Critical Evaluation of the ISCCP Simulator Using Ground-Based Remote Sensing Data

PDF Version Also Available for Download.

Description

Given the known shortcomings in representing clouds in Global Climate Models (GCM) comparisons with observations are critical. The International Satellite Cloud Climatology Project (ISCCP) diagnostic products provide global descriptions of cloud top pressure and column optical depth that extends over multiple decades. The necessary limitations of the ISCCP retrieval algorithm require that before comparisons can be made between model output and ISCCP results the model output must be modified to simulate what ISCCP would diagnose under the simulated circumstances. We evaluate one component of the so-called ISCCP simulator in this study by comparing ISCCP and a similar algorithm with various ... continued below

Physical Description

PDF-file: 36 pages; size: 1.5 Mbytes

Creation Information

Mace, G G; Houser, S; Benson, S; Klein, S A & Min, Q November 2, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Given the known shortcomings in representing clouds in Global Climate Models (GCM) comparisons with observations are critical. The International Satellite Cloud Climatology Project (ISCCP) diagnostic products provide global descriptions of cloud top pressure and column optical depth that extends over multiple decades. The necessary limitations of the ISCCP retrieval algorithm require that before comparisons can be made between model output and ISCCP results the model output must be modified to simulate what ISCCP would diagnose under the simulated circumstances. We evaluate one component of the so-called ISCCP simulator in this study by comparing ISCCP and a similar algorithm with various long-term statistics derived from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility ground-based remote sensors. We find that were a model to simulate the cloud radiative profile with the same accuracy as can be derived from the ARM data, then the likelihood of that occurrence being placed in the same cloud top pressure and optical depth bin as ISCCP of the 9 bins that have become standard ranges from 30% to 70% depending on optical depth. While the ISCCP simulator improved the agreement of cloud-top pressure between ground-based remote sensors and satellite observations, we find minor discrepancies due to the parameterization of cloud top pressure in the ISCCP simulator. The primary source of error seems to be related to discrepancies in visible optical depth that are not accounted for in the ISCCP simulator. We show that the optical depth discrepancies are largest when the assumptions necessary for plane parallel radiative transfer optical depths retrievals are violated.

Physical Description

PDF-file: 36 pages; size: 1.5 Mbytes

Source

  • Journal Name: Journal of Climate, vol. 24, n/a, March 15, 2011, pp. 1598-1612; Journal Volume: 24

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LLNL-JRNL-419342
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 1020324
  • Archival Resource Key: ark:/67531/metadc836158

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 2, 2009

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Nov. 23, 2016, 12:05 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Mace, G G; Houser, S; Benson, S; Klein, S A & Min, Q. Critical Evaluation of the ISCCP Simulator Using Ground-Based Remote Sensing Data, article, November 2, 2009; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc836158/: accessed December 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.