Determination of the Azimuthal Asymmetry of Deuteron Photodisintegration in the Energy Region E{sub {gamma}} = 1.1 - 2.3 GeV

PDF Version Also Available for Download.

Description

Deuteron photodisintegration is a benchmark process for the investigation of the role of quarks and gluons in nuclei. Existing theoretical models of this process describe the available cross sections with the same degree of success. Therefore, spin-dependent observables are crucial for a better understanding of the underlying dynamical mechanisms. However, data on the induced polarization (P{sub y}), along with the polarization transfers (C{sub x'} and C{sub z'} ), have been shown to be insensitive to differences between theoretical models. On the other hand, the beam-spin asymmetry {Sigma} is predicted to have a large sensitivity and is expected to help in ... continued below

Physical Description

111 MB

Creation Information

Zachariou, Nicholas May 20, 2012.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 28 times . More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

Deuteron photodisintegration is a benchmark process for the investigation of the role of quarks and gluons in nuclei. Existing theoretical models of this process describe the available cross sections with the same degree of success. Therefore, spin-dependent observables are crucial for a better understanding of the underlying dynamical mechanisms. However, data on the induced polarization (P{sub y}), along with the polarization transfers (C{sub x'} and C{sub z'} ), have been shown to be insensitive to differences between theoretical models. On the other hand, the beam-spin asymmetry {Sigma} is predicted to have a large sensitivity and is expected to help in identifying the energy at which the transition from the hadronic to the quark-gluon picture of the deuteron takes place. Here, the work done to determine the experimental values of the beam-spin asymmetry in deuteron photodisintegration for photon energies between 1.1 – 2.3 GeV is presented. The data were taken with the CLAS at the Thomas Jefferson National Accelerator Facility during the g13 experiment. Photons with linear polarization of ~80% were produced using the coherent bremsstrahlung facility in Hall B. The work done by the author to calibrate a specific detector system, select deuteron photodisintegration events, study the degree of photon polarization, and finally determine the azimuthal asymmetry and any systematic uncertainties associate with it, is comprehensively explained. This work shows that the collected data provide the kinematic coverage and statistics to test the available QCD-based models. The results of this study show that the available theoretical models in their current state do not adequately predict the azimuthal asymmetry in the energy region 1.1 – 2.3 GeV.

Physical Description

111 MB

Subjects

Source

  • Related Information: JLAB-E06-103

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: JLAB-PHY-12-1593
  • Report No.: DOE/OR/23177-2209
  • Grant Number: AC05-06OR23177
  • DOI: 10.2172/1069075 | External Link
  • Office of Scientific & Technical Information Report Number: 1069075
  • Archival Resource Key: ark:/67531/metadc835800

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • May 20, 2012

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • Aug. 3, 2016, 3:05 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 28

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Zachariou, Nicholas. Determination of the Azimuthal Asymmetry of Deuteron Photodisintegration in the Energy Region E{sub {gamma}} = 1.1 - 2.3 GeV, thesis or dissertation, May 20, 2012; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc835800/: accessed January 16, 2019), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.