Superconducting magnets for muon capture and phase rotation

PDF Version Also Available for Download.

Description

There are two key systems that must operate efficiently, in order for a muon collider to be a viable option for high energy physics. These systems are the muon production and collection system and the muon cooling system. Both systems require the use of high field superconducting solenoid magnets. This paper describes the supcrconducting solenoid system used for the capture and phase rotation of the pions that are produced on a target in a high intensity proton beam.

Physical Description

7

Creation Information

Green, M.A. & Weggel, R.J. July 26, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 28 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

There are two key systems that must operate efficiently, in order for a muon collider to be a viable option for high energy physics. These systems are the muon production and collection system and the muon cooling system. Both systems require the use of high field superconducting solenoid magnets. This paper describes the supcrconducting solenoid system used for the capture and phase rotation of the pions that are produced on a target in a high intensity proton beam.

Physical Description

7

Source

  • Embedded Topical Meeting on Nuclear Applications of Accelerator Technology AccApp '99, Long Beach, CA, November 14-18, 1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-43998
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 1011499
  • Archival Resource Key: ark:/67531/metadc835298

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 26, 1999

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • June 16, 2016, 5:07 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 28

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Green, M.A. & Weggel, R.J. Superconducting magnets for muon capture and phase rotation, article, July 26, 1999; Berkeley, California. (https://digital.library.unt.edu/ark:/67531/metadc835298/: accessed March 29, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen