DRAFT

FINAL REPORT

to the

Aquatic Species Program Solar Energy Research Institute 1617 Cole Boulevard Golden, Colorado 80401

for project titled

COLLECTION OF HIGH ENERGY YIELDING STRAINS OF SALINE MICROALGAE FROM SOUTHWESTERN STATES

(Contract Number XK-4-04136-01)

Principal Investigator:

Milton R. Sommerfeld Department of Botany/Microbiology Arizona State University Tempe, Arizona 85287

January 1986

COLLECTION OF HIGH ENERGY YIELDING STRAINS OF SALINE MICROALGAE FROM SOUTHWESTERN STATES

Milton R. Sommerfeld Stephen B. Ellingson Department of Botany and Microbiology Arizona State University Tempe, Arizona 85287

ABSTRACT

Microalgal and water samples were obtained from 87 sites in Arizona, California, Nevada, New Mexico, Texas and Utah. Collected waters ranged in temperature from 17.8° to 39°C, in specific conductance from 447 uS/cm to 474,000 uS/cm and from 6.1 to 10.2 in pH. Ionic analysis of the waters revealed that the relative anion and cation composition of the surface waters sampled was relatively similar to the artificial SERI Type I and Type II Media that has been used as the standardized media for growth rate experiments. Approximately 1,400 individual isolates of microalgae were obtained from surface waters in the Southwest. Of the initial 23 algae screened for growth characteristics, the majority grew best at the lower salinities in both SERI Type I and Type II Media. Growth rates for selected strains approached three doublings per day.

INTRODUCTION

Collection and screening efforts designed to isolate and characterize lipid accumulating microalgae have been restricted primarily to specific geographic locations. Thomas et al. (1983, 1984, 1985) have collected and characterized selected microalgae from saline waters in eastern California and western Nevada. Barclay (1984) and Barclay et al. (1985) have collected and screened microalgae from Colorado and Utah, and Tadros (1985) has isolated organisms from marine habitats on the Gulf Coast of Alabama, Florida, and Mississippi. Lewin (1985) and Ryther (per. comm.) have also made collections from marine and saline habitats.

The Southwestern United States have been identified as possessing the requisite resources and characteristics such as abundant land, saline water, high incident solar radiation and mild temperatures that would be advantageous in the development of microalgal biomass technology (McIntosh, 1984). Since an abundance of microalgal species exist in the diverse aquatic habitats of the Southwest, they represent a large and varied assemblage of autotrophic microorganisms that have adapted to utilize the growing conditions available. It is logical, therefore, that microalgal species which either dominate or are found in abundance in the region would represent likely candidates for mass culture using natural waters of the area.

This investigation was designed primarily to enlarge the pool of microalgal raw material from which the more desirable strains could be selected, manipulated or ultimately genetic modified. Previous attempts to mass culture microalgae has focused on increased yield through improvements in culture management rather than on improvements resulting from the selection of more desirable strains.

The specific objectives were to:

- collect microalgal species/strains from a diversity of saline habitats at numerous locations in the desert Southwest.
- (2) isolate and identify strains that grow well at elevated salinities and light intensities, and to characterize selected strains for lipid and carbohydrate accumulation.
- (3) characterize the gross physico-chemistry of the habitats from which microalgae were collected.

To accomplish these objectives, microalgae were obtained from 87 aquatic habitats of diverse salinities and temperatures in Arizona, California, Nevada, New Mexico, Texas and Utah and were screened for their ability to grow rapidly in dense culture under elevated salinities and light intensities and to accumulate lipid and carbohydrate storage products.

MATERIALS AND METHODS

Six separate sampling trips to saline surface waters supporting algal growth in the arid Southwest were conducted from 19 April to 27 July 1985 (Fig. 1 and Table 1). Before algal samples were taken at a given aquatic site, specific conductance of the water was measured and if it exceeded 2000 uS/cm, a sample was collected. Conductance was not the sole criterion used to determine whether samples were to be taken. Sites exhibiting lower conductivity, yet abundant algal growth were also sampled. At each site several field measurements were recorded. Air temperature was measured in the shade with a mercurial thermometer. Water temperature and specific conductance were determined with a Yellow Spring Instruments (YSI) Model 33 S-C-T salinity meter. Conductance was corrected to 25°C (Wetzel and Likens, 1979). Water depth was recorded at the point of sample collection. Hydrogen ion concentrations were measured with a portable Orion Model 407A pH meter.

One liter of water was collected for microalgal isolation and media preparation and another liter obtained from subsequent water chemistry analyses. In addition to these planktonic samples, neustonic and benthic samples were collected at sites exhibiting visible algal growth. Neustonic samples were collected in a quiescent area by sweeping a Whatman No. 42 filter across the water surface with a forceps. If abundant algal growth was present around the margin of the pond or stream a benthic sample was also collected. Samples were kept near collection temperatures by placement in an insulated chest in the dark until returning to the laboratory.

At all sites where planktonic samples were collected, water was obtained for determination of ionic composition (Ca, Mg, Na, K, OH, CO₃, HCO₃, SO₄, Cl) and total filterable residue (TFR). Water samples were collected by bottle immersion below the surface, placed on ice and kept in the dark until processed. Following filtration of the water through pre-rinsed Whatman GF/C

filters (1.2 um pore size), anionic composition and TFR were determined. Alkalinity was measured by titration to phenolphthalein and bromcresol green-methyl red end points (APHA et al., 1985), chloride by mercuric nitrate titration (USEPA, 1979) and sulfate by the turbidimetric method (APHA et al., 1985) in 2.5 cm curvettes with a Coleman Model 54 spectrophotometer. Total filterable residue was determined gravimetrically after drying at 105°C to a constant weight (APHA et al., 1985). Cationic concentrations were measured after membrane filtration (0.45 um pore size) and nitric acid preservation of samples by direct aspiration atomic absorption spectroscopy with a Perkin-Elmer Model 403 (USEPA, 1979). Lanthanum and cesium were added to the samples and an air-acetylene flame used. All glassware and bottles used for collection and storage of water samples were soaked in 6 N HCl and throughly rinsed with distilled and deionized water.

Planktonic samples were divided into four aliquots to isolate and characterize the microalgae (Fig. 2). A portion was preserved with Lugol's solution to provide a record of the taxonomic diversity for each site and to give an indication of total cell numbers. An aliquot of the sample was enriched with nutrients and maintained as a living collection. All nutrient additions were similar to Guillard's Fl Medium (Guillard and Ryther, 1962) without thiamine, biotin, or B_{12} . Samples were enriched to: NaNO₃, 146.9 mg/l; NaH₂PO₄·H₂O, 9.794 mg/l;

Na2SiO3·9H2O, 9.794 mg/1; Na2EDTA, 8.541 mg/1; FeCl2·6H2O, 6.170 mg/l; CuSO₄·5H₂O, 19.59 ug/l; ZnSO₄·7H₂O, 43.10 ug/l; CoCl₂·6H₂O, 19.59 ug/l; MnCl·4H₂O, 35.26 ug/l; and NaMoO₄·2H₂O, 12.73 ug/l. Two approaches were used for preliminary screening and iolation. In one approach samples were streaked directly onto 1.5% agar plates with conductivities similar to that recorded in the field (Fig. 2). Plates were made with filter sterilized (0.22 um pore size) Solar Energy Research Institute (SERI) Type I or II Media (Barclay et al., 1985), seawater, or natural site water, all enriched with nutrients. Isolated colonies were removed and placed into test tubes (16 x 150 mm) containing 2 ml of liquid medium of the type used to prepare the plates. The pH of SERI Media or seawater was not adjusted since small acid or base additions resulted in precipitation. Average pH of the media of 10, 40 and 70 mS/cm conductance was: SERI Type I(10), 7.78; SERI Type II(10), 8.56; SERI Type I(40), 7.34; SERI Type II(40), 8.80; SERI Type I(70), 7.25; SERI Type II(70), 8.80; seawater, 7.79. In the second approach samples were enriched and placed in large culture tubes (25 x 150 mm) on a rotary culture device similar to that described by Barclay et al. (1985) (Fig. 3). The cultures were exposed to the following conditions: constant temperature of 25°C, irradiance of 1500 $uE/m^2/sec$ and 12 h light 12 h dark (12L:12D) photoperiod. Light intensity was measured with a LI-Cor Model LI-185 Meter and LI-192S Quantum Sensor. The rotary culture device was placed inside an environmental chamber (National Appliance Co., Portland, OR) to maintain a constant

temperature which was continuously recorded with a Model 594 hygro-thermograph (Bendix Corp., Baltimore, MD). Samples were placed in the rotary device for 7 to 19 days and then samples streaked and isolated as above.

Sediment and filters containing neustonic samples were placed into tubes containing SERI Type I or II Media enriched with nutrients. After visible growth occurred the sample was streaked onto agar plates and algal clones isolated.

Microalgal samples generated from the two isolation approaches were examined microscopically (Fig. 4). If the samples were not unialgal they were restreaked onto agar plates and checked again. Portions of the unialgal sample were placed on agar slants and 10 ml of media added to the test tubes. These samples were precultured at 25°C in enriched SERI Type I and Type II Media of 40 mS/cm conductance, 200 uE/m²/sec irradiance, and a 12L:12D cycle. Once significant cell numbers were achieved and while the culture was in logarithmic growth, samples were inoculated (0.5 ml) into culture tubes (25 ml) containing enriched SERI Type I and II Media at 10, 40 and 70 mS/cm and enriched seawater, and placed in the rotary culture device. Initial growth rate measurements were made at 30° C, 500 uE/m^2 /sec and 12L:12D cycle. Growth rates of promising strains will be determined later at different temperatures and light intensities. Rotary culture device tubes were inserted directly into a Coleman Model 54 spectrophotometer and optical density values recorded at 750 nm (2.2 cm path length) for 10 days. Values were transformed

to logarithm base 2 and growth rates calculated from the slope of a linear regression of time (total light and dark period) and optical density (Sorokin, 1973).

Nile Blue A (CI 51180) and Oil Red O (CI 26125) stains were used to evaluate the presence of intracellular lipids in selected strains of microalgae. Samples were cultured in nutrient sufficient or deficient SERI Type I or II media under conditions of 25°C, 200 uE/m²/sec, and a 12L:12D cycle. Once a dense culture was produced cells were stained and rated from zero, for no microscopically visible lipid droplets, to three pluses for droplets nearly filling the entire cell volume. Cells were washed in distilled water and fixed by passing a microscope slide, containing a drop of sample, through a flame to evaporate the liquid. While the slide was hot Nile Blue A (40 mg/100 ml distilled water) or Oil Red O (750 mg/100 ml dimethyl sulfoxide) were added and allowed to remain for about 30 sec. Slides treated with Nile Blue A were washed and destained with 1 M Tris-HCl buffer (pH 8.5) and Oil Red O stained cells were washed with 60% isopropanol. Wet mounts were prepared and viewed with moderate light at 1000x magnification.

The chemical composition of algal strains showing either good growth or lipid accumulation via the staining methods was determined. Algae were grown in one-liter flasks containing appropriate SERI Media or seawater. Once significant cell numbers were achieved the batch cultures were harvested by filtration or centrifugation. Total carbohydrates were

determined by the phenol-sulfuric acid method (Kochet, 1978) with a glucose standard and total proteins by the heated biuret-Folin assay (Dorsey et al., 1978) with a bovine serum albumen (BSA) standard. Total lipids were determined according to Bligh and Dyer (1959). Dry weight was found by concentrating an algal sample onto a tared precombusted Whatman CF/C filter and drying at 105°C to a constant weight. Ash-free dry weight was obtained by igniting the above filter at 500°C for one hour. The filter was cooled, wetted with distilled water and brought to a constant weight after drying at 105°C. Chemical composition was expressed as a percentage of the ash-free dry weight.

RESULTS AND DISCUSSION

Samples of natural water containing microalgae were obtained from 87 aquatic habitats in the Southwest representing a broad range of conductivities and temperatures (Fig. 5). Twenty samples were from natural waters with temperatures of 30°C or greater. Another 19 sites had water temperatures between 28 and 29.9°C at the time of collection. Mean water temperature for all the samples was 26.6°C, ranging from 17.8°C in the Salt River Canyon (Site no. SRC-3) to 39.0°C at LaVerkin Springs (LVS-3). Specific conductance ranged from 447 uS/cm in the Salt River Canyon of Arizona (SRC-11) to 474,000 uS/cm in Salt Lake in New Mexico (SL-1) and averaged 24,900 uS/cm. Approximately one-third of the habitats had a conductance greater than 10,000 uS/cm. Specific conductivity was measured at 74 additional sites but was

either too low (< 2000 uS/cm) or the extremely turbid nature of the water due to suspended particulates precluded sample collection. Measurements of specific conductance in the field were used to match the sample to the appropriate SERI Media during initial screening and isolation. Other field parameters are summarized in Table 2. Water depths ranged from 1 cm at Wilcox Playa (WP-1/2) to 76 cm in the Buckeye Irrigation District (B-4). A seep in the Salt River Canyon (SRC-3) exhibited the pH low of 6.1 with a high pH of 10.2 recorded at Wilcox Playa (WP-1).

Ionic composition of waters sampled during the summer of 1985 is given in Table 3. In the calculation of anionic composition, alkalinity was calculated as the sum of OH, CO₃, and HCO₃. Trilinear plots of relative anionic and cationic compositions of the various waters is given in Figures 6 and 7. From the anionic plot (Fig. 6) it is apparent that the waters from the Southwest were dominated by Cl. Exceptions include several sites in the Pecos River Valley of Texas, with high proportions of SO₄ and samples collected from central Arizona possessing high alkalinities. Elevated proportions of Na + K were apparent in the cationic plot (Fig. 7). A number of samples (16 of 88) contained a high relative Ca concentration with all samples noticably deficient in Mg.

These results are generally similar to those obtained by Thomas et al. (1984) for saline waters sampled in California and Nevada. Based on an average of relative anionic compositions for

23 sites sampled a higher proportion (6 of 23) of their sample sites contained water high in alkalinity. Analyses of cationic compositions yielded a very dense cluster in the Na + K apex of a trilinear plot. The Salton Sea (Imperial-Riverside Counties, California), in April 1983 contained the lowest proportion of Na + K at 73.9%.

Most waters of the arid southwest are controlled by evaporation-precipitation processes (Gibbs, 1970) resulting in high Na and Cl levels. Proportions of these ions in saline waters can be modified by temperature, precipitation, evaporation, basin sediments, nature of influent waters, lithology of the drainage basin, and biotic effects (Cole, 1968). Results from our work and that of Thomas et al. (1984) corroborate the expected high levels of Na and Cl in southwestern surface waters. When field data is compared to the SERI artificial media good agreement with the anionic composition is apparent (Fig. 6). Most of the sites had a relative anionic composition that is distributed evenly between Type I and II Media with some samples having a proportionally higher alkalinity. The relative cationic composition of the sites do not follow SERI Type I Media (Fig. 7). The high proportion of Mg (38.1 to 45.6% meg/l) causes this medium formulation to appear as an outlier on the trilinear plot. Most of our samples contained only about 17% meg Mg/1 whereas Thomas et al. (1984) obtained

about 5% meq Mg/l. In extreme stages of concentration Mg salts can predominate over less soluble Na compounds, but surface waters of this type are uncommon in the Southwest.

A compilation of ionic water chemistry and its potential correlation with promising microalgae might be used later to predict water conditions that favor algal species that are able to thrive in mass culture in the Southwest and subsequently produce desirable products. Differences in algal floras between lakes are frequently correlated with ionic characteristics of the water. Moss (1973) reported that pH and inorganic carbon concentrations in five southern Michigan lakes were important in explaining differences in algal composition. A positive correlation between Ca and chlorophyll-a concentrations was reported by Bierhuizen and Prepas (1985) in saline lakes of Alberta and Barica (1978) found that high salinity decreased maximum summer chlorophyll-a levels. This information on ionic composition can therefore be used to refine artificial media formulations for future culture work.

Specific conductance proved to be a good predictor of total filterable residue (TFR) in the waters sampled (Fig. 8). Total filterable residue concentrations determined by evaporation averaged 23,226 mg/l (range 273 to 506,166 mg/l) and can be related to conductivity by the following linear regression equation:

> log (TFR) = 1.0255(log SC) - 0.2789 $r^2 = 0.9487, n = 88.$

As an analytical check TFR was calculated as the sum of dominate ions (Ca, Mg, Na, K, OH, CO₃, HCO₃, SO₄ and Cl) and compared to evaporative TFR. Ratios of evaporative to summation TFR were close to unity with only a few aberrations (Table 8). Divergent values might have resulted from occluded water remaining in the dishes after drying at 105°C. Depth at the sample site was recorded but this parameter does not appear to contain much predictive value (cf. Barclay et al., 1985).

A total of 151 samples were collected for the isolation of microalgae (Table 4). Most of the collections (63.6%) were of planktonic material. The large number of sites samples and the dual approaches employed to isolate algae produced a very large quantity of isolates. Only a small fraction of these isolates have been characterized with regard to growth and chemical composition. The thrust of our current and future efforts will be directed toward the methodical examination of this large reservoir of algal samples.

A list of 51 isolated algal genera is given in Table 5. To date 14 different genera have been identified, with several represented by multiple strains. This list will be expanding as more isolates are identified from existing cultures. <u>Dunaliella</u>, the most halophilic eukaryotic organism known (Brock, 1976) composes the largest portion (15 of 51) of the algae isolated. This genus was collected from six sites with high conductivities ranging from 72,900 to 52,900 uS/cm. Blue-green algae were the next most abundant (13 of 51) organisms isolated. Seven strains

of <u>Oscillatoria</u> and six strains of <u>Chroococcus</u> were isolated. Many genera of blue-green algae thrive in saline waters (Borowitzka, 1981) with <u>Microcoleus</u>, <u>Oscillatoria</u>, <u>Phormidium</u>, and <u>Spirulina</u> being common filamentous representatives. <u>Aphanothece halophytica</u>, which is closely related to <u>Chroococcus</u>, is reported to be common in warm, saline lakes. Nine strains of <u>Cymbella</u> were isolated from sites of generally low conductivity (ranging from 912 to 29,900 uS/cm). Only one strain of each of the remaining ten genera has been identified. An additional 47 unialgal cultures have been obtained but await identification.

During nutrient-sufficient growth 12 isolates were stained with Oil Red O (Table 6). Only <u>Trebouxia</u> (ASU0132) demonstrated significantly elevated levels of intracellular lipids. Four other strains had detectable lipid aggregations with the remainder giving no reaction. These cultures will be allowed to senesce and stained again to evaluate lipid accumulation under nutrient deficiency.

During the initial set of growth rate experiments three genera were used to evaluate the procedure. Growth rates were determined for <u>Carteria</u> and <u>Pleurochloris</u> from the Arizona State University (ASU) culture collection and <u>Platymonas</u> (S/Platy-1) from SERI.

<u>Platymonas</u> was reported to be a profilic alga and two strains from the ASU collection are thought to have potential as biomass producers. <u>Platymonas</u> grew in all media (Table 7) with a growth rate ranging from 0.231 doublings/day (doub/d) in SERI I(40) Medium to 0.901 doub/d in SERI II(40) Medium. These rates are slightly lower than those obtained by Laws (1985) who reported about one doubling per day for <u>Platymonas</u> grown in laboratory scale experiments. <u>Carteria</u> and <u>Pleurochloris</u> grew in low salinity SERI Media (Table 7) at an average of 0.304 doub/d and 0.410 doub/d, respectively. <u>Pleurochloris</u> grew at a rate 0.717 doub/d in SERI I(70), the most saline media used during these growth rate experiments.

A total of 23 growth rate determinations have been completed (Table 7). Most of these initial rates are from samples collected in the Salt River Canyon. Dunaliella (ASU0002) showed high doubling rates in all media used except SERI Type II(70) (Fig. 9). Growth rates for this alga were calculated from two separate experiments and agreement between results was good. Both determinations indicated that Dunaliella (ASU0002) grew best in SERI Type I(10). Eremosphaera (ASU0048), Nannochloris (ASU0068) and Trebouxia (ASU0132) from the Salt River Canyon exhibited rapid growth in several SERI Media of low conductivity (Fig. 10). A rate of 2.038 and 3.263 doub/d were recorded for Trebouxia and Eremosphaera in SERI Type I(10). A single sample of Asteroccous (ASU0061) from the Verde River showed a similar pattern with high growth rates in the less concentrated SERI Media and seawater (Fig. 15). Rapid growth was apparent (0.767 to 1.101 doub/d) in all SERI Type I Media and seawater (2.576 doub/d) for <u>Dunaliella</u> (ASU0038) collected from Salt Creek in Texas. Two algae from LaVerkin Springs and one from Lower

Chevelon Creek exhibited very rapid growth in most of the media used (Fig. 13). <u>Chlorococcum</u> (ASU0093) from Lower Chevelon Creek grew rapidly in low salinity SERI Media and seawater (maximum 1.723 doub/d in SERI Type I(40)). Rates ranging from 0.501 in SERI Type I(70) to 2.313 doub/d in seawater were reported for <u>Chroococcus</u> (ASU0071 and ASU0075) from LaVerkin Springs. Growth for the other strains is depicted in Figures 11, 12 and 14.

Most of the rapid growth rates were observed in SERI Media Type I and II at 10 mS/cm. This may have resulted from the fact that most (11 of 19) of these initial field samples were isolated into low conductance media. These algae are apparently intolerant of large changes in salinity, however Brown (1985) was able to transfer <u>Nannochloris</u> from 7% to 200% artificial seawater (ASW) with an intermediate incubation in 100% ASW. There appears to be no major differences in growth rates between SERI Type I and II Media with the exception of the paucity of growth seen in Type II Medium at 70 mS/cm. Only two algae (<u>Platymonas</u> and <u>Chroococcus</u> (ASU0071)) were able to demonstrate appreciable growth in this concentrated medium.

Initial growth rates obtained from algae collected in the Southwest appear similar to those found by other workers in the Aquatic Species Program. Since other workers have previously used different media, culturing devices, light intensities, and methods of calculating and expressing growth rates, results are not always strictly comparable.

Thomas et al. (1984) initially estimated algal growth visually but later (Thomas et al., 1985) determined growth rates for 31 "good" and "intermediate" growing strains at 30°C. Growth ranged from 0.10 doub/d for a green flagellate (56R80-1) in Standard I Moderate TDS Medium to 2.48 doub/d for <u>Chlorella</u> <u>ellipsoidea</u> (BL-6) in Standard II Low TDS Medium. The average rate was 0.68 doub/d for the 31 strains tested. In later experiments Thomas et al. (1985) determined growth rates for six algal strains at 30°C in five different Standard Media. <u>Chaetoceros</u> (OL-12) grew the best at 1.72 doub/d in Standard II Moderate TDS Medium.

Barclay et al. (1985) reported exponential growth rates (per day) for <u>Ankistrodesmus</u> and <u>Boekelovia</u> (Chryso/Fl) on salinitytemperature gradients. Exponential growth rates in excess of 2.0/day (ca. 3.5 doub/d) were obtained for both species.

Maximum doubling times of 18 h (= 1.33 doub/d) were reported for <u>Dunaliella salina</u> and <u>Phaeodactylum tricornutum</u> by Ben-Amotz (1985). These growth rates are not directly comparable to our results since the cultures were grown at different temperatures.

CONCLUSIONS

Algal and water samples were collected from a large number of sites in the Southwest exhibiting a broad range of environmental conditions. Analyses of cationic and anionic compositions indicate that the SERI Artificial Media are reasonably good approximations of southwestern surface waters. The major

exception is the elevated levels of magnesium present in SERI Type I Media. Approximately 1400 algal cultures have been generated and only a small portion of these have been examined in detail. Fifty-one unialgal cultures, growing in saline medium, have been tentatively identified. These isolates were dominated by Dunaliella, unicellular and filamentous blue-green algae, and Cymbella. Using Oil Red O stain, 12 isolates have been tentatively evaluated for the production of intracellular lipids. During nutrient-sufficient growth Trebouxia (ASU0132) demonstrated high levels of lipid accumulation. Growth rate measurements have been completed for 21 unialgal samples using SERI Media and seawater. Most algae grew well in SERI Type I and II Media with low conductivities. Dunaliella (ASU0038), Chroococcus (ASU0075), Chlorococcum (ASU0093), and Trebouxia (ASU0132) grew at about two doub/d while Eremosphaera (ASU0048) doubled three times per day.

Efforts are currently directed toward obtaining a more detailed characterization of growth parameters for selected species and analysis of chemical composition of the most promising strains.

REFERENCES

- American Public Health Association and others. 1985. Standard Methods for the Examination of Water and Wastewater, 16th edition. Washington, D.C.
- Barclay, W.R. 1984. Microalgal technology research at SERI: Species collection and characterization, p. 152-159. In: Aquatic Species Program Review: Proceedings of the April 1984 Principal Investigators Meeting. Publ. No. SERI/CP-231-2341. Solar Energy Research Institute, Golden, CO.
- Barclay, B., N. Nagle, K. Terry, and P. Roessler. 1985. Collecting and screening microalgae from shallow, inland habitats, p. 52-68. In: Aquatic Species Program Review: Proceedings of the March 1985 Principal Investigators Meeting. Publ. No. SERI/CP-231-2700. Solar Energy Research Institute, Golden, CO.
- Barica, J. 1978. Variability in ionic composition and phytoplankton biomass of saline eutrophic prairie lakes within a small geographic area. Arch. Hydrobiol., 81(3): 304-326.
- Ben-Amotz, A. 1985. Development of outdoor raceway capable of yielding oil-rich halotolerant microalgae, p. 230-243. <u>In</u>: Aquatic Species Program Review: Proceedings of the March Principal Investigators Meeting. Publ. No. SERI/CP-231-2700. Solar Energy Research Institute, Golden, CO.
- Bierhuizen, J.F.H. and E.E. Prepas. 1985. Relationship between nutrients, dominate ions, and phytoplankton standing crop in prairie saline lakes. Can. J. Fish. Aquat. Sci., 42: 1588-1594.
- Bligh, E.G. and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37(8): 911-917.
- Borowitzka, L.J. 1981. The microflora: Adaptations to life in extremely saline lakes. Hydrobiologia, 81: 33-46.
- Brock, T.D. 1975. Salinity and the ecology of <u>Dunaliella</u> from the Great Salt Lake. J. Gen. Microbiol., 89: 285-292.
- Brown, L.M. 1985. Stepwise adaptation to salinity in the green alga <u>Nannochloris bacillaris</u>. Can. J. Bot., 63: 327-332.
- Cole, G.A. 1968. Desert Limnology, p. 423-486. In: G.W. Brown, Jr. (ed.), Desert Biology. Academic Press Inc., New York.

- Dorsey, T.E., P. McDonald, and O.A. Roels. 1978. Measurements of phytoplankton-protein content with the heated biuret-folin assay. J. Phycol., 14(2): 167-171.
- Gibbs, R.J. 1970. Mechanisms controlling world water chemistry. Science, 170: 1088-1090.
- Guillard, R.R.L. and J.H. Ryther. 1962. Studies of marine planktonic diatoms. I. <u>Cyclotella nana</u> Hustedt, and <u>Detonula</u> <u>confervacea</u> (Cleve) Gran. Can. J. Microbiol., 8: 229-239.
- Kochert, G. 1978. Carbohydrate determination by the phenol-sulfuric acid method, p. 95-97. <u>In</u>: J.A. Hellebust and J.S. Craigie (eds.), Handbook of Phycological Methods: Physiological and Biochemical Methods. Cambridge Univ. Press, Cambridge.
- Laws, E.A. 1985. Productivity optimization of saline microalgae grown in outdoor mass culture, p. 162-178. <u>In</u>: Aquatic Species Program Review: Proceedings of the March 1985 Principal Investigators Meeting. Publ. No. SERI/CP-231-2700. Solar Energy Research Institute, Golden, CO.
- Lewin, R.A. 1985. Production of hydrocarbons by micro-algae; isolation and characterization of new and potentially useful algal strains, p. 43-51. <u>In</u>: Aquatic Species Program Review: Proceedings of the March Principal Investigators Meeting. Publ. No. SERI/CP-231-2700. Solar Energy Research Institute, Golden, CO.
- McIntosh, R. 1985. SERI Aquatic Species Program 1984 Annual Report. SERI/PR-231-2659. Solar Energy Research Institute, Golden, CO. 52 pp.
- Moss, B. 1973. The influence of environmental factors on the distribution of freshwater algae: An experimental study. IV. Growth of test species in natural lakewaters, and conclusions. J. Ecol., 61: 193-211.
- Tadros, M.G. 1985. Screening and charaterizing oleaginous microalgae species from the Southeastern United States. <u>In</u>: Aquatic Species Program Review: Proceedings of the March Principal Investigators Meeting. Publ. No. SERI/CP-231-2700. Solar Energy Research Institute, Golden, CO.
- Thomas, W.H., D.L.R. Seibert, M. Alden, P. Eldridge, A. Neori, and S. Gaines. 1983. Selection of high-yielding microalgae from desert saline environents, p. 97-122. <u>In</u>: Aquatic Species Program Review: Proceedings of the March 1983 Principal Investigators Meeting. Publ. No. SERI/CP-231-1946. Solar Energy Research Institute, Golden, CO.

Thomas, W.H., D.L.R. Seibert, M. Alden, and P. Eldridge. 1984. Culture requirements, yields, and light utilization efficiencies of some desert saline microalgae, p. 7-51. In: Aquatic Species Program Review: Proceedings of the April 1984 Principal Investigators Meeting. Publ. No. SERI/CP-231-2341. Solar Energy Research Institute, Golden, CO.

Selection of desert saline microalgae for high yields at elevated temperatures and light intensities and in SERI standard artificial media, p. 5-27. <u>In</u>: Aquatic Species Program Review: Proceedings of the March 1985 Principal Investigators Meeting. Publ. No. SERI/CP-231-2700. Solar Energy Research Institute, Golden, CO.

- Sorokin, C. 1973. Dry weight, packed cell volume and optical density, p. 321-343. In: J.R. Stein (ed.), Handbook of Phycologial Methods: Culture Methods and Growth Measurements. Cambridge Univ. Press, Cambridge.
- United States Environmental Protection Agency. 1979. Methods for chemical analysis of water and wates. EPA-600/4-79-020.
- Wetzel, R.G. and G.E. Likens. 1979. Limnological Analyses. W.B. Saunders Co., Philadelphia.

Site No.	Date	State	County	Latituda	Longitude	Elev.	Topographic map
KP-1	5/19/85	AZ	Maricopa	332230	1115619	360	GuadaLupe, Ariz. 7.5 min (1982)
TL-1	5/19/85	AZ	Martcopa	332236	1115707	360	Tempe, Ariz. 7.5 min (1973)
DL-1	5/19/85	AZ	Maricopa	332153	1115325	365	Guadalupe, Ariz. 7.5 min (1982)
18 0- 1	5/19/85	AZ	Maricopa	332705	1115447	360	Tempe, Ariz. 7.5 min (1973)
TC-1	5/19/85	AZ	Maricopa	332653	1115610	380	Temps, Ariz. 7.5 min (1973)
PZ-1	5/19/85	AZ	Maricopa	332657	1115403	365	Tempe, Ariz. 7.5 min (1973)
S R- 1	5/19/85	AZ	Maricopa	332555	1115617	345	Temps, Ariz. 7.5 min [1973]
SRC-1	5/30/65	AZ	Gila	334753	1103001	1025	BLue House Mtn., Ariz, 15 min (1946)
SRC-2	5/30/65	AZ	Gile	335054	1103320	965	Blue House Mtn., Ariz. 15 min (1946)
SRC-3	5/30/85	AZ	Gila	335016	1113321	975	Blue House Mtn., Ariz. 15 min (1948)
SRC-4	5/30/85	AZ	Gila	335423	1113631	1000	Blue House Mtn., Ariz. 15 min (1946)
SRC5	5/30/85	AZ	Gila	335423	11113631	1000	Blue House Mtn., Ariz. 15 min (1946)
SRC-6	5/30/85	AZ	Gil a	335423	1113631	1000	Blue House Mtn., Ariz. 15 min (1946)
SRC-7	5/30/85	AZ	Gila	335423	1113631	1000	Blue House Mtn., Ariz. 15 min (1946)
SRC-8	5/30/85	AZ	Gila	335423	1113631	1000	Blue House Mtn., Ariz. 15 min (1946)
SRC-9	5/30/85	AZ	Gila	335423	1113631	1000	Blue House Mtn., Ariz. 15 min (1948)
SRC-1 0	5/30/85	AZ	Gila	335423	1113631	1000	Blue House Mtn., Ariz. 15 min (1946)
SRC-11	5/30/85	AZ	Gila	334947	1103424	950	Blue House Mtn., Ariz. 15 min (1946)
SRC-12	5/30/85	AZ	Gila	335423	1113631	1000	Blue House Mtn., Ariz. 15 min (1946)
FC-1	6/13/85	AZ	Yavapai	342412	1113702	1150	Strewberry, Ariz. 7,5 min (1967)
FC-2	6/13/85	AZ	Yevapai	342524	1113425	1 290	Strewberry, Ariz. 7.5 min (1967)
FC-2A	6/13/85	AZ	Yavapai	342524	1113425	1 290	Strawperry, Ariz. 7.5 min (1967)
FC-3	6/13/85	AZ	Yavapai	342515	1113431	1285	Strewberry, Ariz. 7.5 min (1967)
FC-4	6/13/85	AZ	Yavapai	342515	1113431	1285	Strewberry, Ariz. 7.5 min (1967)
VR-1	6/13/85	AZ	Yavapai	342118	1114233	805	Verde Hot Springs, Ariz. 7.5 min (1987)
VR-2	6/13/85	AZ	Yavapai	342118	1114233	805	Verde Hot Springs, Ariz. 7.5 min (1967)
VR-2A	6/13/85	AZ	Yavapai	342118	1114233	805	Verde Hot Springs, Ariz. 7.5 min (1967)
8-1	7/2/85	AZ	Mariopa	332142	1123420	260	Buckeye, Ariz. 7.5 min (1958)
B-2	7/2/85	AZ	Mariopa	332119	1123555	255	Buckeye, Ariz. 7.5 min (1958)
B3	7/2/85	AZ	Martopa	332051	1123813	250	Buckeye, Ariz. 7.5 min (1958)
8-4	7/2/85	AZ	Mariopa	331958	1124036	245	Buckeye, Ariz. 7.5 min (1958)
H R- 1	7/2/85	AZ	Mariopa	332054	1124318	250	Hassayampa, Ariz. 7.5 min (1958)
GD1	7/2/85	AZ	Mariopa	331334	1124559	220	Spring Mtn., Ariz. 7.5 min (1973)
PC-1	7/2/85	AZ	Mariopa	335702	1124156	225	Gila Bend, Ariz. 15 min (1951)
8P-1	7/2/85	AZ.	Mariopa	330448	1130117	170	Dendora Valley, Ariz. 15 min (1951)
WH-1	7/2/85	AZ.	Yuma	324221	1140454	70	Wellton, Ariz. 7.5 min (1965)
WM-2	7/2/85	AZ	Yuma	324506	1142516	50	Laguna Dam, Ariz. 7.5 min (1955)
GL-1	7/3/85	AZ.	Yuma	333008	1114740	25	Gadsden, Ariz. 7.5 min [1965]
MD-1	7/3/85	AZ.	Yuma	322919	1144717	25	Gadsden, Aiz. 7.5 min (1965)
FV-1	7/3/85	CA	Imperial				
FV-2	//3/85	CA	Imperial	0000	4000000	64 6	
6H-1	7/15/85	AZ	Graham Graham	330302	1095755	815	inomas, Ariz. 15 min (1960)
6H-2	7/15/85	AZ	Graham	330258	1095753	815	Fort Thomes, Ariz. 15 min (1980)
CH-1	7/10/85	AZ	uranam Coostat	325928	1095432	635	inatcher, Ariz. 15 min (1960)
68-1	//10/85	AZ	GLOGUTOGUTOG	330316	10911750	1070	ULITTON, Ariz. 15 min (1982)

Table 1. Sampling sites in Arizona, California, Nevada, New Mexico, Texas and Utah.

•

Table 1. (continued)

•

.

Site No.	Dete	State	County	Latitude	Longitude	Elev.	Topographic map
WP-1	7/16/85	AZ	Cochise	320847	1-94835	1260	Cochise, Ariz. 15 min (1958)
WP-2	7/16/85	AZ	Cochise	320844	1094630	1260	Cochise, Ariz. 15 min (1958)
Fil-1	7/17/85	TX	EL Paso				
T-1	7/17/85	TX	EL Paso	312449	1060347	1145	Tornillo, Tex. 7.5 min (1972)
T-2	7/17/85	тх	EL Paso	312508	1060308	1145	Tornillo, Tex. 7.5 min (1972)
DC-1	7/17/85	TX	Hudspeth	315622	1051125	1115	Dell City, Tex. 7.5 min (Prov. ed. 1984)
DC-2	7/17/85	тх	Hudspeth	315611	1051026	1115	Dell City. Tex. 7.5 min (Prov. ed. 1984)
DC-3	7/17/85	TX	Hudsneth	315341	1050855	1110	Dail City, Tex. 7.5 min (Prov. ed. 1984)
SC-1	7/18/85	TX	Culberson	3151.08	1041404	1050	Screw Bean Braw, West: Tex. 7.5 min (1973)
14	7/18/65	TX	Reeves	314921	1040032	885	Screw Been Drew, West: Tax, 7.5 min (1978)
15	7/18/65	TY	Paevac	315300	1035508	850	$\begin{array}{c} \text{Bed Bluff Tay 7.5 min (4000)} \end{array}$
	7/18/85	TY	Paeves	315404	1035/37	865	Ped Bluff, Tex. 7.5 min (1000)
PQ-1	7/18/65	TY	Loving	345403	1035437	840	Ber Bluff Tex 7 5 min (4068)
18	7/19/85	TY	Boevec	010400	1003404	040	Neu Brott, Tex. 7.0 min (1308)
08-1	7/18/85	NM	Eddy	3 204 24	1040315	0.05	Waters New May 15 min (1045)
WL-1	7/18/85	NIM	Eddy	324407	1040313	600	Halaan Now Moy 15 min (1940)
21	7/18/85	NM	Eddy	32110/	1040404	300	Haraga, New Hex. (3 min (1943)
SL-1	7/18/85	NM	Eddy	321807	1040043	91 0	Carlchad, New May 15 min (1071)
SLC-1	7/18/85	NM	Eddy	321841	1040040	900	Carichad New May 15 min (1971)
MIG-1	7/18/85	NM	Cheves	33904.2	1 040225	900	Bottomiese Duedroppie Now Max
		,	0.10100	JULUT L	1041004	000	7 5 min (1950)
MLN-1	7/18/85	NM	Chaves	33201 2	1041954	885	Bottomless Quadrangle, New Mex. 7 5 min (1950)
DI-1	7/18/85	NM	Chaves	332007	1041 954	885	Bottomiess Quadrangle, New Mex. 7 5 min (1950)
ÆS - 1	7/18/85	NM	Chaves	332003	1041953	885	Bottomless Quaarangle, New Mex. 7.5 min (1950)
F8N-1	7/18/85	NM	Ch aves	332003	1041953	885	Bottomless Quadrangle, New Mex. 7.5 min (1950)
LL-1	7/18/65	NM	Ch av es	332113	1042026	1055	Bottomless Quadrangle, New Mex. 7.5 min (1950)
BL 1	7/18/85	NM	Chaves	332828	1042404	1060	Bitter Lake, New Mex. 7.5 min (1962)
SH19-1	7/18/65	NM	Chaves	332905	1042438	1085	Bitter Lake, New Mex. 7.5 min [1962]
SH21-1	7/18/85	NM	Chaves	33291 2	1042439	1070	Bitter Lake, New Mex. 7.5 min (1962)
SH37-1	7/18/85	NM	Cheves	332900	1042458	1070	Bitter Lake, New Mex. 7.5 min (1982)
SH11-1	7/18/85	NM	Chaves	332920	1042504	1070	Bitter Lake, New Mex. 7.5 min (1962)
L7-1	7/18/85	NM	Cheves	332608	1042428	1060	Bitter Lake, New Mex. 7.5 min (1962)
LW155	7/25/85	NV	Clark	360514	1145910	470	Henderson Quedrengle 15 min (1952)
LW048	7/25/85	NV	Clerk	360506	1145910	47 0	Henderson Quadrangle 15 min (1952)
LW048	7/25/85	NV	Clark	360517	1145852	47 0	Henderson Quadrangle 15 min (1952)
LV9-1	7/25/85	ហ	Washington	371124	1131618	940	Hurricane Quedrangle 15 min (1954)
LVS-2	7/25/85	ហ	Washington	371118	1131601	940	Hurricana QuadrangLe 15 min (1954)
LV9-3	7/25/85	ហ	Washington	371118	11131608	940	Hurricane Quedrangle 15 min (1954)
Z SL-1	7/26/85	NM	Catron	342708	1 0846 09	1895	Zuni Salt Lake, New Mex. 7.5 min (1972)
ZSL-2	7/26/85	NM	Catron	342643	1 0846 07	1895	Zuni Salt Lake, New Mex. 7.5 min (1972)
SJR-1	7/27/85	NM	Valencia	350347	1107 4228	1895	McCarty's Quadrangle 7.5 min {1957}

Table	1. ((continued)

.

•

•

Site No.	Date	State	County	Latitude	Longitude	Elev.	Topographic map
LCC-1	7/27/85	47	Navaio	345525	1103143	1 495	Hibberd, Ariz 7.5 min (1970)
FCC-5	7/27/85	AZ	Navajo	345525	1103143	1495	Hibbard, Ariz. 7.5 min (1970)
MP-1	7/27/85	AZ	Navejc	345808	1103835	1485	Clear Creek Reservoir, Ariz. 7.5 min (1970)
Mw1	7/27/85	AZ	Yavepa i	343827	1114608	1075	Lake Montezuma, Ariz. 7.5 min (1969)

Table 2.	General	characteristics	of	sampling	site.	

•

Site No.	Date	Time	Air	H2O	x	EC	рН	Evap	Sum	E/S
1 KD1	5.19	950		29-0	49	679	8.4		468.8	
2 TI _4	5 40	1015		28 0	33	055	8.1		713 9	
2 11-1	5 40	1010		20.0 97 Q	20	570	8 2		412 7	
	5 40	1400		27.3		729	8 /		AA2 A	
4 10m~1	5 40	1446		27.0	47	/22	2 4		376 7	
	5 40	4446		20.1	4/	503	8.9		A11 05	
0 P2-1	5.40	4 200		20.0	40	550	0.4		265 0	
/ 31-1	0.13	1200		23.0	15	000	3.1		303.8	
8 SRC-1	5.30	1010	23	18.0	20	901	7.6	573	610.2	0.939
9 SRC-2	5.30	1102	24	18.3	3	91 2	8.6	614	701.3	0.876
10 SRC-3	5,30	1125	24	17.8	27	1454	7.5	947	930.9	1.017
11 SRC-4	5.30	1505	24	22.0	6	41 040	8.4	29528	27867.72	1.060
12 SRC-5	5.30	1520	24	22.0	12	29700	7.6	20204	21607.2	0.935
13 SRC-6	5.30	1540		22.0	9	45360	7.9	30523	30417.7	1.003
14 SRC-7	5.30	1541		19.0	5	1925	8.1	11037	1071.4	0.968
15 SRC-8	5.30	1601		24.5	5	29700	6.4	19848	21061.1	0,942
16 SRC -9	5.30	1611	25	24.0	35	52 920	6.1	38672	37324,2	1.036
17 SRC-10	5.30	1620	24	19.0	40	1089	7.8	631	589.2	1.071
18 SRC-11	5.30	1720	24	20.0	12	447	7.9	273	376.09	0,726
19 SRC-12	5.30	1515		19.0		1265	7.5	673	732.8	0.918
20 FC-1	6.13	1420	33	25.0	14	4600	7.6	374	599,58	0.624
21 FC-2	6.13	1610		22,9	61	754	7	448	591.84	0.757
22 FC-2A	6.13	1815		22.5		718	7.3	432	606,49	0.712
23 FC-3	6.13	1645		22,9	37	1300	7	6334	605.17	10,466
24 FC-4	6.13	1649	35	22.0	20	666	7.5	385	588.5	0,654
25 VR-1	8.13	1850	34	28.2	27	1150	8.8	693	696.6	0,995
26 VR-1A	6.13	1853		40.0		4357	6,8	3176	4205.2	0.755
27 VR-2	6.12	1855		29.2	4	4464	7.9	33119	4372.9	0.759
28 88C-1	6.20	1635		31.0	4	1710		579	710.2	0.815
29 B- 1	7,2	745		21.7	20	4691	7.5	3331	3114,3	1.070
30 B-2	7.2	800		23.5	46	5610	7.7	3866	3481	1.111
31 6 -3	7.2	81 O	30	24.5	25	3700	7.6	2705	2565.2	1.054
32 B -4	7,2	840	33	56.0	76	3773	8.2	2570	2452.4	1.048
33 H R- 1	7,2	920	34	28.7	10	3116	8	1564	1409.9	1.109
34 GD-1	7.2	1015		28.5	10	41185	9.5	2648	2603	1.017
35 PO-1	7.2	1045	43	28.5		3395	8.5	2341	2106.7	1.111
36 BP-1	7.2	1215	45	31.9	30	6942	8.3	3449	3295.5	1.047
37 WM-1	7.2	1630	44	28.0		4465	7.9	3129	3110.5	1.006
38 WM-2	7.2	1805	42	28.2		4750	8	3270	3293.4	0.993
39 BL-1	7.3	1200	42	28.1	30	3681	7.8	2972	2709.8	1.097
40 MD1	7.3	1220		28.0		2470	7.9	1725	1652.4	1.044

•

•

Table 2. (continued)

.

.

. **i**a

Site No.		Date	Time	Air	H ₂ 0	*	EC	рH	Evap	Evap Sum	
41 PV-1		7.3	1650	42	28.9		2418	7.9	1457	2011.2	0.724
42 PV-2		7.3	1700	46	34.1	10	10875	8.3	6216	7417.8	0.838
43 GR-1		7.15	1106		30.0	15	6440	8.2	3724	3081.5	1.209
44 GR-2		7.15	1115		34.0	3	9890	8.1	81 37	6060.4	1.343
45 CC-1		7.15	1205	39	32.0	10	3805	9.3	2203	1756.5	1.254
46 CM-1		7.15	1720	35	32.0	15	8455	7.7	4216	3402.2	1.239
47 WP-1		7.16	1150		33.0	1	7830	10.2		5806.6	0.000
48 WP-2		7.16	1212	39	32.0	1	9078	9.9		5297.7	0.000
49 FH-1		7.17	1125		23.0	25	3484	7.7	1391	2379.6	0.585
50 T-1		7,17	1435		25.1		2310	7.2		1503.7	0.000
51 T-2		7.17	1445	39	30.0		4370	7.9	3199	2605.5	1.228
52 DC-1		7.17	1935	29	20.0	13	7150	9.6	6004	4322.4	1.389
53 DC-2		7.17	1950		18.0	53	7980	6.7	7473	5472.3	1.366
54 DC-3		7.17	2000		24.9	10	7000	7.4	5665	4393.2	1.289
55 SC-1		7.18	730		22.5	25	4274	7.6	5542	4554.7	1.217
56 1	14	7.18	80.0				36652	7.6	15395	26812.9	0.574
57 1	15	7.18	834		22.8	41	3016	7.1	24568	21504.8	1.142
58 RBR-1		7.18	840		24.0	61	10404	7.5	7316	6311.9	1.159
59 PR-1		7.18	900	31	24.0	25	10098	7.2	7305	6260	1.167
60 1	18	7.18	945		28.1	10	29400	7.7	14075	18953.2	0.743
61 DR-1		7.18	1015		28.4	13	3430	7.5	2273	2947 .8	0.771
62 WL-1		7.18	1040		26.9	23	5432	8.1	3339	3912	0.854
63 2	21	7.18	1115		32.5	10	86900	8.1	69040	64304.2	1.074
64 SL-1		7.18	1222		31.0	71	47 42 40	6.8	506166	345362.9	1.466
65 SLC-1		7.18	1245		27.9	75	5510	7.6	5012	3432.1	1.460
68 MLS-1		7.18	1555		27.0	61	14550	8	11973	9785	1.224
67 MLN-1		7.18	1556		29.5	20	37260	8	42001	27801-5	1.511
68 DI-1		7.18	1615		16.0	15	6860	7.6	3944	4973.9	0.793
69 FBS-1		7 .1 8	1635		29.0		35340	8.4	32343	32164.6	1.006
70 FBN-1		7.18	1636		27.1		25220	8.6	29519	19606.3	1.506
77 LL - 1		7.18	1705		25.8		33320	9.2	35122	25500.5	1.377
72 BL-1		7.18	1635		30.0		73236	8.8	84175	53936	1.561
73 SH19-1		7.18	1845	35	30.0		73776	8.2	75514	52907.3	1.427
74 SH21-1		7.18	1902		30.5		826 20	8.2	71994	59273.3	1.216
75 SH37-1		7.18	1935		27.9		19000	7.7	15624	14098.2	1 108
76 SH11-1		7.18	1937		29.0		41385	7.8	37105	32354.1	1.147
77 Ц7-1		7.18	2005		28.0		11400	7.5	8589	6283.8	1.367
78 LW155		7.25	1125	39	30.8	8	12420	7,6	9024	7566.8	1.193
79 LW048		7.25	1200	40	28.0	25	14250	7.4	10827	10098.8	1.072
80 LW-3		7.25	1215		32.0	8	2421	8.8	1758	1905.8	0.922
81 LVS-1		7.25	1830		37.9	38	121180	6.3	5247	6953.3	0.755
82 LVS-2		7.25	1930		30,2	8	11040	6.5	6531	6808.7	0.959
83 LVS-3		7.25	1941	34	39.0	46	10624	6.5	4409	5661,2	0,779
84 ZSL-1		7,26	1900	25	28.5	15	427900	7.2	345713	301822.1	1.145
85 ZSL2		7.26	1935	24	23.0	20	195800	7.9	141150	128601,5	1.098
86 RSJ-1		7.27	955	28	21.0	15	2052	8.2	1317	794.3	1.658
87 LCC-1		7.27	1850	27	23.0	23	2808	7.8	2832	1588.4	1.806

Table 2. (continued)

្រុះ

.

Site No.	Da te	Time	Air	H20	X	EC	рН	Еуар	Sum	E/S
88 LCC-2	7,27	1855		23.2	8	4732	8.2	2485	27 50 . 3	0.904
89 MP-1	7,27	1935	24	22,9		1938	8.1	3157	1111.3	2.841
90 Mw1	7,27	2345	23	24.0	23	957	6.4	694	804	0.863

Air = air temperature, C H_2O = water temperature, C Z = water depth, cm EC - electrical conductivity, uS/cm at 25 C pH = hydrogen ion activity TDS = total dissolved solids, mg/1 Evap = evaporative TDS at 150 C sum = summation TDS from ionic analysis, E/S = ratio {w/w} of Evap to Sum TDS.

Tal	h1	P
	~ -	

3. Ionic composition of the waters sampled for microalgae.

	m	eq/l [Cati	ons)				maq/l		Sum			
Site No.	Ca	Mg	Na	K	0H	C03	HCOg	50 ₄	CL	Cations	Anions	C/A
KP1	1.66	1.33	3,52	0.10	0.00	0.24	1.51	1.32	4.85	8,61	7.91	0.836
TL-1	1.81	1.85	7.31	0,12	0.00	0.17	2,54	1.82	6,62	11.08	11.16	0.993
DL-1	1.25	1.42	3.64	0.13	0.00	0.16	1 .53	1.32	3.39	6,43	6,40	1,005
IBW-1	1.73	2.07	3.72	0.10	0.00	0.36	0.98	1.32	4.52	7.63	7.17	1.064
TC-1	1.80	1.09	2,57	0.13	0.00	0.22	1.90	0.97	2.67	5,59	5,75	0.972
PZ-1	1.71	1.28	3.18	0.05	0.00	0.24	2.04	1.09	2,91	6.22	8.27	0.991
SR-1	1.12	1.17	3.41	0.06	0.00	0.62	0,66	1.11	3.85	6.75	6.23	0,923
SRC-1	1.66	0.84	6.79	0.16	0,00	0.07	1.58	0,79	7.57	9.44	10.01	0.943
SRC-2	4.04	3,95	2.00	0.11	0,00	0.00	5.09	2,73	2.27	10.10	10,09	1.001
SRC-3	4.84	3.13	4.83	0.14	0.00	0.13	3.05	4.60	7.57	12.94	15.35	0.843
SRC-4	6.99	20,16	404,99	3.22	0.00	0,22	11.21	20,30	462,10	435.35	493.84	0.882
SRC-5	9.68	13.66	344.09	3.53	0.00	0.00	19,58	15,12	318,16	370.95	352,86	1.051
SRC-6	19.31	31.27	430. 65	4.09	0.00	0.15	13,57	21.54	499.97	485.32	535.24	0.907
SRC-7	1.81	1.29	13.88	0.16	0.00	0.00	2.34	0.86	14.39	17.14	17.59	0.974
SRC-B	16,32	2,00	311.03	2.61	0.00	0.00	29.47	16.41	303.01	331.95	348,90	0.951
SRC-9	18.31	18.43	528.53	5.29	0.00	0.00	38.47	25.10	590.88	570,56	652.44	0.875
SRC-10	1.45	0.72	7.31	0.13	0.00	0.00	1.56	0.42	7.43	9.61	9.40	1.022
SRC-11	2.45	2.06	0.42	0.05	0.00	0.16	3.65	0,97	0.45	4.97	5,24	0,950
SRC-12	1.81	0.91	9.31	0.13	0.00	0.00	1.76	0.56	9.37	12.15	11.69	1.039
FC-1	4.19	3.04	0.57	0.03	0.00	0.08	7.00	0,52	0,28	7.83	7.88	0.994
FC2	3.69	2.88	0.59	0.03	0.00	0.00	7.10	0.55	0.25	7.19	7.89	0.912
FC-2A	4.04	2,88	0.44	0.03	0.00	0.00	7.24	0,60	0.25	7,38	8,09	0.913
FC-3	4.29	2.88	0.45	0.03	0.00	0.00	7.17	0.54	0.27	7.66	7.97	0.960
FC-4	4.74	3.54	0.48	0.04	0.00	0,17	8.511	0.57	0.24	8.80	7,48	1.176
VR-1	2.73	3.54	4.32	0.15	0.00	0.00	5.28	2.02	2.10	10.75	9,40	1.143
VR-1A	17,22	4,44	35.93	1.02	0,00	0.00	28.29	13.30	16.23	58.61	57,82	1.014
V R- 2	4.34	5.68	48,72	0.95	0.00	0.72	27.18	15,98	17.28	59.69	61.15	0,976
BBC-1	5.34	2.06	2.50	0.02	0.00	0.15	4,05	2,23	4.54	9.91	10.98	0.903
B1	8.98	7.16	26.84	1.79	0.00	0.00	5.27	14.72	311.93	44.77	51.92	0.862
B-2	9.88	7.90	32.67	1.20	0.00	0.00	5.40	17,22	34.77	51.65	57.39	0.900
8-3	8.03	6.58	21.84	2.17	0.00	0.00	2.96	14.05	24.88	38.63	41.89	0,922
8-4	7.58	6.01	21.53	2.35	0.00	0.00	3.80	11.39	24.31	37.48	39.49	0,949
H R- 1	5.44	3.62	11.79	2,35	0.00	0.00	3.22	3.42	15.04	23.20	21.68	1.070
GD-1	6.69	5,92	25,53	2.99	0.00	0.00	1.58	113.07	27.34	41.14	41.99	0.980
PC-1	8.68	4.11	18.79	2.15	0.00	0.00	2.04	7.37	25.06	33.74	34,47	0.979
8P-1	8.33	6.58	31.36	2.91	0.00	0.00	2.31	14.94	38,22	49.19	55.47	0.887
WM-1	8.23	5,68	27,80	1.87	0.00	0.00	5.53	19.70	24.85	43.57	50.08	0.870
WM-2	9.13	6.17	28.58	2,05	0.00	0.11	5.71	20.69	28.89	5.93	53.39	0.860
GL-1	7,63	6.83	21.66	5,80	0.00	0.00	2.22	17.9	21.81	41.93	41.52	1.010

•

Table 3. (continued)

•

•

Site N	٥.	Ca	Mg	Na	к	OH	003	HCOg	S04	CL	Cations	Аліолв	C/A
					4.00				44.00	0.50	04.40	05.40	0.080
MD-1		7.09	4.03	11.70	1.30	0.00	0,00	4.24	11.33	9,00	24.12	20.12	0.900
PV-1		6,69	6.01	15,38	1.25	0.00	0.00	4.87	12.32	14.54	29.20	31./3	0.920
PV-2		7.39	6.01	91 .79	3.30	0.00	0.00	8.99	38.43	72.31	108.48	119./3	0*908
G R-1		7,29	4.38	38.45	0.40	0.00	0.24	6.82	4.97	37.27	50.50	49.29	1.025
GR-2		11.88	10.78	86.13	0.92	0.00	0.00	6.80	7.51	81.81	109,71	96.12	1.141
CC-1		1.94	2.96	26.19	0.28	0.00	0,63	1.86	0.25	26,07	31.37	28.811	1,089
CH-1		12,43	1.44	38.28	1.61	0.00	0.00	2.46	0,93	56,36	53.76	59,75	0.900
WP-1		2.00	8.89	125.28	1.48	0.00	0.00	0.00	35.19	29.07	137.65	64,26	2.142
₩P-2		2.40	5,27	107.88	0.87	0.00	0.00	0.00	19.66	48.46	116.41	68.32	1.704
FH-1		7.78	1.97	7.90	0.87	0.00	0.00	27,39	1,36	6.98	18.52	35.73	0.518
T-1		6.29	2.03	12.79	0.23	0.00	0.00	4.16	8.08	11.51	21.34	23.75	0.899
T-2		11.23	4.77	24,80	0.31	0.00	0.48	6.52	10,43	23.33	41.11	40.78	1.009
DC-1		20.06	22,63	24.14	0.21	4.94	2.73	0.00	40.13	27.87	67.04	75.67	0.888
DC-2		31.94	22.22	24.14	0.18	0.00	0.34	3.13	43.98	47.56	78.48	95.02	0.826
DC-3		24.10	16,38	26.06	1.07	0.00	0.48	4,32	32.19	35.15	67.61	72.14	0.937
SC-1		43.91	12.01	8.57	0.64	0.00	0.00	0.96	63.82	5.16	65.14	69.94	0.931
	14	56.89	41.97	338.21	1.53	0.00	0.00	1.54	70.87	390.14	438.60	462.55	0.948
	15	57.39	28.80	253.61	1.10	0.00	0.00	2.16	80.43	285,96	340.89	368.55	0.925
PBR-1		22.50	14.89	54,38	1.20	0.00	0.00	1.94	32.43	76.36	92.98	110.73	0,840
PR-1		22.41	13.66	56,99	1.10	0.00	0.00	1.94	33.20	72.75	94.15	107.89	0.873
	18	5 0. 40	27,98	207.50	1.20	0.00	0.00	1.28	49.35	291.66	287.07	342.27	0.839
DR-1		33.98	6.17	6.00	0.17	0.00	0.00	2.00	36.27	5.16	45.33	43.43	1.067
WL-1		28.34	10.78	16,70	0.24	0.00	0.00	1.20	41.09	21.81	56.06	64.10	0.875
	21	59.88	72.42	965.70	25.31	0.00	0.20	1.50	83.86	984 . 7 B	1123.31	1070.34	1.049
SL-1		1.07	2822.55	2731.80	45,26	0.00	0.00	2.50	1151.39	5388.59	5600.67	6542.48	0.856
SLC-1		20.31	14.24	22,62	0.18	0.00	0.00	1.52	25.01	29.08	57,34	55.62	1.031
MLS-1		44,41	28,33	95.27	0,40	0.00	0.00	1.82	46.44	113.63	166.41	161.89	1.028
MLN-1		52.40	88.87	296,23	1.25	0.00	0.71	1.76	106.65	382.56	438.76	491.68	0.892
DI-1		44.91	13.99	23.84	0,22	0.00	0.00	2.00	43.66	31.82	82.96	77.48	1.071
FBS-1		41.92	207.37	257.98	2,20	0.00	1.70	2.30	213.27	348,48	509.44	565.75	0.900
FBN-1		42.91	122.61	163,56	1,18	0.00	1.39	0,92	135.42	193.18	330,26	330.91	0,998
LL-1		55,39	108.98	244,04	1.74	0.08	1.58	0.00	149.05	287.85	408,14	438.57	0.931
BL-1		75.85	153.88	.661.20	2.07	0.00	1.07	0.60	173.70	757.52	893.00	932.89	0.957
SH19-1		60.88	126.73	661,20	1.84	0.00	0.55	2.20	169.46	749.96	850.65	922.18	0.922
SH21-1		64.87	134.13	691.65	1.92	0.00	0.83	1.86	194,64	871,15	892.57	1068,48	0.835
SH37-1		56.39	32.92	143.11	0.40	0.00	0.00	1.70	54.65	184.32	232.82	240.67	0.967
SH11-1		57.39	86.40	372.26	0.95	0.00	0.24	2.08	121.76	439.37	5117.10	563.44	0.918
U7-1		28.20	13,17	73.95	0,23	0.00	0.00	2.08	15,72	84.86	113.54	102.65	1.106
LW1 55		40,92	29.62	68.30	1.69	0.00	0.00	3.68	22.12	97.72	140.53	123.52	1,138
LW048		47.41	37.03	83.52	2.12	0.00	0,00	4.72	40,60	125.76	170.08	171.08	0.994
L.W3		10.68	6,58	8.22	0.61	0.00	0.32	0.94	22.14	7.57	26.10	30.97	0.843
LVS-1		38.42	10.29	69.60	0,38	0.00	0.00	17.80	12.88	77,27	118_9	107.94	1.100
LV S-2		36.93	9.63	60.90	3,38	0,00	0.00	16.50	21.30	67.42	110.83	105.22	1.053

.

Site No.	Ca	Mg	Na	ĸ	OH	co ₃	HCO3	S04	CL	Cations	Anions	C/A
LVS-3	28.49	7.98	47.85	2,78	0.00	0.00	16.00	11.52	63.64	87.09	91.16	0.955
ZSL-1	18.01	255,10	4263.00	19.69	0.00	0.00	5,34	492.28	4954.27	4555.80	5451.88	0.836
ZSL-2	29,14	116.03	1831.35	8.18	0.00	1.03	3,18	193.87	2105,93	1984.70	2303.99	0.861
RSJ-1	3.69	2.55	4.22	0.13	0.00	0,44	3.78	4,94	3.02	10.60	12.16	0.871
LCC-1	2.85	2.47	17.40	0.16	0.00	0,00	3.28	1.44	22,74	22.87	27.46	0.833
LCC-2	3.99	4.03	32,67	0.19	0.00	0.40	3.50	5.03	39.38	40.88	48.30	0.846
MP-1	2.23	1.79	12.70	0.05	0.00	0.16	2.90	0.67	15.15	16.78	18.87	0.869
Mw-1	5.74	2.80	2.04	0.15	0.00	0.00	9.16	0.01	1.21	10.73	10.38	1.033

.

 $C/A = ratio \{meq/meq\}$ of cations to anions

-

Neustonic Benthic Location Date Planktonic Misc **.** Phoexix 5/19 7 7 (Metropolitan area) Salt River 5/30 2 12 Fossil/Verde 6/13 6a 2 7/02 to 7/03 Yuma 3 14 3 4 7/15 to 7/18 AZ-NM-TX 10 35 2 9 7/25 to 7/27 13 AZ-NV-UT-NM 4 3 2 28 87b 16 11 Total Samples Collected by ASU = 142 Planktonic samples collected by associates 9 = 151 GRAND TOTAL a samples from FC-2A and VR-1A for water chemistry only ^b One sample collected from Big Bug Creek (BBC-1) on 20 July

Table 4. Summary of types of samples collected during 1985.

Genera	Isolate No.	Site No.
Dunaliella	ASU0001	SRC-6
Dunaliella	ASU0002	SRC-6
Dunaliella	ASU0005	SRC-6
Dunaliella	ASU0006	SRC-9
Dunaliella	ASU0010	SRC-6
Dunaliella	ASU0011	SRC-6
Dunaliella	ASU0012	SRC-6
Dunaliella	ASU0013	SRC-6
Dunaliella	ASU0015	SRC-8
Dunaliella	ASU0017	SRC-8
Oscillatoria	ASU0023	F85-1
Dunaliella	ASU0025	SBC-D
Cymbella	ASU0030	
Borodinella	ASU0031	DC-3
Cymbella	ASU0032	MLS-1
Dunaliella	ASU0034	SC-1
Dunaliella	ASU0035	SC-1
Dunaliella	ASU0038	SC-2
Cymbella	ASU0039	RBR-1
Cymbella	ASU0040	SBC-B
Cymbella	ASU0041	SRC-8
Cymbella	ASU0042	SRC-2
Cymbella	ASUODA3	SRC-2
Dunaliella	ASUONAA	SC-1
Ctenocladus	ASU0045	
Cymbella	ASU0045	
Synedra	ΔSU0040	SPC-4
Fremosphaera		
Oscillatoria	ASU0050	
Occustis	ASU0050	
Oscillatoria	ASU0054 ASU0055	
Nannochloris	ASU0060	
Asterococcus	ASUOOGO	
Chlorosarcina	ASU0062	SPC-3
Borodinella	ASUOOGA	SPC-2
Chlorosarcina	ASU0065	
Osillatoria	ASU0068	MW-1
Chroncoccus	ASU0071	
Chroococcus	ASU0071 ASU0073	
Chrococcus	ASU0073	
Chrococcus	ASU0075	LAG-1 TAG-1
Cymbella	ASU0073	TAG-3
Oscillatoria	ASU0078	LV 3-2 MU/_ 1
Oscillatoria	ASU0079	
Chroococcus	ASU0080	
Chroococcus	ASU0081	

Table 5. Genera, isolate number and collection site for algae isolated during 1985.*

•

.

Table 5. (continued)

Genera	Isolate No.	Site No.
Cupadra	2010002	
Syneora	AS00082	エレビーエ
Oscillatoria	ASU0084	MP-1
Chlorococcum	ASU0093	LCC-1
Trebouxia	ASU0132	SRC-1
Borodinella	ASU0134	SRC-3
Chlorococcum	ASU0139	LCC-1
Chlorococcum	ASU0143	LCC-1

* Identification of algal genera is tentative and subject to revision.

Genera	Isolate No.	Reaction
Duu a 1 i a 1 1 a		•
Dunaliella	ASUUU38	U
Eremosphaera	ASU0048	0
Nannochloris	AsU0060	0
Asterococcus	ASU0061	0
Borodinella	ASU0064	+
Chlorosarcina	ASU0065	0
Chroococcus	ASU0071	+
Trebouxia	ASU0132	++
Borodinella	ASU0134	+
Chlorococcum	ASU0139	0
Chlorococcum	ASU0143	0

Table 6. Oil Red O staining results for nutrient-sufficient cultures of selected algal genera.

•

•

.

Isolate	No.	Genus	Date	Med	doub/d	OD max	r2
-		Carteria	9.29	I(10) II(10) I(40) II(40) I(70) II(70)	0.317 0.319 0.276	0.032 0.026 0.019 0.004 0.004 0.003	0.862 0.841 0.905
-		Platymonas	9.29	SW I(10) II(10) I(40) II(40) II(70) II(70) SW	0.510 0.826 0.231 0.901 0.484 0.336 0.322	0.002 0.120 0.153 0.080 0.150 0.066 0.022 0.129	0.916 0.970 0.920 0.978 0.923 0.715 0.986
-		Pleurochloris	9.29	I(10) II(10) I(40) II(40) I(70) II(70) SW	0.435 0.487 0.308 0.717	0.065 0.113 0.043 0.004 0.069 0.004 0.010	0.972 0.947 0.977 0.977
2		Dunaliella	9.29	I(10) II(10) I(40) II(40) II(70) II(70) SW	0.377 0.859 0.259 0.444 0.539 0.347	0.129 0.141 0.227 0.026 0.265 0.003 0.163	0.871 0.969 0.863 0.981 0.804 0.881
11		Dunaliella	9.29	I(10) II(10) I(40) II(40) I(70) II(70) SW	0.843 0.608 0.471 0.285	0.012 0.003 0.025 0.002 0.021 0.000 0.018	0.855 0.911 0.942 0.628
12		Dunaliella	9.29	I(10) II(10) I(40) II(40) I(70) II(70) SW	0.375 0.431 0.335 0.553 0.387 0.484	0.105 0.139 0.280 0.093 0.229 0.001 0.248	0.776 0.667 0.897 0.975 0.884 0.761

Table 7. Summary of growth rates for algal isolates.

.

•

Isolate No.	Genus	Date	Med	doub/d	OD max	r 2
2	Dunaliella	11.22	I(10) II(10) I(40) II(40) I(70) II(70) SW	0.650 0.754 0.605 0.532 0.469	0.205 0.075 0.242 0.003 0.239 0.002 0.246	0.910 0.879 0.886 0.838 0.838
38	Dunaliella	11.22	I(10) II(10) I(40) II(40) I(70) II(70) SW	0.991 0.542 0.767 1.101 2.576	0.100 0.112 0.275 0.004 0.125 0.004 0.226	0.876 0.965 0.845 0.979 0.843
48	Eremosphaera	11.22	I(10) II(10) I(40) II(40) I(70) II(70) SW	1.300 3.263 0.839	0.237 0.198 0.196 0.004 0.006 0.005 0.015	0.950 0.936 0.842
60	Nannochloris	11.22	I(10) II(10) I(40) II(40) I(70) II(70) SW	0.528 1.159	0.153 0.123 0.005 0.007 0.002 0.003 0.004	0.987 0.988
61	Asterococcus	11.22	I(10) II(10) I(40) II(40) I(70) II(70) SW	1.521 1.145 0.967 1.313	0.166 0.173 0.097 0.002 0.002 0.006 0.022	0.986 0.953 0.935 0.866
75	Chroococcus	11.22	I(10) II(10) I(40) II(40) I(70) II(70) SW	0.836 1.713 1.050 1.731 1.163 2.313	0.220 0.250 0.335 0.235 0.395 0.007 0.394	0.919 0.956 0.892 0.977 0.953

.

Table 7. (continued)

•

•

Table 7. (continued)

•

Isolate	No.	Genus	Date	Med	doub/d	OD max	r2
93		Chlorococcum	11.22	I(10) II(10) I(40) II(40) I(70) II(70) SW	1.153 0.988 1.723 1.479	0.201 0.090 0.015 0.012 0.007 0.006 0.026	0.908 0.976 0.995 0.807
132		Trebouxia	11.22	I(10) II(10) I(40) II(40) I(70) II(70) SW	1.970 2.038 0414 1.260 2.094	0.071 0.154 0.064 0.012 0.004 0.001 0.029	0.995 0.986 0.978 0.940 0.746
139		Chlorococcum	12.12	I(10) II(10) I(40) II(40) II(70) II(70) SW	0.518	0.162 0.004 0.005 0.001 0.002 0.003 0.005	0.887
143		Chlorococcum	12.12	I(10) II(10) I(40) II(40) I(70) II(70) SW	0.923	0.093 0.006 0.010 0.005 0.003 0.001 0.006	0.939
134		Borodinella	12.12	I(10) II(10) I(40) II(40) II(70) SW	0.616 0.685	0.052 0.058 0.005 0.003 0.004 0.007	0.985 0.945
65		Chlorosarcina	12.12	I(10) II(10) I(40) II(40) I(70) II(70) SW		0.005 0.004 0.002 0.002 0.002 0.004 0.005	

Isolate No.	Genus	Date	Med	doub/d	OD max	r2
64 ?		12.12	I(10) II(10) I(40) II(40) I(70) II(70) SW	0.578	0.030 0.004 0.007 0.005 0.004 0.000 0.006	0.933
47 ?		12.12	I(10) II(10) I(40) II(40) II(70) II(70) SW	0.374	0.011 0.014 0.011 0.003 0.002 0.000 0.006	0.791
71	Chroococcus	12.12	I(10) II(10) I(40) II(40) I(70) II(70) SW	0.985 0.834 0.851 1.289 1.439 0.501 0.542	0.103 0.113 0.086 0.321 0.298 0.026 0.145	0.946 0.919 0.724 0.982 0.981 0.717 0.934
50	Osillatoria	12.12	I(10) II(10) I(40) II(40) I(70) II(70)	0.600	0.019 0.006 0.000 0.056 0.019 0.000	0.967

Table 7. (continued)

Figure 1. Sampling locations for microalgae in the desert southwest.

.

Figure 2. Summary of protocol used to screen, isolate and maintain record of microalgae collected.

.

Figure 3. Schematic diagram of rotary culture device (RCD) used to screen field samples and for growth characterization. Light source was a Sylvania model M1000/BD lamp with a Westinghouse model MH1000 BU/4 1000 watt bulb. Culture tubes were rotated at ca. 15 rpm.

Figure 4. Summary of procedure used to evaluate growth rates in microalgae isolated from nature.

-

Figure 5. Water temperature and specific conductance of sampling sites for microalgae.

Figure 6. Relative anion composition for waters sampled for microalgae. Each dot represents a sampling site. Asterisks indicate relative anion composition of SERI Type I and II Media.

Figure 7. Relative cation composition for waters sampled for microalgae. Each dot represents a sampling site. Asterisks indicate relative cation composition of SERI Type I and II Media.

Figure 8. Relationship between specific conductance and total filterable residue in the waters sampled for microalgae

Dunaliella (ASU0002) 11-22-85

Dunaliella (ASU0011) c.

Growth rates for microalgae isolates in SERI Type I and II Media of 10, 40 and 70 mS/cm specific conductance and in seawater (SW). Figure 9.

Figure 10. Growth rates for microalgae isolates in SERI Type I and II Media of 10, 40 and 70 mS/cm specific conductance and in seawater (SW).

b. Borodinella (ASU0134)

c. Borodinella (ASU0064)

Figure 11. Growth rates for microalgae isolates in SERI Type I and II Media of 10, 40 and 70 mS/cm specific conductance and in seawater (SW).

b. Synedra (ASU0047)

Figure 12. Growth rates for microalgae isolates in SERI Type I and II Media of 10, 40 and 70 mS/cm specific conductance and in seawater (SW).

Media

¥

Figure 13. Growth rates for microalgae isolates in SERI Type I and II Media of 10, 40 and 70 mS/cm specific conductance and in seawater (SW).

•

0

Figure 14. Growth rates for microalgae isolates in SERI Type I and II Media of 10, 40 and 70 mS/cm specific conductance and in seawater (SW).

÷.

b. Dunaliella (ASU0038)

.

Figure 15. Growth rates for microalgae isolates in SERI Type I and II Media of 10, 40 and 70 mS/cm specific conductance and in seawater (SW).