
The Harness Workbench: Unified and Adaptive Access to Diverse
HPC Platforms

U.S. Department of Energy Grant DE-FG02-06ER25729
Final Report

Vaidy Sunderam
Department of Mathematics and Computer Science

Emory University, Atlanta, GA 30322, USA
vss@emory.edu

1 Overview

The primary goals of the Harness WorkBench (HWB) project were to investigate innovative software en-
vironments to enhance the overall productivity of applications science on diverse HPC platforms. Two
complementary toolkits were designed and developed: one, a virtualized command toolkit (VCT) for appli-
cation building, deployment, and execution, that provides a common view across diverse HPC systems, in
particular the DOE leadership computing platforms (Cray, IBM, SGI, and clusters); and two, a unified run-
time environment that consolidates access to runtime services via an adaptive framework for execution-time
and post processing activities. This project is a joint effort between Emory University, Oak Ridge National
Laboratory (ORNL), and the University of Tennessee. The three institutions involved in this project worked
closely together; our project methodology was driven by regular meetings of all personnel, where technical
design, operational modes, compatibility aspects, and integration issues are discussed in depth, for com-
pleted and ongoing work as well as for planned efforts at each individual site. The subprojects undertaken at
each location are linked and address complementary aspects of the project; this report describes work done
at Emory University.

2 Overall progress

The Emory focus within the overall project has been on the VCT that introduces an abstraction layer be-
tween the user and platform-specific compilers, linkers, MPI implementations, queuing systems, and other
components. Our research is aimed at unifying access to analogous services available on different platforms,
and allowing pre-configuration at the system level and at the project level. The project concentrated on: (1)
formulating and conceptualizing the VCT toolkit; (2) in-depth analysis of resource capabilities in order to
develop appropriate description mechanisms; and (3) a study of portability of HPC applications across het-
erogeneous computing platforms. We developed the Zero-Force MPI (ZF-MPI) toolkit for automating build,
installation, run, and post-processing stages of MPI applications across heterogeneous architectures. We also
experimented with support for porting applications and prototyped an Eclipse plugin called Portlug-in.

In the later project phases we refined (based on experiences gained from the previous period) the VCT
concept that resulted in a new architecture of the toolkit, now called the Harness Workbench Toolkit (HWT)

1

that embraces portability issues, build, and execution aspects related to HPC applications. Further, we de-
signed a source code conversion module to address routine porting activities, and experimentally verified
this on production molecular dynamics codes (CPMD). With regard to the build phase we developed and
experimentally tested on the CPMD code a late binding mechanism that enables dynamic concretization of
target platform specific information stored in profiles. In parallel, we developed a preliminary HWT pro-
totype which, in its current version, manifests as an Eclipse plugin. In order to verify the viability of our
approach we demonstrated the HWT prototype to application scientists and experts at ORNL, namely Pratul
Agarwal, Mark Fahey, Arnold Tharrington, and Ricky Kendall. Pratul Agarwal is an application scientist
who works on multi-scale modeling of various biomolecular complexes. Mark Fahey and Arnold Tharring-
ton are computational scientists who work in the scientific computing group headed by Ricky Kendall.

In the final stages of the project, we focused on the deployment phase of high-end computing appli-
cations where target environments are prepared, executables and data files staged, and execution runtime
environment parameters are set. Our work is manifested in a tool called Unibus, aimed at facilitating provi-
sioning and aggregation of multifaceted resources from resource providers and end-users perspectives. To
achieve this, Unibus proposes (1) the Capability Model and mediators (resource drivers) to virtualize ac-
cess to diverse resources, and (2) soft and successive conditioning to enable automatic and user-transparent
resource provisioning. We have tested a prototype implementation of Unibus on high-end computers, grid
systems, and clouds.

2.1 HWT architecture

In order to address the porting issue that is very important in the build process, we enhanced the Harness
Workbench Toolkit (HWT). The HWT architecture shown in Figure 1 consists of three pluggable layers,
guided by situation-specific profiles, that reflect the developer’s activities related to source code adaptation,
the actual build process, and execution. The HWT facilitates code adaptation through porting assistants

substitution tracking

IBM
p690

Cray
XT4

Porting Assistant

Build Assistant

Execution Assistant

...

...

User

Developer

Source code
repository

profiles

E
nc

ap
su

la
te

d
kn

ow
le

dg
e

Harness Workbench Toolkit

compile
file.cc

precondition
FFTW v. 3.1.2

stage
file.cc

GUI

Target-specific
 plugins

Conditioning
plugins

Admin

Vendor

Source code
transformation

plugins

...

$

GUI

cmdline

Jaguar New machineCheetah

FFTW=$lib/FFTW3.1.2
scp file.cc user@host:/dest
xlC -c -O3 -qmaxmem=-1 -qstrict file.cc

module load FFTW.3.1.2
cp file.cc /dest
pgCC -c -fastsse file.cc

Target-specific
commands

New machine

Figure 1: The Harness Workbench Toolkit architecture

that support end-users by identifying snippets that need to be converted, suggestions of conversions that

2

are known to be safe (e.g., POSIX function substitutions), and highlighting areas where manual code mod-
ification might be beneficial, e.g., manual loop unrolling. The build-assistant comprises plugins that are
responsible for preconditioning, staging, and compilation. Application launch activities are performed by
the execution layer that generates and executes target-specific commands. The build and execution layers are
inherited from the original VCT architecture and we utilize the VCT name while referring to those two lay-
ers. Toolkit behavior is configurable and tunable through declarative profiles that incorporate target-specific
knowledge. Profiles may be shared, reused and created by vendors, site administrators, developers or users.
They contain information at the system (software and hardware), application, and user levels and include
such details as available compilers and their flags, library paths, or environment settings. The end-user inter-
acts with the HWT by issuing generic commands that are processed by all or selected layers. For example,
execution of a generic run command may involve, depending on the actual context, processing by all three
layers or only by the execution layer (e.g., if an executable file is already present on the target platform).

2.2 HWT prototype

In Fall 2007, we presented to ORNL developers, the initial HWT prototype with the following functionality:
(1) pluggable graphical interface with the ability to define and execute simple scripts to facilitate common
build tasks; (2) the “project” model as implemented in HWT; (3) a convenient subsystem for Fortran source
code modification; (4) support for repositories (SVN and CVS); (5) a supporting SSH terminal for specific
shell tasks; (6) mechanisms to exploit SSH channels (sftp, exec, shell) within one authenticated SSH session;
(7) a convenient method for synchronizing files between the local and the remote site. The HWT promotes
a shift in the interaction model between the end-user and the computing system. Instead of working directly
on a remote front-end node, the end-user works locally through a unified interface to platform-specific tools.

The toolkit was well received by ORNL developers. As a practical outcome, we acquired a few useful
suggestions for the HWT that we plan to implement soon. After obtaining access to ORNL machines at
the end of November, we performed a successful experiment that aimed to build and execute the CPMD
code on Jaguar by using the HWT prototype. This exercise helped us practically test the functionality
provided by the HWT. Based on initial feedback from ORNL developers in regard to the HWT prototype
demonstration and the CPMD build experiment in a production environment, we identified one main issue
(file synchronization) and developed a new HWT prototype version that provides the same functionality but
with the improved, according to ORNL scientists’ suggestions, synchronization facility. Figure 2 presents
the current HWT graphical environment in a typical working layout. The left pane in Figure 2 represents
files on the local site that belong to the given project. The rectangular icon decorators (green or gray) indicate
whether the file is under synchronization (green) or not (gray). In order to obtain a comprehensive view on
both the local and remote sites, the end-user may use the synchronization view presented in the right bottom
pane in Figure 2. This visual information is especially convenient for end-users to quickly spot conflicted or
obsolete files when modification of the build files on the remote site (via the HWT terminal or external ssh
connections) is taken into account. The right upper pane presents a typical editor through which the user can
locally modify necessary build files, save them, and then automatically transfer them to the remote site via
the synchronization mechanism. We note that this subsystem exploits and takes advantage of the experience
gained during developing ZF-MPI in the previous project period in regard to file synchronization (we use
the same SSH library implementation, namely jsch).

In addition to the development of the integrated graphical toolkit, we also performed two separate ex-
periments related to the (1) porting and (2) build and execution layers.

3

Figure 2: The HWT graphical environment

2.2.1 Source code conversion scripts

In order to facilitate routine porting tasks we propose a toolkit-assisted approach. To determine the routine
activities that porting specialists deal with we examined eight (8) scientific codes in ORNL production
use from a wide spectrum of computational science (chemistry, biology, fusion, computer science, and
climate). We focused on those applications with available baseline and ported source codes, relevant to
ORNL computing systems (Cray X1E (vector machine), Cray XT3/4, IBM SP4 (PowerPC processors)). A
PC Linux distribution of a scientific application served as a baseline code.

In general we can distinguish between two main code conversion categories, namely automatic and
manual. The former refers to the set of conversions that to some extent may be automated, although user
steering and input is still necessary. The simplest automatic conversions are substitutions that play a similar
role to name refactoring (e.g., adding the prefix PXF for POSIX functions on Cray machines, or identifier
mangling conventions for mixed-language codes). More advanced conversions concern pattern mapping. As
an illustration, consider the different parameter passing conventions, e.g., the PGI Fortran compiler CALL
FREE(PTR) and the IBM Fortran compiler CALL FREE(%VAL(PTR)), or time functions that may differ
in semantics on various high-end machines. The other example relates to library incompatibilities such as a
new version of the same library that has not been ported to a machine yet (e.g. FFTW 3.x 7→ 2.x), or highly
vendor-optimized library counterparts.

Apart from mapping conversions there are cases where a given HPC system does not support certain
features such as signals, threads, some system calls, sockets, or a synthetic file system (i.e., /proc). Detec-

4

tion conversions attempt to deal with such situations and inform the user about non-portabilities. In general,
detections trigger manual code adaptations that usually require expert knowledge of the hardware (architec-
ture), system software in terms of compiler switches, usage of relevant libraries or versions, and application
algorithms. For instance, in order to utilize a streaming feature such as that provided by SSE or 3DNow,
the algorithm must be implemented in an assembler code. Another example concerns code vectorization to
fully exploit vector processors, manual loop unrolling, or performance optimization and tuning.

Based on the described source code conversions, we developed conversion assistant modules in Python
and tested this approach on the CPMD application. We examined the number of modifications of the base-
line source code that can be supported by our conversion modules in comparison to the total number of
necessary modifications to successfully build and execute an application on a given high-end machine. As
target platforms we chose HPC systems relevant to ORNL, i.e., IBM SP4, Cray X1E, and Cray XT3/4. We
used a preprocessor to generate architecture-specific versions of application source codes. The target appli-
cation chosen was CPMD since it supports, among others, architectures of interest to us. We assumed the
baseline code is the CPMD PC Linux distribution. The detailed discussion of obtained results is presented
in the PPAM paper [2]. In general, the results demonstrate that our methodology is promising and may
even contribute much more to porting applications which are not as well prepared for this process as CPMD
is (CPMD is portability-oriented, e.g. porting-sensitive routines or functions such as malloc() or open()
are wrapped into proprietary functions). The outcome of this experiment shows that although manual con-
versions are much more cumbersome, require substantial effort and knowledge, and cannot be completely
eliminated, we can identify many conversions that can be supported by a tool, and in this regard improve
productivity of scientists involved in the porting process.

2.2.2 Late binding

In our approach, target-specific knowledge is encapsulated at the hardware, system, and application levels in
structured (XML), declarative profiles, created by vendors, site administrators, developers and adjusted by
users, and contain information about available compilers, compiler flags, library paths, environment settings,
etc. These platform-specific values need to be applied eventually to the target machine. One step towards
this direction is to develop the mechanism of dynamic concretization of platform-specific variables from
profiles during the actual build or execution process.

In this approach, the original application build system needs to be generalized, i.e., modified in such
a way that target platform specific data is replaced with references, called vct references, as presented in
Figure 3. The build-related file content is concretized on demand, during file content reading. We call this
mechanism late binding to emphasize its dynamic aspect.

To help address build configuration requirements resulting from heterogeneity issues, the common prac-
tice is to distribute application source codes with many configuration files for particular operating systems,
compiler suites, hardware platforms, etc. Our approach aims to unify access to configuration information
while preserving the current application build system that is capable of exploiting this information. This
simplifies build configuration maintenance by allowing us to delegate it to a dedicated software service.
In an ideal situation there will be one generalized build script instead of many predefined configuration
sets, which, through the late binding mechanism are dynamically instantiated as appropriate to the target
computing system requirements.

Our implementation of the late binding mechanism exploits FUSE (Filesystem in Userspace) that imple-
ments a fully functional userspace filesystem. Our prototype FUSE server – the VCT agent (implemented in
Python 2.5.1 with the FUSE-Python module support) – intercepts invocations to filesystem operations that
are performed on a source code directory, as shown in Figure 3. Generalized build files, stored at the target
HPC system are concretized through profiles by the VCT agent after receiving the file read request from the
OS kernel.

5

Figure 3: Late binding in the toolkit

In order to exploit FUSE, however, the FUSE module has to be added to the OS kernel. We note that
FUSE support is included in the official Linux kernel from version 2.6.14 onwards.

To verify the feasibility of our approach we performed the build experiment with the CPMD application.
First, we generalized the CPMD build system by creating a generalized (template) configuration file (GCF)
with vct references resolvable by the HWT, e.g. CFLAGS={vct://cpmd app/CFLAGS} instead of a hard-
coded option such as CFLAGS=-c -O2 -Wall. Then, we built the CPMD code with GCF and VCT agent,
and specific values provided by the PC-GFORTRAN configuration file. The experiment was conducted in
our local laboratory environment on PC workstations controlled by the Ubuntu 7.04 Linux (VCT agent) and
Windows (HWT). The approximate impact of the VCT – HWT build model in comparison to the original
version is reasonable and indicates that the generalized build system is only about 4% slower than the
original despite a very simple implementation of the VCT agent.

We believe that an intercepting mechanism will be necessary to concretize target-specific values from
relevant profiles and the proposed late binding mechanism takes a step towards achieving this goal.

2.3 HWT prototype in context of HWT architecture

At this project phase the HWT prototype consists of the graphical HWT core platform described in Sec-
tion 2.2 and practical proof-of-concepts described in sections 2.2.1 and 2.2.2. In particular, the graphical
HWT prototype constitutes the core platform that permeates all three HWT architecture layers shown in
Figure 1. We believe that in its current version the prototype is functional and can considerably simplify
routine build tasks. The core platform enables plugging actual modules responsible for porting conversions,
preconditioning, compilation, installation, and execution on heterogeneous machines. Some of them are
partially implemented as individual tools (e.g. Python porting assistant scripts) or their preliminary versions
are provided by the platform (e.g. staging, launching). We are currently working on packaging the initial
release of the HWT.

2.4 Encapsulating target-specific knowledge

As we described in the previous report the most important issue in design of the capability model is the
identification of resource capabilities at different levels: hardware, system software, and application. We
have working on a model to encapsulate target-specific knowledge at (1) the hardware level (machine’s

6

Figure 4: Unibus architecture

architecture type, type and number of processors, available RAM, etc); (2) the system software level (appli-
cation launcher methods (ssh, job scheduling systems), libraries and their locations and versions, compilers,
linkers, preprocessors); (3) the application level (tuning and optimization parameters, dependencies, de-
ployment, environment settings). We note that the capability model should provide semantics on how the
capabilities can be used. We have develop a tool based for creating and managing capabilities manifested
in profiles. The profile syntax allows for manual modifications by end-users or by automated external tools.
This tool has been tested on the Gamess-US application on the Jaguar XT5 machine at Oak Ridge National
Laboratory.

2.5 Environment Conditioning with Unibus

The Unibus subsystem draws inspiration from the traditional VO (Virtual Organization) resource sharing
model. Unlike in Grids, however, where resource virtualization and aggregation take place at the resource
providers side and are performed by resource providers, the Unibus goal is to relieve them from that burden
and shift it to software (Unibus) at the resource clients side. In this manner, Unibus benefits both resource
providers and resource users, as the former expose their resources in an arbitrary way, and the latter can
execute their applications on resources orchestrated by Unibus in accordance with their requirements.

The Unibus architecture is presented in Figure ??. In Unibus, resources are exposed by resource
providers through access points, typically represented by access daemons (e.g., sshd, ftpd, etc). Resources
are described semantically by their OWLDL resource descriptors that contain resource-specific data related
to authentication methods, available access points, installed system software (OS, libraries, compilers, etc),
environment variables, etc.

Unibus provisions resources through a process known as conditioning that increases the resource spe-

7

cialization level. In particular, there are two classes of conditioning services: (1) soft conditioning, and (2)
successive conditioning. Soft conditioning alters resource capabilities in terms of installed software, e.g.,
installing an MPI implementation on a resource or a gcc compiler, allows to execute MPI applications or
compile C programs, respectively. Successive conditioning results in enhancement of resource capabilities
in terms of access points, e.g., Globus Toolkit installation adds the Grid access point on the resource. Typ-
ically, successive conditioning will be supported by soft conditioning in order to deploy new access points
on a resource. The typical Unibus usage scenario requires creation of a metaapplication that is executed on
the local users machine. As the Unibus framework is implemented in Python, the most straightforward ap-
proach to implement the metaapplication is to write it as a Python script. We have implemented a prototype
of this subsystem and have conducted preliminary experiments on several target platforms, including cluster
systems, Amazon EC2 and Rackspace cloud systems.

3 Research Output

In the HWB project we have designed the VCT architecture to encompass portability issues in daily build
tasks (HWT). We have also proposed and practically examined the toolkit-assisted approach to porting and
the late binding mechanism to resolve generalized build systems. Finally, as part of the Unibus sub-project,
we have developed semi-automated methods to condition target environments to be ready for application
deployment. The results have been disseminated in the publications listed below.

1. Magda Slawinska, Jaroslaw Slawinski, Vaidy Sunderam, “A Practical SCVM-based Approach to En-
hance Portability and Adaptability of HPC Application Build Systems”, Proc. 2012 International
Conference on Computer Science (IMECS 2012), Hong Kong, pp. 257-262, March 2012.

2. Julien Bourgeois, Vaidy Sunderam, Jaroslaw Slawinski, Bogdan Cornea, “Extending Executability
of Applications on Varied Target Platforms ”, Proc 13th IEEE International Conference on High
Performance Computing and Communications (HPCC) , Banff, Canada, September 2011.

3. Magda Slawinska, Jaroslaw Slawinski, Vaidy Sunderam, “Towards Cross-Platform Cloud Comput-
ing”, Proc. Workshop on Cloud Computing Projects and Initiatives, 17th Euro-Par 2011 Conference,
Bordeaux, France, August 2011.

4. Jaroslaw Slawinski, Magdalena Slawinska, Vaidy Sunderam, “Unibus-managed Execution of Scien-
tific Applications on Aggregated Clouds”, Proc. 10th IEEE/ACM Intl. Symposium on Cluster, Cloud
and Grid Computing, Melbourne, Australia, May 2010.

5. Magdalena Slawinska, Jaroslaw Slawinski, Vaidy Sunderam, “Aspects of Heterogeneity and Fault
Tolerance in Cloud Computing”, Proc. Intl. Parallel and Distributed Processing Symposium (IPDPS-
HCW) 2010, Atlanta, GA, April 2010.

6. Magdalena Slawinska, Jaroslaw Slawinski, Vaidy Sunderam, “The Unibus approach to Aggregation of
Heterogeneous Computing Infrastructures”, Proc. Intl. Conference on High Performance Computing
Workshop on Utility and Grid Computing (HIPC-WUGC) 2009, Cochin, India, December 2009.

7. Jaroslaw Slawinski, Magdalena Slawinska, Vaidy Sunderam, “Provisioning Software Applications on
Diverse Resources”, Proc. Intl. Conference on High Performance Computing Workshop on Service
Oriented Computing (HIPC-WSOC) 2009, Cochin, India, December 2009.

8. Magdalena Slawinska, Jaroslaw Slawinski, Vaidy Sunderam, “Portable Builds of HPC Applications
on Diverse Target Platforms”, Proc. Intl. Parallel and Distributed Processing Symposium (IPDPS-
HCW) 2009, Rome, Italy, pp. 1-8, May 2009.

8

9. M. Slawinska, J. Slawinski, V. Sunderam, “Enhancing Build-Portability for Scientific Applications
Across Heterogeneous Platforms”, Proc. Intl. Parallel and Distributed Processing Symposium IPDPS-
HCW 2008, Miami, FL, April 2008.

10. M. Slawinska, J. Slawinski, V. Sunderam, “Enhancing Productivity in High Performance through
Systematic Conditioning”, Parallel Processing and Applied Mathematics, Gdansk, Poland, September
2007.

11. J. Slawinski, M. Slawinska, V. Sunderam, “Porting transformations for HPC applications”, Interna-
tional Parallel and Distributed Processing Symposium, Las Vegas, Nevada, September 2007.

12. M. Slawinska, J. Slawinski, D. Kurzyniec, V. Sunderam, “Enhancing portability of HPC applications
across high-end computing platforms”, Proc. Intl. Parallel and Distributed Processing Symposium
HCW 2007, Long Beach, CA, March 2007.

13. M. Slawinska, D. Kurzyniec, J. Slawinski, V. Sunderam, “Automated deployment support for parallel
distributed computing”, Proc. 15th Parallel, Distributed and Network based Processing, Naples, Italy,
February 2007.

14. D. Kurzyniec, M. Slawinska, J. Slawinski, V. Sunderam, “Unibus: A Contrarian Approach to Grid
Computing”, The Journal of Supercomputing: Special Issue on Grid Technology, 42(1), 2007.

15. M. Slawinska, D. Kurzyniec, J. Slawinski, V. Sunderam, “Zero-Force MPI: Towards Tractable Toolk-
its for High Performance Computing”, Poster presentation, Supercomputing 2006 (SC06), Tampa, FL,
November 2006.

One postdoctoral fellow and one post-graduate research associate were supported by this award. In addition
two graduate students were partially supported by this grant and worked on thesis projects related to this
project.

4 Summary

This report has outlined the Harness workbench project accomplishments at Emory University. Additional
information or copies of publications may be obtained from the principal investigator. U.S. Department of
Energy support of our research efforts is greatly appreciated.

9

