Polar Kerr Effect Measurements of YBa_2Cu_3O_6+x: Evidence for Broken Symmetry Near the Pseudogap Temperature

PDF Version Also Available for Download.

Description

Polar Kerr effect in the high-Tc superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} was measured at zero magnetic field with high precision using a cyogenic Sagnac fiber interferometer. We observed non-zero Kerr rotations of order {approx} 1 {micro}rad appearing near the pseudogap temperature T*, and marking what appears to be a true phase transition. Anomalous magnetic behavior in magnetic-field training of the effect suggests that time reversal symmetry is already broken above room temperature.

Creation Information

Xia, Jing August 24, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Polar Kerr effect in the high-Tc superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} was measured at zero magnetic field with high precision using a cyogenic Sagnac fiber interferometer. We observed non-zero Kerr rotations of order {approx} 1 {micro}rad appearing near the pseudogap temperature T*, and marking what appears to be a true phase transition. Anomalous magnetic behavior in magnetic-field training of the effect suggests that time reversal symmetry is already broken above room temperature.

Source

  • Journal Name: Submitted to Physical Review Letters

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-13976
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 1023231
  • Archival Resource Key: ark:/67531/metadc835491

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 24, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Nov. 30, 2016, 4:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Xia, Jing. Polar Kerr Effect Measurements of YBa_2Cu_3O_6+x: Evidence for Broken Symmetry Near the Pseudogap Temperature, article, August 24, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc835491/: accessed October 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.