ELECTROMAGNETIC FIELD MEASUREMENT OF FUNDAMENTAL AND HIGHER-ORDER MODES FOR 7-CELL CAVITY OF PETRA-II

PDF Version Also Available for Download.

Description

The booster synchrotron for NSLS-II will include a 7-cell PETRA cavity, which was manufactured for the PETRA-II project at DESY. The cavity fundamental frequency operates at 500 MHz. In order to verify the impedances of the fundamental and higher-order modes (HOM), which were calculated by computer code, we measured the magnitude of the electromagnetic field of the fundamental acceleration mode and HOM using the bead-pull method. To keep the cavity body temperature constant, we used a chiller system to supply cooling water at 20 degrees C. The bead-pull measurement was automated with a computer. We encountered some issues during the ... continued below

Creation Information

Kawashima, Y.; Blednykh, A.; Cupolo, J.; Davidsaver, M.; Holub, B.; Ma, H. et al. March 28, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 23 times , with 4 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The booster synchrotron for NSLS-II will include a 7-cell PETRA cavity, which was manufactured for the PETRA-II project at DESY. The cavity fundamental frequency operates at 500 MHz. In order to verify the impedances of the fundamental and higher-order modes (HOM), which were calculated by computer code, we measured the magnitude of the electromagnetic field of the fundamental acceleration mode and HOM using the bead-pull method. To keep the cavity body temperature constant, we used a chiller system to supply cooling water at 20 degrees C. The bead-pull measurement was automated with a computer. We encountered some issues during the measurement process due to the difficulty in measuring the electromagnetic field magnitude in a multi-cell cavity. We describe the method and apparatus for the field measurement, and the obtained results.

Source

  • 2011 Particle Accelerator Conference (PAC'11); New York, NY; 20110328 through 20110401

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--94861-2011-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 1014356
  • Archival Resource Key: ark:/67531/metadc835553

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 28, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 29, 2016, 8:09 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 23

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kawashima, Y.; Blednykh, A.; Cupolo, J.; Davidsaver, M.; Holub, B.; Ma, H. et al. ELECTROMAGNETIC FIELD MEASUREMENT OF FUNDAMENTAL AND HIGHER-ORDER MODES FOR 7-CELL CAVITY OF PETRA-II, article, March 28, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc835553/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.