Performance Validation and Scaling of a Capillary Membrane Solid-Liquid Separation System

PDF Version Also Available for Download.

Description

Algaeventure Systems (AVS) has previously demonstrated an innovative technology for dewatering algae slurries that dramatically reduces energy consumption by utilizing surface physics and capillary action. Funded by a $6M ARPA-E award, transforming the original Harvesting, Dewatering and Drying (HDD) prototype machine into a commercially viable technology has required significant attention to material performance, integration of sensors and control systems, and especially addressing scaling issues that would allow processing extreme volumes of algal cultivation media/slurry. Decoupling the harvesting, dewatering and drying processes, and addressing the rate limiting steps for each of the individual steps has allowed for the development individual technologies ... continued below

Creation Information

Rogers, S.; Cook, J.; Juratovac, J.; Goodwillie, J.; Burke, T. & Stuart, B., ed. October 25, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Algaeventure Systems (AVS) has previously demonstrated an innovative technology for dewatering algae slurries that dramatically reduces energy consumption by utilizing surface physics and capillary action. Funded by a $6M ARPA-E award, transforming the original Harvesting, Dewatering and Drying (HDD) prototype machine into a commercially viable technology has required significant attention to material performance, integration of sensors and control systems, and especially addressing scaling issues that would allow processing extreme volumes of algal cultivation media/slurry. Decoupling the harvesting, dewatering and drying processes, and addressing the rate limiting steps for each of the individual steps has allowed for the development individual technologies that may be tailored to the specific needs of various cultivation systems. The primary performance metric used by AVS to assess the economic viability of its Solid-Liquid Separation (SLS) dewatering technology is algae mass production rate as a function of power consumption (cost), cake solids/moisture content, and solids capture efficiency. An associated secondary performance metric is algae mass loading rate which is dependent on hydraulic loading rate, area-specific hydraulic processing capacity (gpm/in2), filter:capillary belt contact area, and influent algae concentration. The system is capable of dewatering 4 g/L (0.4%) algae streams to solids concentrations up to 30% with capture efficiencies of 80+%, however mass production is highly dependent on average cell size (which determines filter mesh size and percent open area). This paper will present data detailing the scaling efforts to date. Characterization and performance data for novel membranes, as well as optimization of off-the-shelf filter materials will be examined. Third party validation from Ohio University on performance and operating cost, as well as design modification suggestions will be discussed. Extrapolation of current productivities will be used to suggest a design for integration into commercial-scale production.

Source

  • Algal Biomass Organization: 5th Annual Algae Biomass Summit, Minneapolis, Minnesota, October 25-27, 2011

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: DOE/DE/AR000037-1
  • Grant Number: AR0000037
  • Office of Scientific & Technical Information Report Number: 1032967
  • Archival Resource Key: ark:/67531/metadc835335

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 25, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Nov. 9, 2016, 2:17 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Rogers, S.; Cook, J.; Juratovac, J.; Goodwillie, J.; Burke, T. & Stuart, B., ed. Performance Validation and Scaling of a Capillary Membrane Solid-Liquid Separation System, article, October 25, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc835335/: accessed December 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.