Determining the significance of associations between two series of discrete events : bootstrap methods /

PDF Version Also Available for Download.

Description

We review and develop techniques to determine associations between series of discrete events. The bootstrap, a nonparametric statistical method, allows the determination of the significance of associations with minimal assumptions about the underlying processes. We find the key requirement for this method: one of the series must be widely spaced in time to guarantee the theoretical applicability of the bootstrap. If this condition is met, the calculated significance passes a reasonableness test. We conclude with some potential future extensions and caveats on the applicability of these methods. The techniques presented have been implemented in a Python-based software toolkit.

Physical Description

311 Kb

Creation Information

Niehof, Jonathan T. & Morley, Steven K. January 1, 2012.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

  • Los Alamos National Laboratory
    Publisher Info: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
    Place of Publication: Los Alamos, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

We review and develop techniques to determine associations between series of discrete events. The bootstrap, a nonparametric statistical method, allows the determination of the significance of associations with minimal assumptions about the underlying processes. We find the key requirement for this method: one of the series must be widely spaced in time to guarantee the theoretical applicability of the bootstrap. If this condition is met, the calculated significance passes a reasonableness test. We conclude with some potential future extensions and caveats on the applicability of these methods. The techniques presented have been implemented in a Python-based software toolkit.

Physical Description

311 Kb

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LA-14453
  • Grant Number: DE-AC52-06NA25396
  • DOI: 10.2172/1035497 | External Link
  • Office of Scientific & Technical Information Report Number: 1035497
  • Archival Resource Key: ark:/67531/metadc836034

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 2012

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Nov. 23, 2016, 3:12 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Niehof, Jonathan T. & Morley, Steven K. Determining the significance of associations between two series of discrete events : bootstrap methods /, report, January 1, 2012; Los Alamos, New Mexico. (digital.library.unt.edu/ark:/67531/metadc836034/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.