | 32.8-37.8                                              | 3/28/01                                  | 5.19 ± 0.19                                                              |  |  |  |  |  |
| SB33                                                              | EVSB33-W-12880                                                       | 64.0-68.0                                              | 3/29/01                                  | $3.56 \pm 0.15$                                                          |  |  |  |  |  |
| SB35                                                              | EVSB35-W-12874                                                       | 56.0-59.0                                              | 3/31/01                                  | $0.96 \pm 0.09$                                                          |  |  |  |  |  |
| SB36                                                              | EVSB36-W-12884                                                       | 51.5-54.5                                              | 3/30/01                                  | 2.55 ± 0.15                                                              |  |  |  |  |  |
| SB37                                                              | EVSB37-W-12907                                                       | 65.5-70.0                                              | 4/3/01                                   | 2.58 ± 0.15                                                              |  |  |  |  |  |
| SB38                                                              | EVSB38-W-12888                                                       | 63.5-67.5                                              | 3/31/01                                  | 0.37 ± 0.10                                                              |  |  |  |  |  |
| SB39                                                              | EVSB39-W-12897                                                       | 68.2-72.2                                              | 4/1/01                                   | 2.35 ± 0.13                                                              |  |  |  |  |  |

| Location                             | Sample                           | Depth<br>(ft BGL)      | Sample<br>Date     | Tritium (TU)                  |  |  |  |  |
|--------------------------------------|----------------------------------|------------------------|--------------------|-------------------------------|--|--|--|--|
| Phase II groundwater samples (Cont.) |                                  |                        |                    |                               |  |  |  |  |
| SB40<br>SB40                         | EVSB40-W-12053<br>EVSB40-W-12056 | 60.0-65.0<br>64.9-69.9 | 4/2/01<br>4/2/01   | 0.72 ± 0.10<br>0.99 ± 0.10    |  |  |  |  |
| SB41                                 | EVSB41-W-12898                   | 68.0-72.8              | 4/2/01             | 3.52 ± 0.17                   |  |  |  |  |
| SB42<br>SB42                         | EVSB42-W-12905<br>EVSB42-W-12903 | 55.5-60.0<br>65.5-70.0 | 4/3/01<br>4/3/01   | 1.07 ± 0.12<br>2.67 ± 0.13    |  |  |  |  |
| SB43<br>SB43                         | EVSB43-W-12060<br>EVSB43-W-12051 | 39.0-44.0<br>49.0-52.6 | 4/3/01<br>4/3/01   | 8.43 ± 0.28<br>0.33 ± 0.10    |  |  |  |  |
| SB44<br>SB44                         | EVSB44-W-12915<br>EVSB44-W-12911 | 62.0-65.0<br>64.6-67.0 | 4/4/01<br>4/4/01   | 0.19 ± 0.11<br>_ <sup>b</sup> |  |  |  |  |
| SB45                                 | EVSB45-W-12930                   | 56.0-60.0              | 4/5/01             | 5.97 ± 0.20                   |  |  |  |  |
| SB46<br>SB46                         | EVSB46-W-12862<br>EVSB46-W-12918 | 55.0-60.0<br>65.0-70.0 | 4/4/01<br>4/4/01   | 17.7 ± 0.60<br>1.03 ± 0.09    |  |  |  |  |
| SB47<br>SB47                         | EVSB47-W-12921<br>EVSB47-W-12928 | 62.0-67.0<br>72.0-76.0 | 4/4/01<br>4/5/01   | 0.45 ± 0.09<br>3.12 ± 0.10    |  |  |  |  |
| SB49                                 | EVSB49-W-15855                   | 55.0-60.0              | 11/5/02            | 3.75 ± 0.12                   |  |  |  |  |
| SB50                                 | EVSB50-W-13158                   | 51.0-54.0              | 11/4/02            | $0.76 \pm 0.09$               |  |  |  |  |
| SB51                                 | EVSB51-W-13166                   | 54.1-59.1              | 11/6/02            | 1.53 ± 0.09                   |  |  |  |  |
| SB52<br>SB52                         | EVSB52-W-13164<br>EVSB52-W-13163 | 46.0-51.0<br>58.0-60.5 | 11/5/02<br>11/5/02 | 4.20 ± 0.14<br>1.72 ± 0.09    |  |  |  |  |
| SB53                                 | EVSB53-W-15868                   | 21.0-26.0              | 11/5/02            | 17.3 ± 0.60                   |  |  |  |  |
| SB54                                 | EVQCDU-W-15875                   | 22.0-27.0              | 11/6/02            | 8.54 ± 0.28                   |  |  |  |  |
| SB56                                 | EVSB56-W-15881                   | 22.0-27.0              | 11/7/02            | 1.76 ± 0.09                   |  |  |  |  |
| SB61                                 | EVSB61-W-13188                   | 56.4-59.3              | 11/11/02           | $2.49 \pm 0.09$               |  |  |  |  |
| Phase II surf                        | face water sample                |                        |                    |                               |  |  |  |  |
| SW08                                 | EVSW08-W-15848                   | NA <sup>a</sup>        | 11/4/02            | 7.84 ± 0.26                   |  |  |  |  |

<sup>a</sup> NA, not applicable.

<sup>b</sup> Unresolved discrepancy about sample identity. Result not reported.

TABLE F.5 Results of organic analyses by the purge-and-trap method on groundwater and surface water samples collected during the second and third sessions of the Phase II investigation at Everest, Kansas.

|                                      |                                                                      |                                                  | Concentrat                         | ion (μg/L)                                       |
|--------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|------------------------------------|--------------------------------------------------|
| Location                             | Sample                                                               | Depth<br>(ft BGL)                                | Carbon<br>Tetrachloride            | Chloroform                                       |
| Groundwate                           | er samples collected in M                                            | larch-April 2001 (se                             | econd session of Ph                | ase II work)                                     |
| SB20<br>SB20<br>SB20<br>SB20<br>SB20 | EVSB20-W-12063<br>EVSB20-W-12065<br>EVSB20-W-12067<br>EVSB20-W-12068 | 56.0-58.0<br>58.0-60.5<br>60.0-61.5<br>61.5-65.0 | 15<br>13 <sup>a</sup><br>14<br>8.9 | < 5 (1.4)<br>< 5 (1.5)<br>< 5 (1.4)<br>< 5 (1.4) |
| SB21                                 | EVSB21-W-12072                                                       | 60.0-62.0                                        | ND <sup>b</sup>                    | ND                                               |
| SB21                                 | EVSB21-W-12074                                                       | 64.0-66.0                                        | ND                                 | ND                                               |
| SB22                                 | EVSB22-W-11985                                                       | 59.0-62.0                                        | ND                                 | ND                                               |
| SB23                                 | EVSB23-W-12799                                                       | 44.0-48.0                                        | 41                                 | 8.5                                              |
| SB23                                 | EVSB23-W-12795                                                       | 48.5-52.9                                        | < 5 (1.4)                          | ND                                               |
| SB24                                 | EVSB24-W-12762                                                       | 40.0-43.0                                        | 21                                 | < 5 (3.9)                                        |
| SB24                                 | EVSB24-W-12763                                                       | 44.0-48.5                                        | 101                                | 10                                               |
| SB24                                 | EVSB24-W-12768                                                       | 48.0-53.0                                        | 145 <sup>c</sup>                   | 13                                               |
| SB25                                 | EVSB25-W-12077                                                       | 46.0-51.0                                        | ND                                 | ND                                               |
| SB26                                 | EVSB26-W-12801                                                       | 58.0-63.0                                        | ND                                 | ND                                               |
| SB28                                 | EVSB28-W-12812                                                       | 56.0-61.0                                        | 5.4                                | ND                                               |
| SB28                                 | EVSB28-W-12815                                                       | 62.0-64.9                                        | Broken                             | Broken                                           |
| SB29                                 | EVSB29-W-12042                                                       | 53.5-56.5                                        | 311                                | 17                                               |
| SB29                                 | EVSB29-W-12045                                                       | 62.2-65.2                                        | 84                                 | 61                                               |
| SB30                                 | EVSB30-W-12807                                                       | 59.5-61.0                                        | ND                                 | ND                                               |
| SB30                                 | EVSB30-W-12803                                                       | 62.0-64.5                                        | ND                                 | ND                                               |
| SB30                                 | EVSB30-W-12808                                                       | 66.0-68.5                                        | ND                                 | ND                                               |
| SB31                                 | EVSB31-W-11989                                                       | 57.0-61.0                                        | ND                                 | ND                                               |
| SB31                                 | EVSB31-W-12039                                                       | 62.0-67.0                                        | ND                                 | ND                                               |
| SB32                                 | EVSB32-W-12868                                                       | 32.8-37.8                                        | ND                                 | ND                                               |
| SB32                                 | EVSB32-W-12870                                                       | 37.8-42.8                                        | ND                                 | ND                                               |
| SB33                                 | EVSB33-W-12881                                                       | 64.0-68.0                                        | 919 <sup>d</sup>                   | 36                                               |

|                       |                           |                     | Concentration (µg/L)    |              |  |
|-----------------------|---------------------------|---------------------|-------------------------|--------------|--|
| Location              | Sample                    | Depth<br>(ft BGL)   | Carbon<br>Tetrachloride | Chloroform   |  |
| Groundwate<br>(Cont.) | er samples collected in M | arch-April 2001 (se | cond session of Ph      | ase II work) |  |
| SB34                  | EVSB34-W-12857            | 46.0-49.0           | < 5 (2.2)               | < 5 (1.3)    |  |
| SB34                  | EVSB34-W-12854            | 49.0-53.0           | ND                      | ND           |  |
| SB35                  | EVSB35-W-12874            | 56.0-59.0           | ND                      | ND           |  |
| SB36                  | EVSB36-W-12884            | 51.5-54.5           | ND                      | ND           |  |
| SB37                  | EVSB37-W-12907            | 65.5-70.0           | 16                      | ND           |  |
| SB37                  | EVSB37-W-12909            | 70.0-74.0           | ND                      | < 5 (1.5)    |  |
| SB37                  | EVSB37-W-12910            | 74.0-76.0           | 7.6                     | ND           |  |
| SB38                  | EVSB38-W-12892            | 54.5-58.5           | 11                      | < 5 (1.4)    |  |
| SB38                  | EVSB38-W-12888            | 63.5-67.5           | 18                      | ND           |  |
| SB38                  | EVSB38-W-12893            | 68.9-72.9           | 9.6                     | < 5 (1.4)    |  |
| SB39                  | EVSB39-W-12897            | 68.2-72.2           | 303                     | 11           |  |
| SB40                  | EVSB40-W-12054            | 60.0-65.0           | 136 <sup>e</sup>        | < 5 (3.1)    |  |
| SB40                  | EVSB40-W-12057            | 64.9-65.9           | 160 <sup>f</sup>        | < 5 (3.9)    |  |
| SB41                  | EVSB41-W-12898            | 68.0-72.8           | 615                     | 19           |  |
| SB42                  | EVSB42-W-12905            | 55.5-60.0           | 35                      | < 5 (1.1)    |  |
| SB42                  | EVSB42-W-12901            | 60.5-65.0           | 123                     | < 5 (3.4)    |  |
| SB42                  | EVSB42-W-12903            | 65.5-70.0           | 159                     | 7.4          |  |
| SB43                  | EVSB43-W-12060            | 39.0-44.0           | ND                      | ND           |  |
| SB43                  | EVSB43-W-12048            | 44.0-49.0           | ND                      | ND           |  |
| SB43                  | EVSB43-W-12051            | 49.0-52.6           | ND                      | ND           |  |
| SB44                  | EVSB44-W-12940            | 52.0-57.0           | < 5 (4.3)               | ND           |  |
| SB44                  | EVSB44-W-12939            | 57.0-62.0           | < 5 (1.8)               | ND           |  |
| SB44                  | EVSB44-W-12915            | 62.0-65.0           | < 5 (1.8)               | ND           |  |
| SB44                  | EVSB44-W-12911            | 64.6-67.0           | < 5 (1.6)               | ND           |  |
| SB45                  | EVSB45-W-12932            | 52.0-56.0           | ND                      | ND           |  |
| SB45                  | EVSB45-W-12930            | 56.0-60.0           | ND                      | ND           |  |
| SB46                  | EVSB46-W-12862            | 55.0-60.0           | ND                      | ND           |  |
| SB46                  | EVSB46-W-12864            | 60.0-65.0           | ND                      | ND           |  |
| SB46                  | EVSB46-W-12919            | 65.0-70.0           | 12 <sup>g</sup>         | ND           |  |

|                       |                           |                     | Concentrat              | ion (μg/L)   |
|-----------------------|---------------------------|---------------------|-------------------------|--------------|
| Location              | Sample                    | Depth<br>(ft BGL)   | Carbon<br>Tetrachloride | Chloroform   |
| Groundwate<br>(Cont.) | er samples collected in M | arch-April 2001 (se | econd session of Ph     | ase II work) |
| SB47                  | EVSB47-W-12921            | 62.0-67.0           | ND                      | ND           |
| SB47                  | EVSB47-W-12924            | 67.0-72.0           | ND                      | ND           |
| SB47                  | EVSB47-W-12928            | 72.0-76.0           | ND                      | ND           |
| SB48                  | EVSB48-W-12941            | 59.4-64.4           | 230                     | 8.8          |
| Groundwate            | er samples collected in N | ovember 2002 (thir  | d session of Phase      | II work)     |
| SB49                  | EVSB49-W-15854            | 46.0-51.0           | ND                      | ND           |
| SB49                  | EVSB49-W-13170            | 51.0-55.0           | ND                      | ND           |
| SB49                  | EVSB49-W-15855            | 55.0-60.0           | ND                      | ND           |
| SB50                  | EVSB50-W-13160            | 44.2-49.2           | ND                      | ND           |
| SB50                  | EVSB50-W-13158            | 51.0-54.0           | ND                      | ND           |
| SB50                  | EVSB50-W-13169            | 54.0-56.8           | ND                      | ND           |
| SB51                  | EVSB51-W-13166            | 54.1-59.1           | 52                      | < 5 (1.3)    |
| SB51                  | EVSB51-W-13167            | 59.0-64.0           | 32                      | < 5 (3)      |
| SB52                  | EVSB52-W-13164            | 46.0-51.0           | 8                       | ND           |
| SB52                  | EVSB52-W-13173            | 52.0-57.0           | 18                      | ND           |
| SB52                  | EVSB52-W-13163            | 58.0-60.5           | 21                      | ND           |
| SB53                  | EVSB53-W-15868            | 21.0-26.0           | ND                      | ND           |
| SB54                  | EVSB54-W-15871            | 17.0-22.0           | ND                      | ND           |
| SB54                  | EVSB54-W-15874            | 22.0-27.0           | ND                      | ND           |
| SB56                  | EVSB56-W-15884            | 15.0-20.0           | ND                      | ND           |
| SB56                  | EVSB56-W-15881            | 22.0-27.0           | ND                      | ND           |
| SB57                  | EVSB57-W-13175            | 32.8-37.8           | ND                      | ND           |
| SB57                  | EVSB57-W-15891            | 39.0-44.0           | ND                      | ND           |
| SB57                  | EVSB57-W-13177            | 44.2-48.0           | < 5 (2.3)               | ND           |
| SB58                  | EVSB58-W-13180            | 26.5-31.5           | ND                      | ND           |
| SB58                  | EVSB58-W-13181            | 33.0-38.0           | ND                      | ND           |
| SB58                  | EVSB58-W-13183            | 38.3-41.3           | ND                      | ND           |
| SB61                  | EVSB61-W-13187            | 42.9-47.9           | ND                      | ND           |
| SB61                  | EVSB61-W-13191            | 50.1-55.1           | ND                      | ND           |
| SB61                  | EVSB61-W-13188            | 56.4-59.3           | ND                      | ND           |

|             |                                                                                |                    | Concentrat              | ion (μg/L) |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------|--------------------|-------------------------|------------|--|--|--|--|--|
| Location    | Sample                                                                         | Depth<br>(ft BGL)  | Carbon<br>Tetrachloride | Chloroform |  |  |  |  |  |
| Surface wat | Surface water samples collected in March 2001(second session of Phase II work) |                    |                         |            |  |  |  |  |  |
| SW01        | EVSW01-W-12838                                                                 | -                  | ND                      | ND         |  |  |  |  |  |
| SW02        | EVSW02-W-12839                                                                 | -                  | ND                      | ND         |  |  |  |  |  |
| SW03        | EVSW03-W-12840                                                                 | -                  | ND                      | ND         |  |  |  |  |  |
| SW04        | EVSW04-W-12841                                                                 | -                  | ND                      | ND         |  |  |  |  |  |
| SW05        | EVSW05-W-12842                                                                 | -                  | ND                      | ND         |  |  |  |  |  |
| SW06        | EVSW06-W-12843                                                                 | -                  | ND                      | ND         |  |  |  |  |  |
| SW07        | EVSW07-W-12844                                                                 | -                  | ND                      | ND         |  |  |  |  |  |
| Surface wat | ter samples collected in N                                                     | ovember 2002 (thir | d session of Phase      | e II work) |  |  |  |  |  |
| SW08        | EVSW08-W-15848                                                                 | -                  | ND                      | ND         |  |  |  |  |  |
| SW09        | EVSW09-W-15849                                                                 | -                  | ND                      | ND         |  |  |  |  |  |
| SW10        | EVSW10-W-15850                                                                 | -                  | ND                      | ND         |  |  |  |  |  |
| SW11        | EVSW11-W-15851                                                                 | -                  | ND                      | ND         |  |  |  |  |  |
| SW12        | EVSW12-W-15852                                                                 | -                  | ND                      | ND         |  |  |  |  |  |
|             |                                                                                |                    |                         |            |  |  |  |  |  |

<sup>a</sup> The higher concentration detected in the replicate sample is reported. Sample EVSB20-W-12064, collected at the same depth, had an analytical result of 9.9  $\mu$ g/L for carbon tetrachloride.

- <sup>b</sup> ND, not detected at the quantitation limit of 1  $\mu$ g/L.
- <sup>c</sup> The higher concentration detected in the replicate sample is reported. Sample EVSB24-W-12767, collected at the same depth, had an analytical result of 117  $\mu$ g/L for carbon tetrachloride.
- $^d$  The higher concentration detected in the replicate sample is reported. Sample EVSB33-W-12880, collected at the same depth, had an analytical result of 396  $\mu$ g/L for carbon tetrachloride.
- $^{e}$  The higher concentration detected in the replicate sample is reported. Sample EVSB40-W-12053, collected at the same depth, had an analytical result of 120  $\mu$ g/L for carbon tetrachloride.
- $^{\rm f}\,$  The higher concentration detected in the replicate sample is reported. Sample EVSB40-W-12056, collected at the same depth, had an analytical result of 151  $\mu$ g/L for carbon tetrachloride.
- $^9$  The higher concentration detected in the replicate sample is reported. Sample EVSB46-W-12918, collected at the same depth, had an analytical result of 10  $\mu g/L$  for carbon tetrachloride.

| TABLE F.6     | Results of   | total petroleum | hydrocarbon    | analyses on   | groundwater | samples | collected | during |
|---------------|--------------|-----------------|----------------|---------------|-------------|---------|-----------|--------|
| the third sea | ssion of the | Phase II invest | igation at Eve | erest, Kansas | 6.          |         |           |        |

| Location | Sample         | Depth<br>(ft BGL) | Sample<br>Date | Diesel Fuel<br>(mg/L) | Motor Oil<br>(mg/L) |
|----------|----------------|-------------------|----------------|-----------------------|---------------------|
| SB49     | EVSB49-W-15854 | 46.0-51.0         | 11/4/02        | 0.62                  | ND <sup>a</sup>     |
| SB49     | EVSB49-W-15855 | 55.0-60.0         | 11/5/02        | 0.67                  | 2.00                |
| SB50     | EVSB50-W-13160 | 44.2-49.2         | 11/4/02        | 0.70                  | 1.30 L <sup>b</sup> |
| SB50     | EVSB50-W-13158 | 51.0-54.0         | 11/4/02        | 1.60                  | 5.80 L              |
| SB51     | EVSB51-W-13166 | 54.1-59.1         | 11/6/02        | 0.76                  | 1.20                |
| SB52     | EVSB52-W-13164 | 46.0-51.0         | 11/5/02        | 1.00                  | 2.40 L              |
| SB52     | EVSB52-W-13163 | 58.0-60.5         | 11/5/02        | 0.60                  | 1.40                |
| SB53     | EVSB53-W-15868 | 21.0-26.0         | 11/5/02        | 0.43                  | 0.36                |

<sup>a</sup> ND, not detected at quantitation limit of 0.13 mg/L.

<sup>b</sup> L, recovery of surrogate compound *o*-terphenyl below QC range of 60-140% for this sample.

TABLE F.7 Results of trace metals analyses on groundwater samples collected during the third session of the Phase II field investigation at Everest, Kansas.

|                                   |                |                   |                | Concentration (µg/L) |         |                    |           |         |          |        |        |       |  |
|-----------------------------------|----------------|-------------------|----------------|----------------------|---------|--------------------|-----------|---------|----------|--------|--------|-------|--|
| Location                          | Sample         | Depth<br>(ft BGL) | Sample<br>Date | Antimony             | Arsenic | Barium             | Beryllium | Cadmium | Chromium | Cobalt | Copper | Lead  |  |
| SB49                              | EVSB49-W-15854 | 46.0-51.0         | 11/4/02        | 3.5 U <sup>a</sup>   | 3.2 U   | 267                | 0.2 U     | 0.3 U   | 4.6 U    | 2.2 U  | 1.8 U  | 1.1 U |  |
| SB49                              | EVSB49-W-15855 | 55.0-60.0         | 11/5/02        | 3.5 U                | 3.2 U   | 177 B <sup>b</sup> | 0.2 U     | 0.3 U   | 4.6 U    | 2.2 U  | 2.7 B  | 1.1 U |  |
| SB50                              | EVSB50-W-13160 | 44.2-49.2         | 11/4/02        | 3.5 U                | 12.4    | 195 B              | 0.2 U     | 0.3 U   | 4.6 U    | 2.2 U  | 1.9 B  | 1.1 Ū |  |
| SB51                              | EVSB51-W-13166 | 54.1-59.1         | 11/6/02        | 3.5 U                | 3.2 U   | 320                | 0.2 U     | 0.3 U   | 4.6 U    | 2.2 U  | 1.8 U  | 1.1 U |  |
| SB52                              | EVSB52-W-13164 | 46.0-51.0         | 11/5/02        | 3.5 U                | 3.2 U   | 291                | 0.2 U     | 0.3 U   | 4.6 U    | 2.2 U  | 1.8 U  | 1.1 U |  |
| SB52                              | EVSB52-W-13163 | 58.0-60.5         | 11/5/02        | 3.5 U                | 3.2 U   | 172 B              | 0.2 U     | 0.6 B   | 4.6 U    | 2.2 U  | 1.9 B  | 1.1 U |  |
| Contract-required detection limit |                |                   |                | 60                   | 10      | 200                | 5         | 5       | 10       | 50     | 25     | 3     |  |

|                                   |                |           |         | Concentration (µg/L) |        |          |        |          |       |          |        |
|-----------------------------------|----------------|-----------|---------|----------------------|--------|----------|--------|----------|-------|----------|--------|
|                                   |                |           |         | Molybdenum           | Nickel | Selenium | Silver | Thallium | Tin   | Vanadium | Zinc   |
| SB49                              | EVSB49-W-15854 | 46.0-51.0 | 11/4/02 | 12.6                 | 13.5 U | 3.9 U    | 1.4 U  | 3 U      | 4.1 B | 2.8 U    | 6.9 U  |
| SB49                              | EVSB49-W-15855 | 55.0-60.0 | 11/5/02 | 12.0                 | 13.5 U | 3.9 U    | 1.4 U  | 3 U      | 3.6 U | 2.8 U    | 6.9 U  |
| SB50                              | EVSB50-W-13160 | 44.2-49.2 | 11/4/02 | 12.5                 | 13.5 U | 3.9 U    | 1.4 U  | 3 U      | 3.6 U | 3.0 B    | 6.9 U  |
| SB51                              | EVSB51-W-13166 | 54.1-59.1 | 11/6/02 | 5.1 B                | 13.5 U | 3.9 U    | 1.4 U  | 3 U      | 3.6 U | 4.2 B    | 6.9 U  |
| SB52                              | EVSB52-W-13164 | 46.0-51.0 | 11/5/02 | 6.8 B                | 13.5 U | 3.9 U    | 1.4 U  | 3 U      | 3.9 B | 3.5 B    | 6.9 U  |
| SB52                              | EVSB52-W-13163 | 58.0-60.5 | 11/5/02 | 10.2                 | 13.5 U | 3.9 U    | 1.4 U  | 3 U      | 3.6 U | 2.8 U    | 15.9 B |
| Contract-required detection limit |                |           | 10      | 40                   | 5      | 10       | 10     | 20       | 50    | 20       |        |

<sup>a</sup> U, not detected above the indicated instrument detection limit.

<sup>b</sup> B, estimated concentration above the instrument detection limit but below the contract-required detection limit or the practical quantitation limit.

Appendix G:

Quality Control for Sample Collection, Handling, and Analysis

### Appendix G:

### Quality Control for Sample Collection, Handling, and Analysis

Soil, surface water, and groundwater sampling was conducted during the Phase II investigation at Everest, Kansas, to delineate the distribution of carbon tetrachloride contamination in the near-surface and vadose zone soils at the former Everest CCC/USDA facility and within the affected aquifer unit. Sampling was conducted in October 2000, March-April 2001, and November 2002.

Quality assurance/quality control samples were collected throughout the investigation to monitor sample collection, handling, and analysis activities. The QA/QC procedures followed are described in detail in the *Master Work Plan* (Argonne 2002). Evaluation of the analytical data was consistent with EPA guidelines (EPA 1994a,b).

### G.1 Sampling to Monitor Sample Collection, Handling, and Analysis Procedures

Sample collection and handling activities were monitored by the documentation of samples as they were collected and the use of chain-of-custody (COC) forms and custody seals to ensure sample integrity during handling and shipment. The COC records and complete QA/QC documentation are on file at Argonne. The QC samples collected to monitor sample collection and handling procedures included equipment rinsates, trip blanks, and field blanks. A background near-surface soil sample and a background surface water sample were collected to provide a baseline for the respective contaminant distribution surveys. Replicate samples were collected, and other samples were selected for duplicate analyses as a measure of analytical precision. The QA/QC samples are listed in Table G.1. Analytical results for carbon tetrachloride and chloroform in QA/QC samples collected to monitor sample collection and handling activities are in Table G.2.

### G.1.1 Equipment Rinsates

Reusable sampling bailers were used during the collection of groundwater samples by the ECPT vehicles and Geoprobe. Rinsates from the decontaminated bailers and push rods were collected periodically to ensure that cross-contamination had not occurred during sample collection.

Disposable sampling equipment was used during collection of other samples. Equipment rinsates showed no carbon tetrachloride contamination, indicating that equipment decontamination procedures were followed as specified in the *Master Work Plan* (Argonne 2002). The presence of chloroform at very low concentrations in some rinsates collected during the March-April 2001 field investigation is consistent with the concentrations found in the commercial distilled water used for equipment decontamination. This problem was not evident during the November 2002 field investigation, when Argonne used rinsate water from its own deionizing filtration system.

### G.1.2 Trip Blanks

Trip blanks were prepared and included in shipments of soil or water samples submitted for organic analysis, as an indicator of cross-contamination during shipment. Trip blanks showed no carbon tetrachloride contamination, indicating that cross-contamination did not occur during shipment.

### G.1.3 Other Blanks

Blanks of the methanol used in preparation of the soil samples for analysis were included in shipments of soil samples submitted for verification organic analysis. The methanol blanks showed no carbon tetrachloride contamination. Blanks of water used for equipment decontamination also showed no carbon tetrachloride contamination.

### G.1.4 Background Sampling

A background near-surface soil sample was collected to establish a baseline for contamination potentially found in the October 2000 near-surface soil survey. A background surface water sample was collected to establish a baseline for contamination potentially found in the April 2001 surface water survey. Neither carbon tetrachloride nor chloroform was detected in either background sample.

### G.1.5 Replicate Samples and Duplicate Analyses

As an indicator of the consistency of the sampling methodology followed and to provide a measure of analytical precision, blind replicate soil and water samples were collected, and other samples were selected by the analytical laboratory for duplicate analyses. To verify the results of organic analyses on soil and water samples at the AGEM Laboratory (the primary analytical laboratory for organic analysis), selected samples were subjected to verification analysis at a second laboratory. Replicate samples and samples selected for duplicate analyses are identified in Table G.1.

### G.1.6 Sample Labeling Irregularities

Minor discrepancies in sample identifiers for some samples as listed on the COC records and sample containers were resolved by comparison of the various records. Such a discrepancy could not be resolved for one sample submitted for tritium analysis; the analytical result for that sample is not reported (Table F.4, Appendix F).

#### G.1.7 Sample Collection and Handling Irregularities

Sampling of subsurface soils at some depths (identified in Table A.1, Appendix A) was unsuccessful because of a lack of soil recovery. Low water recovery at some groundwater sampling locations (identified in Table F.1, Appendix F) made collection of sufficient sample volume difficult.

Inconsistencies in the reported results of organic analyses on individual aliquots of some groundwater samples (Table F.5, Appendix F) might have resulted from the sampling difficulties. The inconsistencies (discussed in Section G.3.1) probably resulted primarily from the heterogeneity of the sampled aquifer, rather than a failure of the analytical methodology. The higher concentration measured at each sample location is reported.

Groundwater sample EVSB28-W-12815, collected for organic analysis at the AGEM Laboratory, was broken during shipment. The sample vial for the replicate sample at that location, EVSB28-W-12816, contained a bubble. No organic result is reported for depth 62.0-64.9 ft BGL at sample location SB28 (Table F.5, Appendix F).

No designated trip blank was included in 6 of the 33 shipments of water samples sent to the AGEM Laboratory for organic analysis, as specified in the *Master Work Plan* (Argonne 2002). The affected shipments are those under COC 1963 on March 15, 2001; COC 502 on March 22, 2001; COCs 205 and 207 on March 28, 2001; COC 208 on March 30, 2001; COC 1084 on April 3, 2001; and COC 1887 on April 4, 2001. One or more equipment rinsates were included in each of these shipments. In none of these shipments did the samples show a consistent pattern of contamination, and no contamination was detected in the equipment rinsates. These observations indicate that cross-contamination did not occur during shipment.

Four groundwater samples collected for nitrate analysis were delayed in shipment and were prepared for analysis by the analytical laboratory after the recommended 48-hr holding time had elapsed. The affected samples are EVSB20-W-12064, EVSB20-W-12068, EVSB21-W-12072, and EVSB21-W-12074 (Table F.3, Appendix F).

### G.1.8 Sampling Conducted by the KDHE

Limited sampling was conducted by the KDHE during the March-April 2001 field mobilization. Argonne provided to the KDHE split groundwater samples from two Argonne sampling locations: (1) sample EVSB34-W-12857, collected at location SB34 at a depth of 46.0-49.0 ft BGL, and (2) sample EVSB34-W-12854, collected at location SB34 at a depth of 49.0-53.0 ft BGL. In addition, at the request of the KDHE, Argonne used the Geoprobe to collect groundwater samples at a location near SB49. Analytical results for the KDHE sampling were not provided for review in conjunction with Argonne's site investigation, and they are not included in the sampling and analytical database for the site investigation.

### G.2 Quality Control for Organic Analysis of Soil Samples

Near-surface soil sampling was conducted in October 2000 at 38 locations at the former CCC/USDA facility. Seventy-six near-surface soil samples (two samples from each of the 38 sampling locations), 1 background sample, and 10 blind field replicates were collected for carbon tetrachloride and chloroform analysis at the AGEM Laboratory with a modification of EPA Method 5021 (headspace analysis by GC-ECD) to determine whether a pattern of carbon tetrachloride concentrations was evident that might indicate potential subsurface zones of contamination. Typical detection limits achieved were 0.10  $\mu$ g/kg for carbon tetrachloride and 0.75  $\mu$ g/kg for chloroform.

Subsurface soil sampling was conducted in March 2001 at three soil boring locations (SB23, SB24, and SB34); 68 subsurface soil samples were collected. The near-surface and subsurface soil samples were prepared at the AGEM Laboratory and analyzed for VOCs, including carbon tetrachloride and chloroform, with EPA Methods 5030B and 8260B (purge-and-trap GC-MS method), as referenced in the EPA's SW-846 (http://www.epa.gov/epaoswer/hazwaste/test/main/htm), to achieve a detection limit of 10 µg/kg. To verify the accuracy of the analytical results, random soil samples were split and prepared for verification analysis at Severn-Trent Laboratory, Colchester, Vermont, with the same analytical method. On the basis of the results it obtained, the AGEM Laboratory selected duplicate samples for verification analysis.

The following sections describe QC measures followed during analysis of the soil samples and discuss the quality of the organic analytical data from each laboratory. Analytical data from the AGEM Laboratory are discussed in Section G.2.1, and analytical data from Severn-Trent Laboratory are discussed in Section G.2.2. The analytical results from the two laboratories are compared in Section G.2.3.

### G.2.1 Analysis of Soil Samples at the AGEM Laboratory

Soil samples were quick-frozen on dry ice as they were collected. At the laboratory, the VOCs present in each soil sample were extracted with methanol from the sample matrix.

For the headspace soil analyses, the methanol extract was placed in a sealed headspace vial with the internal standard solution. The samples were placed in a headspace sampler and analyzed with a modification of EPA Method 5021. An 11-point calibration of the GC system was established on the basis of the mass of known quantities of carbon tetrachloride and chloroform ranging in concentration from 0.125 ng to 4 ng. A limitation of the chloroform analysis is the presence of chloroform (at very low concentrations) in the methanol solvent used in standard preparation. Dual analyses were performed for 18 near-surface soil sampling locations through the analysis of blind field replicate samples or the duplicate analysis of samples selected by the laboratory. Table G.3 summarizes the analytical results for the dual analyses. Consistency is evident in these results, and the analytical data obtained with the headspace method are acceptable for qualitative determination of contaminant distribution.
For the purge-and-trap soil analyses, an aliquot of the methanol extract was purged, and the volatile species were transferred to a sorbent tube. After purging, the sorbent tube was heated and backflushed with an inert gas to desorb the components into the GC-MS system. The compounds eluting from the GC column were identified by retention time and by comparison with reference library spectra. The concentration of each component was calculated by comparison of the MS response for the quantitation ion to the response on corresponding calibration curves, for internal standards, or both.

Soil samples were analyzed at the AGEM Laboratory with the purge-and-trap method in 21 sample delivery groups (SDGs), as shown in Table G.4. The QA/QC procedures followed included initial and continuing calibration of instruments, analysis of laboratory blanks, monitoring of surrogate spike recovery, analysis of replicate samples, and duplicate analyses of selected samples. Significant results include the following:

- Soil samples were received with custody seals intact and at the appropriate temperature. All samples were analyzed within required holding times.
- Contaminants of concern were not detected in the laboratory method blanks.
- For each SDG, analytical instrument calibration was monitored by the analysis of calibration check standards. Table G.4 shows the relative percent difference (RPD) between the known and calculated concentrations of the standards. The concentrations of calibration check standards measured in all SDGs were within the acceptable range of ±20%.
- Surrogate standard determinations were performed on the samples and blanks by using the surrogate spike compounds fluorobenzene, 4-bromofluorobenzene, and 1,2-dichlorobenzene-d4. Table G.4 shows the percent recoveries of these system-monitoring compounds for each of the analyses. In the analysis of two soil samples, the surrogate recovery limit of 80% was not met:
  - In the analysis of near-surface soil sample EV-HC23-S-11997 in SDG 00-11-07, the recoveries of surrogate compound fluorobenzene (at 66%) and 4-bromofluorobenzene (at 75%) were below the specified limit of 80%. The sample was not reanalyzed. The result for the sample analysis (no

contaminants detected) is consistent with results for adjacent samples. No loss of contamination is indicated, and the result is accepted.

- In the analysis of subsurface soil sample EVSB23-S-12772 in SDG 01-03-22, the recovery of surrogate compound fluorobenzene (at 78%) was below the specified limit of 80%. The sample was not reanalyzed. The result for the sample analysis (no contaminants detected) is consistent with results for adjacent samples. No loss of contamination is indicated, and the result is accepted.
- In the analysis of subsurface soil sample EVSB34-S-12831 in SDG 01-04-01, the recovery of surrogate compound 1-2-dichlorobenzene-d4 (at 75%) was below the specified limit of 80%. The sample was not reanalyzed. The result for the sample analysis (no contaminants detected) is consistent with results for adjacent samples. No loss of contamination is indicated, and the result is accepted.
- Replicates of ten near-surface soil samples were collected in the field, and seven near-surface soil samples were selected by the AGEM Laboratory for duplicate organic analyses by the purge-and-trap method. Contaminant concentrations were below the quantitation limit of 10 µg/kg in the analyses of all near-surface soil samples, their replicates, and their laboratory duplicates.
- Nine subsurface soil samples were selected by the AGEM Laboratory for duplicate organic analyses. Table G.5 compares the results for the sample and duplicate analyses. Samples in which contamination was not detected or was detected at a concentration below the quantitation limit of 10 µg/kg were reanalyzed with a similar result. For three of the four samples in which contamination was detected above the quantitation limit, the sample and duplicate result show good agreement. For one sample in which carbon tetrachloride and chloroform were detected above the quantitation limit (EVSB23-S-12781), the compounds were detected at concentrations below the quantitation limit in the duplicate analysis. This discrepancy is considered a reflection of the heterogeneity of the sample matrix and not the analytical methodology.

The analytical data from the AGEM Laboratory are acceptable for quantitative determination of contaminant distribution in the near-surface and subsurface soils.

#### G.2.2 Analysis of Soil Samples at Severn-Trent Laboratory

In accordance with the QA/QC procedures defined in the *Master Work Plan* (Argonne 2002), selected soil samples analyzed at the AGEM Laboratory for carbon tetrachloride and chloroform with the purge-and-trap GC-MS method (EPA Methods 5030B and 8260B) were subjected to verification analysis at a second laboratory. The analytical results from the two laboratories are compared in Section G.2.3. Below is a discussion of the quality of the organic analytical data from Severn-Trent Laboratory.

Twenty replicate soil samples (including ten near-surface soil samples and ten subsurface soil samples) were shipped to Severn-Trent Laboratory in three shipments, each with a blank of the methanol used for sample extraction. Complete data packages were provided. The QA/QC procedures followed included initial and continuing calibration of instruments, analysis of laboratory blanks, monitoring of surrogate spike recovery, and matrix spike/matrix spike duplicate analyses. Significant results include the following:

- Soil samples shipped to the Severn-Trent Laboratory were received with custody seals intact and at the appropriate temperature. All samples were analyzed within required holding times.
- Analytical instruments were properly tuned; initial and continuing calibration checks remained within the allowable range.
- Contaminants of concern were not detected in the methanol blanks or laboratory method blanks.
- Surrogate standard determinations were performed on samples and blanks by using the surrogate spike compounds toluene-d<sub>8</sub>, 1,2-dichloroethane-d<sub>4</sub>, 4-bromofluorobenzene, and 1,2-dichlorobenzene-d<sub>4</sub>. Table G.6 shows the percent recoveries of the system-monitoring compounds for each of the analyses. Except for three near-surface soil samples and one laboratory QC sample analyzed in SDG 80582, the recovery of the surrogate spikes was within the acceptable range (identified in Table G.6) specific to each surrogate. For samples with surrogate recovery outside the desired range, the recovery of one or two of the four surrogate compounds was outside the QC limits but within 90-99% of the limits.

• To evaluate the matrix effect of samples on the analytical methodology, matrix spike/matrix spike duplicate analyses were performed by using a suite of matrix spike compounds that included carbon tetrachloride and chloroform. Table G.7 shows the percent recovery for carbon tetrachloride and chloroform in the three spike/spike duplicate analyses, as well as the calculated RPD between the analytical results. The QC limits (identified in Table G.7) were met for the spike/spike duplicate analyses.

The organic analytical data from Severn-Trent Laboratory for the replicate soil samples are acceptable for comparison to the AGEM Laboratory data.

#### G.2.3 Verification Analysis of Soil Samples

In accordance with the QA/QC procedures defined in the *Master Work Plan* (Argonne 2002), selected replicates of the soil samples analyzed at the AGEM Laboratory for carbon tetrachloride and chloroform with the purge-and-trap GC-MS method were subjected to verification analysis at a second laboratory. Twenty of the 144 soil samples analyzed at the AGEM Laboratory for carbon tetrachloride and chloroform (14% of the soil samples) were subjected to the verification analysis. Table G.8 compares the analytical results for the soil samples analyzed at both laboratories.

Results from the two analytical laboratories are consistent over the range of carbon tetrachloride concentrations detected during the Phase II investigation. For the three samples analyzed at the AGEM Laboratory in which carbon tetrachloride was detected above the quantitation limit, similar concentrations were reported by Severn-Trent Laboratory. Samples analyzed at the AGEM Laboratory in which no carbon tetrachloride was detected were analyzed at Severn-Trent Laboratory with similar results, although for sample EVSB23-S-12784 Severn-Trent Laboratory reported an estimated concentration below the quantitation limit. Analytical data obtained by the AGEM Laboratory with the purge-and-trap GC-MS method are supported by the data from Severn-Trent Laboratory.

#### G.3 Quality Control for Organic Analysis of Water Samples

Eighty-four groundwater and 12 surface water samples (including 1 background surface water sample) were collected during the Phase II investigation for organic analysis at the AGEM Laboratory with EPA Method 524.2. In addition, 49 replicate groundwater samples, 2 replicate surface water samples, 49 equipment rinsates, and 27 trip blanks were collected. As one measure of the precision of the analytical process, blind replicate (split) samples were collected for analysis, and other samples were selected by the laboratory for duplicate analyses. To verify the accuracy of the analytical results obtained with EPA Method 524.2, replicate (split) samples were also collected for verification analysis at Clayton Laboratory, Novi, Michigan, with CLP methodology. On the basis of the results it obtained, the AGEM Laboratory selected replicate samples for the verification analysis.

The following sections describe QC measures followed during analysis of water samples and discuss the quality of the organic analytical data from each laboratory. Analytical data from the AGEM Laboratory are discussed in Section G.3.1, and analytical data from Clayton Laboratory are discussed in Section G.3.2. The results from the two laboratories are compared in Section G.3.3.

#### G.3.1 Analysis of Water Samples at the AGEM Laboratory

Water samples shipped to the AGEM Laboratory were analyzed by the purge-and-trap GC-MS method. For these analyses, VOCs present in the groundwater sample were extracted (purged) from the sample matrix by bubbling an inert gas through the sample. The purged components were trapped in a specified sorbent tube. After the purging, the sorbent tube was heated and backflushed with an inert gas to desorb the components into the GC-MS system. The compounds eluting from the GC column were identified by retention time and by comparison with reference library spectra. The concentration of each component was calculated by comparison of the MS response for the quantitation ion to the response for corresponding calibration curves and/or internal standards. The internal standard recovery limits were 80-120%. Calibration checks with each SDG were required to be within  $\pm 20\%$  of the standard.

Water samples submitted to the AGEM Laboratory for organic analysis were analyzed in 31 SDGs. Table G.9 identifies the groundwater, surface water, and associated QA/QC samples analyzed in each of the SDGs. The QA/QC procedures followed included analysis of instrument

calibration check standards, analysis of laboratory blanks, monitoring of surrogate spike recovery, and duplicate laboratory analyses. Significant results include the following:

- Samples shipped to the AGEM Laboratory were received with custody seals intact and at the appropriate temperature. All samples were analyzed within required holding times.
- Groundwater sample EVSB28-W-12815, collected for organic analysis at the AGEM Laboratory, was broken during shipment, and the vial for the replicate, EVSB28-W-12816, contained a bubble. No result is reported for depth interval 62.0-64.9 ft BGL at sample location SB28 (Table F.5, Appendix F).
- Carbon tetrachloride was not detected in field blanks, equipment rinsates, or trip blanks shipped with the samples or in laboratory method blanks analyzed with the samples. Chloroform was detected at low concentrations in some rinsates and trip blanks collected during the March-April 2001 sampling event at levels consistent with the commercial distilled water used for the preparation of those samples. This problem was not evident during the November 2002 sampling, when Argonne used water from its own deionizing filtration system.
- For each SDG, analytical instrument calibration was monitored by the analysis of calibration check standards. Table G.9 shows the RPD values between the known and calculated concentrations of the standards. The concentrations of calibration check standards measured in all SDGs were within the acceptable range of  $\pm 20\%$ .
- Surrogate standard determinations were performed on samples and blanks by using surrogate spike compounds fluorobenzene, 1,2-dichlorobenzene-d4, and 4-bromofluorobenzene. Table G.9 shows the percent recoveries of these system-monitoring compounds for each of the analyses. In the analysis of two groundwater samples, one equipment rinsate, and one surface water sample, the minimum surrogate recovery limit of 80% was not met, as follows:
  - SDG 01-03-23: In the analysis of groundwater sample EVSB30-W-12807, the recovery of surrogate compound 1,2-dichlorobenzene-d4 (at 76%) was below the QC limit of 80%. The sample was not reanalyzed. A blind replicate

of the sample, EVSB30-W-12811, was analyzed in the same SDG without error. Neither sample contained carbon tetrachloride or chloroform. The analytical result for sample EVSB30-W-12807 is accepted without qualification (Table F.5, Appendix F).

- SDG 01-03-27: In the analysis of groundwater sample EVSB31-W-11989, the recoveries of the three surrogate compounds (at 74-75%) were below the QC limit of 80%. The sample was not reanalyzed. A blind replicate of the sample, EVSB31-W-11990, was analyzed in the same SDG without error. Neither sample contained carbon tetrachloride or chloroform. The analytical result for sample EVSB31-W-11989 is accepted without qualification (Table F.5, Appendix F).
- SDG 01-04-06: In the analysis of equipment rinsate EVSB47-W-12926, the recovery of surrogate compound fluorobenzene (at 77%) was below the QC limit of 80%. The rinsate was not reanalyzed. None of the groundwater samples collected at ECPT location SB47 (where the rinsate was collected) contained carbon tetrachloride or chloroform contamination (Table F.5, Appendix F). The analytical result for rinsate EVSB47-W-12926 is accepted without qualification.
- SDG 02-11-06: In the analysis of surface water replicate sample EVQCDU-W-15853, a blind replicate of sample EVSW12-W-15852, the recovery of surrogate compound 4-bromofluorobenzene (at 76%) was below the QC limit of 80%. The replicate sample was not reanalyzed. Neither carbon tetrachloride nor chloroform was detected in either sample EVSW12-W-15852 or replicate EVQCDU-W-15853 (Table G.10). The analytical result for replicate sample EVQCDU-W-15853 is accepted without qualification.
- To provide a measure of consistency in sample collection and analytical precision, 49 blind replicate groundwater samples and 2 blind replicate surface water samples were collected for organic analysis at the AGEM Laboratory, and other water samples were selected by the AGEM Laboratory for duplicate organic analyses. In total, dual analyses were conducted for 58 groundwater sampling locations and 3 surface water locations. In addition, 3 equipment rinsates were selected for duplicate analyses. Table G.10 shows the carbon

tetrachloride and chloroform concentrations detected in the samples and in the replicate and duplicate analyses. Good agreement is apparent for samples with no contamination and for samples with low to moderate contamination. Variability is seen in some samples with high concentrations of carbon tetrachloride, especially at groundwater sample location SB33 at the depth 64.0-68.0 ft BGL, with a calculated RPD value of 80% over the range of detected concentrations.

The analytical data from the AGEM Laboratory are acceptable for quantitative determination of contaminant distribution in water samples.

#### G.3.2 Analysis of Water Samples at Clayton Laboratory

In accordance with the QA/QC procedures defined in the *Master Work Plan* (Argonne 2002), replicates of groundwater samples analyzed at the AGEM Laboratory for carbon tetrachloride and chloroform with EPA Method 524.2 were also analyzed with EPA-defined CLP methodology. On the basis of its results, the AGEM Laboratory selected replicate samples (identified in Table G.1) for the verification analysis. The results from the two laboratories are compared in Section G.3.3. Below is a discussion of the quality of the organic analytical data obtained with CLP methodology.

Twenty-four replicate groundwater samples were shipped to Clayton Laboratory for verification organic analysis with CLP methodology. The samples were sent in four shipments with a trip blank in each. Complete CLP data packages were provided. The QA/QC procedures followed included initial and continuing calibration of instruments, analysis of laboratory blanks, monitoring of surrogate spike recovery, and matrix spike/matrix spike duplicate analyses. Significant results include the following:

- Samples shipped to the CLP laboratory were received with custody seals intact and at the appropriate temperature. All samples were analyzed within required holding times.
- Analytical instruments were properly tuned; initial and continuing calibration checks remained within the allowable range.

- Contaminants of concern were not detected in trip blanks or laboratory method blanks.
- Surrogate standard determinations were performed on samples and blanks by using the surrogate spike compounds toluene-d<sub>8</sub>, 4-bromofluorobenzene, and 1,2-dichloroethane-d<sub>4</sub>. Table G.11 shows the percent recoveries of the systemmonitoring compounds for each of the CLP analyses. Recovery of the surrogate spikes was within the acceptable range (identified in Table G.11) specific to each surrogate for all analyses.
- To evaluate the matrix effect of samples on the analytical methodology, matrix spike/matrix spike duplicate analyses were performed in accordance with CLP protocol by using matrix spike compounds 1,1-dichloroethene, trichloroethene, chlorobenzene, toluene, and benzene. Table G.12 shows the percent recovery of each spike compound in the three spike/spike duplicate analyses, as well as the calculated RPD value between the analytical results. The recoveries of spike compounds were within QC limits for the three spike/spike duplicate analyses. In the analysis conducted with SDG 1040080-ARG104, the RPD between spike and spike duplicate results was outside the acceptable range for spike compound 1,1-dichloroethene (Table G.12). The reported results for the affected samples (EVSB33-W-12880, EVSB33-W-12881, EVSB38-W-12893, EVSB39-W-12897, EVSB40-W-12053, EVSB41-W-12898, EVSB41-W-12900) are qualified (Table G.13).

Organic analytical data from Clayton Laboratory for the replicate groundwater samples are acceptable for comparison to the AGEM Laboratory data, with the qualification described.

#### G.3.3 Verification Analysis of Water Samples

In accordance with the QA/QC procedures defined in the *Master Work Plan* (Argonne 2002), selected replicates of the groundwater samples analyzed at the AGEM Laboratory for carbon tetrachloride and chloroform with EPA Method 524.2 were subjected to verification analysis with EPA-defined CLP methodology. Twenty-four of the 84 groundwater samples analyzed at the AGEM Laboratory for carbon tetrachloride and chloroform (28% of the

groundwater samples) were also analyzed with CLP methodology. Table G.13 compares the analytical results for groundwater samples obtained with the two methods.

For all verification samples analyzed at the AGEM Laboratory in which no contamination was detected, Clayton Laboratory reported a similar lack of contamination. For samples with low to moderate contaminant levels, the concentrations reported by the two laboratories are also similar. However, for samples with substantial carbon tetrachloride levels, inconsistency is evident in the concentrations reported by the two laboratories. Two factors warrant discussion:

- The analytical results from Clayton Laboratory for the verification samples with the highest variability are qualified on the basis of the high RPD achieved in the associated matrix spike/matrix spike duplicate analysis.
- Variability was also evident in the concentrations reported by the AGEM Laboratory for separate aliquots collected at these sampling locations. This variability is attributed to the heterogeneity of the sampled aquifer. Results were affected by low water recovery documented during collection and the difficulty in obtaining sufficient sample volumes.

In general, the analytical data from the AGEM Laboratory with EPA Method 524.2 are supported by the CLP data from Clayton Laboratory.

#### G.4 Quality Control for Nitrate Analyses of Groundwater Samples

To aid in geochemical characterization of the water-bearing zone, groundwater samples collected during the Phase II investigation were analyzed for nitrate by using EPA Method 300. These samples were shipped immediately to Severn-Trent Laboratory for filtration, preservation, and analysis. A delay in shipment caused four samples (EVSB20-W-12064, EVSB20-W-12068, EVSB21-W-12072, and EVSB21-W-12074) to be prepared for analysis after the recommended 48-hr holding time had expired. The results reported for these samples are qualified (Table F.3, Appendix F).

Nitrate analyses of the groundwater samples were conducted in 18 SDGs. The QA/QC procedures followed included initial and continuing instrument calibration through analysis of

spiked calibration check standards, analysis of laboratory QC samples, and duplicate analyses of selected samples. Significant points are the following:

- Initial and continuing calibration of analytical equipment was verified, according to method protocol, by the analysis of instrument check standards to determine instrument drift. Accuracy was measured by the percent recovery of known concentrations of nitrate added to the calibration check standards. Recovery of nitrate in the calibration check standards was within the range of 90-110% for each SDG.
- Accuracy in the analytical methodology followed was measured by the analysis of laboratory QC samples with each SDG. The recoveries of known concentrations of nitrate in spiked laboratory QC samples, shown in Table G.14, were within the allowable range of 80-120%.
- Precision was measured by duplicate analyses of five samples. Good precision in the nitrate analyses is indicated by low RPD values of 0-2.3% between the initial and duplicate analyses (Table G.15).

The nitrate results for groundwater samples from Severn-Trent Laboratory are acceptable (with the holding time qualification for four samples) on the basis of the recovery of known concentrations of the analytes of concern in laboratory QC samples analyzed with the groundwater samples and RPD values for duplicate analyses.

# G.5 Quality Control for Total Petroleum Hydrocarbon Analyses of Groundwater Samples

Eight groundwater samples collected during the Phase II investigation were analyzed at Severn-Trent Laboratory for TPH with EPA Method 8015B. Sulfuric acid was added as a preservative to each sample at the time of collection. During analysis, the compound *o*-terphenyl was used as a surrogate. Surrogate recovery (at approximately 30%), shown in Table G.16, was below the QC limit of 60% for sample EVSB50-W-13160 and EVSB50-W-13158. The surrogate was recovered well in the analyses of the method blank and laboratory QC samples. Insufficient sample volume was available to reanalyze the field samples. The spiked fuel mixture was recovered well in the laboratory QC sample and its duplicate. The method blank was free of contamination.

The laboratory used a system of qualifiers to note whether a reported result reasonably matched the pattern for diesel fuel (D) or motor oil (M), or whether the result was derived from a response that was in the low end (L) or high end (H) of the range defined by the analytical standards.

The TPH data from Severn-Trent Laboratory are acceptable for determination of contaminant distribution in groundwater.

#### G.6 Quality Control for Trace Metals Analyses of Groundwater Samples

Six groundwater samples collected during the Phase II investigation were analyzed for trace metals at Severn-Trent Laboratory with EPA Methods 3010A and 6010B. The target analytes (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, molybdenum, nickel, selenium, silver, thallium, tin, vanadium, and zinc) were recovered well in the analyses of two laboratory QC samples, as shown in Table G.17. A serial-dilution analysis on sample EVSB49-W-15854 gave no indication of matrix interferences specific to the target analytes. Trace concentrations of molybdenum and thallium were identified in the analysis of the method blank. These data are accepted, on the basis of satisfactory recovery and the absence of interferences in the serial dilution, for determination of contaminant distribution in groundwater.

#### G.7 Quality Control for Isotope Analyses of Groundwater Samples

Selected groundwater samples and one surface water sample were analyzed for tritium at the University of Miami Tritium Laboratory in Miami, Florida. Tritium concentrations were reported on the basis of the U.S. National Institute of Science and Technology tritium water standard #4926, as measured on September 3, 1961, and again on September 3, 1978, with a half-life of 12.43 years. Concentrations were reported in tritium units, equivalent to 3.193 picocuries per kilogram of water. Because counting efficiency and background concentration are different for each instrument, the reported concentrations were corrected for cosmic intensity and gas pressure. Typical efficiencies are equivalent to 1 count per minute (cpm) per TU. Background is about 0.3 cpm, known to  $\pm 0.02$  cpm. The RPD values for duplicate analyses are typically < 5%. The tritium data are acceptable for age dating of groundwaters.

| Location           | Sample         | Depth<br>(ft BGL) | Sample<br>Date | Sample Description                                                                                                                                                            |  |  |
|--------------------|----------------|-------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Field blanks       | 5              |                   |                |                                                                                                                                                                               |  |  |
| QC                 | EVQCFB-W-15873 | -                 | 11/6/02        | Field blank representing deionized rinse water used during the Phase II investigation (third session) for equipment decontamination.                                          |  |  |
| QC                 | EVQCFB-W-15892 | -                 | 11/11/02       | Field blank representing water used during the Phase II investigation (third session) for equipment decontamination, grout preparation, etc. Obtained from city fire hydrant. |  |  |
| Equipment rinsates |                |                   |                |                                                                                                                                                                               |  |  |
| QC                 | EVBR01-W-11987 | -                 | 3/7/01         | Rinsate of decontaminated bailer after collection of sample EVSB22-W-11985.                                                                                                   |  |  |
| QC                 | EVRR01-W-11988 | -                 | 3/7/01         | Rinsate of push rods after collection of sample EVSB22-W-11985.                                                                                                               |  |  |
| QC                 | EVSB20-W-12070 | -                 | 3/8/01         | Rinsate of bailer after collection of sample EVSB20-W-12068 and replicate EVSB20-W-12069.                                                                                     |  |  |
| QC                 | EVRR02-W-12075 | -                 | 3/9/01         | Rinsate of bailer before collection of sample EVSB21-W-12073.                                                                                                                 |  |  |
| QC                 | EVSB25-W-12079 | -                 | 3/13/01        | Rinsate of push rods after collection of sample EVSB25-W-12077 and replicate EVSB25-W-12078.                                                                                  |  |  |
| QC                 | EVSB25-W-12080 | -                 | 3/13/01        | Rinsate of bailer after collection of sample EVSB25-W-12077 and replicate EVSB25-W-12078.                                                                                     |  |  |
| QC                 | EVSB24-W-12765 | -                 | 3/14/01        | Rinsate of bailer prior to collection of sample EVSB24-W-12763 and replicate EVSB24-W-<br>12764.                                                                              |  |  |
| QC                 | EVSB24-W-12769 | -                 | 3/15/01        | Rinsate of push rods after collection of sample EVSB24-W-12767 and replicate<br>EVSB24-W-12768.                                                                               |  |  |
| QC                 | EVSB23-W-12797 | -                 | 3/19/01        | Rinsate of push rods after collection of sample EVSB23-W-12795 and replicate EVSB23-W-12796.                                                                                  |  |  |
| QC                 | EVSB23-W-12800 | -                 | 3/19/01        | Rinsate of bailer after collection of sample EVSB23-W-12799.                                                                                                                  |  |  |
| QC                 | EVSB30-W-12805 | -                 | 3/21/01        | Rinsate of bailer after collection of sample EVSB30-W-12803 and replicate EVSB30-W-12804.                                                                                     |  |  |
| QC                 | EVSB28-W-12814 | -                 | 3/22/01        | Rinsate of push rods after collection of sample EVSB28-W-12812 and replicate EVSB28-W-12813.                                                                                  |  |  |
| QC                 | EVSB30-W-12810 | -                 | 3/22/01        | Rinsate of bailer after collection of sample EVSB30-W-12808 and replicate EVSB30-W-12809.                                                                                     |  |  |

#### TABLE G.1 Quality control samples collected during the Phase II investigation at Everest, Kansas.

TABLE G.1 (Cont.)

| Location  | Sample           | Depth<br>(ft BGL) | Sample<br>Date | Sample Description                                                                           |
|-----------|------------------|-------------------|----------------|----------------------------------------------------------------------------------------------|
| Equipment | rinsates (Cont.) |                   |                |                                                                                              |
| QC        | EVSB31-W-12037   | -                 | 3/26/01        | Rinsate of bailer after collection of sample EVSB31-W-11989 and replicate EVSB31-W-11990.    |
| QC        | EVSB31-W-12038   | -                 | 3/26/01        | Rinsate of push rods after collection of sample EVSB31-W-11989 and replicate EVSB31-W-11990. |
| QC        | EVSB32-W-12871   | -                 | 3/28/01        | Rinsate of bailer prior to collection of sample EVSB32-W-11870.                              |
| QC        | EVSB34-W-12856   | -                 | 3/28/01        | Rinsate of bailer after collection of sample EVSB34-W-12854 and replicate EVSB34-W-12855.    |
| QC        | EVSB34-W-12859   | -                 | 3/28/01        | Rinsate of push rods after collection of sample EVSB34-W-12857 and replicate EVSB34-W-12858. |
| QC        | EVSB33-W-12882   | -                 | 3/29/01        | Rinsate of bailer after collection of sample EVSB33-W-12880 and replicate EVSB33-W-12881.    |
| QC        | EVSB36-W-12886   | -                 | 3/30/01        | Rinsate of bailer after collection of sample EVSB36-W-12884 and replicate EVSB36-W-12885.    |
| QC        | EVSB35-W-12876   | -                 | 3/31/01        | Rinsate of bailer after collection of sample EVSB35-W-12874 and replicate EVSB35-W-12875.    |
| QC        | EVSB38-W-12890   | -                 | 3/31/01        | Rinsate of bailer after collection of sample EVSB38-W-12888 and replicate EVSB38-W-12889.    |
| QC        | EVSB38-W-12894   | -                 | 4/1/01         | Rinsate of bailer after collection of sample EVSB38-W-12893.                                 |
| QC        | EVSB40-W-12055   | -                 | 4/2/01         | Rinsate of bailer after collection of sample EVSB40-W-12053 and replicate EVSB40-W-12054.    |
| QC        | EVSB40-W-12058   | -                 | 4/2/01         | Rinsate of push rods after collection of sample EVSB40-W-12056 and replicate EVSB40-W-12057. |
| QC        | EVSB41-W-12899   | -                 | 4/2/01         | Rinsate of bailer after collection of sample EVSB341-W-12898.                                |
| QC        | EVSB42-W-12904   | -                 | 4/3/01         | Rinsate of bailer after collection of sample EVSB42-W-12903.                                 |
| QC        | EVSB43-W-12050   | -                 | 4/3/01         | Rinsate of push rods after collection of sample EVSB43-W-12048 and replicate EVSB43-W-12049. |
| QC        | EVSB43-W-12062   | -                 | 4/3/01         | Rinsate of bailer after collection of sample EVSB43-W-12060 and replicate<br>EVSB43-W-12061. |
| QC        | EVSB37-W-12912   | -                 | 4/4/01         | Rinsate of push rods after collection of sample EVSB37-W-12910.                              |
| QC        | EVSB37-W-12913   | -                 | 4/4/01         | Rinsate of bailer after collection of sample EVSB37-W-12910.                                 |
| QC        | EVSB44-W-12938   | -                 | 4/4/01         | Rinsate of bailer after collection of sample EVSB44-W-12915.                                 |

TABLE G.1 (Cont.)

| Location    | Sample           | Depth<br>(ft BGL) | Sample<br>Date | Sample Description                                                                                                                                   |
|-------------|------------------|-------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equipment ı | rinsates (Cont.) |                   |                |                                                                                                                                                      |
| QC          | EVSB46-W-12867   | -                 | 4/4/01         | Rinsate of push rods after collection of sample EVSB46-W-12864 and replicate EVSB46-W-12865.                                                         |
| QC          | EVSB46-W-12920   | -                 | 4/4/01         | Rinsate of push rods after collection of sample EVSB46-W-12918 and replicate EVSB46-W-12919.                                                         |
| QC          | EVSB47-W-12923   | -                 | 4/4/01         | Rinsate of bailer after collection of sample EVSB47-W-12921 and replicate EVSB47-W-12922.                                                            |
| QC          | EVSB47-W-12926   | -                 | 4/5/01         | Rinsate of push rods after collection of sample EVSB47-W-12924 and replicate EVSB47-W-12925.                                                         |
| QC          | EVQCRI-W-15856   | -                 | 11/5/02        | Rinsate of bailer after collection of sample EVSB49-W-15855.                                                                                         |
| QC          | EVQCRI-W-15869   | -                 | 11/5/02        | Rinsate of bailer prior to collection of sample EVSB53-W-15868 and replicate EVQCDU-W-<br>15870.                                                     |
| QC          | EVSB50-W-13162   | -                 | 11/5/02        | Rinsate of bailer after collection of sample EVSB50-W-13160. Sampling procedure not<br>followed. Collected after overnight delay following sampling. |
| QC          | EVQCRI-W-15872   | -                 | 11/6/02        | Rinsate of bailer prior to collection of sample EVSB54-W-15871.                                                                                      |
| QC          | EVQCRI-W-15877   | -                 | 11/6/02        | Rinsate of bailer prior to collection of sample EVSB54-W-15874.                                                                                      |
| QC          | EVQCRI-W-15883   |                   | 11/7/02        | Rinsate of bailer prior to collection of sample EVSB56-W-15881.                                                                                      |
| QC          | EVSB51-W-13168   | -                 | 11/7/02        | Rinsate of bailer after collection of sample EVSB51-W-13167.                                                                                         |
| QC          | EVQCRI-W-15885   | -                 | 11/8/02        | Rinsate of bailer prior to collection of sample EVSB56-W-15884.                                                                                      |
| QC          | EVSB49-W-13172   | -                 | 11/8/02        | Rinsate of bailer after collection of sample EVSB49-W-13170 and replicate EVSB49-W-<br>13171.                                                        |
| QC          | EVSB52-W-13174   | -                 | 11/8/02        | Rinsate of push rod after collection of sample EVSB52-W-13173.                                                                                       |
| QC          | EVSB57-W-13178   | -                 | 11/9/02        | Rinsate of bailer after collection of sample EVSB57-W-13177.                                                                                         |
| QC          | EVSB58-W-13185   | -                 | 11/10/02       | Rinsate of bailer after collection of sample EVSB58-W-13183 and replicate EVSB58-W-<br>13184.                                                        |
| QC          | EVSB61-W-13190   | -                 | 11/11/02       | Rinsate of bailer after collection of sample EVSB61-W-13188 and replicate EVSB61-W-<br>13189.                                                        |

| Location    | Sample                  | Depth<br>(ft BGL) | Sample<br>Date   | Sample Description                                                                                                                                                      |
|-------------|-------------------------|-------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trip blanks | sent to AGEM Laboratory | with soil sample  | s for organic ai | nalysis                                                                                                                                                                 |
| QC          | EV-TRIP102000-14        | -                 | 10/25/00         | Trip blank sent to AGEM Laboratory in Cooler B with near-surface soil samples under COCs 2043-2048.                                                                     |
| QC          | EV-TRIP102000-17        | -                 | 10/25/00         | Trip blank sent to AGEM Laboratory in Cooler A with near-surface soil samples under COCs 2043-2048.                                                                     |
| QC          | EV-TRIP102000-32        | -                 | 10/25/00         | Trip blank sent to AGEM Laboratory in Cooler C with near-surface soil samples under COCs 2043-2048.                                                                     |
| QC          | EVSB24-S-12761          | -                 | 3/14/01          | Trip blank for SB24 soil samples, shipped to AGEM Laboratory and listed on COCs 1971 and 1967.                                                                          |
| QC          | EVSB23-S-12792          | -                 | 3/19/01          | Trip blank with SB23 series soil samples, shipped to AGEM Laboratory and listed on COCs 1362 and 1363.                                                                  |
| Trip blanks | sent to AGEM Laboratory | with water samp   | les for organic  | analysis                                                                                                                                                                |
| QC          | EVTB01-W-12066          | -                 | 3/7/01           | Trip blank sent to AGEM Laboratory with samples listed on COC 513.                                                                                                      |
| QC          | EVTB-W-12036            | -                 | 3/7/01           | Trip blank sent to AGEM Laboratory with samples listed on COC 1958.                                                                                                     |
| QC          | EVSB21-W-12071          | -                 | 3/8/01           | Trip blank sent to AGEM Laboratory with samples listed on COC 1975.                                                                                                     |
| QC          | EVTB02-W-12073          | -                 | 3/9/01           | Trip blank sent to AGEM Laboratory with samples listed on COC 1970.                                                                                                     |
| QC          | EVSB25-W-12081          | -                 | 3/13/01          | Trip blank sent to AGEM Laboratory with samples listed on COC 1979. Trip blank batch 92000, vials #2 and #17.                                                           |
| QC          | EVSB24-W-12766          | -                 | 3/14/01          | Trip blank sent to AGEM Laboratory with samples listed on COC 1964.                                                                                                     |
| QC          | EVSB23-W-12798          | -                 | 3/19/01          | Trip blank sent to AGEM Laboratory with samples listed on COC 1962.                                                                                                     |
| QC          | EVSB30-W-12806          | -                 | 3/21/01          | Trip blank sent to AGEM Laboratory with samples listed on COC 2021.                                                                                                     |
| QC          | EVSB28-W-12817          | -                 | 3/23/01          | Trip blank sent to AGEM Laboratory with two samples listed on COC 201. (Broken EVSB28-<br>W-12815 and replicate EVSB28-W-12816 with bubble.) Trip blank not applicable. |
| QC          | EVSB31-W-12041          | -                 | 3/26/01          | Trip blank sent to AGEM Laboratory with samples listed on COC 475.                                                                                                      |
| QC          | EVSB29-W-12044          | -                 | 3/27/01          | Trip blank sent to AGEM Laboratory with samples listed on COC 478.                                                                                                      |
| QC          | EVQCTB-W-12846          | -                 | 3/28/01          | Trip blank sent to AGEM Laboratory with surface water samples listed on<br>COC 1898.                                                                                    |
| QC          | EVSB32-W-12872          | -                 | 3/28/01          | Trip blank sent with samples hand-carried to AGEM Laboratory, listed on<br>COC 207. Not received by Laboratory.                                                         |
| QC          | EVSB34-W-12860          | -                 | 3/28/01          | Trip blank sent to AGEM Laboratory with samples listed on COC 1909.                                                                                                     |

| Location      | Sample                  | Depth<br>(ft BGL) | Sample<br>Date | Sample Description                                                                                                                                               |
|---------------|-------------------------|-------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trip blanks : | sent to AGEM Laboratory | with water sample | es for organic | analysis (Cont.)                                                                                                                                                 |
| QC            | EVSB33-W-12883          | -                 | 3/29/01        | Trip blank sent to AGEM Laboratory with samples listed on COC 212.                                                                                               |
| QC            | EVSB38-W-12891          | -                 | 3/31/01        | Trip blank sent to AGEM Laboratory with samples listed on COC 1914.                                                                                              |
| QC            | EVSB38-W-12895          | -                 | 4/1/01         | Trip blank sent to AGEM Laboratory with samples listed on COC 1900.                                                                                              |
| QC            | EVSB40-W-12059          | -                 | 4/2/01         | Trip blank sent to AGEM Laboratory with samples listed on COCs 1915 and 1903.                                                                                    |
| QC            | EVSB42-W-12906          | -                 | 4/3/01         | Trip blank sent to AGEM Laboratory with samples listed on COC 1884.                                                                                              |
| QC            | EVSB46-W-12866          | -                 | 4/4/01         | Trip blank sent to AGEM Laboratory with samples listed on COC 2068. Also serves as field<br>blank for water used for equipment rinsates, beginning on this date. |
| QC            | EVSB47-W-12927          | -                 | 4/5/01         | Trip blank sent to AGEM Laboratory with samples listed on COCs 481, 1087, and 1890.                                                                              |
| QC            | EVTB01-W-13161          | -                 | 11/4/02        | Trip blank with samples sent to AGEM Laboratory for organic analysis and listed on COCs 1098 and 3210.                                                           |
| QC            | EVQCTB-W-15857          | -                 | 11/5/02        | Trip blank sent to AGEM Laboratory for organic analysis with samples listed on COC 3213.                                                                         |
| QC            | EVQCTB-W-15876          | -                 | 11/6/02        | Trip blank sent to AGEM Laboratory for organic analysis with samples listed on COC 1100.                                                                         |
| QC            | EVQCTB-W-15879          | -                 | 11/7/02        | Trip blank sent to AGEM Laboratory for organic analysis with samples listed on COC 2113.                                                                         |
| QC            | EVQCTB-W-15890          | -                 | 11/8/02        | Trip blank sent to AGEM Laboratory for organic analysis with samples listed on COC 3423.                                                                         |
| QC            | EVTB58-W-13182          | -                 | 11/9/02        | Trip blank sent to AGEM Laboratory for organic analysis with samples listed on COC 3220.                                                                         |
| QC            | EVTB60-W-13186          | -                 | 11/10/02       | Trip blank sent to AGEM Laboratory for organic analysis with samples listed on COCs 3221 and 3615.                                                               |

Trip blanks sent to Severn-Trent Laboratory with soil samples for verification organic analysis

| QC | MeOH Blank    | - | 11/6/00 | Methanol blank sent to Severn-Trent Laboratory with soil samples listed on COC 105.  |
|----|---------------|---|---------|--------------------------------------------------------------------------------------|
| QC | EV-MeOH Blank | - | 3/20/01 | Methanol blank sent to Severn-Trent Laboratory with soil samples listed on COC 1197. |
| QC | EVS-MeOH      | - | 4/5/01  | Methanol blank sent to Severn-Trent Laboratory with soil samples listed on COC 1201. |

| Location      | Sample                            | Depth<br>(ft BGL) | Sample<br>Date      | Sample Description                                                                                                                                                                                                                                                                                 |
|---------------|-----------------------------------|-------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trip blanks   | sent to Clayton Laborator         | y with water sa   | mples for verifica  | ation organic analysis                                                                                                                                                                                                                                                                             |
| QC            | EV-TB-031501                      | -                 | 3/15/01             | Trip blank sent to Clayton Laboratory with verification groundwater samples listed on COC 1195.                                                                                                                                                                                                    |
| QC            | EV-TB-032701                      | -                 | 3/27/01             | Trip blank sent to Clayton Laboratory with verification groundwater samples listed on COC 1198.                                                                                                                                                                                                    |
| QC            | EV-TB-032901                      | -                 | 3/29/01             | Trip blank sent to Clayton Laboratory with verification groundwater samples listed on COC 1199.                                                                                                                                                                                                    |
| QC            | EV-TB-W-12000                     | -                 | 4/3/01              | Trip blank sent to Clayton Laboratory with verification groundwater samples listed on COC 1200.                                                                                                                                                                                                    |
| QC            | EV-TB-111102                      | -                 | 11/11/02            | Trip blank sent to Clayton Laboratory with samples for verification organic analysis listed on COC 1014.                                                                                                                                                                                           |
| Background    | d samples                         |                   |                     |                                                                                                                                                                                                                                                                                                    |
| QC<br>SW01    | EV-QCBG-S-12035<br>EVSW01-W-12838 | 0.8-1.0<br>-      | 10/25/00<br>3/27/01 | Regional background near-surface soil sample.<br>Background surface water sample. Collected at south (discharge) end of 3-ft-wide culvert<br>under Main Street, exiting near the bridge abutment near the former CCC/USDA facility.<br>Considered to represent water entering the former facility. |
| Blind replica | ate soil samples                  |                   |                     |                                                                                                                                                                                                                                                                                                    |
| HC18          | EV-QCDU-S-11981                   | 0.9-1.2           | 10/24/00            | Replicate of near-surface soil sample EV-HC18-S-11977.                                                                                                                                                                                                                                             |
| HC18          | EV-QCDU-S-11982                   | 5.5-6.0           | 10/24/00            | Replicate of near-surface soil sample EV-HC18-S-11978.                                                                                                                                                                                                                                             |
| HC20          | EV-QCDU-S-11991                   | 0.9-1.2           | 10/24/00            | Replicate of near-surface soil sample EV-HC20-S-11983.                                                                                                                                                                                                                                             |
| HC20          | EV-QCDU-S-11992                   | 5.5-6.0           | 10/24/00            | Replicate of near-surface soil sample EV-HC20-S-11984.                                                                                                                                                                                                                                             |
|               | EV-QCDU-S-12011                   | 0.9-1.2           | 10/25/00            | Replicate of near-surface soil sample EV-HC29-5-12009.                                                                                                                                                                                                                                             |
|               | EV-QCDU-5-12012                   | 0.012             | 10/25/00            | Replicate of near-surface soil sample EV-IIC29-3-12010.                                                                                                                                                                                                                                            |
|               | EV-QCDU-3-12027                   | 5560              | 10/25/00            | Poplicate of near surface soil sample EV-HC36 S 12025.                                                                                                                                                                                                                                             |
| HC37          | EV-000U-S-12020                   | 0.0-0.0           | 10/25/00            | Replicate of near-surface soil sample EV-HC37-S-12020.                                                                                                                                                                                                                                             |
| HC37          | EV-QCDU-S-12031                   | 5.5-6.0           | 10/25/00            | Replicate of near-surface soil sample EV-HC37-S-12020                                                                                                                                                                                                                                              |
| 1007          |                                   | 0.0 0.0           | 10/20/00            |                                                                                                                                                                                                                                                                                                    |

| Location      | Sample            | Depth<br>(ft BGL) | Sample<br>Date | Sample Description                                                                        |
|---------------|-------------------|-------------------|----------------|-------------------------------------------------------------------------------------------|
| Blind replica | ate water samples |                   |                |                                                                                           |
| SB20          | EVSB20-W-12065    | 58.0-60.5         | 3/7/01         | Replicate of groundwater sample EVSB20-W-12064.                                           |
| SB20          | EVSB20-W-12069    | 61.5-65.0         | 3/8/01         | Replicate of groundwater sample EVSB20-W-12068.                                           |
| SB22          | EVSB22-W-11986    | 59.0-62.0         | 3/7/01         | Replicate of groundwater sample EVSB22-W-11985.                                           |
| SB23          | EVSB23-W-12796    | 48.5-52.9         | 3/19/01        | Replicate of groundwater sample EVSB23-W-12795.                                           |
| SB24          | EVSB24-W-12764    | 44.0-48.5         | 3/14/01        | Replicate of groundwater sample EVSB24-W-12763.                                           |
| SB24          | EVSB24-W-12768    | 48.0-53.0         | 3/15/01        | Replicate of groundwater sample EVSB24-W-12767.                                           |
| SB25          | EVSB25-W-12078    | 46.0-51.0         | 3/13/01        | Replicate of groundwater sample EVSB25-W-12077.                                           |
| SB26          | EVSB26-W-12802    | 58.0-63.0         | 3/20/01        | Replicate of groundwater sample EVSB26-W-12801.                                           |
| SB28          | EVSB28-W-12813    | 56.0-61.0         | 3/22/01        | Replicate of groundwater sample EVSB28-W-12812.                                           |
| SB28          | EVSB28-W-12816    | 62.0-64.9         | 3/23/01        | Replicate of groundwater sample EVSB28-W-12815, which was broken during shipment.         |
|               |                   |                   |                | Analysis of the replicate sample was unacceptable because of a bubble in the sample vial. |
| SB29          | EVSB29-W-12043    | 53.5-56.6         | 3/27/01        | Replicate of groundwater sample EVSB29-W-12042.                                           |
| SB30          | EVSB30-W-12811    | 59.5-61.0         | 3/22/01        | Replicate of groundwater sample EVSB30-W-12807.                                           |
| SB30          | EVSB30-W-12804    | 62.0-64.5         | 3/21/01        | Replicate of groundwater sample EVSB30-W-12803.                                           |
| SB30          | EVSB30-W-12809    | 66.0-68.5         | 3/22/01        | Replicate of groundwater sample EVSB30-W-12808.                                           |
| SB31          | EVSB31-W-11990    | 57.0-61.0         | 3/26/01        | Replicate of groundwater sample EVSB31-W-11989.                                           |
| SB31          | EVSB31-W-12040    | 62.0-67.0         | 3/26/01        | Replicate of groundwater sample EVSB31-W-12039.                                           |
| SB32          | EVSB32-W-12869    | 32.8-37.8         | 3/28/01        | Replicate of groundwater sample EVSB32-W-12868.                                           |
| SB32          | EVSB32-W-12873    | 37.8-42.8         | 3/28/01        | Replicate of groundwater sample EVSB32-W-12870.                                           |
| SB33          | EVSB33-W-12881    | 64.0-68.0         | 3/29/01        | Replicate of groundwater sample EVSB33-W-12880.                                           |
| SB34          | EVSB34-W-12858    | 46.0-49.0         | 3/28/01        | Replicate of groundwater sample EVSB34-W-12857.                                           |
| SB34          | EVSB34-W-12855    | 49.0-53.0         | 3/28/01        | Replicate of groundwater sample EVSB34-W-12854.                                           |
| SB35          | EVSB35-W-12875    | 56.0-59.0         | 3/31/01        | Replicate of groundwater sample EVSB35-W-12874.                                           |
| SB36          | EVSB36-W-12885    | 51.5-54.5         | 3/30/01        | Replicate of groundwater sample EVSB36-W-12884.                                           |
| SB37          | EVSB37-W-12908    | 65.5-70.0         | 4/3/01         | Replicate of groundwater sample EVSB37-W-12907.                                           |
| SB38          | EVSB38-W-12889    | 63.5-67.5         | 3/31/01        | Replicate of groundwater sample EVSB38-W-12888.                                           |
| SB40          | EVSB40-W-12054    | 60.0-65.0         | 4/2/01         | Replicate of groundwater sample EVSB40-W-12053.                                           |
| SB40          | EVSB40-W-12057    | 64.9-65.9         | 4/2/01         | Replicate of groundwater sample EVSB40-W-12056.                                           |
| SB41          | EVSB41-W-12900    | 68.0-72.8         | 4/2/01         | Replicate of groundwater sample EVSB41-W-12898.                                           |
| SB42          | EVSB42-W-12902    | 60.5-65.0         | 4/3/01         | Replicate of groundwater sample EVSB42-W-12901.                                           |

| Location      | Sample                                | Depth<br>(ft BGL)   | Sample<br>Date  | Sample Description                                |  |  |  |  |
|---------------|---------------------------------------|---------------------|-----------------|---------------------------------------------------|--|--|--|--|
| Blind replica | Blind replicate water samples (Cont.) |                     |                 |                                                   |  |  |  |  |
| SB43          | EVSB43-W-12061                        | 39.0-44.0           | 4/3/01          | Replicate of groundwater sample EVSB43-W-12060.   |  |  |  |  |
| SB43          | EVSB43-W-12049                        | 44.0-49.0           | 4/3/01          | Replicate of groundwater sample EVSB43-W-12048.   |  |  |  |  |
| SB43          | EVSB43-W-12052                        | 49.0-52.6           | 4/3/01          | Replicate of groundwater sample EVSB43-W-12051.   |  |  |  |  |
| SB44          | EVSB44-W-12914                        | 64.6-67.0           | 4/4/01          | Replicate of groundwater sample EVSB44-W-12911.   |  |  |  |  |
| SB45          | EVSB45-W-12933                        | 52.0-56.0           | 4/5/01          | Replicate of groundwater sample EVSB45-W-12932.   |  |  |  |  |
| SB45          | EVSB45-W-12931                        | 56.0-60.0           | 4/5/01          | Replicate of groundwater sample EVSB45-W-12903.   |  |  |  |  |
| SB46          | EVSB46-W-12863                        | 55.0-60.0           | 4/4/01          | Replicate of groundwater sample EVSB46-W-12862.   |  |  |  |  |
| SB46          | EVSB46-W-12865                        | 60.0-65.0           | 4/4/01          | Replicate of groundwater sample EVSB46-W-12864.   |  |  |  |  |
| SB46          | EVSB46-W-12919                        | 65.0-70.0           | 4/4/01          | Replicate of groundwater sample EVSB46-W-12918.   |  |  |  |  |
| SB47          | EVSB47-W-12922                        | 62.0-67.0           | 4/4/01          | Replicate of groundwater sample EVSB47-W-12921.   |  |  |  |  |
| SB47          | EVSB47-W-12925                        | 67.0-72.0           | 4/5/01          | Replicate of groundwater sample EVSB47-W-12924.   |  |  |  |  |
| SB47          | EVSB47-W-12929                        | 72.0-76.0           | 4/5/01          | Replicate of groundwater sample EVSB47-W-12928.   |  |  |  |  |
| SB49          | EVSB49-W-13171                        | 51.0-55.0           | 11/8/02         | Replicate of groundwater sample EVSB49-W-13170.   |  |  |  |  |
| SB50          | EVSB50-W-13159                        | 51.0-54.0           | 11/4/02         | Replicate of groundwater sample EVSB50-W-13158.   |  |  |  |  |
| SB52          | EVSB52-W-13165                        | 46.0-51.0           | 11/5/02         | Replicate of groundwater sample EVSB52-W-13164.   |  |  |  |  |
| SB53          | EVQCDU-W-15870                        | 21.0-26.0           | 11/5/02         | Replicate of groundwater sample EVSB53-W-15868.   |  |  |  |  |
| SB54          | EVQCDU-W-15875                        | 22.0-27.0           | 11/6/02         | Replicate of groundwater sample EVSB54-W-15874.   |  |  |  |  |
| SB57          | EVSB57-W-13176                        | 32.8-37.8           | 11/9/02         | Replicate of groundwater sample EVSB57-W-13175.   |  |  |  |  |
| SB58          | EVSB58-W-13184                        | 38.3-41.3           | 11/10/02        | Replicate of groundwater sample EVSB58-W-13183.   |  |  |  |  |
| SB61          | EVSB61-W-13189                        | 56.4-59.3           | 11/11/02        | Replicate of groundwater sample EVSB61-W-13188.   |  |  |  |  |
| SW12          | EVQCDU-W-15853                        |                     | 11/4/02         | Replicate of surface water sample EVSW12-W-15852. |  |  |  |  |
| SW07          | EVQCDU-W-12845                        | -                   | 3/27/01         | Replicate of surface water sample EVSW07-W-12844. |  |  |  |  |
| Soil sample   | s selected by AGEM Labo               | pratory for duplica | ate organic ana | alyses by the purge-and-trap method               |  |  |  |  |
| HC17          | EV-HC17-S-11976                       | 5.5-6.0             | 10/24/00        | Near-surface soil sample.                         |  |  |  |  |
| HC25          | EV-HC25-S-12001                       | 0.9-1.2             | 10/25/00        | Near-surface soil sample.                         |  |  |  |  |
| HC29          | EV-HC29-S-12009                       | 0.9-1.2             | 10/25/00        | Near-surface soil sample.                         |  |  |  |  |
| HC30          | EV-HC30-S-12014                       | 5.5-6.0             | 10/25/00        | Near-surface soil sample.                         |  |  |  |  |
| HC36          | EV-HC36-S-12025                       | 0.9-1.2             | 10/25/00        | Near-surface soil sample.                         |  |  |  |  |

| Location    | Sample                                                                                                       | Depth<br>(ft BGL) | Sample<br>Date  | Sample Description                  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------|-------------------|-----------------|-------------------------------------|--|--|--|--|
| Soil sample | Soil samples selected by AGEM Laboratory for duplicate organic analyses by the purge-and-trap method (Cont.) |                   |                 |                                     |  |  |  |  |
| HC36        | EV-HC36-S-12026                                                                                              | 5.5-6.0           | 10/25/00        | Near-surface soil sample.           |  |  |  |  |
| HC37        | EV-QCDU-S-12032                                                                                              | 5.5-6.0           | 10/25/00        | Near-surface soil replicate sample. |  |  |  |  |
| SB23        | EVSB23-S-12770                                                                                               | 1.0               | 3/19/01         | Subsurface soil sample.             |  |  |  |  |
| SB23        | EVSB23-S-12778                                                                                               | 17.0              | 3/19/01         | Subsurface soil sample.             |  |  |  |  |
| SB23        | EVSB23-S-12780                                                                                               | 21.0              | 3/19/01         | Subsurface soil sample.             |  |  |  |  |
| SB23        | EVSB23-S-12781                                                                                               | 23.0              | 3/19/01         | Subsurface soil sample.             |  |  |  |  |
| SB23        | EVSB23-S-12782                                                                                               | 25.0              | 3/19/01         | Subsurface soil sample.             |  |  |  |  |
| SB23        | EVSB23-S-12785                                                                                               | 31.0              | 3/19/01         | Subsurface soil sample.             |  |  |  |  |
| SB23        | EVSB23-S-12788                                                                                               | 37.0              | 3/19/01         | Subsurface soil sample.             |  |  |  |  |
| SB24        | EVSB24-S-12099                                                                                               | 35.0              | 3/14/01         | Subsurface soil sample.             |  |  |  |  |
| SB24        | EVSB24-S-12758                                                                                               | 43.0              | 3/14/01         | Subsurface soil sample.             |  |  |  |  |
| Soil sample | es submitted for verification                                                                                | n organic analysi | is at Severn-Tr | ent Laboratory                      |  |  |  |  |
| HC07        | EV-HC07-S-11955                                                                                              | 0.8-1.2           | 10/24/00        | Near-surface soil sample.           |  |  |  |  |
| HC10        | EV-HC10-S-11962                                                                                              | 5.5-6.0           | 10/24/00        | Near-surface soil sample.           |  |  |  |  |
| HC12        | EV-HC12-S-11965                                                                                              | 0.9-1.2           | 10/24/00        | Near-surface soil sample.           |  |  |  |  |
| HC15        | EV-HC15-S-11972                                                                                              | 5.5-6.0           | 10/24/00        | Near-surface soil sample.           |  |  |  |  |
| HC26        | EV-HC26-S-12003                                                                                              | 0.9-1.2           | 10/25/00        | Near-surface soil sample.           |  |  |  |  |
| HC29        | EV-HC29-S-12009                                                                                              | 0.9-1.2           | 10/25/00        | Near-surface soil sample.           |  |  |  |  |
| HC30        | EV-HC30-S-12014                                                                                              | 5.5-6.0           | 10/25/00        | Near-surface soil sample.           |  |  |  |  |
| HC34        | EV-HC34-S-12021                                                                                              | 0.9-1.2           | 10/25/00        | Near-surface soil sample.           |  |  |  |  |
| HC36        | EV-HC36-S-12026                                                                                              | 5.5-6.0           | 10/25/00        | Near-surface soil sample.           |  |  |  |  |
| HC38        | EV-HC38-S-12034                                                                                              | 5.5-6.0           | 10/25/00        | Near-surface soil sample.           |  |  |  |  |
| SB23        | EVSB23-S-12777                                                                                               | 15.0              | 3/19/01         | Subsurface soil sample.             |  |  |  |  |
| SB23        | EVSB23-S-12784                                                                                               | 29.0              | 3/19/01         | Subsurface soil sample.             |  |  |  |  |
| SB23        | EVSB23-S-12788                                                                                               | 37.0              | 3/19/01         | Subsurface soil sample.             |  |  |  |  |
| SB24        | EVSB24-S-12082                                                                                               | 1.0               | 3/14/01         | Subsurface soil sample.             |  |  |  |  |
| SB24        | EVSB24-S-12095                                                                                               | 27.0              | 3/14/01         | Subsurface soil sample.             |  |  |  |  |
| SB24        | EVSB24-S-12102                                                                                               | 41.0              | 3/14/01         | Subsurface soil sample.             |  |  |  |  |

| Location                                                                                              | Sample                                                                                     | Depth<br>(ft BGL) | Sample<br>Date | Sample Description                                                    |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------|----------------|-----------------------------------------------------------------------|--|--|--|--|--|
| Soil sample                                                                                           | oil samples submitted for verification organic analysis at Severn-Trent Laboratory (Cont.) |                   |                |                                                                       |  |  |  |  |  |
| SB24                                                                                                  | EVSB24-S-12758                                                                             | 43.0              | 3/14/01        | Subsurface soil sample.                                               |  |  |  |  |  |
| SB34                                                                                                  | EVSB34-S-12821                                                                             | 7.0               | 3/27/01        | Subsurface soil sample.                                               |  |  |  |  |  |
| SB34                                                                                                  | EVSB34-S-12827                                                                             | 19.0              | 3/27/01        | Subsurface soil sample.                                               |  |  |  |  |  |
| SB34                                                                                                  | EVSB34-S-12851                                                                             | 47.0              | 3/27/01        | Subsurface soil sample.                                               |  |  |  |  |  |
| Water samples selected by AGEM Laboratory for duplicate organic analyses by the purge-and-trap method |                                                                                            |                   |                |                                                                       |  |  |  |  |  |
| SB20                                                                                                  | EVSB20-W-12063                                                                             | 56.0-58.0         | 3/7/01         | ECPT groundwater sample.                                              |  |  |  |  |  |
| SB20                                                                                                  | EVSB20-W-12068                                                                             | 61.5-65.0         | 3/8/01         | ECPT groundwater sample.                                              |  |  |  |  |  |
| SB23                                                                                                  | EVSB23-W-12799                                                                             | 44.0-48.0         | 3/19/01        | ECPT groundwater sample.                                              |  |  |  |  |  |
| SB23                                                                                                  | EVSB23-W-12795                                                                             | 48.5-52.9         | 3/19/01        | ECPT groundwater sample.                                              |  |  |  |  |  |
| SB24                                                                                                  | EVSB24-W-12763                                                                             | 44.0-48.5         | 3/14/01        | ECPT groundwater sample. (Duplicate analyses on 3/15/01 and 3/22/01.) |  |  |  |  |  |
| SB24                                                                                                  | EVSB24-W-12764                                                                             | 44.0-48.5         | 3/14/01        | ECPT groundwater replicate sample.                                    |  |  |  |  |  |
| SB24                                                                                                  | EVSB24-W-12767                                                                             | 48.0-53.0         | 3/15/01        | ECPT groundwater sample.                                              |  |  |  |  |  |
| SB24                                                                                                  | EVSB24-W-12768                                                                             | 48.0-53.0         | 3/15/01        | ECPT groundwater replicate sample.                                    |  |  |  |  |  |
| SB29                                                                                                  | EVSB29-W-12042                                                                             | 53.5-56.5         | 3/27/01        | ECPT groundwater sample.                                              |  |  |  |  |  |
| SB29                                                                                                  | EVSB29-W-12043                                                                             | 53.5-56.6         | 3/27/01        | ECPT groundwater replicate sample.                                    |  |  |  |  |  |
| SB33                                                                                                  | EVSB33-W-12881                                                                             | 64.0-68.0         | 3/29/01        | ECPT groundwater replicate sample.                                    |  |  |  |  |  |
| SB38                                                                                                  | EVSB38-W-12893                                                                             | 68.9-72.9         | 4/1/01         | ECPT groundwater sample.                                              |  |  |  |  |  |
| SB40                                                                                                  | EVSB40-W-12053                                                                             | 60.0-65.0         | 4/2/01         | ECPT groundwater sample.                                              |  |  |  |  |  |
| SB40                                                                                                  | EVSB40-W-12054                                                                             | 60.0-65.0         | 4/2/01         | ECPT groundwater replicate sample.                                    |  |  |  |  |  |
| SB42                                                                                                  | EVSB42-W-12901                                                                             | 60.5-65.0         | 4/3/01         | ECPT groundwater sample.                                              |  |  |  |  |  |
| SB42                                                                                                  | EVSB42-W-12902                                                                             | 60.5-65.0         | 4/3/01         | ECPT groundwater replicate sample.                                    |  |  |  |  |  |
| SB44                                                                                                  | EVSB44-W-12914                                                                             | 64.6-67.0         | 4/4/01         | ECPT groundwater replicate sample.                                    |  |  |  |  |  |
| SB47                                                                                                  | EVSB47-W-12925                                                                             | 67.0-72.0         | 4/5/01         | ECPT groundwater replicate sample.                                    |  |  |  |  |  |
| SB48                                                                                                  | EVSB48-W-12941                                                                             | 59.4-64.4         | 4/5/01         | ECPT groundwater sample.                                              |  |  |  |  |  |
| SB49                                                                                                  | EVSB49-W-13171                                                                             | 51.0-55.0         | 11/8/02        | ECPT groundwater sample.                                              |  |  |  |  |  |
| SB50                                                                                                  | EVSB50-W-13169                                                                             | 54.0-56.8         | 11/7/02        | ECPT groundwater sample.                                              |  |  |  |  |  |
| SB51                                                                                                  | EVSB51-W-13166                                                                             | 54.1-59.1         | 11/6/02        | ECPT groundwater sample.                                              |  |  |  |  |  |
| SB52                                                                                                  | EVSB52-W-13163                                                                             | 58.0-60.5         | 11/5/02        | ECPT groundwater sample.                                              |  |  |  |  |  |
| SB54                                                                                                  | EVSB54-W-15874                                                                             | 22.0-27.0         | 11/6/02        | Screened Geoprobe sample.                                             |  |  |  |  |  |

| Location   | Sample                                                                                                        | Depth<br>(ft BGL) | Sample<br>Date | Sample Description                 |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------|-------------------|----------------|------------------------------------|--|--|--|--|--|
| Water samp | Nater samples selected by AGEM Laboratory for duplicate organic analyses by the purge-and-trap method (Cont.) |                   |                |                                    |  |  |  |  |  |
| SB56       | EVSB56-W-15881                                                                                                | 22.0-27.0         | 11/7/02        | Screened Geoprobe sample.          |  |  |  |  |  |
| SB58       | EVSB58-W-13181                                                                                                | 33.0-38.0         | 11/9/02        | ECPT groundwater sample.           |  |  |  |  |  |
| SB61       | EVSB61-W-13191                                                                                                | 50.1-55.1         | 11/11/02       | ECPT groundwater sample.           |  |  |  |  |  |
| SB61       | EVSB61-W-13189                                                                                                | 56.4-59.3         | 11/11/02       | ECPT groundwater sample.           |  |  |  |  |  |
| SW09       | EVSW09-W-15849                                                                                                | -                 | 11/4/02        | Surface water sample.              |  |  |  |  |  |
| QC         | EVSB24-W-12769                                                                                                | -                 | 3/15/01        | Equipment rinsate.                 |  |  |  |  |  |
| QC         | EVSB31-W-12038                                                                                                | -                 | 3/26/01        | Equipment rinsate.                 |  |  |  |  |  |
| QC         | EVSB33-W-12882                                                                                                | -                 | 3/29/02        | Equipment rinsate.                 |  |  |  |  |  |
| Groundwate | Groundwater samples submitted for verification organic analysis at Clayton Laboratory                         |                   |                |                                    |  |  |  |  |  |
| SB24       | EVSB24-W-12762                                                                                                | 40.0-43.0         | 3/14/01        | ECPT groundwater sample.           |  |  |  |  |  |
| SB24       | EVSB24-W-12763                                                                                                | 44.0-48.5         | 3/14/01        | ECPT groundwater sample.           |  |  |  |  |  |
| SB24       | EVSB24-W-12764                                                                                                | 44.0-48.5         | 3/14/01        | ECPT groundwater replicate sample. |  |  |  |  |  |
| SB30       | EVSB30-W-12811                                                                                                | 59.5-61.0         | 3/22/01        | ECPT groundwater replicate sample. |  |  |  |  |  |
| SB30       | EVSB30-W-12808                                                                                                | 66.0-68.5         | 3/22/01        | ECPT groundwater sample.           |  |  |  |  |  |
| SB31       | EVSB31-W-11990                                                                                                | 57.0-61.0         | 3/26/01        | ECPT groundwater replicate sample. |  |  |  |  |  |
| SB31       | EVSB31-W-12039                                                                                                | 62.0-67.0         | 3/26/01        | ECPT groundwater sample.           |  |  |  |  |  |
| SB31       | EVSB31-W-12040                                                                                                | 62.0-67.0         | 3/26/01        | ECPT groundwater replicate sample. |  |  |  |  |  |
| SB32       | EVSB32-W-12869                                                                                                | 32.8-37.8         | 3/28/01        | ECPT groundwater replicate sample. |  |  |  |  |  |
| SB32       | EVSB32-W-12870                                                                                                | 37.8-42.8         | 3/28/01        | ECPT groundwater sample.           |  |  |  |  |  |
| SB33       | EVSB33-W-12880                                                                                                | 64.0-68.0         | 3/29/01        | ECPT groundwater sample.           |  |  |  |  |  |
| SB33       | EVSB33-W-12881                                                                                                | 64.0-68.0         | 3/29/01        | ECPT groundwater replicate sample. |  |  |  |  |  |
| SB34       | EVSB34-W-12858                                                                                                | 46.0-49.0         | 3/28/01        | ECPT groundwater replicate sample. |  |  |  |  |  |
| SB34       | EVSB34-W-12854                                                                                                | 49.0-53.0         | 3/28/01        | ECPT groundwater sample.           |  |  |  |  |  |
| SB34       | EVSB34-W-12855                                                                                                | 49.0-53.0         | 3/28/01        | ECPT groundwater replicate sample. |  |  |  |  |  |
| SB38       | EVSB38-W-12893                                                                                                | 68.9-72.9         | 4/1/01         | ECPT groundwater sample.           |  |  |  |  |  |
| SB39       | EVSB39-W-12897                                                                                                | 68.2-72.2         | 4/1/01         | ECPT groundwater sample.           |  |  |  |  |  |
| SB41       | EVSB40-W-12053                                                                                                | 60.0-65.0         | 4/2/01         | ECPT groundwater sample.           |  |  |  |  |  |
| SB41       | EVSB41-W-12898                                                                                                | 68.0-72.8         | 4/2/01         | ECPT groundwater sample.           |  |  |  |  |  |
| SB41       | EVSB41-W-12900                                                                                                | 68.0-72.8         | 4/2/01         | ECPT groundwater replicate sample. |  |  |  |  |  |

| Location   | Sample                    | Depth<br>(ft BGL)    | Sample<br>Date   | Sample Description                                               |
|------------|---------------------------|----------------------|------------------|------------------------------------------------------------------|
| Groundwate | er samples submitted for  | verification organic | c analysis at C  | Clayton Laboratory (Cont.)                                       |
| SB49       | EVSB49-W-13170            | 51.0-55.0            | 11/8/02          | Ample water recovery, oxidized, moderately turbid.               |
| SB51       | EVSB51-W-13166            | 54.1-59.1            | 11/6/02          | Slow recovery but consistent. High level of turbidity, oxidized. |
| SB51       | EVSB51-W-13167            | 59.0-64.0            | 11/7/02          | Middle sand zone. Good recovery. Water dark brown, not oxidized. |
| SB52       | EVSB52-W-13173            | 52.0-57.0            | 11/8/02          | Abundant, oxidized, turbid.                                      |
| Groundwate | er samples selected by Se | evern-Trent Labor    | atory for duplic | cate nitrate analyses                                            |
| SB20       | EVSB20-W-12063            | 56.0-58.0            | 3/7/01           | ECPT groundwater sample.                                         |
| SB22       | EVSB22-W-11985            | 59.0-62.0            | 3/7/01           | ECPT groundwater sample.                                         |
| SB24       | EVSB24-W-12762            | 40.0-43.0            | 3/14/01          | ECPT groundwater sample.                                         |
| SB30       | EVSB30-W-12808            | 66.0-68.5            | 3/22/01          | ECPT groundwater sample.                                         |
| SB37       | EVSB37-W-12907            | 65.5-70.0            | 4/3/01           | ECPT groundwater sample.                                         |

|                    |                | Units (μg/              | /L in water; μg/k  | g in soil)            |
|--------------------|----------------|-------------------------|--------------------|-----------------------|
|                    |                |                         | Concentration      |                       |
| Sample             | Sample<br>Date | Carbon<br>Tetrachloride | Chloroform         | Quantitation<br>Limit |
| Field blanks       |                |                         |                    |                       |
| EVQCFB-W-15873     | 11/6/02        | ND <sup>a</sup>         | ND                 | 1.0                   |
| EVQCFB-W-15892     | 11/11/02       | ND                      | 0.6 J <sup>b</sup> | 1.0                   |
| Equipment rinsates |                |                         |                    |                       |
| EVBR01-W-11987     | 3/7/01         | ND                      | ND                 | 1.0                   |
| EVRR01-W-11988     | 3/7/01         | ND                      | ND                 | 1.0                   |
| EVSB20-W-12070     | 3/8/01         | ND                      | ND                 | 1.0                   |
| EVRR02-W-12075     | 3/9/01         | ND                      | ND                 | 1.0                   |
| EVSB25-W-12079     | 3/13/01        | ND                      | 1.7                | 1.0                   |
| EVSB25-W-12080     | 3/13/01        | ND                      | 1.7                | 1.0                   |
| EVSB24-W-12765     | 3/14/01        | ND                      | 1.7                | 1.0                   |
| EVSB24-W-12769     | 3/15/01        | ND                      | 1.9                | 1.0                   |
| EVSB23-W-12797     | 3/19/01        | ND                      | ND                 | 1.0                   |
| EVSB23-W-12800     | 3/19/01        | ND                      | ND                 | 1.0                   |
| EVSB30-W-12805     | 3/21/01        | ND                      | ND                 | 1.0                   |
| EVSB28-W-12814     | 3/22/01        | ND                      | ND                 | 1.0                   |
| EVSB30-W-12810     | 3/22/01        | ND                      | ND                 | 1.0                   |
| EVSB31-W-12037     | 3/26/01        | ND                      | ND                 | 1.0                   |
| EVSB31-W-12038     | 3/26/01        | ND                      | ND                 | 1.0                   |
| EVSB32-W-12871     | 3/28/01        | ND                      | ND                 | 1.0                   |
| EVSB34-W-12856     | 3/28/01        | ND                      | ND                 | 1.0                   |
| EVSB34-W-12859     | 3/28/01        | ND                      | ND                 | 1.0                   |
| EVSB33-W-12882     | 3/29/01        | ND                      | ND                 | 1.0                   |
| EVSB36-W-12886     | 3/30/01        | ND                      | ND                 | 1.0                   |
| EVSB35-W-12876     | 3/31/01        | ND                      | ND                 | 1.0                   |
| EVSB38-W-12890     | 3/31/01        | ND                      | ND                 | 1.0                   |
| EVSB38-W-12894     | 4/1/01         | ND                      | ND                 | 1.0                   |
| EVSB40-W-12055     | 4/2/01         | ND                      | ND                 | 1.0                   |
| EVSB40-W-12058     | 4/2/01         | ND                      | ND                 | 1.0                   |
| EVSB41-W-12899     | 4/2/01         | ND                      | ND                 | 1.0                   |
| EVSB42-W-12904     | 4/3/01         | ND                      | ND                 | 1.0                   |
| EVSB43-W-12050     | 4/3/01         | ND                      | ND                 | 1.0                   |
| EVSB43-W-12062     | 4/3/01         | ND                      | ND                 | 1.0                   |
| EVSB37-W-12912     | 4/4/01         | ND                      | ND                 | 1.0                   |
| EVSB37-W-12913     | 4/4/01         | ND                      | ND                 | 1.0                   |
| EVSB44-W-12938     | 4/4/01         | ND                      | ND                 | 1.0                   |
| EVSB46-W-12867     | 4/4/01         | ND                      | ND                 | 1.0                   |
| EVSB46-W-12920     | 4/4/01         | ND                      | ND                 | 1.0                   |
| EVSB47-W-12923     | 4/4/01         | ND                      | ND                 | 1.0                   |

TABLE G.2 Results of organic analyses on quality control samples collected to monitor sample collection and handling activities.

|                                                                                                                                                                                                                                                                          |                                                                                                                                                                    | Units (μg/L in water; μg/kg in soil)                                            |                                                                             |                                                                     |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                    |                                                                                 | Concentration                                                               |                                                                     |  |  |
| Sample                                                                                                                                                                                                                                                                   | Sample<br>Date                                                                                                                                                     | Carbon<br>Tetrachloride                                                         | Chloroform                                                                  | Quantitation<br>Limit                                               |  |  |
| Equipment rinsates (Cont.)                                                                                                                                                                                                                                               |                                                                                                                                                                    |                                                                                 |                                                                             |                                                                     |  |  |
| EVSB47-W-12926<br>EVQCRI-W-15856<br>EVQCRI-W-15869<br>EVSB50-W-13162<br>EVQCRI-W-15872<br>EVQCRI-W-15877<br>EVQCRI-W-15883<br>EVSB51-W-13168<br>EVQCRI-W-15885<br>EVSB49-W-13172<br>EVSB52-W-13174<br>EVSB52-W-13178<br>EVSB58-W-13185<br>EVSB61-W-13190                 | 4/5/01<br>11/5/02<br>11/5/02<br>11/6/02<br>11/6/02<br>11/6/02<br>11/7/02<br>11/7/02<br>11/8/02<br>11/8/02<br>11/8/02<br>11/9/02<br>11/9/02<br>11/10/02<br>11/11/02 | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND            | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND  | $ \begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$ |  |  |
| Trip blanks sent to AGEM La                                                                                                                                                                                                                                              | aboratory with s                                                                                                                                                   | oil samples for or                                                              | ganic analysis                                                              |                                                                     |  |  |
| EV-TRIP102000-14<br>EV-TRIP102000-17<br>EV-TRIP102000-32<br>EVSB24-S-12761<br>EVSB23-S-12792                                                                                                                                                                             | 10/25/00<br>10/25/00<br>10/25/00<br>3/14/01<br>3/19/01                                                                                                             | ND<br>ND<br>ND<br>ND<br>ND                                                      | ND<br>ND<br>ND<br>ND<br>3.7 J                                               | 10.0<br>10.0<br>10.0<br>10.0<br>10.0                                |  |  |
| Trip blanks sent to AGEM La                                                                                                                                                                                                                                              | aboratory with v                                                                                                                                                   | vater samples for                                                               | organic analysi                                                             | S                                                                   |  |  |
| EVTB01-W-12066<br>EVTB-W-12036<br>EVSB21-W-12071<br>EVTB02-W-12073<br>EVSB25-W-12081<br>EVSB24-W-12766<br>EVSB23-W-12798<br>EVSB30-W-12806<br>EVSB28-W-12817<br>EVSB31-W-12817<br>EVSB31-W-12041<br>EVSB29-W-12044<br>EVQCTB-W-12846<br>EVSB34-W-12860<br>EVSB33-W-12883 | 3/7/01<br>3/7/01<br>3/8/01<br>3/13/01<br>3/14/01<br>3/19/01<br>3/21/01<br>3/23/01<br>3/26/01<br>3/27/01<br>3/28/01<br>3/28/01<br>3/29/01                           | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N | ND<br>ND<br>ND<br>ND<br>4.6<br>4.7<br>5.2<br>4.4<br>4.7<br>ND<br>5.4<br>4.6 | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0  |  |  |
| EVSB38-W-12891                                                                                                                                                                                                                                                           | 3/31/01                                                                                                                                                            | ND                                                                              | 4.3                                                                         | 1.0                                                                 |  |  |

|                                                                                                                                                                                                                                                    |                                                                                                                                         | Units (µg/                                                     | L in water; μg/k                                                                    | g in soil)                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|
|                                                                                                                                                                                                                                                    |                                                                                                                                         |                                                                | Concentration                                                                       |                                                      |
| Sample                                                                                                                                                                                                                                             | Sample<br>Date                                                                                                                          | Carbon<br>Tetrachloride                                        | Chloroform                                                                          | Quantitation<br>Limit                                |
| Trip blanks sent to AGEM                                                                                                                                                                                                                           | Laboratory with v                                                                                                                       | water samples for                                              | organic analysi                                                                     | is (Cont.)                                           |
| EVSB38-W-12895<br>EVSB40-W-12059<br>EVSB42-W-12906<br>EVSB46-W-12866<br>EVSB47-W-12927<br>EVTB01-W-13161<br>EVQCTB-W-15857<br>EVQCTB-W-15876<br>EVQCTB-W-15879<br>EVQCTB-W-15890<br>EVTB58-W-13182<br>EVTB60-W-13186<br>Trip blanks sent to Severn | 4/1/01<br>4/2/01<br>4/3/01<br>4/4/01<br>4/5/01<br>11/4/02<br>11/5/02<br>11/6/02<br>11/6/02<br>11/7/02<br>11/8/02<br>11/9/02<br>11/10/02 | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | 4.6<br>5.1<br>3.9<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 |
| analysis<br>MeOH Blank<br>EV-MeOH Blank<br>EVS-MeOH                                                                                                                                                                                                | 11/6/00<br>3/20/01<br>4/5/01                                                                                                            | ND<br>ND<br>ND<br>ND                                           | ND<br>ND<br>ND                                                                      | 10.0<br>10.0<br>10.0<br>10.0                         |
| Trip blanks sent to Clayton                                                                                                                                                                                                                        | Laboratory with                                                                                                                         | water samples fo                                               | r verification org                                                                  | ganic analysis                                       |
| EV-TB-031501<br>EV-TB-032701<br>EV-TB-032901<br>EV-TB-W-12000<br>EV-TB-111102                                                                                                                                                                      | 3/15/01<br>3/27/01<br>3/29/01<br>4/3/01<br>11/11/02                                                                                     | ND<br>ND<br>ND<br>ND                                           | ND<br>ND<br>ND<br>ND                                                                | 5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0               |
| EV-QCBG-S-12035<br>EVSW01-W-12838                                                                                                                                                                                                                  | 10/25/00<br>3/27/01                                                                                                                     | ND<br>ND                                                       | ND<br>ND                                                                            | 10.0<br>1.0                                          |

<sup>a</sup> ND, not detected at the quantitation limit indicated.

<sup>b</sup> J, estimated concentration below the quantitation limit.

| TABLE G.3 Comparison of carbon tetrachloride and chloroform concentrations for dual analyses of | Эf |
|-------------------------------------------------------------------------------------------------|----|
| near-surface soil samples at AGEM Laboratory by the headspace method.                           |    |

|          |                   |                                                          |                                           | Concentrati             | on (µg/kg)     |
|----------|-------------------|----------------------------------------------------------|-------------------------------------------|-------------------------|----------------|
| Location | Depth<br>(ft BGL) | Sample                                                   | Туре                                      | Carbon<br>Tetrachloride | Chloroform     |
| HC05     | 5.5-6.0           | EV-HC05-S-11952<br>EV-HC05-S-11952DUP                    | Sample<br>Duplicate analysis              | ND <sup>a</sup><br>ND   | ND<br>ND       |
| HC06     | 0.9-1.2           | EV-HC06-S-11953<br>EV-HC06-S-11953DUP                    | Sample<br>Duplicate analysis              | ND<br>ND                | ND<br>ND       |
| HC06     | 5.5-6.0           | EV-HC06-S-11954<br>EV-HC06-S-11954DUP                    | Sample<br>Duplicate analysis              | ND<br>ND                | ND<br>ND       |
| HC08     | 5.5-6.0           | EV-HC08-S-11958<br>EV-HC08-S-11958DUP                    | Sample<br>Duplicate analysis              | ND<br>0.71              | ND<br>ND       |
| HC09     | 0.8-1.2           | EV-HC09-S-11959<br>EV-HC09-S-11959DUP                    | Sample<br>Duplicate analysis              | ND<br>ND                | ND<br>ND       |
| HC18     | 0.9-1.2           | EV-HC18-S-11977<br>EV-QCDU-S-11981                       | Sample<br>Replicate                       | 0.11<br>ND              | ND<br>ND       |
| HC18     | 5.5-6.0           | EV-HC18-S-11978<br>EV-QCDU-S-11982                       | Sample<br>Replicate                       | ND<br>ND                | ND<br>ND       |
| HC20     | 0.9-1.2           | EV-HC20-S-11983<br>EV-QCDU-S-11991                       | Sample<br>Replicate                       | ND<br>ND                | ND<br>ND       |
| HC20     | 5.5-6.0           | EV-HC20-S-11984<br>EV-QCDU-S-11992                       | Sample<br>Replicate                       | ND<br>ND                | ND<br>ND       |
| HC24     | 0.9-1.2           | EV-HC24-S-11999<br>EV-HC24-S-11999DUP                    | Sample<br>Duplicate analysis              | 0.28<br>ND              | ND<br>ND       |
| HC24     | 5.5-6.0           | EV-HC24-S-12000<br>EV-HC24-S-12000DUP                    | Sample<br>Duplicate analysis              | ND<br>ND                | ND<br>ND       |
| HC26     | 5.5-6.0           | EV-HC26-S-12004<br>EV-HC26-S-12004DUP                    | Sample<br>Duplicate analysis              | ND<br>ND                | ND<br>ND       |
| HC29     | 0.9-1.2           | EV-HC29-S-12009<br>EV-HC29-S-12009DUP                    | Sample<br>Duplicate analysis              | 0.33<br>0.26            | ND<br>ND       |
| HC29     | 5.5-6.0           | EV-HC29-S-12010<br>EV-QCDU-S-12012<br>EV-QCDU-S-12012DUP | Sample<br>Replicate<br>Duplicate analysis | ND<br>ND<br>ND          | ND<br>ND<br>ND |

#### Concentration (µg/kg) Depth Carbon Location (ft BGL) Sample Tetrachloride Chloroform Туре HC36 0.9-1.2 EV-HC36-S-12025 Sample 0.25 ND Replicate EV-QCDU-S-12027 ND ND HC36 EV-HC36-S-12026 Sample ND 5.5-6.0 1.36 EV-QCDU-S-12028 Replicate ND 1.15 HC37 EV-HC37-S-12029 Sample 2.19 ND 0.9-1.2 Replicate EV-QCDU-S-12031 2.31 ND HC37 5.5-6.0 EV-HC37-S-12030 Sample ND 0.14 EV-QCDU-S-12032 Replicate 0.17 ND

TABLE G.3 (Cont.)

<sup>a</sup> ND, not detected at limit of 0.1  $\mu$ g/kg for carbon tetrachloride and 0.75  $\mu$ g/kg for chloroform.

|                          |                                                  |                                         |                           | Meas                     | ured Value<br>Check S | es for Calibration tandards |                  |
|--------------------------|--------------------------------------------------|-----------------------------------------|---------------------------|--------------------------|-----------------------|-----------------------------|------------------|
| Sample                   | Recovery of Surrogate Compounds <sup>a</sup> (%) |                                         |                           | Carbon Tetrachloride     |                       | Chloroform                  |                  |
|                          | Fluorobenzene                                    | 1,2-Dichloro-<br>benzene-d <sub>4</sub> | 4-Bromo-<br>fluorobenzene | Concentration<br>(µg/kg) | RPD <sup>b</sup>      | Concentration<br>(µg/kg)    | RPD <sup>b</sup> |
| SDG 00-11-01, analysis d | ate November 1, 200                              | 00                                      |                           |                          |                       |                             |                  |
| 20-ug/kg standard        | 94                                               | 116                                     | 112                       | 22.73                    | 12.8                  | 22.87                       | 13.4             |
| Laboratory blank         | 100                                              | 100                                     | 100                       |                          |                       |                             |                  |
| EV-HC10-S-11962          | 105                                              | 100                                     | 98                        |                          |                       |                             |                  |
| EV-QCDU-S-12027          | 118                                              | 115                                     | 115                       |                          |                       |                             |                  |
| EV-HC27-S-12005          | 118                                              | 115                                     | 115                       |                          |                       |                             |                  |
| EV-HC26-S-12003          | 111                                              | 106                                     | 107                       |                          |                       |                             |                  |
| EV-HC01-S-11943          | 109                                              | 101                                     | 103                       |                          |                       |                             |                  |
| EV-HC01-S-11944          | 107                                              | 101                                     | 100                       |                          |                       |                             |                  |
| EV-HC09-S-11960          | 106                                              | 103                                     | 101                       |                          |                       |                             |                  |
| EV-HC22-S-11995          | 102                                              | 99                                      | 93                        |                          |                       |                             |                  |
| EV-HC20-S-11984          | 98                                               | 104                                     | 90                        |                          |                       |                             |                  |
| EV-HC15-S-11972          | 105                                              | 103                                     | 100                       |                          |                       |                             |                  |
| EV-HC36-S-12025          | 103                                              | 105                                     | 97                        |                          |                       |                             |                  |
| EV-HC36-S-12025DUP       | 104                                              | 109                                     | 100                       |                          |                       |                             |                  |
| EV-HC38-S-12034          | 104                                              | 106                                     | 99                        |                          |                       |                             |                  |
| EV-HC32-S-12018          | 102                                              | 100                                     | 95                        |                          |                       |                             |                  |
| EV-HC34-S-12021          | 100                                              | 101                                     | 94                        |                          |                       |                             |                  |
| SDG 00-11-02, analysis d | ate November 2, 200                              | 00                                      |                           |                          |                       |                             |                  |
| 20-µg/kg standard        | 100                                              | 100                                     | 100                       | 20.58                    | 2.9                   | 20.04                       | 0.2              |
| Laboratory blank         | 100                                              | 100                                     | 100                       |                          |                       |                             |                  |
| EV-HC19-S-11979          | 108                                              | 105                                     | 108                       |                          |                       |                             |                  |
| EV-HC20-S-11983          | 110                                              | 108                                     | 111                       |                          |                       |                             |                  |

## TABLE G.4 Results of organic analyses on quality control samples collected to monitor soil analyses at the AGEM Laboratory by the purge-and-trap method.

|                                                                                                                                                                                                                                                             |                                                                                         |                                                                                |                                                                                 | Meas                     | ured Value<br>Check S | es for Calibration tandards |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------|-----------------------|-----------------------------|------------------|
|                                                                                                                                                                                                                                                             | Recovery of                                                                             | f Surrogate Comp                                                               | oounds <sup>a</sup> (%)                                                         | Carbon Tetrac            | Carbon Tetrachloride  |                             | m                |
| Sample                                                                                                                                                                                                                                                      | Fluorobenzene                                                                           | 1,2-Dichloro-<br>benzene-d <sub>4</sub>                                        | 4-Bromo-<br>fluorobenzene                                                       | Concentration<br>(µg/kg) | RPD <sup>b</sup>      | Concentration<br>(µg/kg)    | RPD <sup>b</sup> |
| SDG 00-11-02, analysis d                                                                                                                                                                                                                                    | ate November 2, 200                                                                     | 00 (Cont.)                                                                     |                                                                                 |                          |                       |                             |                  |
| EV-QCDU-S-11992<br>EV-HC07-S-11955<br>EV-102000-vial17<br>EV-HC28-S-12008<br>EV-HC21-S-11993<br>EV-HC29-S-12009DUP<br>EV-HC29-S-12009<br>EV-HC37-S-12029<br>EV-102000-vial14<br>EV-HC32-S-12017<br>EV-HC24-S-12000<br>EV-HC30-S-12014<br>EV-HC30-S-12014DUP | 108<br>106<br>107<br>108<br>105<br>105<br>103<br>113<br>103<br>108<br>105<br>116<br>114 | 103<br>104<br>104<br>102<br>104<br>93<br>105<br>93<br>108<br>107<br>113<br>105 | 107<br>108<br>111<br>107<br>106<br>99<br>113<br>102<br>112<br>110<br>120<br>112 |                          |                       |                             |                  |
| SDG 00-11-03, analysis d                                                                                                                                                                                                                                    | ate November 3, 200                                                                     | 00                                                                             |                                                                                 |                          |                       |                             |                  |
| 20-µg/kg standard<br>Laboratory blank                                                                                                                                                                                                                       | 98<br>100                                                                               | 109<br>100                                                                     | 105<br>100                                                                      | 21.7                     | 8.2                   | 20.75                       | 3.7              |
| EV-HC33-S-12019<br>EV-QCDU-S-12028<br>EV-HC35-S-12024<br>EV-HC12-S-11965<br>EV-HC29-S-12010<br>EV-QCDU-S-11982<br>EV-HC31-S-12015<br>EV-HC14-S-11970                                                                                                        | 101<br>97<br>94<br>98<br>94<br>98<br>94<br>98<br>94<br>89                               | 95<br>95<br>92<br>93<br>90<br>91<br>90<br>85                                   | 100<br>96<br>95<br>99<br>93<br>97<br>94<br>90                                   |                          |                       |                             |                  |

|                          |                     |                                         |                           | Meas                     | ured Value<br>Check S | es for Calibration<br>standards |                  |
|--------------------------|---------------------|-----------------------------------------|---------------------------|--------------------------|-----------------------|---------------------------------|------------------|
|                          | Recovery of         | f Surrogate Com                         | oounds <sup>a</sup> (%)   | Carbon Tetrachloride     |                       | Chloroform                      |                  |
| Sample                   | Fluorobenzene       | 1,2-Dichloro-<br>benzene-d <sub>4</sub> | 4-Bromo-<br>fluorobenzene | Concentration<br>(µg/kg) | RPD <sup>b</sup>      | Concentration<br>(µg/kg)        | RPD <sup>b</sup> |
| SDG 00-11-03, analysis d | ate November 3, 200 | 00 (Cont.)                              |                           |                          |                       |                                 |                  |
| EV-HC17-S-11976          | 78 <sup>c</sup>     | 73 <sup>c</sup>                         | 75 <sup>c</sup>           | Reanalyzed in Sl         | DG 00-11-             | 09 without error.               |                  |
| EV-HC13-S-11968          | 91                  | 87                                      | 93                        | ,                        |                       |                                 |                  |
| EV-QCDU-S-11981          | 89                  | 85                                      | 88                        |                          |                       |                                 |                  |
| EV-HC14-S-11969          | 89                  | 89                                      | 92                        |                          |                       |                                 |                  |
| EV-HC21-S-11994          | 92                  | 92                                      | 93                        |                          |                       |                                 |                  |
| EV-HC36-S-12026          | 91                  | 90                                      | 93                        |                          |                       |                                 |                  |
| EV-HC36-S-12026DUP       | 90                  | 90                                      | 95                        |                          |                       |                                 |                  |
| SDG 00-11-04, analysis d | ate November 4, 200 | 00                                      |                           |                          |                       |                                 |                  |
| 20-ug/kg standard        | 95                  | 103                                     | 100                       | 23.37                    | 15.5                  | 20.75                           | 3.7              |
| Laboratory blank         | 105                 | 97                                      | 100                       |                          |                       |                                 |                  |
| EV-HC37-S-12030          | 98                  | 95                                      | 95                        |                          |                       |                                 |                  |
| EV-HC17-S-11975          | 97                  | 95                                      | 96                        |                          |                       |                                 |                  |
| EV-HC18-S-11977          | 94                  | 95                                      | 95                        |                          |                       |                                 |                  |
| EV-HC16-S-11974          | 97                  | 93                                      | 97                        |                          |                       |                                 |                  |
| EV-HC11-S-11964          | 96                  | 98                                      | 100                       |                          |                       |                                 |                  |
| EV-HC03-S-11947          | 91                  | 89                                      | 91                        |                          |                       |                                 |                  |
| EV-HC08-S-11957          | 93                  | 92                                      | 93                        |                          |                       |                                 |                  |
| EV-QCDU-S-12031          | 87                  | 84                                      | 86                        |                          |                       |                                 |                  |
| EV-HC19-S-11980          | 82                  | 72 <sup>c</sup>                         | 75 <sup>c</sup>           | Reanalyzed in Sl         | DG 00-11-             | 09 without error.               |                  |
| EV-HC12-S-11966          | 89                  | 90                                      | 90                        | -                        |                       |                                 |                  |
| EV-HC38-S-12033          | 88                  | 91                                      | 92                        |                          |                       |                                 |                  |
| EV-HC34-S-12022          | 88                  | 88                                      | 90                        |                          |                       |                                 |                  |
| EV-HC16-S-11973          | 86                  | 92                                      | 90                        |                          |                       |                                 |                  |

|                                                                             |                                                  |                                         |                                   | Measured Values for Calibration<br>Check Standards |                      |                          |                  |
|-----------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|-----------------------------------|----------------------------------------------------|----------------------|--------------------------|------------------|
|                                                                             | Recovery of Surrogate Compounds <sup>a</sup> (%) |                                         |                                   | Carbon Tetrac                                      | Carbon Tetrachloride |                          | Chloroform       |
| Sample                                                                      | Fluorobenzene                                    | 1,2-Dichloro-<br>benzene-d <sub>4</sub> | 4-Bromo-<br>fluorobenzene         | Concentration<br>(µg/kg)                           | RPD <sup>b</sup>     | Concentration<br>(µg/kg) | RPD <sup>b</sup> |
| SDG 00-11-04, analysis da                                                   | ate November 4, 200                              | 00 (Cont.)                              |                                   |                                                    |                      |                          |                  |
| EV-QCDU-S-12032<br>EV-QCDU-S-12032DUP                                       | 89<br>80                                         | 88<br>85                                | 89<br>82                          |                                                    |                      |                          |                  |
| SDG 00-11-07, analysis da                                                   | ate November 7, 200                              | 00                                      |                                   |                                                    |                      |                          |                  |
| 20-µg/kg standard<br>Laboratory blank                                       | 96<br>100                                        | 111<br>100                              | 102<br>100                        | 19.79                                              | 1.1                  | 18.99                    | 5.2              |
| EV-HC22-S-11996<br>EV-HC25-S-12002<br>EV-HC27-S-12006<br>EV-HC30-S-12013    | 102<br>100<br>102<br>92                          | 107<br>118<br>108<br>94                 | 100<br>111<br>104<br>90           |                                                    |                      |                          |                  |
| EV-HC28-S-12007<br>EV-HC33-S-12020<br>EV-HC26-S-12004<br>EV-HC24-S-11999    | 99<br>80<br>97<br>89                             | 104<br>88<br>101<br>90                  | 98<br>82<br>96<br>84              |                                                    |                      |                          |                  |
| EV-HC23-S-11998<br>EV-HC10-S-11961<br>EV-QCDU-S-12012                       | 90<br>84<br>96                                   | 84<br>91<br>102                         | 82<br>85<br>99                    |                                                    |                      |                          |                  |
| EV-HC23-S-11997<br>EV-HC07-S-11956<br>EV-HC25-S-12001<br>EV-HC25-S-12001DUP | 66 <sup>c</sup><br>93<br>91<br>80                | 84<br>102<br>103<br>86                  | 75 <sup>c</sup><br>98<br>97<br>81 | inot reanalyzed.                                   |                      |                          |                  |

|                                                                                                                                                                                                                                                                        |                                                                                            |                                                                                             |                                                                                             | Measu                    | ured Value<br>Check S | s for Calibration tandards |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------|-----------------------|----------------------------|------------------|
|                                                                                                                                                                                                                                                                        | Recovery of Surrogate Compounds <sup>a</sup> (%)                                           |                                                                                             |                                                                                             | Carbon Tetrachloride     |                       | Chloroform                 |                  |
| Sample                                                                                                                                                                                                                                                                 | Fluorobenzene                                                                              | 1,2-Dichloro-<br>benzene-d <sub>4</sub>                                                     | 4-Bromo-<br>fluorobenzene                                                                   | Concentration<br>(µg/kg) | RPD <sup>b</sup>      | Concentration<br>(µg/kg)   | RPD <sup>b</sup> |
| SDG 00-11-09, analysis d                                                                                                                                                                                                                                               | ate November 9, 200                                                                        | 00                                                                                          |                                                                                             |                          |                       |                            |                  |
| 20-μg/kg standard<br>Laboratory blank                                                                                                                                                                                                                                  | 108<br>100                                                                                 | 117<br>100                                                                                  | 116<br>100                                                                                  | 21.45                    | 7                     | 20.36                      | 1.8              |
| EV-HC15-S-11971<br>EV-HC11-S-11963<br>EV-HC35-S-12023<br>EV-HC18-S-11978<br>EV-HC13-S-11967<br>EV-QCBG-S-12035<br>EV-HC31-S-12016<br>EV-HC04-S-11949<br>EV-HC05-S-11951<br>EV-HC02-S-11951<br>EV-HC05-S-11952<br>EV-HC09-S-11959<br>EV-HC19-S-11980<br>EV-HC17-S-11976 | 115<br>113<br>112<br>95<br>108<br>106<br>106<br>116<br>95<br>108<br>109<br>83<br>98<br>107 | 111<br>110<br>109<br>98<br>104<br>106<br>104<br>114<br>85<br>107<br>109<br>92<br>103<br>107 | 117<br>113<br>115<br>99<br>110<br>110<br>110<br>119<br>91<br>112<br>113<br>93<br>105<br>114 |                          |                       |                            |                  |
| EV-HC17-S-11976DUP<br>SDG 00-11-14, analysis d                                                                                                                                                                                                                         | 100<br>ate November 14, 20                                                                 | 101<br>200                                                                                  | 108                                                                                         |                          |                       |                            |                  |
| 20-μg/kg standard<br>Laboratory blank                                                                                                                                                                                                                                  | 107<br>100                                                                                 | 112<br>100                                                                                  | 108<br>100                                                                                  | 22.87                    | 13.4                  | 19.35                      | 3.3              |
| EV-HC06-S-11953<br>EV-HC03-S-11948<br>EV-HC04-S-11950                                                                                                                                                                                                                  | 116<br>109<br>110                                                                          | 112<br>103<br>100                                                                           | 114<br>105<br>106                                                                           |                          |                       |                            |                  |

| Sample                                                                                                      |                                                  |                                         |                                   | Meas                     | ured Value<br>Check S | es for Calibration tandards |                  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|-----------------------------------|--------------------------|-----------------------|-----------------------------|------------------|
|                                                                                                             | Recovery of Surrogate Compounds <sup>a</sup> (%) |                                         |                                   | Carbon Tetrachloride     |                       | Chlorofor                   | m                |
|                                                                                                             | Fluorobenzene                                    | 1,2-Dichloro-<br>benzene-d <sub>4</sub> | 4-Bromo-<br>fluorobenzene         | Concentration<br>(µg/kg) | RPD <sup>b</sup>      | Concentration<br>(µg/kg)    | RPD <sup>b</sup> |
| SDG 00-11-14, analysis c                                                                                    | late November 14, 20                             | 000 (Cont.)                             |                                   |                          |                       |                             |                  |
| EV-HC08-S-11958<br>EV-HC02-S-11946<br>EV-QCDU-S-11991<br>EV-HC06-S-11954<br>EV-TRIP102000-32                | 88<br>107<br>104<br>105<br>96                    | 87<br>103<br>99<br>100<br>91            | 90<br>105<br>101<br>101<br>95     |                          |                       |                             |                  |
| SDG 01-03-16, analysis c                                                                                    | late March 16, 2001                              |                                         |                                   |                          |                       |                             |                  |
| 20-µg/kg standard<br>Laboratory blank                                                                       | 103<br>100                                       | 96<br>100                               | 100<br>100                        | 16.41                    | 19.7                  | 16.78                       | 17.5             |
| EVSB24-S-12758<br>EVSB24-S-12758DUP<br>EVSB24-S-12092<br>EVSB24-S-12088<br>EVSB24-S-12087<br>EVSB24-S-12085 | 96<br>83<br>91<br>90<br>81<br>84                 | 82<br>85<br>92<br>89<br>84<br>85        | 91<br>93<br>100<br>98<br>92<br>94 |                          |                       |                             |                  |
| EVSB24-S-12003                                                                                              | 85                                               | 87                                      | 96                                |                          |                       |                             |                  |
| SDG 01-03-19, analysis c                                                                                    | late March 19, 2001                              |                                         |                                   |                          |                       |                             |                  |
| 20-µg/kg standard<br>Laboratory blank                                                                       | 100<br>100                                       | 97<br>100                               | 97<br>100                         | 23.07                    | 14.3                  | 22.1                        | 10               |
| EVSB24-S-12095<br>EVSB24-S-12083<br>EVSB24-S-12089                                                          | 95<br>98<br>100                                  | 88<br>110<br>103                        | 88<br>105<br>102                  |                          |                       |                             |                  |

| Sample                   |                                                  |                                         |                           | Measured Values for Calibration<br>Check Standards |                  |                          |                  |
|--------------------------|--------------------------------------------------|-----------------------------------------|---------------------------|----------------------------------------------------|------------------|--------------------------|------------------|
|                          | Recovery of Surrogate Compounds <sup>a</sup> (%) |                                         |                           | Carbon Tetrachloride                               |                  | Chloroform               |                  |
|                          | Fluorobenzene                                    | 1,2-Dichloro-<br>benzene-d <sub>4</sub> | 4-Bromo-<br>fluorobenzene | Concentration<br>(µg/kg)                           | RPD <sup>b</sup> | Concentration<br>(µg/kg) | RPD <sup>b</sup> |
| SDG 01-03-19, analysis o | late March 19, 2001                              | (Cont.)                                 |                           |                                                    |                  |                          |                  |
| EVSB24-S-12086           | 105                                              | 109                                     | 108                       |                                                    |                  |                          |                  |
| EVSB24-S-12090           | 102                                              | 108                                     | 106                       |                                                    |                  |                          |                  |
| EVSB24-S-12100           | 105                                              | 108                                     | 105                       |                                                    |                  |                          |                  |
| EVSB24-S-12098           | 90                                               | 101                                     | 97                        |                                                    |                  |                          |                  |
| SDG 01-03-20, analysis o | late March 20, 2001                              |                                         |                           |                                                    |                  |                          |                  |
| 20-µg/kg standard        | 100                                              | 100                                     | 100                       | 21.52                                              | 7.3              | 21.06                    | 5.2              |
| Laboratory blank         | 100                                              | 100                                     | 100                       |                                                    |                  |                          |                  |
| EVSB24-S-12097           | 98                                               | 103                                     | 102                       |                                                    |                  |                          |                  |
| EVSB24-S-12761           | 86                                               | 80                                      | 83                        |                                                    |                  |                          |                  |
| EVSB24-S-12102           | 101                                              | 108                                     | 104                       |                                                    |                  |                          |                  |
| EVSB24-S-12093           | 100                                              | 109                                     | 105                       |                                                    |                  |                          |                  |
| EVSB24-S-12091           | 103                                              | 110                                     | 107                       |                                                    |                  |                          |                  |
| EVSB24-S-12084           | 102                                              | 112                                     | 109                       |                                                    |                  |                          |                  |
| EVSB24-S-12094           | 100                                              | 105                                     | 101                       |                                                    |                  |                          |                  |
| EVSB24-S-12101           | 101                                              | 109                                     | 107                       |                                                    |                  |                          |                  |
| EVSB24-S-12096           | 86                                               | 103                                     | 101                       |                                                    |                  |                          |                  |
| EVSB24-S-12099           | 100                                              | 116                                     | 116                       |                                                    |                  |                          |                  |
| EVSB24-S-12099DUP        | 100                                              | 120                                     | 114                       |                                                    |                  |                          |                  |
|                                                                                                          |                                          |                                         |                                                                                                                    | Measu            | ured Value<br>Check S    | es for Calibration tandards |     |
|----------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|-----------------------------|-----|
|                                                                                                          | Recovery o                               | f Surrogate Comp                        | oounds <sup>a</sup> (%)                                                                                            | Carbon Tetrac    | hloride                  | Chloroform                  |     |
| Sample                                                                                                   | Fluorobenzene                            | 1,2-Dichloro-<br>benzene-d <sub>4</sub> | 1,2-Dichloro-<br>benzene-d44-Bromo-<br>fluorobenzeneConcentration<br>( $\mu g/kg$ )Concentration<br>( $\mu g/kg$ ) |                  | Concentration<br>(µg/kg) | RPD <sup>b</sup>            |     |
| SDG 01-03-22, analysis                                                                                   | s date March 22, 2001                    |                                         |                                                                                                                    |                  |                          |                             |     |
| 20-μg/kg standard<br>Laboratory blank                                                                    | 106<br>108                               | 103<br>104                              | 101<br>106                                                                                                         | 20.71            | 3.5                      | 21.57                       | 7.6 |
| EVSB23-S-12787<br>EVSB23-S-12771<br>EVSB23-S-12776<br>EVSB23-S-12784<br>EVSB23-S-12772                   | 89<br>100<br>99<br>96<br>78 <sup>c</sup> | 93<br>102<br>102<br>100<br>85           | 90<br>100<br>98<br>97<br>81                                                                                        | Not reanalyzed.  |                          |                             |     |
| SDG 01-03-23, analysis                                                                                   | s date March 23, 2001                    |                                         |                                                                                                                    |                  |                          |                             |     |
| 20-µg/kg standard<br>Laboratory blank                                                                    | 95<br>113                                | 92<br>110                               | 95<br>111                                                                                                          | 18.98            | 5.2                      | 21.25                       | 6.1 |
| EVSB23-S-12775<br>EVSB23-S-12783<br>EVSB23-S-12773<br>EVSB23-S-12777<br>EVSB23-S-12791<br>EVSB23-S-12790 | 101<br>104<br>101<br>108<br>94<br>83     | 87<br>91<br>87<br>93<br>86<br>82        | 96<br>100<br>96<br>101<br>93<br>84                                                                                 |                  |                          |                             |     |
| SDG 01-03-26, analysis                                                                                   | s date March 26, 2001                    |                                         |                                                                                                                    |                  |                          |                             |     |
| 20-μg/kg standard<br>Laboratory blank                                                                    | 97<br>100                                | 110<br>100                              | 102<br>100                                                                                                         | 19.81            | 0.9                      | 21.66                       | 7.9 |
| EVSB23-S-12774                                                                                           | 50 <sup>c</sup>                          | 58 <sup>c</sup>                         | 55 <sup>c</sup>                                                                                                    | Reanalyzed in SI | DG 01-03-:               | 28 without error.           |     |

|                                                                                                                                                                |                                                                   |                                                                    |                                                                     | Measu                    | ured Value<br>Check S | es for Calibration tandards |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------|-----------------------|-----------------------------|------------------|
|                                                                                                                                                                | Recovery of Surrogate Compounds <sup>a</sup> (%)                  |                                                                    |                                                                     | Carbon Tetrac            | hloride               | Chloroform                  |                  |
| Sample                                                                                                                                                         | Fluorobenzene                                                     | 1,2-Dichloro-<br>benzene-d <sub>4</sub>                            | 4-Bromo-<br>fluorobenzene                                           | Concentration<br>(µg/kg) | RPD <sup>b</sup>      | Concentration<br>(µg/kg)    | RPD <sup>b</sup> |
| SDG 01-03-26, analysis o                                                                                                                                       | late March 26, 2001                                               | (Cont.)                                                            |                                                                     |                          |                       |                             |                  |
| EVSB23-S-12789<br>EVSB23-S-12786<br>EVSB23-S-12779<br>EVSB23-S-12780<br>EVSB23-S-12781<br>EVSB23-S-12782<br>EVSB23-S-12770<br>EVSB23-S-12778<br>EVSB23-S-12778 | 100<br>98<br>88<br>98<br>99<br>43 <sup>c</sup><br>100<br>94<br>95 | 97<br>98<br>80<br>101<br>100<br>53 <sup>c</sup><br>102<br>93<br>97 | 100<br>98<br>82<br>100<br>100<br>50 <sup>c</sup><br>104<br>92<br>94 | Reanalyzed in SI         | DG 01-03-             | 28 without error.           |                  |
| SDG 01-03-27, analysis of<br>20-μg/kg standard<br>Laboratory blank                                                                                             | 103<br>100                                                        | 99<br>100                                                          | 100<br>100                                                          | 21.87                    | 8.9                   | 23.37                       | 15.5             |
| EVSB23-S-12788<br>EVSB23-S-12785<br>EVSB23-S-12792                                                                                                             | 113<br>106<br>95                                                  | 91<br>89<br>82                                                     | 105<br>98<br>92                                                     |                          |                       |                             |                  |
| SDG 01-03-28, analysis o                                                                                                                                       | late March 28, 2001                                               |                                                                    |                                                                     |                          |                       |                             |                  |
| 20-µg/kg standard<br>Laboratory blank                                                                                                                          | 96<br>100                                                         | 91<br>100                                                          | 95<br>100                                                           | 20.09                    | 0.4                   | 22.21                       | 10.5             |
| EVSB23-S-12782<br>EVSB23-S-12774                                                                                                                               | 102<br>99                                                         | 100<br>94                                                          | 102<br>99                                                           |                          |                       |                             |                  |

|                        |                      |                                                                                                      |     | Measured Values for Calibration<br>Check Standards |                  |                          |                  |
|------------------------|----------------------|------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------|------------------|--------------------------|------------------|
|                        | Recovery o           | Recovery of Surrogate Compounds <sup>a</sup> (%)                                                     |     |                                                    | hloride          | Chloroform               |                  |
| Sample                 | Fluorobenzene        | 1,2-Dichloro- 4-Bromo- Concentration Fluorobenzene benzene-d <sub>4</sub> fluorobenzene $(\mu g/kg)$ |     | Concentration<br>(µg/kg)                           | RPD <sup>b</sup> | Concentration<br>(µg/kg) | RPD <sup>b</sup> |
| SDG 01-04-01, analysis | s date April 1, 2001 |                                                                                                      |     |                                                    |                  |                          |                  |
| 20-μg/kg standard      | 95                   | 87                                                                                                   | 90  | 20.54                                              | 2.7              | 21.31                    | 6.3              |
| Laboratory blank       | 100                  | 100                                                                                                  | 100 |                                                    |                  |                          |                  |
| EVSB34-S-12835         | 94                   | 91                                                                                                   | 89  |                                                    |                  |                          |                  |
| EVSB34-S-12834         | 105                  | 111                                                                                                  | 105 |                                                    |                  |                          |                  |
| EVSB34-S-12819         | 90                   | 98                                                                                                   | 97  |                                                    |                  |                          |                  |
| EVSB34-S-12829         | 102                  | 110                                                                                                  | 109 |                                                    |                  |                          |                  |
| EVSB34-S-12832         | 103                  | 110                                                                                                  | 110 |                                                    |                  |                          |                  |
| EVSB34-S-12833         | 100                  | 107                                                                                                  | 106 |                                                    |                  |                          |                  |
| EVSB34-S-12831         | 81                   | 75 <sup>c</sup>                                                                                      | 81  | Accepted.                                          |                  |                          |                  |
| SDG 01-04-02, analysis | s date April 2, 2001 |                                                                                                      |     |                                                    |                  |                          |                  |
| 20-µg/kg standard      | 101                  | 94                                                                                                   | 99  | 19.72                                              | 1.4              | 21.21                    | 5.9              |
| Laboratory blank       | 100                  | 100                                                                                                  | 100 |                                                    |                  |                          |                  |
| EVSB34-S-12827         | 95                   | 94                                                                                                   | 93  |                                                    |                  |                          |                  |
| EVSB34-S-12821         | 99                   | 115                                                                                                  | 108 |                                                    |                  |                          |                  |
| EVSB34-S-12823         | 99                   | 109                                                                                                  | 105 |                                                    |                  |                          |                  |
| EVSB34-S-12825         | 99                   | 110                                                                                                  | 105 |                                                    |                  |                          |                  |
| EVSB34-S-12830         | 95                   | 107                                                                                                  | 100 |                                                    |                  |                          |                  |
| EVSB34-S-12850         | 94                   | 106                                                                                                  | 101 |                                                    |                  |                          |                  |
| EVSB34-S-12820         | 98                   | 110                                                                                                  | 106 |                                                    |                  |                          |                  |

|                                                                                                                                                       |                                           |                                              |                                           | Measu                    | ured Value<br>Check S | es for Calibration tandards |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------|-------------------------------------------|--------------------------|-----------------------|-----------------------------|------------------|
|                                                                                                                                                       | Recovery of                               | f Surrogate Com                              | oounds <sup>a</sup> (%)                   | Carbon Tetrac            | hloride               | Chloroform                  |                  |
| Sample                                                                                                                                                | Fluorobenzene                             | 1,2-Dichloro-<br>benzene-d <sub>4</sub>      | 4-Bromo-<br>fluorobenzene                 | Concentration<br>(µg/kg) | RPD <sup>b</sup>      | Concentration<br>(μg/kg)    | RPD <sup>b</sup> |
| SDG 01-04-04, analysis c                                                                                                                              | late April 4, 2001                        |                                              |                                           |                          |                       |                             |                  |
| 20-µg/kg standard<br>Laboratory blank                                                                                                                 | 88<br>100                                 | 101<br>100                                   | 102<br>100                                | 18.35                    | 8.5                   | 17.81                       | 11.6             |
| EVSB23-S-12782DUP<br>EVSB23-S-12780DUP                                                                                                                | 90<br>87                                  | 91<br>87                                     | 92<br>89                                  |                          |                       |                             |                  |
| SDG 01-04-17, analysis c                                                                                                                              | late April 17, 2001                       |                                              |                                           |                          |                       |                             |                  |
| 20-μg/kg standard<br>Laboratory blank                                                                                                                 | 87<br>100                                 | 87<br>100                                    | 92<br>100                                 | 21.73                    | 8.3                   | 22.08                       | 9.9              |
| EVSB23-S-12781DUP<br>EVSB23-S-12788DUP<br>EVSB23-S-12785DUP<br>EVSB34-S-12828<br>EVSB34-S-12824<br>EVSB34-S-12848<br>EVSB34-S-12848<br>EVSB34-S-12818 | 87<br>103<br>103<br>90<br>103<br>94<br>96 | 109<br>111<br>107<br>101<br>104<br>97<br>100 | 91<br>107<br>105<br>98<br>105<br>96<br>97 |                          |                       |                             |                  |
| SDG 01-04-18, analysis c                                                                                                                              | late April 18, 2001                       |                                              |                                           |                          |                       |                             |                  |
| 20-µg/kg standard<br>Laboratory blank                                                                                                                 | 115<br>100                                | 117<br>100                                   | 115<br>100                                | 19.14                    | 4.4                   | 20.53                       | 2.6              |
| EVSB34-S-12837<br>EVSB34-S-12851                                                                                                                      | 108<br>102                                | 111<br>109                                   | 109<br>105                                |                          |                       |                             |                  |

|                                                       |                                                  |                                         |                           | Meas                     | ured Value<br>Check S | es for Calibration tandards |                  |
|-------------------------------------------------------|--------------------------------------------------|-----------------------------------------|---------------------------|--------------------------|-----------------------|-----------------------------|------------------|
|                                                       | Recovery of Surrogate Compounds <sup>a</sup> (%) |                                         |                           | Carbon Tetrac            | hloride               | Chloroform                  |                  |
| Sample                                                | Fluorobenzene                                    | 1,2-Dichloro-<br>benzene-d <sub>4</sub> | 4-Bromo-<br>fluorobenzene | Concentration<br>(µg/kg) | RPD <sup>♭</sup>      | Concentration<br>(µg/kg)    | RPD <sup>b</sup> |
| SDG 01-04-18, analysis d                              | ate April 18, 2001 (C                            | Cont.)                                  |                           |                          |                       |                             |                  |
| EVSB34-S-12849<br>EVSB34-S-12822                      | 107<br>105                                       | 110<br>109                              | 109<br>107                |                          |                       |                             |                  |
| SDG 01-04-23, analysis d                              | ate April 23, 2001                               |                                         |                           |                          |                       |                             |                  |
| 20-µg/kg standard<br>Laboratory blank                 | 86<br>100                                        | 91<br>100                               | 94<br>100                 | 20.13                    | 0.6                   | 21.37                       | 6.6              |
| EVSB34-S-12826<br>EVSB34-S-12836<br>EVSB23-S-12770DUP | 99<br>98<br>97                                   | 103<br>104<br>100                       | 101<br>102<br>98          |                          |                       |                             |                  |

<sup>a</sup> Quality control limits for recovery of surrogate compounds: 80-120%.

<sup>b</sup> Quality control limits for RPD for calibration check standards: ±20%.

<sup>c</sup> Surrogate recovery outside the quality control limit.

TABLE G.5 Comparison of carbon tetrachloride and chloroform concentrations in duplicate analyses of subsurface soil samples at AGEM Laboratory by the purge-and-trap method.

|                |                   | Concentration (µg/kg) |                       |                    |                       |  |  |  |
|----------------|-------------------|-----------------------|-----------------------|--------------------|-----------------------|--|--|--|
|                |                   | Carbon Tetrachloride  |                       | Chlor              | oform                 |  |  |  |
| Sample         | Depth<br>(ft BGL) | Sample<br>Analysis    | Duplicate<br>Analysis | Sample<br>Analysis | Duplicate<br>Analysis |  |  |  |
| EVSB23-S-12770 | 1.0               | ND <sup>a</sup>       | ND                    | 3.9 J <sup>b</sup> | 2.8 J                 |  |  |  |
| EVSB23-S-12778 | 17.0              | 17                    | 17                    | 10                 | 10                    |  |  |  |
| EVSB23-S-12780 | 21.0              | 19                    | 12                    | 5.9 J              | 4.7 J                 |  |  |  |
| EVSB23-S-12781 | 23.0              | 23                    | ND                    | 11                 | 2.4 J                 |  |  |  |
| EVSB23-S-12782 | 25.0              | 8.2 J                 | 7.9 J                 | 6.8 J              | 7.1 J                 |  |  |  |
| EVSB23-S-12785 | 31.0              | 3.4 J                 | 2.9 J                 | 2.8 J              | 2.7 J                 |  |  |  |
| EVSB23-S-12788 | 37.0              | 5.1 J                 | 4.5 J                 | 6.6 J              | 6.2 J                 |  |  |  |
| EVSB24-S-12099 | 35.0              | ND                    | ND                    | ND                 | ND                    |  |  |  |
| EVSB24-S-12758 | 43.0              | 16                    | 15                    | 3.8 J              | 3.6 J                 |  |  |  |

<sup>a</sup> ND, not detected.

<sup>b</sup> J, estimated concentration below the method quantitation limit of 10  $\mu$ g/kg.

TABLE G.6 Recovery of system-monitoring compounds in verification organic analyses of soil samples at Severn-Trent Laboratory with the purge-and-trap GC-MS method.

| Sample<br>LTPI LCS<br>VBLKO3<br>LTPJ LCS<br>VBLKO7 |                  |                             |                        | Reco                                   | very <sup>a</sup> (%)   |                                         |
|----------------------------------------------------|------------------|-----------------------------|------------------------|----------------------------------------|-------------------------|-----------------------------------------|
| Sample                                             | Analysis<br>Date | Sample<br>Delivery<br>Group | Toluene-d <sub>8</sub> | 1,2-Dichloro-<br>ethane-d <sub>4</sub> | Bromofluoro-<br>benzene | 1,2-Dichloro-<br>benzene-d <sub>4</sub> |
| LTPI LCS                                           | 11/15/00         | 80582                       | 106                    | 88                                     | 107                     | 104                                     |
| VBLKO3                                             | 11/15/00         | 80582                       | 107                    | 98                                     | 117                     | 107                                     |
| LTPJ LCS                                           | 11/16/00         | 80582                       | 102                    | 94                                     | 109                     | 105                                     |
| VBLKO7                                             | 11/16/00         | 80582                       | 99                     | 87                                     | 103                     | 104                                     |
| LTPI MeOH LCS                                      | 11/15/00         | 80582                       | 118 <sup>b</sup>       | 97                                     | 122 <sup>b</sup>        | 111                                     |
| MeOH Blank                                         | 11/15/00         | 80582                       | 102                    | 80                                     | 110                     | 101                                     |
| EV-HC26-S-12003                                    | 11/15/00         | 80582                       | 113                    | 93                                     | 124 <sup>b</sup>        | 114                                     |
| EV-HC34-S-12021                                    | 11/15/00         | 80582                       | 102                    | 87                                     | 110                     | 100                                     |
| EV-HC07-S-11955                                    | 11/15/00         | 80582                       | 109                    | 72 <sup>b</sup>                        | 116                     | 106                                     |
| EV-HC15-S-11972                                    | 11/15/00         | 80582                       | 95                     | 90                                     | 112                     | 102                                     |
| EV-HC30-S-12014                                    | 11/15/00         | 80582                       | 111                    | 96                                     | 127 <sup>b</sup>        | 116                                     |
| EV-HC12-S-11965                                    | 11/15/00         | 80582                       | 90                     | 81                                     | 106                     | 96                                      |
| EV-HC36-S-12026                                    | 11/15/00         | 80582                       | 105                    | 85                                     | 111                     | 105                                     |
| EV-HC38-S-12034                                    | 11/15/00         | 80582                       | 102                    | 82                                     | 112                     | 106                                     |
| EV-HC29-S-12009                                    | 11/15/00         | 80582                       | 101                    | 82                                     | 108                     | 99                                      |
| LTPJ MeOH LCS                                      | 11/16/00         | 80582                       | 94                     | 88                                     | 107                     | 103                                     |
| MeOH Blank 2                                       | 11/16/00         | 80582                       | 84                     | 85                                     | 106                     | 104                                     |
| EV-HC10-S-11962                                    | 11/16/00         | 80582                       | 96                     | 90                                     | 108                     | 112                                     |
| EV-HC10-S-11962MS                                  | 11/16/00         | 80582                       | 97                     | 93                                     | 107                     | 105                                     |
| EV-HC10-S-11962MSD                                 | 11/16/00         | 80582                       | 97                     | 97                                     | 105                     | 104                                     |
| MeOH CCALLCS                                       | 3/27/01          | 82178                       | 95                     | 90                                     | 91                      | 96                                      |
| MeOH Blank                                         | 3/27/01          | 82178                       | 94                     | 94                                     | 99                      | 101                                     |
| EVSB23-S-12784                                     | 3/27/01          | 82178                       | 91                     | 97                                     | 92                      | 102                                     |
| EVSB23-S-12784MS                                   | 3/27/01          | 82178                       | 96                     | 102                                    | 94                      | 105                                     |
| EVSB23-S-12788                                     | 3/27/01          | 82178                       | 92                     | 94                                     | 00<br>99                | 103                                     |
| EVSB23-S-12777                                     | 3/27/01          | 82178                       | 100                    | 98                                     | 102                     | 107                                     |
| EVSB24-S-12095                                     | 3/27/01          | 82178                       | 98                     | 98                                     | 105                     | 108                                     |
| EVSB24-S-12082                                     | 3/27/01          | 82178                       | 93                     | 93                                     | 97                      | 100                                     |
| EVSB24-S-12758                                     | 3/27/01          | 82178                       | 99                     | 95                                     | 104                     | 105                                     |
| EVSB24-S-12102                                     | 3/27/01          | 82178                       | 98                     | 96                                     | 101                     | 108                                     |
|                                                    | 3/27/01          | 02170<br>82178              | 93                     | 92                                     | 102                     | 104                                     |
| MULFICSD                                           | 3/27/01          | 82178                       | 98                     | 100                                    | 101                     | 103                                     |
| VBLKE4                                             | 3/27/01          | 82178                       | 99                     | 95                                     | 103                     | 104                                     |
| MeOH Blank                                         | 4/6/01           | 82381                       | 88                     | 86                                     | 94                      | 100                                     |
| MeOH CCALLCS                                       | 4/6/01           | 82381                       | 101                    | 104                                    | 100                     | 103                                     |
| EVSB34-S-12851                                     | 4/6/01           | 82381                       | 87                     | 89                                     | 89                      | 97                                      |
| EVOB34-0-1282/<br>EVOB34-0-12821                   | 4/6/01           | 82381<br>82291              | 97                     | 94                                     | 98                      | 104                                     |
| EVS-MeOH                                           | 4/6/01           | 82381                       | 92<br>95               | 91                                     | 95                      | 102                                     |

| Sample                          |                            |                             |                        | Reco                                   | very <sup>a</sup> (%)   |                                         |
|---------------------------------|----------------------------|-----------------------------|------------------------|----------------------------------------|-------------------------|-----------------------------------------|
|                                 | Analysis<br>Date           | Sample<br>Delivery<br>Group | Toluene-d <sub>8</sub> | 1,2-Dichloro-<br>ethane-d <sub>4</sub> | Bromofluoro-<br>benzene | 1,2-Dichloro-<br>benzene-d <sub>4</sub> |
| MULF LCS<br>MULF LCSD<br>VBLKE4 | 4/6/01<br>4/6/01<br>4/6/01 | 82381<br>82381<br>82381     | 92<br>96<br>93         | 90<br>90<br>97                         | 93<br>97<br>98          | 98<br>103<br>103                        |

<sup>a</sup> Quality control limits for recovery are as follows:

| Analyte                            | QC Limits (%) |
|------------------------------------|---------------|
| Toluene-d <sub>8</sub>             | 81-117        |
| 1,2-Dichloroethane-d <sub>4</sub>  | 80-120        |
| Bromofluorobenzene                 | 74-121        |
| 1,2-Dichlorobenzene-d <sub>4</sub> | 80-120        |

<sup>b</sup> Recovery outside the quality control limit for this analyte.

TABLE G.7 Recovery and relative percent difference values for spike/spike duplicate organic analyses of soil samples at Severn-Trent Laboratory.

|                                                                | Concentration (µg/kg) |                |                   | Recovery (%)          |                   |                       | Difference (%)   |        |          |  |
|----------------------------------------------------------------|-----------------------|----------------|-------------------|-----------------------|-------------------|-----------------------|------------------|--------|----------|--|
| Compound                                                       | Sample                | Spike<br>Added | Spike<br>Analysis | Duplicate<br>Analysis | Spike<br>Analysis | Duplicate<br>Analysis | QC Limit         | RPD    | QC Limit |  |
| Spike/spike duplicate analysis of EV-HC10-S-11962 in SDG 80582 |                       |                |                   |                       |                   |                       |                  |        |          |  |
| Chloroform<br>Carbon tetrachloride                             | 0<br>0                | 59<br>59       | 54<br>57          | 54<br>59              | 92<br>97          | 92<br>100             | 74-106<br>62-106 | 0<br>3 | 40<br>40 |  |
| Spike/spike duplicate analy                                    | sis of EVSB2          | 4-S-12784 ii   | n SDG 8217        | 8                     |                   |                       |                  |        |          |  |
| Chloroform<br>Carbon tetrachloride                             | 2.6<br>2              | 72<br>72       | 67<br>65          | 70<br>68              | 89<br>88          | 94<br>92              | 74-106<br>62-106 | 5<br>4 | 40<br>40 |  |
| Spike/spike duplicate analy                                    | sis of laborate       | ory quality c  | ontrol sampl      | e MULF LCS            | in SDG 823        | 81                    |                  |        |          |  |
| Chloroform<br>Carbon tetrachloride                             | 0<br>0                | 10<br>10       | 9.3<br>9.3        | 9.6<br>9.4            | 93<br>93          | 96<br>94              | 74-106<br>62-106 | 3<br>1 | 40<br>40 |  |

|             |                                    |                    | Concentration (μg/kg) |            |       |              |  |
|-------------|------------------------------------|--------------------|-----------------------|------------|-------|--------------|--|
|             |                                    |                    | Carbon Tet            | rachloride | Chlor | oform        |  |
| Location    | Sample                             | Depth<br>(ft BGL)  | AGEM                  | STL        | AGEM  | STL          |  |
| Near-surfac | ce soil samples collected          | in October 2000    |                       |            |       |              |  |
| HC07        | EV-HC07-S-11955                    | 0.8 -1.2           | ND <sup>a</sup>       | ND         | ND    | ND           |  |
| HC10        | EV-HC10-S-11962                    | 5.5 -6.0           | ND                    | ND         | ND    | ND           |  |
| HC12        | EV-HC12-S-11965                    | 0.9 -1.2           | ND                    | ND         | ND    | 11           |  |
| HC15        | EV-HC15-S-11972                    | 5.5 -6.0           | ND                    | ND         | ND    | ND           |  |
| HC26        | EV-HC26-S-12003                    | 0.9 -1.2           | ND                    | ND         | ND    | ND           |  |
| HC29        | EV-HC29-S-12009                    | 0.9 -1.2           | ND                    |            |       | 12<br>ND     |  |
|             | EV-HC30-5-12014                    | 0.0 - 0.0          |                       |            |       |              |  |
|             | EV-HC34-3-12021<br>EV-HC36-S-12026 | 0.9-1.2<br>5.5-6.0 |                       |            |       |              |  |
| HC38        | EV-HC38-S-12034                    | 5.5 -6.0           | ND                    | ND         | ND    | 4.8 J~<br>ND |  |
| 11000       | 21110000012001                     | 0.0 0.0            | 110                   | 110        | TTD . |              |  |
| Subsurface  | soil samples collected i           | n March 2001       |                       |            |       |              |  |
| SB23        | EVSB23-S-12777                     | 15.0               | 12                    | 10         | 5.4 J | 6.6 J        |  |
| SB23        | EVSB23-S-12784                     | 29.0               | ND                    | 2 J        | 2.1 J | 2.6 J        |  |
| SB23        | EVSB23-S-12788                     | 37.0               | 5.1 J                 | 2.8 J      | 6.6 J | 6.4 J        |  |
| SB24        | EVSB24-S-12082                     | 1.0                | ND                    | ND         | ND    | 17.1         |  |
| SB24        | EVSB24-S-12095                     | 27.0               | ND                    | ND         | ND    | 1.9 J        |  |
| SB24        | EVSB24-S-12102                     | 41.0               | ND                    | ND         | ND    | ND           |  |
| SB24        | EVSB24-S-12758                     | 43.0               | 16                    | 9.3 J      | 3.8 J | 3 J          |  |
| SB34        | EVSB34-S-12821                     | 7.0                | ND                    | ND         | 2.9 J | 2.5 J        |  |
| SB34        | EVSB34-S-12827                     | 19.0               | ND                    | ND         | ND    | ND           |  |
| SB34        | EVSB34-S-12851                     | 47.0               | 15                    | 9 J        | 3.5 J | 3 J          |  |
|             |                                    |                    |                       |            |       |              |  |

| TABLE G.8   | Results of  | of organic | analyses | on soil | samples   | analyzed | both |
|-------------|-------------|------------|----------|---------|-----------|----------|------|
| at the AGEN | /I Laborate | ory and at | Severn-T | rent La | boratory. |          |      |

<sup>a</sup> ND, contaminant not detected.

 $^{b}\,$  Qualifier J indicates an estimated concentration below the method quantitation limit of 10  $\mu g/kg.$ 

TABLE G.9 Results of organic analyses on quality control samples collected to monitor water analyses at the AGEM Laboratory by the purge-and-trap method.

|                                                                                                                                                                      |                                                          |                                                          |                                                          | Measured Val            | ues for Cal      | ibration Check Sta      | Indards          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-------------------------|------------------|-------------------------|------------------|
|                                                                                                                                                                      | Recovery o                                               | f Surrogate Comp                                         | oounds <sup>a</sup> (%)                                  | Carbon Tetrac           | hloride          | Chlorofo                | rm               |
| Sample                                                                                                                                                               | Fluorobenzene                                            | 1,2-Dichloro-<br>benzene-d <sub>4</sub>                  | 4-Bromo-<br>fluorobenzene                                | Concentration<br>(µg/L) | RPD <sup>b</sup> | Concentration<br>(µg/L) | RPD <sup>b</sup> |
| SDG 01-03-08, analysis date March 8,                                                                                                                                 | , 2001                                                   |                                                          |                                                          |                         |                  |                         |                  |
| 20-μg/L standard<br>Laboratory blank                                                                                                                                 | 95<br>100                                                | 88<br>100                                                | 93<br>100                                                | 18.92                   | 5.5              | 20.53                   | 2.6              |
| EVSB20-W-12063<br>EVSB22-W-11985<br>EVSB22-W-11986<br>EVBR01-W-11987<br>EVRR01-W-11988<br>EVTB01-W-12066                                                             | 111<br>100<br>98<br>94<br>95<br>90                       | 108<br>97<br>93<br>87<br>90<br>83                        | 109<br>97<br>94<br>90<br>92<br>85                        |                         |                  |                         |                  |
| SDG 01-03-09, analysis date March 9,                                                                                                                                 | , 2001                                                   |                                                          |                                                          |                         |                  |                         |                  |
| 20-μg/L standard<br>Laboratory blank                                                                                                                                 | 94<br>100                                                | 87<br>100                                                | 91<br>100                                                | 18.09                   | 10               | 18.12                   | 9.9              |
| EVSB20-W-12064<br>EVSB20-W-12065<br>EVSB20-W-12067<br>EVSB20-W-12068<br>EVSB20-W-12068DUP<br>EVSB20-W-12069<br>EVSB20-W-12070<br>EVSB20-W-12071<br>EVSB20-W-12063DUP | 115<br>83<br>112<br>97<br>109<br>109<br>105<br>97<br>101 | 118<br>97<br>112<br>100<br>105<br>110<br>111<br>98<br>91 | 118<br>94<br>111<br>100<br>108<br>111<br>111<br>97<br>95 |                         |                  |                         |                  |

|                                                                                                                                |                                      |                                           |                                            | Measured Values for Calibration Check Standa |                  |                         | ndards           |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------------|----------------------------------------------|------------------|-------------------------|------------------|
|                                                                                                                                | Recovery o                           | f Surrogate Com                           | oounds <sup>a</sup> (%)                    | Carbon Tetrachloride                         |                  | Chloroform              |                  |
| Sample                                                                                                                         | Fluorobenzene                        | 1,2-Dichloro-<br>benzene-d <sub>4</sub>   | 4-Bromo-<br>fluorobenzene                  | Concentration<br>(µg/L)                      | RPD <sup>b</sup> | Concentration<br>(µg/L) | RPD <sup>b</sup> |
| SDG 01-03-12, analysis date Ma                                                                                                 | arch 12, 2001                        |                                           |                                            |                                              |                  |                         |                  |
| 20-μg/L standard<br>Laboratory blank                                                                                           | 94<br>100                            | 89<br>100                                 | 96<br>100                                  | 22.31                                        | 10.9             | 21.92                   | 9.2              |
| EVSB21-W-12072<br>EVTB02-W-12073<br>EVSB21-W-12074<br>EVRR02-W-12075                                                           | 98<br>100<br>90<br>93                | 103<br>100<br>96<br>96                    | 105<br>100<br>96<br>95                     |                                              |                  |                         |                  |
| SDG 01-03-14, analysis date Ma                                                                                                 | arch 14, 2001                        |                                           |                                            |                                              |                  |                         |                  |
| 20-µg/L standard<br>Laboratory blank<br>EVSB25-W-12077<br>EVSB25-W-12078<br>EVSB25-W-12079<br>EVSB25-W-12080<br>EVSB25-W-12081 | 96<br>100<br>115<br>99<br>112<br>101 | 90<br>100<br>116<br>97<br>109<br>99<br>98 | 87<br>100<br>106<br>98<br>110<br>103<br>99 | 20.25                                        | 1.2              | 20.25                   | 1.2              |
| EV-TB-92000#17<br>SDG 01-03-15, analysis date Ma                                                                               | 100<br>arch 15, 2001                 | 100                                       | 100                                        |                                              |                  |                         |                  |
| 20-µg/L standard<br>Laboratory blank                                                                                           | 88<br>100                            | 82<br>100                                 | 86<br>100                                  | 17.56                                        | 13               | 17.72                   | 12.1             |
| EVSB24-W-12762<br>EVSB24-W-12763DUP<br>EVSB24-W-12764DUP                                                                       | 109<br>101<br>105                    | 106<br>97<br>101                          | 109<br>99<br>100                           |                                              |                  |                         |                  |

|                                                                                                                   |                                   |                                         |                                   | Measured Val            | Measured Values for Calibration Check Standa |                         |                  |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------|-----------------------------------|-------------------------|----------------------------------------------|-------------------------|------------------|
|                                                                                                                   | Recovery of                       | f Surrogate Com                         | oounds <sup>a</sup> (%)           | Carbon Tetrac           | hloride                                      | Chloroform              |                  |
| Sample                                                                                                            | Fluorobenzene                     | 1,2-Dichloro-<br>benzene-d <sub>4</sub> | 4-Bromo-<br>fluorobenzene         | Concentration<br>(µg/L) | RPD <sup>b</sup>                             | Concentration<br>(µg/L) | RPD <sup>b</sup> |
| SDG 01-03-15, analysis date Ma                                                                                    | rch 15, 2001 (Cont.)              |                                         |                                   |                         |                                              |                         |                  |
| EVSB24-W-12765<br>EVSB24-W-12766                                                                                  | 89<br>100                         | 85<br>100                               | 85<br>100                         |                         |                                              |                         |                  |
| SDG 01-03-16, analysis date Ma                                                                                    | rch 16, 2001                      |                                         |                                   |                         |                                              |                         |                  |
| 20-μg/L standard<br>Laboratory blank                                                                              | 103<br>100                        | 96<br>100                               | 100<br>100                        | 16.41                   | 19.7                                         | 16.78                   | 17.5             |
| EVSB24-W-12768DUP<br>EVSB24-W-12767DUP<br>EVSB24-W-12769DUP<br>EVSB24-W-12768<br>EVSB24-W-12767<br>EVSB24-W-12769 | 105<br>94<br>86<br>90<br>80<br>89 | 105<br>96<br>89<br>91<br>81<br>91       | 108<br>98<br>88<br>98<br>81<br>92 |                         |                                              |                         |                  |
| SDG 01-03-19, analysis date Ma                                                                                    | rch 19, 2001                      |                                         |                                   |                         |                                              |                         |                  |
| 20-μg/L standard<br>Laboratory blank                                                                              | 100<br>100                        | 97<br>100                               | 97<br>100                         | 23.07                   | 14.3                                         | 22.1                    | 10               |
| EVSB24-W-12763DUP2                                                                                                | 100                               | 97                                      | 97                                |                         |                                              |                         |                  |
| SDG 01-03-20, analysis date Ma                                                                                    | rch 20, 2001                      |                                         |                                   |                         |                                              |                         |                  |
| 20-μg/L standard<br>Laboratory blank                                                                              | 100<br>100                        | 100<br>100                              | 100<br>100                        | 21.52                   | 7.3                                          | 21.06                   | 5.2              |
| EVSB23-W-12795<br>EVSB23-W-12795DUP                                                                               | 103<br>98                         | 105<br>101                              | 106<br>100                        |                         |                                              |                         |                  |

|                               |                       |                                         |                           | Measured Va                         | lues for Cal               | ibration Check Sta         | andards          |
|-------------------------------|-----------------------|-----------------------------------------|---------------------------|-------------------------------------|----------------------------|----------------------------|------------------|
|                               | Recovery o            | f Surrogate Comp                        | oounds <sup>a</sup> (%)   | Carbon Tetrachloride                |                            | Chloroform                 |                  |
| Sample                        | Fluorobenzene         | 1,2-Dichloro-<br>benzene-d <sub>4</sub> | 4-Bromo-<br>fluorobenzene | Concentration<br>(µg/L)             | RPD <sup>b</sup>           | Concentration<br>(µg/L)    | RPD <sup>b</sup> |
| SDG 01-03-20, analysis date M | arch 20, 2001 (Cont.) |                                         |                           |                                     |                            |                            |                  |
| EVSB23-W-12796                | 97                    | 102                                     | 100                       |                                     |                            |                            |                  |
| EVSB23-W-12799                | 88                    | 93                                      | 92                        | Carbon tetrachlo<br>Reanalyzed in S | oride outsid<br>DG 01-03-2 | e calibration range<br>22. | ).               |
| EVSB23-W-12798                | 91                    | 94                                      | 93                        |                                     |                            |                            |                  |
| EVSB23-W-12799DUP             | 90                    | 105                                     | 106                       |                                     |                            |                            |                  |
| EVSB23-W-12797                | 79 <sup>c</sup>       | 84                                      | 80                        | Reanalyzed in S                     | DG 01-03-2                 | 22 without error.          |                  |
| SDG 01-03-22, analysis date M | arch 22, 2001         |                                         |                           |                                     |                            |                            |                  |
| 20-µg/L standard              | 106                   | 103                                     | 101                       | 20.71                               | 3.5                        | 21.57                      | 7.6              |
| Laboratory blank              | 108                   | 104                                     | 106                       |                                     |                            |                            |                  |
| EVSB30-W-12804                | 107                   | 112                                     | 111                       |                                     |                            |                            |                  |
| EVSB30-W-12803                | 102                   | 108                                     | 106                       |                                     |                            |                            |                  |
| EVSB26-W-12801                | 100                   | 103                                     | 95                        |                                     |                            |                            |                  |
| EVSB26-W-12802                | 69 <sup>c</sup>       | 75 <sup>c</sup>                         | 67 <sup>c</sup>           | Reanalyzed in S                     | DG 01-03-2                 | 26 without error.          |                  |
| EVSB30-W-12806                | 97                    | 99                                      | 100                       |                                     |                            |                            |                  |
| EVSB23-W-12800                | 86                    | 87                                      | 88                        |                                     |                            |                            |                  |
| EVSB30-W-12805                | 82                    | 85                                      | 85                        |                                     |                            |                            |                  |
| EVSB23-W-12799                | 100                   | 102                                     | 102                       |                                     |                            |                            |                  |
| EVSB23-W-12797                | 92                    | 96                                      | 94                        |                                     |                            |                            |                  |
| EVSB24-W-12763                | 100                   | 100                                     | 98                        |                                     |                            |                            |                  |
| EVSB24-W-12764                | 104                   | 105                                     | 104                       |                                     |                            |                            |                  |

|                                                                                                                                              |                                              |                                                             |                                                | Measured Valu           | Measured Values for Calibration Check Standard |                         |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|------------------------------------------------|-------------------------|------------------------------------------------|-------------------------|------------------|
|                                                                                                                                              | Recovery o                                   | f Surrogate Comp                                            | oounds <sup>a</sup> (%)                        | Carbon Tetrachloride    |                                                | Chloroform              |                  |
| Sample                                                                                                                                       | Fluorobenzene                                | 1,2-Dichloro-<br>benzene-d <sub>4</sub>                     | 4-Bromo-<br>fluorobenzene                      | Concentration<br>(µg/L) | RPD <sup>b</sup>                               | Concentration<br>(µg/L) | RPD <sup>b</sup> |
| SDG 01-03-23, analysis date Mar                                                                                                              | ch 23, 2001                                  |                                                             |                                                |                         |                                                |                         |                  |
| 20-µg/L standard<br>Laboratory blank                                                                                                         | 95<br>113                                    | 92<br>110                                                   | 95<br>111                                      | 18.98                   | 5.2                                            | 21.25                   | 6.1              |
| EVSB30-W-12807<br>EVSB30-W-12808<br>EVSB30-W-12809<br>EVSB30-W-12810<br>EVSB30-W-12811<br>EVSB28-W-12812<br>EVSB28-W-12813<br>EVSB28-W-12814 | 89<br>96<br>95<br>81<br>99<br>94<br>99<br>98 | 76 <sup>c</sup><br>99<br>94<br>82<br>104<br>95<br>101<br>98 | 84<br>99<br>95<br>82<br>104<br>96<br>102<br>99 | Not reanalyzed.         |                                                |                         |                  |
| SDG 01-03-26, analysis date Marc<br>20-μg/L standard<br>Laboratory blank                                                                     | <i>ch 26, 2001</i><br>97<br>100              | 110<br>100                                                  | 102<br>100                                     | 19.81                   | 0.9                                            | 21.66                   | 7.9              |
| EVSB26-W-12802<br>EVSB28-W-12816<br>EVSB28-W-12817                                                                                           | 104<br>100<br>91                             | 113<br>113<br>108                                           | 105<br>104<br>99                               |                         |                                                |                         |                  |
| SDG 01-03-27, analysis date Mar                                                                                                              | ch 27, 2001                                  |                                                             |                                                |                         |                                                |                         |                  |
| 20-µg/L standard<br>Laboratory blank                                                                                                         | 103<br>100                                   | 99<br>100                                                   | 100<br>100                                     | 21.87                   | 8.9                                            | 23.37                   | 15.5             |
| EVSB31-W-11990<br>EVSB31-W-12040                                                                                                             | 99<br>112                                    | 96<br>115                                                   | 99<br>114                                      |                         |                                                |                         |                  |

|                                                                                                                                                    |                                                 |                                                     |                                                  | Measured Valu           | Measured Values for Calibration Check Sta |                         |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|-------------------------|-------------------------------------------|-------------------------|------------------|
|                                                                                                                                                    | Recovery of                                     | f Surrogate Comp                                    | oounds <sup>a</sup> (%)                          | Carbon Tetrac           | hloride                                   | Chloroform              |                  |
| Sample                                                                                                                                             | Fluorobenzene                                   | 1,2-Dichloro-<br>benzene-d <sub>4</sub>             | 4-Bromo-<br>fluorobenzene                        | Concentration<br>(μg/L) | RPD <sup>b</sup>                          | Concentration<br>(µg/L) | RPD <sup>b</sup> |
| SDG 01-03-27, analysis date Ma                                                                                                                     | arch 27, 2001 (Cont.)                           |                                                     |                                                  |                         |                                           |                         |                  |
| EVSB31-W-12041<br>EVSB31-W-11989<br>EVSB31-W-12038<br>EVSB31-W-12038DUP<br>EVSB31-W-12037                                                          | 103<br>75 <sup>c</sup><br>89<br>97<br>87        | 102<br>75 <sup>c</sup><br>92<br>92<br>83            | 105<br>74 <sup>c</sup><br>92<br>94<br>84         | Not reanalyzed.         |                                           |                         |                  |
| SDG 01-03-28, analysis date Ma                                                                                                                     | arch 28, 2001                                   |                                                     |                                                  |                         |                                           |                         |                  |
| 20-μg/L standard<br>Laboratory blank                                                                                                               | 96<br>100                                       | 91<br>100                                           | 95<br>100                                        | 20.09                   | 0.4                                       | 22.21                   | 10.5             |
| EVSB29-W-12044<br>EVSB31-W-12039<br>EVSB29-W-12043DUP<br>EVSB29-W-12043<br>EVSB32-W-12868<br>EVSB32-W-12870<br>EVSB29-W-12042DUP<br>EVSB29-W-12042 | 96<br>100<br>93<br>94<br>90<br>107<br>107<br>98 | 107<br>102<br>100<br>102<br>93<br>117<br>113<br>100 | 104<br>104<br>97<br>98<br>93<br>114<br>110<br>96 |                         |                                           |                         |                  |
| SDG 01-03-29, analysis date Ma                                                                                                                     | arch 29, 2001                                   |                                                     |                                                  |                         |                                           |                         |                  |
| 20-μg/L standard<br>Laboratory blank                                                                                                               | 115<br>100                                      | 108<br>100                                          | 115<br>100                                       | 19.56                   | 2.2                                       | 21.95                   | 9.3              |
| EVSW07-W-12844<br>EVSW01-W-12838<br>EVSB29-W-12045                                                                                                 | 99<br>97<br>86                                  | 100<br>103<br>87                                    | 103<br>102<br>90                                 |                         |                                           |                         |                  |

|                                |                       |                                         |                           | Measured Val            | ues for Ca       | libration Check Sta     | andards          |
|--------------------------------|-----------------------|-----------------------------------------|---------------------------|-------------------------|------------------|-------------------------|------------------|
|                                | Recovery o            | f Surrogate Com                         | oounds <sup>a</sup> (%)   | Carbon Tetrac           | hloride          | Chloroform              |                  |
| Sample                         | Fluorobenzene         | 1,2-Dichloro-<br>benzene-d <sub>4</sub> | 4-Bromo-<br>fluorobenzene | Concentration<br>(µg/L) | RPD <sup>b</sup> | Concentration<br>(µg/L) | RPD <sup>b</sup> |
| SDG 01-03-29, analysis date Ma | arch 29, 2001 (Cont.) |                                         |                           |                         |                  |                         |                  |
| EVSW06-W-12843                 | 95                    | 97                                      | 97                        |                         |                  |                         |                  |
| EVSW03-W-12840                 | 92                    | 97                                      | 98                        |                         |                  |                         |                  |
| EVSW04-W-12841                 | 91                    | 91                                      | 93                        |                         |                  |                         |                  |
| EVQCDU-W-12845                 | 92                    | 94                                      | 95                        |                         |                  |                         |                  |
| EVSW02-W-12839                 | 74 <sup>c</sup>       | 69 <sup>c</sup>                         | 70 <sup>c</sup>           | Reanalyzed in S         | DG 01-04-        | 03 without error.       |                  |
| EVQCTB-W-12846                 | 87                    | 88                                      | 89                        |                         |                  |                         |                  |
| EVSW05-W-12842                 | 87                    | 90                                      | 91                        |                         |                  |                         |                  |
| EVSB32-W-12873                 | 90                    | 91                                      | 91                        |                         |                  |                         |                  |
| EVSB34-W-12855                 | 86                    | 89                                      | 89                        |                         |                  |                         |                  |
| EVSB34-W-12854                 | 81                    | 86                                      | 84                        |                         |                  |                         |                  |
| EVSB34-W-12857                 | 85                    | 86                                      | 86                        |                         |                  |                         |                  |
| EVSB34-W-12858                 | 91                    | 95                                      | 95                        |                         |                  |                         |                  |
| EVSB32-W-12869                 | 91                    | 94                                      | 94                        |                         |                  |                         |                  |
| EVSB32-W-12871                 | 83                    | 87                                      | 87                        |                         |                  |                         |                  |
| EVSB34-W-12860                 | 89                    | 86                                      | 88                        |                         |                  |                         |                  |
| EVSB34-W-12856                 | 87                    | 85                                      | 84                        |                         |                  |                         |                  |
| EVSB34-W-12859                 | 85                    | 84                                      | 85                        |                         |                  |                         |                  |
| SDG 01-03-30, analysis date Ma | arch 30, 2001         |                                         |                           |                         |                  |                         |                  |
| 20-µg/L standard               | 100                   | 95                                      | 103                       | 19.72                   | 1.4              | 21.52                   | 7.3              |
| Laboratory blank               | 108                   | 106                                     | 107                       |                         |                  |                         |                  |
| EVSB33-W-12882                 | 80                    | 87                                      | 88                        |                         |                  |                         |                  |
| EVSB33-W-12883                 | 93                    | 91                                      | 94                        |                         |                  |                         |                  |
| EVSB33-W-12880DUP              | 104                   | 105                                     | 109                       |                         |                  |                         |                  |
| EVSB33-W-12881                 | 96                    | 93                                      | 99                        |                         |                  |                         |                  |
| EVSB33-W-12880                 | 102                   | 103                                     | 104                       |                         |                  |                         |                  |

|                                                                                                                            |                  |                                         |                                         |                                          | Measured Va             | lues for Ca      | libration Check Sta     | andards          |
|----------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|-------------------------|------------------|-------------------------|------------------|
|                                                                                                                            |                  | Recovery o                              | f Surrogate Com                         | pounds <sup>a</sup> (%)                  | Carbon Tetra            | chloride         | Chlorofo                | rm               |
| Sample                                                                                                                     |                  | Fluorobenzene                           | 1,2-Dichloro-<br>benzene-d <sub>4</sub> | 4-Bromo-<br>fluorobenzene                | Concentration<br>(µg/L) | RPD <sup>b</sup> | Concentration<br>(µg/L) | RPD <sup>b</sup> |
| SDG 01-03-30, analysis o                                                                                                   | date March 30    | ), 2001 (Cont.)                         |                                         |                                          |                         |                  |                         |                  |
| EVSB36-W-12884<br>EVSB36-W-12885<br>EVSB36-W-12886                                                                         |                  | 96<br>94<br>90                          | 94<br>94<br>88                          | 95<br>94<br>90                           |                         |                  |                         |                  |
| SDG 01-04-01, analysis                                                                                                     | date April 1, 2  | 001                                     |                                         |                                          |                         |                  |                         |                  |
| 20-µg/L standard<br>Laboratory blank                                                                                       |                  | 95<br>100                               | 87<br>100                               | 90<br>100                                | 20.54                   | 2.7              | 21.31                   | 6.3              |
| EVSB38-W-12888<br>EVSB35-W-12874<br>EVSB38-W-12889<br>EVSB35-W-12875<br>EVSB35-W-12876<br>EVSB38-W-12890<br>EVSB38-W-12891 |                  | 91<br>103<br>97<br>83<br>97<br>93<br>94 | 88<br>104<br>98<br>87<br>94<br>93<br>94 | 81<br>105<br>101<br>86<br>97<br>93<br>94 |                         |                  |                         |                  |
| SDG 01-04-02, analysis o                                                                                                   | date April 2, 2  | 001                                     |                                         |                                          |                         |                  |                         |                  |
| 20-µg/L standard<br>Laboratory blank                                                                                       |                  | 101<br>100                              | 94<br>100                               | 99<br>100                                | 19.72                   | 1.4              | 21.21                   | 5.9              |
| EVSB38-W-12893<br>EVSB39-W-12897<br>EVSB38-W-12892<br>EVSB38-W-12895<br>EVSB38-W-12894                                     | DF1 <sup>d</sup> | 88<br>100<br>100<br>98<br>93            | 83<br>93<br>104<br>97<br>94             | 80<br>94<br>101<br>98<br>93              |                         |                  |                         |                  |

|                                      |               |               |                                         |                           | Measured Val                       | ues for Cal      | ibration Check Sta      | ndards           |
|--------------------------------------|---------------|---------------|-----------------------------------------|---------------------------|------------------------------------|------------------|-------------------------|------------------|
|                                      |               | Recovery o    | f Surrogate Com                         | oounds <sup>a</sup> (%)   | Carbon Tetrac                      | chloride         | Chlorofor               | m                |
| Sample                               |               | Fluorobenzene | 1,2-Dichloro-<br>benzene-d <sub>4</sub> | 4-Bromo-<br>fluorobenzene | Concentration<br>(µg/L)            | RPD <sup>b</sup> | Concentration<br>(µg/L) | RPD <sup>b</sup> |
| SDG 01-04-02, analysis da            | te April 2, 2 | 001 (Cont.)   |                                         |                           |                                    |                  |                         |                  |
| EVSB38-W-12893DUP<br>EVSB39-W-12897  | DF10          | 89<br>88      | 91<br>84                                | 89<br>81                  |                                    |                  |                         |                  |
| SDG 01-04-03, analysis da            | te April 3, 2 | 001           |                                         |                           |                                    |                  |                         |                  |
| 20-µg/L standard<br>Laboratory blank |               | 116<br>101    | 105<br>104                              | 112<br>104                | 20.78                              | 3.8              | 22.78                   | 13               |
| EVSB41-W-12898                       | DF1           | 108           | 108                                     | 111                       | Carbon tetrachlo                   | ride outsid      | e calibration range     | ,                |
| EVSB40-W-12056                       | DF1           | 110           | 108                                     | 110                       | Carbon tetrachlo<br>chloroform res | ride outsid      | e calibration range     | ,                |
| EVSB40-W-12053                       | DF1           | 98            | 98                                      | 100                       | Carbon tetrachlo<br>chloroform res | ride outsid      | e calibration range     | •                |
| EVSB40-W-12054                       | DF1           | 105           | 104                                     | 105                       | Carbon tetrachlo<br>chloroform res | ride outsid      | e calibration range     | ,                |
| EVSB40-W-12057                       | DF1           | 105           | 105                                     | 106                       | Carbon tetrachlo<br>chloroform res | ride outsid      | e calibration range     |                  |
| EVSB41-W-12900                       | DF1           | 91            | 95                                      | 94                        | Carbon tetrachlo<br>chloroform res | ride outsid      | e calibration range     |                  |
| EVSB33-W-12881DUP                    | DF10          | 85            | 85                                      | 85                        |                                    |                  |                         |                  |
| EVSB33-W-12882DUP                    |               | 96            | 91                                      | 94                        |                                    |                  |                         |                  |
| EVSB40-W-12055                       |               | 96            | 94                                      | 94                        |                                    |                  |                         |                  |
| EVSB40-W-12058                       |               | 99            | 96                                      | 96                        |                                    |                  |                         |                  |
| EVSB41-W-12899                       |               | 93            | 92                                      | 93                        |                                    |                  |                         |                  |
| EVSW02-W-12839                       |               | 91            | 88                                      | 88                        |                                    |                  |                         |                  |
| EVSB40-W-12059                       |               | 89            | 83                                      | 82                        |                                    |                  |                         |                  |
| EVSB41-W-12898                       | DF10          | 88            | 86                                      | 85                        |                                    |                  |                         |                  |

|                                                                                                                               |                                  |                                     |                                         |                                                | Measured Val            | libration Check Sta | ndards                  |                  |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------|-----------------------------------------|------------------------------------------------|-------------------------|---------------------|-------------------------|------------------|
|                                                                                                                               |                                  | Recovery of                         | Surrogate Comp                          | oounds <sup>a</sup> (%)                        | Carbon Tetrac           | hloride             | Chlorofor               | m                |
| Sample                                                                                                                        |                                  | Fluorobenzene                       | 1,2-Dichloro-<br>benzene-d <sub>4</sub> | 4-Bromo-<br>fluorobenzene                      | Concentration<br>(µg/L) | RPD <sup>b</sup>    | Concentration<br>(µg/L) | RPD <sup>b</sup> |
| SDG 01-04-03, analysis o                                                                                                      | late April 3, 2                  | 001 (Cont.)                         |                                         |                                                |                         |                     |                         |                  |
| EVSB41-W-12900<br>EVSB40-W-12053<br>EVSB40-W-12054<br>EVSB40-W-12056<br>EVSB40-W-12057                                        | DF10<br>DF5<br>DF5<br>DF5<br>DF5 | 95<br>90<br>88<br>92<br>94          | 93<br>88<br>86<br>89<br>92              | 93<br>89<br>86<br>89<br>91                     |                         |                     |                         |                  |
| SDG 01-04-04, analysis o                                                                                                      | late April 4, 2                  | 001                                 |                                         |                                                |                         |                     |                         |                  |
| 20-µg/L standard<br>Laboratory blank                                                                                          |                                  | 88<br>100                           | 101<br>100                              | 102<br>100                                     | 18.35                   | 8.5                 | 17.81                   | 11.6             |
| EVSB42-W-12901<br>EVSB42-W-12903<br>EVSB42-W-12905<br>EVSB43-W-12060<br>EVSB43-W-12049<br>EVSB43-W-12052                      | DF1<br>DF1                       | 96<br>107<br>106<br>102<br>82<br>92 | 89<br>107<br>108<br>101<br>85<br>95     | 92<br>105<br>107<br>100<br>83<br>94            |                         |                     |                         |                  |
| EVSB43-W-12048<br>EVSB43-W-12051<br>EVSB37-W-12907                                                                            |                                  | 76 <sup>c</sup><br>94<br>97         | 82<br>97<br>96                          | 78 <sup>c</sup><br>96<br>94                    | Reanalyzed in Sl        | DG 01-04-           | 05 without error.       |                  |
| EVSB43-W-12061<br>EVSB42-W-12902<br>EVSB42-W-12902DUP<br>EVSB43-W-12050<br>EVSB42-W-12904<br>EVSB43-W-12062<br>EVSB43-W-12006 |                                  | 81<br>95<br>95<br>86<br>103<br>99   | 72°<br>98<br>97<br>89<br>102<br>93      | 72 <sup>c</sup><br>93<br>96<br>87<br>102<br>92 | Reanalyzed in Sl        | DG 01-04-           | 05 without error.       |                  |

|                                                                                                                            |               |                                           |                                            |                                            | Measured Val            | ues for Ca       | libration Check Sta     | Indards          |
|----------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------|------------------|-------------------------|------------------|
|                                                                                                                            |               | Recovery o                                | f Surrogate Comp                           | oounds <sup>a</sup> (%)                    | Carbon Tetrachloride    |                  | Chloroform              |                  |
| Sample                                                                                                                     |               | Fluorobenzene                             | 1,2-Dichloro-<br>benzene-d <sub>4</sub>    | 4-Bromo-<br>fluorobenzene                  | Concentration<br>(µg/L) | RPD <sup>b</sup> | Concentration<br>(µg/L) | RPD <sup>b</sup> |
| SDG 01-04-04, analysis da                                                                                                  | te April 4, 2 | 001 (Cont.)                               |                                            |                                            |                         |                  |                         |                  |
| EVSB42-W-12901DUP<br>EVSB42-W-12903                                                                                        | DF5<br>DF5    | 98<br>108                                 | 96<br>107                                  | 94<br>108                                  |                         |                  |                         |                  |
| SDG 01-04-05, analysis da                                                                                                  | te April 5, 2 | 2001                                      |                                            |                                            |                         |                  |                         |                  |
| 20-µg/L standard<br>Laboratory blank                                                                                       |               | 88<br>101                                 | 81<br>101                                  | 87<br>100                                  | 21.72                   | 8.2              | 21.45                   | 7                |
| EVSB46-W-12862<br>EVSB46-W-12864<br>EVSB46-W-12918<br>EVSB46-W-12863<br>EVSB44-W-12915<br>EVSB46-W-12919<br>EVSB37-W-12908 |               | 100<br>99<br>105<br>102<br>98<br>94<br>89 | 90<br>101<br>108<br>100<br>101<br>94<br>88 | 96<br>102<br>108<br>103<br>101<br>93<br>89 |                         |                  |                         |                  |
| EVSB37-W-12909<br>EVSB37-W-12910<br>EVSB44-W-12911<br>EVSB46-W-12865                                                       |               | 85<br>101<br>97<br>83                     | 85<br>101<br>85<br>80                      | 85<br>105<br>89<br>79 <sup>c</sup>         | Reanalyzed in S         | DG 01-04-        | 09 without error.       |                  |
| EVSB44-W-12914<br>EVSB43-W-12061<br>EVSB43-W-12048<br>EVSB40-W-12053DUP                                                    |               | 91<br>96<br>97<br>98                      | 90<br>98<br>96<br>94                       | 94<br>98<br>98<br>95                       | -                       |                  |                         |                  |
| EVSB40-W-12054DUP<br>EVSB37-W-12912<br>EVSB46-W-12920<br>EVSB46-W-12867<br>EVSB44-W-12938                                  |               | 97<br>84<br>84<br>101<br>101              | 96<br>85<br>85<br>103<br>101               | 96<br>83<br>83<br>105<br>101               |                         |                  |                         |                  |

|                                |                      |                                         |                           | Measured Val                        | ues for Ca               | libration Check Sta          | Indards          |
|--------------------------------|----------------------|-----------------------------------------|---------------------------|-------------------------------------|--------------------------|------------------------------|------------------|
|                                | Recovery o           | f Surrogate Comp                        | oounds <sup>a</sup> (%)   | Carbon Tetrachloride                |                          | Chloroform                   |                  |
| Sample                         | Fluorobenzene        | 1,2-Dichloro-<br>benzene-d <sub>4</sub> | 4-Bromo-<br>fluorobenzene | Concentration<br>(µg/L)             | RPD <sup>b</sup>         | Concentration<br>(µg/L)      | RPD <sup>b</sup> |
| SDG 01-04-05, analysis date Ap | oril 5, 2001 (Cont.) |                                         |                           |                                     |                          |                              |                  |
| EVSB37-W-12913                 | 95                   | 85                                      | 88                        |                                     |                          |                              |                  |
| EVSB46-W-12866                 | 100                  | 103                                     | 102                       |                                     |                          |                              |                  |
| SDG 01-04-06, analysis date Ap | oril 6, 2001         |                                         |                           |                                     |                          |                              |                  |
| 20-µg/L standard               | 100                  | 100                                     | 100                       | 19.56                               | 2.2                      | 18.94                        | 5.4              |
| Laboratory blank               | 100                  | 100                                     | 100                       |                                     |                          |                              |                  |
| EVSB47-W-12921                 | 106                  | 108                                     | 107                       |                                     |                          |                              |                  |
| EVSB47-W-12924                 | 72 <sup>c</sup>      | 86                                      | 81                        | Reanalyzed in S                     | DG 01-04-                | 09 without error)            |                  |
| EVSB47-W-12928                 | 99                   | 103                                     | 100                       |                                     |                          | ,                            |                  |
| EVSB45-W-12930                 | 100                  | 103                                     | 105                       |                                     |                          |                              |                  |
| EVSB45-W-12932                 | 100                  | 105                                     | 104                       |                                     |                          |                              |                  |
| EVSB44-W-12939                 | 102                  | 106                                     | 107                       |                                     |                          |                              |                  |
| EVSB48-W-12941                 | 101                  | 103                                     | 102                       | Outside calibration reanalyzed in S | on range fo<br>SDG 01-04 | or carbon tetrachlor<br>-09. | ride;            |
| EVSB47-W-12925                 | 84                   | 79 <sup>c</sup>                         | 78 <sup>c</sup>           | Reanalyzed in S                     | DG 01-04-                | 09.                          |                  |
| EVSB47-W-12925DUP              | 82                   | 83                                      | 80                        |                                     |                          |                              |                  |
| EVSB47-W-12927                 | 95                   | 100                                     | 100                       |                                     |                          |                              |                  |
| EVSB47-W-12929                 | 98                   | 100                                     | 98                        |                                     |                          |                              |                  |
| EVSB45-W-12931                 | 57°                  | 67 <sup>c</sup>                         | 62 <sup>c</sup>           | Reanalyzed in S                     | DG 01-04-                | 09 without error.            |                  |
| EVSB45-W-12933                 | 89                   | 91                                      | 91                        | ,                                   |                          |                              |                  |
| EVSB44-W-12940                 | 91                   | 88                                      | 86                        |                                     |                          |                              |                  |
| EVSB47-W-12923                 | 85                   | 86                                      | 83                        |                                     |                          |                              |                  |
| EVSB47-W-12926                 | 77 <sup>c</sup>      | 93                                      | 92                        | Not reanalyzed.                     |                          |                              |                  |
| EVSB47-W-12922                 | 91                   | 89                                      | 90                        | ···· <b>,</b> ··                    |                          |                              |                  |

|                                                                                                                                                                                                       |                                                                       |                                                                              |                                                                        | Measured Val            | ues for Ca       | libration Check Sta     | Indards          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------|------------------|-------------------------|------------------|
|                                                                                                                                                                                                       | Recovery o                                                            | Carbon Tetrachloride                                                         |                                                                        | Chloroform              |                  |                         |                  |
| Sample                                                                                                                                                                                                | Fluorobenzene                                                         | 1,2-Dichloro-<br>benzene-d <sub>4</sub>                                      | 4-Bromo-<br>fluorobenzene                                              | Concentration<br>(µg/L) | RPD <sup>b</sup> | Concentration<br>(µg/L) | RPD <sup>b</sup> |
| SDG 01-04-09, analysis date April 9                                                                                                                                                                   | , 2001                                                                |                                                                              |                                                                        |                         |                  |                         |                  |
| 20-µg/L standard<br>Laboratory blank                                                                                                                                                                  | 108<br>100                                                            | 102<br>100                                                                   | 107<br>100                                                             | 17.37                   | 14.1             | 17.42                   | 13.8             |
| EVSB48-W-12941<br>EVSB48-W-12941DUP<br>EVSB47-W-12924<br>EVSB47-W-12925                                                                                                                               | 103<br>106<br>99<br>79 <sup>c</sup>                                   | 100<br>106<br>98<br>82                                                       | 101<br>101<br>99<br>82                                                 | Accepted. Consi         | stent with       | replicate EVSB47-\      | N-12924          |
| EVSB45-W-12931<br>EVSB46-W-12865<br>EVSB44-W-12914DUP                                                                                                                                                 | 86<br>96<br>90                                                        | 86<br>101<br>95                                                              | 87<br>101<br>93                                                        | in this SDG.            |                  |                         |                  |
| SDG 02-11-05, analysis date Noven                                                                                                                                                                     | nber 5, 2002                                                          |                                                                              |                                                                        |                         |                  |                         |                  |
| 20-µg/L standard<br>Laboratory blank                                                                                                                                                                  | 107<br>100                                                            | 192 <sup>c</sup><br>100                                                      | 202 <sup>c</sup><br>100                                                | 19.02                   | 5                | 19.31                   | 3.5              |
| EVSB49-W-15855<br>EVSB50-W-13163<br>EVSB50-W-13163DUP<br>EVSB52-W-13164<br>EVSB52-W-13165<br>EVSB53-W-15868<br>EVQCDU-W-15870<br>EVQCRI-W-15856<br>EVQCRI-W-15857<br>EVQCTB-W-15857<br>EVSB50-W-13162 | 106<br>97<br>102<br>108<br>105<br>111<br>107<br>97<br>103<br>88<br>90 | 138 <sup>c</sup><br>115<br>114<br>118<br>112<br>112<br>106<br>90<br>98<br>88 | 135°<br>114<br>112<br>117<br>111<br>111<br>108<br>91<br>98<br>84<br>92 | Reanalyzed in S         | DG 02-11-        | 07 without error.       |                  |

|                                                                                                                                                                                                                      |                                                                           |                                                                        |                                                                                       | Measured Values for Calibration Check Standards |                  |                         |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------|------------------|-------------------------|------------------|
|                                                                                                                                                                                                                      | Recovery o                                                                | Recovery of Surrogate Compounds <sup>a</sup> (%)                       |                                                                                       |                                                 |                  | Chloroform              |                  |
| Sample                                                                                                                                                                                                               | Fluorobenzene                                                             | 1,2-Dichloro-<br>benzene-d <sub>4</sub>                                | 4-Bromo-<br>fluorobenzene                                                             | Concentration<br>(µg/L)                         | RPD <sup>b</sup> | Concentration<br>(µg/L) | RPD <sup>b</sup> |
| SDG 02-11-06, analysis date Nov                                                                                                                                                                                      | vember 6, 2002                                                            |                                                                        |                                                                                       |                                                 |                  |                         |                  |
| 20-µg/L standard<br>Laboratory blank                                                                                                                                                                                 | 105<br>97                                                                 | 96<br>92                                                               | 107<br>90                                                                             | 20.24                                           | 1.2              | 19.98                   | 0.1              |
| EVSB50-W-13158<br>EVSB50-W-13159<br>EVSB50-W-13160<br>EVSB49-W-15854<br>EVTB01-W-13161<br>EVSW12-W-15852<br>EVQCDU-W-15853<br>EVSW09-W-15849<br>EVSW09-W-15849<br>EVSW08-W-15848<br>EVSW10-W-15850<br>EVSW11-W-15851 | 95<br>102<br>102<br>103<br>90<br>92<br>80<br>100<br>93<br>99<br>100<br>92 | 96<br>92<br>95<br>108<br>105<br>99<br>91<br>96<br>80<br>93<br>95<br>92 | 107<br>90<br>98<br>109<br>106<br>100<br>89<br>93<br>76 <sup>c</sup><br>93<br>96<br>90 | Accepted. Repli                                 | cate consis      | stent with initial sa   | mple.            |
| SDG 02-11-07, analysis date Nov                                                                                                                                                                                      | vember 7, 2002                                                            |                                                                        |                                                                                       |                                                 |                  |                         |                  |
| 20-μg/L standard<br>Laboratory blank                                                                                                                                                                                 | 117<br>107                                                                | 111<br>102                                                             | 131 <sup>c</sup><br>108                                                               | 21.71                                           | 8.2              | 20.52                   | 2.6              |
| EVSB51-W-13166                                                                                                                                                                                                       | 120                                                                       | 105                                                                    | 121 <sup>c</sup>                                                                      | Accepted. Dupli error.                          | cate analys      | sis in this SDG with    | nout             |
| EVSB51-W-13166DUP<br>EVSB54-W-15871<br>EVSB54-W-15874<br>EVSB54-W-15874DUP<br>EVQCDU-W-15875                                                                                                                         | 111<br>115<br>111<br>107<br>114                                           | 112<br>120<br>117<br>108<br>111                                        | 119<br>125 <sup>c</sup><br>120<br>110<br>115                                          | Reanalyzed in S                                 | DG 02-11-        | 12 without error.       |                  |

|                                                                                                                                                    |                                                       | Measured Val                                       | ues for Ca                                        | ibration Check Sta      | Indards          |                         |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|---------------------------------------------------|-------------------------|------------------|-------------------------|------------------|
|                                                                                                                                                    | Recovery of                                           | Recovery of Surrogate Compounds <sup>a</sup> (%)   |                                                   |                         |                  | Chloroform              |                  |
| Sample                                                                                                                                             | Fluorobenzene                                         | 1,2-Dichloro-<br>benzene-d <sub>4</sub>            | 4-Bromo-<br>fluorobenzene                         | Concentration<br>(µg/L) | RPD <sup>b</sup> | Concentration<br>(µg/L) | RPD <sup>b</sup> |
| SDG 02-11-07, analysis date No                                                                                                                     | ovember 7, 2002 (Cont.)                               |                                                    |                                                   |                         |                  |                         |                  |
| EVQCFB-W-15873<br>EVQCRI-W-15877<br>EVQCRI-W-15872<br>EVQCTB-W-15876<br>EVSB49-W-15855                                                             | 106<br>107<br>107<br>105<br>98                        | 102<br>104<br>107<br>103<br>104                    | 106<br>106<br>107<br>105<br>104                   |                         |                  |                         |                  |
| SDG 02-11-08, analysis date No                                                                                                                     | ovember 8, 2002                                       |                                                    |                                                   |                         |                  |                         |                  |
| 20-μg/L standard<br>Laboratory blank                                                                                                               | 100<br>100                                            | 96<br>100                                          | 104<br>100                                        | 20.9                    | 4.4              | 19.65                   | 1.8              |
| EVSB51-W-13167<br>EVSB51-W-13168<br>EVSB50-W-13169<br>EVSB56-W-15881<br>EVSB56-W-15881DUP<br>EVQCRI-W-15883<br>EVQCTB-W-15879<br>EVSB50-W-13169DUP | 96<br>100<br>96<br>101<br>100<br>98<br>93<br>93<br>96 | 105<br>101<br>103<br>108<br>106<br>98<br>98<br>101 | 108<br>103<br>100<br>109<br>105<br>98<br>98<br>99 |                         |                  |                         |                  |
| SDG 02-11-09, analysis date No                                                                                                                     | ovember 9, 2002                                       |                                                    |                                                   |                         |                  |                         |                  |
| 20-μg/L standard<br>Laboratory blank                                                                                                               | 103<br>100                                            | 102<br>100                                         | 114<br>100                                        | 19.35                   | 3.3              | 18.88                   | 6.2              |
| EVSB49-W-15854<br>EVSB52-W-13173                                                                                                                   | 110<br>114                                            | 100<br>118                                         | 109<br>103                                        |                         |                  |                         |                  |

|                                |                         |                                                  |                           | Measured Val            | ues for Ca           | libration Check Sta     | andards          |  |
|--------------------------------|-------------------------|--------------------------------------------------|---------------------------|-------------------------|----------------------|-------------------------|------------------|--|
|                                | Recovery of             | Recovery of Surrogate Compounds <sup>a</sup> (%) |                           |                         | Carbon Tetrachloride |                         | Chloroform       |  |
| Sample                         | Fluorobenzene           | 1,2-Dichloro-<br>benzene-d <sub>4</sub>          | 4-Bromo-<br>fluorobenzene | Concentration<br>(µg/L) | RPD <sup>b</sup>     | Concentration<br>(µg/L) | RPD <sup>b</sup> |  |
| SDG 02-11-09, analysis date No | ovember 9, 2002 (Cont.) |                                                  |                           |                         |                      |                         |                  |  |
| EVSB49-W-13170                 | 107                     | 118                                              | 115                       |                         |                      |                         |                  |  |
| EVSB49-W-13171                 | 108                     | 119                                              | 119                       |                         |                      |                         |                  |  |
| EVSB49-W-13171DUP              | 101                     | 111                                              | 110                       |                         |                      |                         |                  |  |
| EVQCRI-W-15885                 | 104                     | 107                                              | 105                       |                         |                      |                         |                  |  |
| EVSB49-W-13172                 | 104                     | 105                                              | 106                       |                         |                      |                         |                  |  |
| EVSB52-W-13174                 | 101                     | 102                                              | 99                        |                         |                      |                         |                  |  |
| EVQCTB-W-15890                 | 100                     | 97                                               | 97                        |                         |                      |                         |                  |  |
| SDG 02-11-10, analysis date No | ovember 10, 2002        |                                                  |                           |                         |                      |                         |                  |  |
| 20-µg/L standard               | 76 <sup>c</sup>         | 80                                               | 81                        | 21.26                   | 6.1                  | 19.7                    | 1.5              |  |
| Laboratory blank               | 100                     | 103                                              | 98                        |                         |                      |                         |                  |  |
| EVSB57-W-13175                 | 92                      | 98                                               | 99                        |                         |                      |                         |                  |  |
| EVSB57-W-13177                 | 102                     | 115                                              | 110                       |                         |                      |                         |                  |  |
| EVSB58-W-13180                 | 92                      | 111                                              | 107                       |                         |                      |                         |                  |  |
| EVSB57-W-15891                 | 89                      | 98                                               | 96                        |                         |                      |                         |                  |  |
| EVSB58-W-13181                 | 100                     | 115                                              | 109                       |                         |                      |                         |                  |  |
| EVSB58-W-13181DUP              | 99                      | 108                                              | 107                       |                         |                      |                         |                  |  |
| EVSB57-W-13176                 | 95                      | 106                                              | 102                       |                         |                      |                         |                  |  |
| EVTB58-W-13182                 | 99                      | 97                                               | 97                        |                         |                      |                         |                  |  |
| EVSB57-W-13178                 | 81                      | 84                                               | 81                        |                         |                      |                         |                  |  |

|                                 |                 |                                                  |                           |                         |                  | libration Check Sta     | ndards           |
|---------------------------------|-----------------|--------------------------------------------------|---------------------------|-------------------------|------------------|-------------------------|------------------|
|                                 | Recovery of     | Recovery of Surrogate Compounds <sup>a</sup> (%) |                           |                         |                  | Chloroform              |                  |
| Sample                          | Fluorobenzene   | 1,2-Dichloro-<br>benzene-d <sub>4</sub>          | 4-Bromo-<br>fluorobenzene | Concentration<br>(µg/L) | RPD <sup>b</sup> | Concentration<br>(µg/L) | RPD <sup>b</sup> |
| SDG 02-11-12, analysis date Nov | vember 12, 2002 |                                                  |                           |                         |                  |                         |                  |
| 20-µg/L standard                | 105             | 103                                              | 117                       | 22.28                   | 10.8             | 20.29                   | 1.4              |
| Laboratory blank                | 96              | 96                                               | 91                        |                         |                  |                         |                  |
| EVSB61-W-13187                  | 103             | 93                                               | 102                       |                         |                  |                         |                  |
| EVSB61-W-13188                  | 108             | 122 <sup>c</sup>                                 | 121 <sup>c</sup>          | Reanalyzed in S         | DG 02-11-        | 14 without error.       |                  |
| EVSB58-W-13191                  | 110             | 121 <sup>c</sup>                                 | 121 <sup>c</sup>          | Reanalyzed in S         | DG 02-11-        | 13 without error.       |                  |
| EVSB61-W-13189                  | 103             | 114                                              | 111                       | ,                       |                  |                         |                  |
| EVSB61-W-13189DUP               | 107             | 120                                              | 116                       |                         |                  |                         |                  |
| EVSB58-W-13183                  | 112             | 128 <sup>c</sup>                                 | 126 <sup>c</sup>          | Reanalyzed in S         | DG 02-11-        | 13 without error.       |                  |
| EVSB58-W-13184                  | 108             | 124 <sup>c</sup>                                 | 120                       | Reanalyzed in S         | DG 02-11-        | 14 without error.       |                  |
| EVSB61-W-13190                  | 107             | 111                                              | 109                       | ,                       |                  |                         |                  |
| EVSB58-W-13185                  | 107             | 105                                              | 104                       |                         |                  |                         |                  |
| EVQCFB-W-15892                  | 100             | 103                                              | 101                       |                         |                  |                         |                  |
| EVTB60-W-13186                  | 93              | 97                                               | 95                        |                         |                  |                         |                  |
| EVSB54-W-15871                  | 103             | 108                                              | 108                       |                         |                  |                         |                  |
| SDG 02-11-13, analysis date Nov | vember 13, 2002 |                                                  |                           |                         |                  |                         |                  |
| 20-µg/L standard                | 101             | 95                                               | 106                       | 22.53                   | 11.9             | 21.51                   | 7.3              |
| Laboratory blank                | 100             | 100                                              | 100                       |                         |                  |                         |                  |
| EVSB58-W-13183                  | 109             | 108                                              | 112                       |                         |                  |                         |                  |
| EVSB58-W-13184                  | 118             | 119                                              | 123 <sup>c</sup>          | Reanalyzed in S         | DG 02-11-        | 14 without error.       |                  |
| EVSB61-W-13188                  | 113             | 121 <sup>c</sup>                                 | 120 <sup>c</sup>          | Reanalyzed in S         | DG 02-11-        | 14 without error.       |                  |
| EVSB58-W-13191                  | 106             | 108                                              | 112                       | <b>,</b> -              |                  |                         |                  |
| EVSB58-W-13191DUP               | 105             | 108                                              | 108                       |                         |                  |                         |                  |

|                                      |                  |                                         |                           | Measured Val            | ues for Ca       | libration Check Sta     | ndards |
|--------------------------------------|------------------|-----------------------------------------|---------------------------|-------------------------|------------------|-------------------------|--------|
|                                      | Recovery of      | f Surrogate Comp                        | oounds <sup>a</sup> (%)   | Carbon Tetrac           | chloride         | Chlorofor               | m      |
| Sample                               | Fluorobenzene    | 1,2-Dichloro-<br>benzene-d <sub>4</sub> | 4-Bromo-<br>fluorobenzene | Concentration<br>(µg/L) | RPD <sup>b</sup> | Concentration<br>(µg/L) | RPD⁵   |
| SDG 02-11-14, analysis date No       | ovember 14, 2002 |                                         |                           |                         |                  |                         |        |
| 20-µg/L standard<br>Laboratory blank | 103<br>110       | 90<br>108                               | 98<br>108                 | 21.96                   | 9.3              | 21.36                   | 6.6    |
| EVSB58-W-13184<br>EVSB61-W-13188     | 108<br>109       | 104<br>119                              | 106<br>114                |                         |                  |                         |        |

<sup>a</sup> Quality control limits for recovery of surrogate compounds: 80-120%.

<sup>b</sup> Quality control limits for RPD for calibration check standards: ±20%.

<sup>c</sup> Surrogate recovery outside the quality control limit.

<sup>d</sup> Analyzed at dilution factor (DF) indicated.

| TABLE G.10 Results of dual analyses for carbon tetrachloride and chloroform on |
|--------------------------------------------------------------------------------|
| water samples at the AGEM Laboratory by the                                    |
| purge-and-trap GC-MS method.                                                   |

|             |                   |                                                                                                  | Concentration (µg/L         |                                |
|-------------|-------------------|--------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|
| Location    | Depth<br>(ft BGL) | Sample                                                                                           | Carbon<br>Tetrachloride     | Chloroform                     |
| Groundwater | samples           |                                                                                                  |                             |                                |
| SB20        | 56.0-58.0         | EVSB20-W-12063<br>EVSB20-W-12063DUP                                                              | 15<br>11                    | 1.4<br>1.1                     |
| SB20        | 58.0-60.5         | EVSB20-W-12064<br>EVSB20-W-12065                                                                 | 9.9<br>13                   | 1.1<br>1.5                     |
| SB20        | 61.5-65.0         | EVSB20-W-12068<br>EVSB20-W-12068DUP<br>EVSB20-W-12069                                            | 8.9<br>7.7<br>7.8           | 1.4<br>1.3<br>1.3              |
| SB22        | 59.0-62.0         | EVSB22-W-11985<br>EVSB22-W-11986                                                                 | ND <sup>a</sup><br>ND       | ND<br>ND                       |
| SB23        | 44.0-48.0         | EVSB23-W-12799<br>EVSB23-W-12799DUP                                                              | 41<br>38                    | 8.5<br>7.9                     |
| SB23        | 48.5-52.9         | EVSB23-W-12795<br>EVSB23-W-12795DUP<br>EVSB23-W-12796                                            | 1.4<br>1.4<br>1.6           | ND<br>ND<br>ND                 |
| SB24        | 44.0-48.5         | EVSB24-W-12763<br>EVSB24-W-12763DUP<br>EVSB24-W-12763DUP2<br>EVSB24-W-12764<br>EVSB24-W-12764DUP | 101<br>75<br>81<br>76<br>70 | 10<br>7.1<br>9.0<br>7.8<br>6.7 |
| SB24        | 48.0-53.0         | EVSB24-W-12767<br>EVSB24-W-12767DUP<br>EVSB24-W-12768<br>EVSB24-W-12768DUP                       | 117<br>100<br>145<br>125    | 11<br>9.9<br>13<br>11          |
| SB25        | 460-51.0          | EVSB25-W-12077<br>EVSB25-W-12078                                                                 | ND<br>ND                    | ND<br>ND                       |
| SB26        | 58.0-63.0         | EVSB26-W-12801<br>EVSB26-W-12802                                                                 | ND<br>ND                    | ND<br>ND                       |
| SB28        | 56.0-61.0         | EVSB28-W-12812<br>EVSB28-W-12813                                                                 | 5.4<br>5.1                  | ND<br>ND                       |

|             |                   |                                                                            | Concentrati              | on (μg/L)            |
|-------------|-------------------|----------------------------------------------------------------------------|--------------------------|----------------------|
| Location    | Depth<br>(ft BGL) | Sample                                                                     | Carbon<br>Tetrachloride  | Chloroform           |
| Groundwater | samples (Cor      | nt.)                                                                       |                          |                      |
| SB29        | 53.5-56.5         | EVSB29-W-12042<br>EVSB29-W-12042DUP<br>EVSB29-W-12043<br>EVSB29-W-12043DUP | 311<br>303<br>283<br>264 | 17<br>17<br>17<br>16 |
| SB30        | 59.5-61.0         | EVSB30-W-12807<br>EVSB30-W-12811                                           | ND<br>ND                 | ND<br>ND             |
| SB30        | 62.0-64.5         | EVSB30-W-12803<br>EVSB30-W-12804                                           | ND<br>ND                 | ND<br>ND             |
| SB30        | 66.0-68.5         | EVSB30-W-12808<br>EVSB30-W-12809                                           | ND<br>ND                 | ND<br>ND             |
| SB31        | 57.0-61.0         | EVSB31-W-11989<br>EVSB31-W-11990                                           | ND<br>ND                 | ND<br>ND             |
| SB31        | 62.0-67.0         | EVSB31-W-12039<br>EVSB31-W-12040                                           | ND<br>ND                 | ND<br>ND             |
| SB32        | 32.8-37.8         | EVSB32-W-12868<br>EVSB32-W-12869                                           | ND<br>ND                 | ND<br>ND             |
| SB32        | 37.8-42.8         | EVSB32-W-12870<br>EVSB32-W-12873                                           | ND<br>ND                 | ND<br>ND             |
| SB33        | 64.0-68.0         | EVSB33-W-12880<br>EVSB33-W-12881<br>EVSB33-W-12881DUP                      | 396<br>919<br>521        | 17<br>36<br>23       |
| SB34        | 46.0-49.0         | EVSB34-W-12857<br>EVSB34-W-12858                                           | 2.2<br>3.1               | 1.3<br>1.7           |
| SB34        | 49.0-53.0         | EVSB34-W-12854<br>EVSB34-W-12855                                           | ND<br>ND                 | ND<br>ND             |
| SB35        | 56.0-59.0         | EVSB35-W-12874<br>EVSB35-W-12875                                           | ND<br>ND                 | ND<br>ND             |
| SB36        | 51.5-54.5         | EVSB36-W-12884<br>EVSB36-W-12885                                           | ND<br>ND                 | ND<br>ND             |
| SB37        | 65.5-70.0         | EVSB37-W-12907<br>EVSB37-W-12908                                           | 16<br>15                 | ND<br>ND             |

|             |                   |                                                                            | Concentrat               | ion (μg/L)               |
|-------------|-------------------|----------------------------------------------------------------------------|--------------------------|--------------------------|
| Location    | Depth<br>(ft BGL) | Sample                                                                     | Carbon<br>Tetrachloride  | Chloroform               |
| Groundwater | samples (Cont     | t.)                                                                        |                          |                          |
| SB38        | 63.5-67.5         | EVSB38-W-12888<br>EVSB38-W-12889                                           | 18<br>17                 | ND<br>ND                 |
| SB38        | 68.9-72.9         | EVSB38-W-12893<br>EVSB38-W-12893DUP                                        | 9.6<br>8.9               | 1.4<br>1.4               |
| SB40        | 60.0-65.0         | EVSB40-W-12053<br>EVSB40-W-12053DUP<br>EVSB40-W-12054<br>EVSB40-W-12054DUP | 120<br>98<br>136<br>101  | 3.1<br>2.6<br>3.1<br>2.7 |
| SB40        | 64.9-65.9         | EVSB40-W-12056<br>EVSB40-W-12057                                           | 151<br>160               | 3.6<br>3.9               |
| SB41        | 68.0-72.8         | EVSB41-W-12898<br>EVSB41-W-12900                                           | 615<br>572               | 19<br>23                 |
| SB42        | 60.5-65.0         | EVSB42-W-12901<br>EVSB42-W-12901DUP<br>EVSB42-W-12902<br>EVSB42-W-12902DUP | 123<br>111<br>109<br>108 | 3.4<br>3.2<br>3.4<br>3.3 |
| SB43        | 39.0-44.0         | EVSB43-W-12060<br>EVSB43-W-12061                                           | ND<br>ND                 | ND<br>ND                 |
| SB43        | 44.0-49.0         | EVSB43-W-12048<br>EVSB43-W-12049                                           | ND<br>ND                 | ND<br>ND                 |
| SB43        | 49.0-52.6         | EVSB43-W-12051<br>EVSB43-W-12052                                           | ND<br>ND                 | ND<br>ND                 |
| SB44        | 64.6-67.0         | EVSB44-W-12911<br>EVSB44-W-12914<br>EVSB44-W-12914DUP                      | 1.6<br>1.5<br>ND         | ND<br>ND<br>ND           |
| SB45        | 52.0-56.0         | EVSB45-W-12932<br>EVSB45-W-12933                                           | ND<br>ND                 | ND<br>ND                 |
| SB45        | 56.0-60.0         | EVSB45-W-12930<br>EVSB45-W-12931                                           | ND<br>ND                 | ND<br>ND                 |
| SB46        | 55.0-60.0         | EVSB46-W-12862<br>EVSB46-W-12863                                           | ND<br>ND                 | ND<br>ND                 |

|             |                                     |                                                       | Concentrati             | on (µg/L)      |
|-------------|-------------------------------------|-------------------------------------------------------|-------------------------|----------------|
| Location    | Depth<br>(ft BGL)                   | Sample                                                | Carbon<br>Tetrachloride | Chloroform     |
| Groundwater | samples (Con                        | <i>t.)</i>                                            |                         |                |
| SB46        | 60.0-65.0                           | EVSB46-W-12864<br>EVSB46-W-12865                      | ND<br>ND                | ND<br>ND       |
| SB46        | 65.0-70.0                           | EVSB46-W-12918<br>EVSB46-W-12919                      | 10<br>12                | ND<br>ND       |
| SB47        | 62.0-67.0                           | EVSB47-W-12921<br>EVSB47-W-12922                      | ND<br>ND                | ND<br>ND       |
| SB47        | 67.0-72.0                           | EVSB47-W-12924<br>EVSB47-W-12925<br>EVSB47-W-12925DUP | ND<br>ND<br>ND          | ND<br>ND<br>ND |
| SB47        | 72.0-76.0                           | EVSB47-W-12928<br>EVSB47-W-12929                      | ND<br>ND                | ND<br>ND       |
| SB48        | 59.4-64.4                           | EVSB48-W-12941<br>EVSB48-W-12941DUP                   | 230<br>221              | 8.8<br>8.4     |
| SB49        | 51.0-55.0<br>51.0-55.0<br>51.0-55.0 | EVSB49-W-13170<br>EVSB49-W-13171<br>EVSB49-W-13171DUP | ND<br>ND<br>ND          | ND<br>ND<br>ND |
| SB50        | 51.0-54.0<br>51.0-54.0              | EVSB50-W-13158<br>EVSB50-W-13159                      | ND<br>ND                | ND<br>ND       |
| SB50        | 54.0-56.8<br>54.0-56.8              | EVSB50-W-13169<br>EVSB50-W-13169DUP                   | ND<br>ND                | ND<br>ND       |
| SB51        | 54.1-59.1<br>54.1-59.1              | EVSB51-W-13166<br>EVSB51-W-13166DUP                   | 52<br>52                | 1.3<br>1.3     |
| SB52        | 58.0-60.5<br>58.0-60.5              | EVSB52-W-13164<br>EVSB52-W-13165                      | 8.0<br>8.0              | ND<br>ND       |
| SB52        | 21.0-26.0<br>21.0-26.0              | EVSB52-W-13163<br>EVSB52-W-13163DUP                   | 21<br>19                | ND<br>ND       |
| SB53        | 21.0-26.0<br>21.0-26.0              | EVQCDU-W-15870<br>EVSB53-W-15868                      | ND<br>ND                | ND<br>ND       |
| SB54        | 22.0-27.0<br>22.0-27.0<br>22.0-27.0 | EVQCDU-W-15875<br>EVSB54-W-15874<br>EVSB54-W-15874DUP | ND<br>ND<br>ND          | ND<br>ND<br>ND |

|               |                                     |                                                       | Concentration (µg/L)    |                |
|---------------|-------------------------------------|-------------------------------------------------------|-------------------------|----------------|
| Location      | Depth<br>(ft BGL)                   | Sample                                                | Carbon<br>Tetrachloride | Chloroform     |
| Groundwater   | samples (Con                        | t.)                                                   |                         |                |
| SB56          | 22.0-27.0<br>22.0-27.0              | EVSB56-W-15881<br>EVSB56-W-15881DUP                   | ND<br>ND                | ND<br>ND       |
| SB57          | 32.8-37.8<br>32.8-37.8              | EVSB57-W-13175<br>EVSB57-W-13176                      | ND<br>ND                | ND<br>ND       |
| SB58          | 33.0-38.0<br>33.0-38.0              | EVSB58-W-13181<br>EVSB58-W-13181DUP                   | ND<br>ND                | ND<br>ND       |
| SB58          | 38.3-41.3<br>38.3-41.3              | EVSB58-W-13183<br>EVSB58-W-13184                      | ND<br>ND                | ND<br>ND       |
| SB61          | 50.1-55.1<br>50.1-55.1              | EVSB61-W-13191<br>EVSB61-W-13191DUP                   | ND<br>ND                | ND<br>ND       |
| SB61          | 56.4-59.3<br>56.4-59.3<br>56.4-59.3 | EVSB61-W-13188<br>EVSB61-W-13189<br>EVSB61-W-13189DUP | ND<br>ND<br>ND          | ND<br>ND<br>ND |
| Surface water | r samples                           |                                                       |                         |                |
| SW07          | -                                   | EVSW07-W-12844<br>EVQCDU-W-12845                      | ND<br>ND                | ND<br>ND       |
| SW09          | -                                   | EVSW09-W-15849<br>EVSW09-W-15849DUP                   | ND<br>ND                | ND<br>ND       |
| SW12          | -                                   | EVQCDU-W-15853<br>EVSW12-W-15852                      | ND<br>ND                | ND<br>ND       |
| Equipment rin | isates                              |                                                       |                         |                |
| QC            | -                                   | EVSB24-W-12769<br>EVSB24-W-12769DUP                   | ND<br>ND                | 1.9<br>1.9     |
| QC            | -                                   | EVSB31-W-12038<br>EVSB31-W-12038DUP                   | ND<br>ND                | ND<br>ND       |
| QC            | -                                   | EVSB33-W-12882<br>EVSB33-W-12882DUP                   | ND<br>ND                | ND<br>ND       |

 $^{a}$  ND, not detected at the quantitation limit of 1.0  $\mu\text{g/L}.$ 

TABLE G.11 Recovery of system-monitoring compounds in organic analyses of water samples at Clayton Laboratory with CLP methodology.

|                            |                  | Quanta                      | Recovery <sup>a</sup> (%) |                         |                                        |  |  |
|----------------------------|------------------|-----------------------------|---------------------------|-------------------------|----------------------------------------|--|--|
| Sample                     | Analysis<br>Date | Sample<br>Delivery<br>Group | Toluene-d <sub>8</sub>    | Bromofluoro-<br>benzene | 1,2-Dichloro-<br>ethane-d <sub>4</sub> |  |  |
| VBLKAR                     | 3/16/01          | 1030441-ARG102              | 100                       | 100                     | 98                                     |  |  |
| WA-9-12192MS <sup>b</sup>  | 3/16/01          | 1030441-ARG102              | 104                       | 98                      | 98                                     |  |  |
| WA-9-12192MSD <sup>b</sup> | 3/16/01          | 1030441-ARG102              | 102                       | 98                      | 98                                     |  |  |
| EVSB24-W-12762             | 3/16/01          | 1030441-ARG102              | 102                       | 98                      | 104                                    |  |  |
| EVSB24-W-12763             | 3/16/01          | 1030441-ARG102              | 102                       | 98                      | 104                                    |  |  |
| EVSB24-W-12764             | 3/16/01          | 1030441-ARG102              | 104                       | 100                     | 100                                    |  |  |
| EV-TB-031501               | 3/16/01          | 1030441-ARG102              | 102                       | 100                     | 104                                    |  |  |
| VBLKAS                     | 3/16/01          | 1030441-ARG102              | 100                       | 96                      | 98                                     |  |  |
| VBLKAV                     | 3/30/01          | 1030905-ARG103              | 98                        | 98                      | 104                                    |  |  |
| EVSB30-W-12811             | 3/30/01          | 1030905-ARG103              | 98                        | 98                      | 102                                    |  |  |
| EVSB30-W-12811MS           | 3/30/01          | 1030905-ARG103              | 98                        | 96                      | 102                                    |  |  |
| EVSB30-W-12811MSD          | 3/30/01          | 1030905-ARG103              | 98                        | 98                      | 106                                    |  |  |
| EV-TB-032701               | 3/30/01          | 1030905-ARG103              | 100                       | 100                     | 104                                    |  |  |
| EV-TB-032901               | 3/30/01          | 1030905-ARG103              | 100                       | 98                      | 102                                    |  |  |
| EVSB31-W-11900             | 3/30/01          | 1030905-ARG103              | 98                        | 98                      | 104                                    |  |  |
| EVSB31-W-12039             | 3/30/01          | 1030905-ARG103              | 100                       | 100                     | 106                                    |  |  |
| EVSB31-W-12040             | 3/30/01          | 1030905-ARG103              | 98                        | 100                     | 106                                    |  |  |
| EVSB30-W-12808             | 3/30/01          | 1030905-ARG103              | 100                       | 98                      | 106                                    |  |  |
| EVSB32-W-12870             | 3/30/01          | 1030905-ARG103              | 100                       | 98                      | 106                                    |  |  |
| EVSB32-W-12869             | 3/30/01          | 1030905-ARG103              | 100                       | 98                      | 106                                    |  |  |
| EVSB34-W-12854             | 3/30/01          | 1030905-ARG103              | 100                       | 100                     | 106                                    |  |  |
| EVSB34-W-12855             | 3/30/01          | 1030905-ARG103              | 102                       | 100                     | 106                                    |  |  |
| EVSB34-W-12858             | 3/30/01          | 1030905-ARG103              | 102                       | 96                      | 108                                    |  |  |
| VHBLKAA                    | 3/30/01          | 1030905-ARG103              | 98                        | 98                      | 104                                    |  |  |
| VBLKAY                     | 4/5/01           | 1040080-ARG104              | 100                       | 100                     | 98                                     |  |  |
| EVSB38-W-12893             | 4/5/01           | 1040080-ARG104              | 100                       | 98                      | 98                                     |  |  |
| EVSB38-W-12893MS           | 4/5/01           | 1040080-ARG104              | 104                       | 104                     | 98                                     |  |  |
| EVSB38-W-12893MSD          | 4/5/01           | 1040080-ARG104              | 102                       | 102                     | 102                                    |  |  |
| EVSB39-W-12897DL           | 4/5/01           | 1040080-ARG104              | 102                       | 102                     | 99                                     |  |  |
| EV-TB-W-12000              | 4/5/01           | 1040080-ARG104              | 104                       | 100                     | 100                                    |  |  |
| EVSB40-W-12053             | 4/5/01           | 1040080-ARG104              | 102                       | 100                     | 100                                    |  |  |
| EVSB39-W-12897             | 4/5/01           | 1040080-ARG104              | 104                       | 100                     | 102                                    |  |  |
| VBLKAZ                     | 4/6/01           | 1040080-ARG104              | 98                        | 98                      | 94                                     |  |  |
| EVSB41-W-12898             | 4/6/01           | 1040080-ARG104              | 98                        | 100                     | 94                                     |  |  |
| EVSB33-W-12881             | 4/6/01           | 1040080-ARG104              | 102                       | 99                      | 101                                    |  |  |

| Sample                |                  |                             | Recovery <sup>a</sup> (%) |                         |                                        |  |  |
|-----------------------|------------------|-----------------------------|---------------------------|-------------------------|----------------------------------------|--|--|
|                       | Analysis<br>Date | Sample<br>Delivery<br>Group | Toluene-d <sub>8</sub>    | Bromofluoro-<br>benzene | 1,2-Dichloro-<br>ethane-d <sub>4</sub> |  |  |
| EVSB33-W-12880        | 4/6/01           | 1040080-ARG104              | 100                       | 98                      | 96                                     |  |  |
| EVSB41-W-12900 4/6/01 |                  | 1040080-ARG104              | 103                       | 96                      | 104                                    |  |  |
| VHBLKAA               | 4/6/01           | 1040080-ARG104              | 99                        | 97                      | 99                                     |  |  |
| VBLKJU                | 11/13/02         | 2110318-ARG151              | 104                       | 98                      | 102                                    |  |  |
| EVSB51-W-13166        | 11/13/02         | 2110318-ARG151              | 104                       | 96                      | 102                                    |  |  |
| EVSB51-W-13166MS      | 11/13/02         | 2110318-ARG151              | 102                       | 96                      | 104                                    |  |  |
| EVSB51-W-13166MSD     | 11/13/02         | 2110318-ARG151              | 102                       | 96                      | 104                                    |  |  |
| EVSB49-W-13170        | 11/13/02         | 2110318-ARG151              | 104                       | 98                      | 100                                    |  |  |
| EVSB52-W-13173        | 11/13/02         | 2110318-ARG151              | 106                       | 96                      | 102                                    |  |  |
| EVSB51-W-13167        | 11/13/02         | 2110318-ARG151              | 104                       | 98                      | 104                                    |  |  |
| EV-TB-111102          | 11/14/02         | 2110318-ARG151              | 104                       | 96                      | 102                                    |  |  |
| VHBLKJA               | 11/14/02         | 2110318-ARG151              | 104                       | 96                      | 104                                    |  |  |

a Quality control limits for recovery are as follows:

| Analyte                           | <u>QC Limits (%)</u> |
|-----------------------------------|----------------------|
| Toluene-d <sub>8</sub>            | 88-110               |
| Bromofluorobenzene                | 86-115               |
| 1,2-Dichloroethane-d <sub>4</sub> | 76-114               |

<sup>b</sup> A groundwater sample from another former CCC/USDA facility being analyzed by the laboratory with the Everest samples was selected by the laboratory for matrix spike/matrix spike duplicate analysis.

|                       |                  | Concentration (µg/L) |                   |                       |                   | Recovery (%)          |          |                 | Difference (%) |  |
|-----------------------|------------------|----------------------|-------------------|-----------------------|-------------------|-----------------------|----------|-----------------|----------------|--|
| Compound              | Sample           | Spike<br>Added       | Spike<br>Analysis | Duplicate<br>Analysis | Spike<br>Analysis | Duplicate<br>Analysis | QC Limit | RPD             | QC Limit       |  |
| MS/MSD analysis of WA | A-9-12192 in SD0 | G 1030441-A          | ARG102            |                       |                   |                       |          |                 |                |  |
| 1.1-Dichloroethene    | 0                | 50                   | 60                | 61                    | 120               | 122                   | 61-145   | 2               | 14             |  |
| Trichloroethene       | 0                | 50                   | 49                | 51                    | 98                | 102                   | 71-120   | 4               | 14             |  |
| Benzene               | 0                | 50                   | 48                | 50                    | 96                | 100                   | 76-127   | 4               | 11             |  |
| Toluene               | 0                | 50                   | 51                | 51                    | 102               | 102                   | 76-125   | 0               | 13             |  |
| Chlorobenzene         | 0                | 50                   | 49                | 50                    | 98                | 100                   | 75-130   | 2               | 13             |  |
| MS/MSD analysis of EV | SB30-W-12811 i   | n SDG 1030           | 0905-ARG10        | )3                    |                   |                       |          |                 |                |  |
| 1,1-Dichloroethene    | 0                | 100                  | 88                | 94                    | 88                | 94                    | 61-145   | 7               | 14             |  |
| Trichloroethene       | 0                | 100                  | 93                | 98                    | 93                | 98                    | 71-120   | 5               | 14             |  |
| Benzene               | 0                | 100                  | 92                | 99                    | 92                | 99                    | 76-127   | 7               | 11             |  |
| Toluene               | 230              | 100                  | 320               | 280                   | 97                | 85                    | 76-125   | 13              | 13             |  |
| Chlorobenzene         | 0                | 100                  | 96                | 100                   | 96                | 100                   | 75-130   | 4               | 13             |  |
| MS/MSD analysis of EV | SB38-W-12893 i   | n SDG 1040           | 0080-ARG10        | )4                    |                   |                       |          |                 |                |  |
| 1,1-Dichloroethene    | 0                | 50                   | 45                | 53                    | 90                | 106                   | 61-145   | 16 <sup>a</sup> | 14             |  |
| Trichloroethene       | 0                | 50                   | 42                | 45                    | 84                | 90                    | 71-120   | 7               | 14             |  |
| Benzene               | 0                | 50                   | 43                | 46                    | 86                | 92                    | 76-127   | 7               | 11             |  |
| Toluene               | 0                | 50                   | 43                | 45                    | 86                | 90                    | 76-125   | 5               | 13             |  |
| Chlorobenzene         | Õ                | 50                   | 43                | 46                    | 86                | 92                    | 75-130   | 7               | 13             |  |

# TABLE G.12 Recovery and relative percent difference values for spike/spike duplicate organic analyses of water samples at Clayton Laboratory with CLP methodology.
## TABLE G.12 (Cont.)

|                         | Concentration (µg/L) |                |                   | Recovery (%)          |                   |                       | Difference (%) |     |          |
|-------------------------|----------------------|----------------|-------------------|-----------------------|-------------------|-----------------------|----------------|-----|----------|
| Compound                | Sample               | Spike<br>Added | Spike<br>Analysis | Duplicate<br>Analysis | Spike<br>Analysis | Duplicate<br>Analysis | QC Limit       | RPD | QC Limit |
| MS/MSD analysis of EVSE | 351-W-13166 I        | with SDG 21    | 10318-ARG         | 151                   |                   |                       |                |     |          |
| 1.1-Dichloroethene      | 0                    | 50             | 43                | 40                    | 86                | 80                    | 61-145         | 7   | 14       |
| Trichloroethene         | 0                    | 50             | 43                | 40                    | 86                | 80                    | 71-120         | 7   | 14       |
| Benzene                 | 0                    | 50             | 49                | 46                    | 98                | 92                    | 76-127         | 6   | 11       |
| Toluene                 | 0                    | 50             | 48                | 47                    | 96                | 94                    | 76-125         | 2   | 13       |
| Chlorobenzene           | 0                    | 50             | 47                | 45                    | 94                | 90                    | 75-130         | 4   | 13       |

<sup>a</sup> Value outside indicated quality control limit.

|          |                                  |                   | Concentration (μg/L) |                                      |           |                                    |
|----------|----------------------------------|-------------------|----------------------|--------------------------------------|-----------|------------------------------------|
|          |                                  |                   | Carbon Te            | trachloride                          | Chlor     | roform                             |
| Location | Sample                           | Depth<br>(ft BGL) | AGEM                 | Clayton                              | AGEM      | Clayton                            |
| SB24     | EVSB24-W-12762                   | 40.0-43.0         | 21                   | 25.2                                 | 3.9       | 5.0                                |
| SB24     | EVSB24-W-12763<br>EVSB24-W-12764 | 44.0-48.5         | 101<br>76            | 97.6<br>102.8                        | 10<br>7.8 | 9.6<br>10.2                        |
| SB30     | EVSB30-W-12811                   | 59.5-61.0         | ND <sup>a</sup>      | ND                                   | ND        | ND                                 |
| SB30     | EVSB30-W-12808                   | 66.0-68.5         | ND                   | ND                                   | ND        | ND                                 |
| SB31     | EVSB31-W-11990                   | 57.0-61.0         | ND                   | ND                                   | ND        | ND                                 |
| SB31     | EVSB31-W-12039<br>EVSB31-W-12040 | 62.0-67.0         | ND<br>ND             | ND<br>ND                             | ND<br>ND  | ND<br>ND                           |
| SB32     | EVSB32-W-12869                   | 32.8-37.8         | ND                   | ND                                   | ND        | ND                                 |
| SB32     | EVSB32-W-12870                   | 37.8-42.8         | ND                   | ND                                   | ND        | ND                                 |
| SB33     | EVSB33-W-12880<br>EVSB33-W-12881 | 64.0-68.0         | 396<br>919           | 190 <sup>b</sup><br>180 <sup>b</sup> | 17<br>36  | 33 <sup>b</sup><br>32 <sup>b</sup> |
| SB34     | EVSB34-W-12858                   | 46.0-49.0         | 3.1                  | 1.2 J <sup>c</sup>                   | 1.7       | 1.2 J                              |
| SB34     | EVSB34-W-12854<br>EVSB34-W-12855 | 49.0-53.0         | ND<br>ND             | ND<br>ND                             | ND<br>ND  | ND<br>ND                           |
| SB38     | EVSB38-W-12893                   | 68.9-72.9         | 9.6                  | 8.0 <sup>b</sup>                     | 1.4       | 1.2 J <sup>b</sup>                 |
| SB39     | EVSB39-W-12897                   | 68.2-72.2         | 303                  | 150 <sup>b</sup>                     | 11        | 11 <sup>b</sup>                    |
| SB40     | EVSB40-W-12053                   | 60.0-65.0         | 120                  | 110 <sup>b</sup>                     | 3.1       | 3 J <sup>b</sup>                   |
| SB41     | EVSB41-W-12898<br>EVSB41-W-12900 | 68.0-72.8         | 615<br>572           | 280 <sup>b</sup><br>280 <sup>b</sup> | 19<br>23  | 18 <sup>b</sup><br>18 <sup>b</sup> |
| SB49     | EVSB49-W-13170                   | 51.0-55.0         | ND                   | ND                                   | ND        | ND                                 |
| SB51     | EVSB51-W-13166                   | 54.1-59.1         | 52                   | 59                                   | 1.3       | 2 J                                |
| SB51     | EVSB51-W-13167                   | 59.0-64.0         | 32                   | 28                                   | 3.0       | 3 J                                |
| SB52     | EVSB52-W-13173                   | 52.0-57.0         | 18                   | 18                                   | ND        | ND                                 |

TABLE G.13 Results of carbon tetrachloride and chloroform analyses on samples analyzed both at the AGEM Laboratory and at Clayton Laboratory.

<sup>a</sup> ND, contaminant not detected.

<sup>b</sup> During analysis of this sample at Clayton Laboratory, the relative percent difference in the spike/spike duplicate analysis was outside the quality control limit.

<sup>c</sup> J, estimated concentration below the quantitation limit of 5  $\mu$ g/L for the CLP analysis.

| Sample<br>Delivery<br>Group | Recovery <sup>a</sup><br>(%) | Sample<br>Delivery<br>Group | Recovery <sup>a</sup><br>(%) |
|-----------------------------|------------------------------|-----------------------------|------------------------------|
|                             |                              |                             | (,,,,,                       |
| SDG 82012                   | 94                           | SDG 82201                   | 90                           |
| SDG 82036                   | 91                           | SDG 82221                   | 90                           |
| SDG 82037                   | 91                           | SDG 82234                   | 89                           |
| SDG 82071                   | 91                           | SDG 82248                   | 89                           |
| SDG 82090                   | 89                           | SDG 82272                   | 92                           |
| SDG 82103                   | 89                           | SDG 82320                   | 97                           |
| SDG 82143                   | 93                           | SDG 82336                   | 95                           |
| SDG 82172                   | 91                           | SDG 82367                   | 97                           |
| SDG 82185                   | 92                           | SDG 82379                   | 97                           |

TABLE G.14 Recovery of known concentrations of nitrate during analysis of laboratory quality control samples at Severn-Trent Laboratory.

<sup>a</sup> Quality control limits for recovery: 80-120%.

|                             | Concentra          |                       |                                   |  |  |
|-----------------------------|--------------------|-----------------------|-----------------------------------|--|--|
|                             | Sample<br>Analysis | Duplicate<br>Analysis | Relative<br>Percent<br>Difference |  |  |
| EVSB20-W-12063 i            | n SDG 82012        |                       |                                   |  |  |
|                             | 15800              | 15800                 | 0                                 |  |  |
| EVSB22-W-11985 i            | n SDG 82012        |                       |                                   |  |  |
|                             | 10800              | 10800                 | 0                                 |  |  |
| EVSB24-W-12762 i            | n SDG 82090        |                       |                                   |  |  |
|                             | 10400              | 10400                 | 0                                 |  |  |
| EVSB30-W-12808 in SDG 82185 |                    |                       |                                   |  |  |
|                             | 13500              | 13500                 | 0                                 |  |  |
| EVSB37-W-12907 in SDG 82336 |                    |                       |                                   |  |  |
|                             | 13100              | 12800                 | 2.3                               |  |  |

## TABLE G.15 Calculated relative percent difference in duplicate nitrate analyses of groundwater samples at Severn-Trent Laboratory

| TABLE G.16 Recovery of system monitoring compounds in total     |  |  |  |  |  |
|-----------------------------------------------------------------|--|--|--|--|--|
| petroleum hydrocarbon analyses of water samples at Severn-Trent |  |  |  |  |  |
| Laboratory with EPA Method SW8015B.                             |  |  |  |  |  |
|                                                                 |  |  |  |  |  |

|                |                  | Sample            | Recovery (%)    |  |
|----------------|------------------|-------------------|-----------------|--|
| Sample         | Analysis<br>Date | Delivery<br>Group | o-Terphenyl     |  |
| EBLKM5         | 11/19/02         | 90922             | 92              |  |
| M5LCS          | 11/19/02         | 90922             | 96              |  |
| M5LCSD         | 11/19/02         | 90922             | 96              |  |
| EVSB51-W-13166 | 11/19/02         | 90922             | 62              |  |
| EVSB52-W-13164 | 11/20/02         | 90922             | 59 <sup>a</sup> |  |
| EVSB52-W-13163 | 11/20/02         | 90922             | 61              |  |
| EVSB53-W-15868 | 11/20/02         | 90922             | 65              |  |
| EVSB49-W-15854 | 11/20/02         | 90922             | 101             |  |
| EVSB50-W-13160 | 11/20/02         | 90922             | 35 <sup>a</sup> |  |
| EVSB49-W-15855 | 11/20/02         | 90922             | 60              |  |
| EVSB50-W-13158 | 11/21/02         | 90922             | 30 <sup>a</sup> |  |

<sup>a</sup> Limits for *o*-terphenyl recovery = 60-140%.

TABLE G.17 Percent recovery of system monitoring compounds in two laboratory control samples during inorganic analyses of water samples at Severn-Trent Laboratory by EPA Methods 3010A and 6010B.

|            | Sample 1  |              |                 | Sample 2  |              |                 |  |
|------------|-----------|--------------|-----------------|-----------|--------------|-----------------|--|
|            | Concentra | ation (µg/L) | _               | Concentra | ation (µg/L) | _               |  |
| Analyte    | Actual    | Detected     | Recovery<br>(%) | Actual    | Detected     | Recovery<br>(%) |  |
| Antimony   | 2,000     | 2,171        | 108.6           | 2,000     | 2,181        | 109.0           |  |
| Arsenic    | 1,050     | 1,093        | 104.1           | 1,050     | 1,096        | 104.4           |  |
| Barium     | 500       | 512.1        | 102.4           | 500       | 516.2        | 103.2           |  |
| Beryllium  | 500       | 532.4        | 106.5           | 500       | 533.2        | 106.6           |  |
| Cadmium    | 525       | 526.7        | 100.3           | 525       | 527.2        | 100.4           |  |
| Chromium   | 500       | 511.8        | 102.4           | 500       | 514.1        | 102.8           |  |
| Cobalt     | 500       | 503.4        | 100.7           | 500       | 504.9        | 101.0           |  |
| Copper     | 500       | 526.7        | 105.3           | 500       | 533.7        | 106.7           |  |
| Lead       | 1,015     | 1,025        | 101.0           | 1,015     | 1,027        | 101.2           |  |
| Molybdenum | 1,000     | 1,024        | 102.4           | 1,000     | 1,027        | 102.7           |  |
| Nickel     | 500       | 502.1        | 100.4           | 500       | 503.5        | 100.7           |  |
| Selenium   | 525       | 553.8        | 105.5           | 525       | 551.5        | 105.0           |  |
| Silver     | 500       | 470.5        | 94.1            | 500       | 472          | 94.4            |  |
| Thallium   | 550       | 553.5        | 100.6           | 550       | 555.9        | 101.1           |  |
| Tin        | 1,000     | 1,066        | 106.6           | 1,000     | 1,071        | 107.1           |  |
| Vanadium   | 500       | 512.9        | 102.6           | 500       | 514.9        | 103.0           |  |
| Zinc       | 500       | 513.4        | 102.7           | 500       | 513.4        | 102.7           |  |