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ABSTRACT 

We study the use of lower-fidelity training data for uncertainty quantification of 

complex simulation models. In our approach, computationally expensive full-model 

outputs are approximated applying proper orthogonal-decomposition-based 

dimensionality reduction to the full model.  

A Gaussian-processes-based machine learning approach is then used to model the 

difference (or, rather, the correspondence) between the higher-fidelity and the lower-

fidelity data. This stochastic model can be constructed by using few additional full 

code evaluations; it is used to calibrate arbitrarily many lower-quality outputs in order 

to create additional training data for sampling-based analysis. In effect, an adequate 

approximation of the simulation model’s response to uncertainty can be constructed 

at a modest computational cost. In fact, we aim at the number of full-model 

evaluations comparable to that required for a linear approximation (as opposed to 

numbers traditionally associated with sampling in high-dimensional spaces). 

In this report, we explain the basic algorithm, suggest some performance tuning 

options, and give a first characterization for the class of simulation models of nuclear 

engineering for which the suggested report is effective. 

The primarily goal of our work was to demonstrate the effectiveness of multifidelity 

analysis on high-performance fluid dynamics simulation code Nek5000. We have 

been successful at estimating statistics for an output of interest at low cost. While 

further demonstration exercises may be helpful, the information provided here clearly 

argues for the effectiveness of the approach. Logically, the next stage of work is to 

explore the full range of tasks related to Nek5000 code development and verification 

that could be made more computationally accessible with the use of calibrated lower-

fidelity data. 

The suggested approach can be generalized to multiple levels of fidelity, enabling 

uncertainty analysis based on many different model approximations. The long-term 

goal of our research is to fit the developed method into a larger context of advanced 

uncertainty analysis tools for nuclear engineering applications. We foresee 

implementation as a suite of analysis tools that can become a component of SHARP / 

NEAMS codes.  
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1 Introduction 

The modern field of nuclear engineering relies on numerical simulations of physical 

systems for tasks of reactor prototype development, performance optimization, and safety 

analysis. The current state of development of hardware and computing techniques allows 

models of high geometric resolution and physical fidelity, with a large number of parameters 

taken into account by simulation. However, with the use of high-fidelity simulations, all 

analysis tasks for such models require increasingly large amounts of computational and 

development resources. When a single simulation run may take hours, days, or weeks of 

computation, any assessment method that relies on traditional sampling is no longer feasible. 

We investigate the task of propagating uncertainty through a complex simulation model in 

the situation of extremely tight computational budget constraints. We aim to develop hybrid, 

intrusive methods of uncertainty quantification that are effective in a high dimension of 

uncertainty without large-scale sampling. This task can be achieved through intrusive analysis 

that extracts additional data from each of the few model runs. We expanded on this idea by 

introducing a method that relates additional data to each of the expensive model runs. That is, 

each full-model evaluation that produces high-fidelity outputs is augmented with many 

(perhaps arbitrarily many) simplified model runs that produce lower-fidelity outputs.  

The work was completed in fulfillment of milestone M4MS-12AN0603242, under the 

Nuclear Energy Advanced Modeling and Simulation (NEAMS) program of the U.S. 

Department of Energy Office of Nuclear Energy. 

As a central exercise, we demonstrated effectiveness of the suggested approach on an 

analysis of a simulation performed using the SHARP component code Nek5000 [1]. This 

code is an industry-level high-fidelity scalable fluid mechanics solver. It includes the 

capability to accept user-defined routines and scenarios, but it is not transparent to intrusive 

analysis. Results of our analysis can be reproduced only by using large-scale sampling 

(hundreds of runs or more). Our work, while still in the initial stages, has made practical those 

tasks of code verification and confidence assessment that previously were not performed for 

simulation models of higher complexity. 

The existing work on uncertainty quantification mainly follows the same scheme, 

variously called surrogate modeling, response surface learning, or multivariate regression [2]. 

An uncertainty-influenced output is fitted to an a priori chosen algebraic structure on the 

inputs, based on extensive sampling. In the development of our intrusive uncertainty 

quantification methods, we always aimed for a significant, as opposed to incremental, 

improvement of the existing methodology. In the past, we have shown that additional data 

(proportionally to the dimension of uncertainty) can be extracted from the model if model 

derivatives are also available [3,4]. That work significantly accelerated multivariate 

regression and stochastic-processes-based techniques for quantifying response to uncertainty. 

Now we introduce another way to obtain additional data that helps with response model 

construction. 

Generally, simulation models do not exist alone, as sole examples in their class of codes. 

During development, there will be simplified versions of the code that are mostly consistent in 

the input-output format but run much faster because of lower resolution, lower-precision 

requirements, and fewer enabled routines. If access to such simplified models is no longer 



 

 

available, a simplified approximation can be constructed at modest additional development 

effort. Proper orthogonal decomposition (POD) based dimensionality reduction is a 

particularly convenient choice, and we use it in our work. 

By necessity, model simplifications and approximations are used as a rough tool to 

explore the model, either as direct replacement of the more expensive data or as a source of 

first guess at the model’s properties. Intuition-based use of model simplifications for 

intermediate verification is unavoidable in applied studies, if not always documented. The 

consequences of simplification are tolerated as long as the essential, global properties of the 

model are preserved. As an important step toward systematic use of multifidelity data, 

Kennedy and O’Hagan [5] suggested constructing a statistical model to describe the 

imperfection in the cheaper data (error-prone computer simulations versus almost perfect 

physical observational data, in their case). 

We argue for use of an approach based on the following understanding: 

- Lower-quality data differs from high-quality data by a stochastic response surface that 

can be learned. 

- This learning, or calibration, process can have a small number of degrees of freedom. 

- Calibrated lower-quality data can be used to replace the unavailable high-quality data 

in the analysis. 

- Lower-quality data is available from model simplification techniques such as POD-

based dimensionality reduction; construction of simplifications is possible at modest 

development effort. 

- In particular, lower-quality data preserves some characteristics of high-quality data in 

thermohydraulic models of interest for the nuclear engineering field, as demonstrated 

by the recent work in extrapolation of behavior in time by using reduced-order 

modeling [6]. 

The attractiveness of the proposed approach is not so much in pointwise precision in 

predicting the model’s response to uncertainty as in the enabled assessment of model’s global 

properties. In particular, we show how to output confidence intervals for the statistics of the 

model, even for order statistics (percentiles). This task would normally require extensive 

sampling, whereas we aim to accomplish analysis at a computational cost comparable to or 

lower than that of linear approximation. 

We note that the suggested approach can be generalized to using multiple sources of 

lower-fidelity data. That has implications for our recent and ongoing work in intrusive 

uncertainty analysis of simulation codes (derivative-augmented regression techniques). The 

implications also point in both directions: if derivative information on the model is available, 

it can be used to accelerate model reduction and calibration components of the present work. 

Based on our success with analysis of Nek5000 simulations, we suggest that the next stage 

of work is to extend the approach to the full range of tasks related to code development and 

verification, which could be improved through the use of lower-fidelity data, and to 

implement the approach as an analysis tool within the NEAMS software suite. 



 

 

2 Method Description 

We begin this section with a review of uncertainty analysis. We then discuss POD-based 

analysis and Gaussian-processes-based inference of covariance. We conclude the section with 

a description of our algorithm. 

2.1 Uncertainty Analysis in the Context of Previous Work 

Consider a simulation model as a system of differential-algebraic equations 

0),,( =xPTF           (1) 

implemented by a computer code. Here, ),...,,( 21 nTTTT = is a model state vector, 

),...,,( 21 NPPPP =  is a set of model parameters explicitly present in the inputs or in the body 

of the code, and ),...,,( 21 mxxxx =  are the additional parameters that quantify uncertainty in 

the code. Such uncertainty quantifiers may be understood as direct variations on the nominal 

values of parameters, iii xPP += 0,: , but we also accept any other deterministic manner of 

inserting uncertainty into the code; the number of uncertainty quantifiers may be greater than 

the number of parameters. It may be better to think of model equations with uncertainty in the 

coupled form 0)),,(,( =xxTPTF . 

The essential task of uncertainty analysis amounts to describing an uncertainty-influenced 

scalar output )(Tℑ  by creating an approximation ))(()( xTxJ ℑ≈  with some capability for 

extrapolation. A standard technique is multivariate regression. Given a family of functions 

(often, multivariate polynomials) RRm →Ψ :}{ , an uncertain output is represented by an 

expansion 

∑ Ψ=≈
j

jj xaxRxJ )()()(         (2) 

with expansion coefficients ja  found by regression. This representation is chosen based on a 

tradeoff between computational cost and quality: we would like to use a larger basis to 

represent nonlinear dynamics in the model, but at the same time we would like to fit a 

regression model based on an affordable amount of training data. The computational cost 

grows rapidly with the dimension of the uncertainty space. For example, a polynomial 

expansion on 20 variables requires over 200 model evaluations if second-order polynomials 

are used, and over 1500 evaluations in third-order polynomials [7]. 

For improved prediction, in order to avoid overtraining on the available data and to gain 

an estimate of confidence in prediction, the regression model (2) can be treated as a first 

version of the response function and enhanced with a correction term: a deterministic or a 

stochastic representation of the error. In the absence of an analytical solution of the model, a 

posteriori error estimation techniques will carry an additional computational cost, in the form 

of additional direct, or adjoint, model evaluations. 

One can avoid constructing a regression model altogether and estimate the statistics of the 

output directly from sampling. But that approach is hardly computationally cheaper. For 

example, the Kolmogorov-Smirnov technique for comparing an empirical distribution against 



 

 

a template will require sampling in the hundreds even for the one-dimensional case. This 

choice also limits the ability for interpolation. 

Given our tight limitations on computational budget (as measured in evaluations of the 

simulation model at distinct points in the uncertainty space), we aim to use the model 

capability to provide additional data via simplifying approximations. We have to use a 

process that can correct this additional data at the cost of few full-model evaluations. 

Informally, we can say that we seek imperfect data that is different from perfect data by only 

a few degrees of freedom. 

Once the pathway to generating and calibrating lower-quality data is established, we 

propose to use this data to create both regression-based response surfaces and to find 

statistical parameters by sampling of calibrated data. 

The mathematical content behind work has received increased attention in the past decade. 

The dimensionality reduction component is based, initially, on a statistical technique known 

as the Karhounen-Loeve expansion, and also variously as the principal component analysis 

method, POD, and method of snapshots [8]. It has been restated for applied tasks of 

simulation and optimization in high dimension by many authors [9,10]. Morover, additional 

attention has been given to developing goal-oriented reduced models; the techniques range 

from simple data weighting to iterative procedures resulting in a POD-reduced model that 

optimally reproduces a known feature in the full-model dynamics. Multiple researchers use 

POD-reduced models in a straightforward manner: to replace the full model and cheaply 

propagate model dynamics forward in time. In particular, E. Merzari published a paper on 

using the reduced-order ODE solver to recover the Nek5000 velocity field from high-

dimensional snapshots and simplified, reduced Navier-Stokes equations [6]. 

The central idea of using statistical models to characterize the imperfection in training 

data and correct it while recovering the covariance properly belongs to Kennedy and O’Hagan 

[5]. For the background of Gaussian-processes machine learning aspects of our work, we refer 

to the reader to a publicly available manual by Rasmussen [11]. 

We are also aware of several other directions of development in uncertainty analysis of 

fluid mechanics models, based on Kennedy and O’Hagan’s work (for example, [12]). We 

point out a line of development that is perspective in general but is not effective on small 

training data, an approach currently called multifidelity kriging [13]. In this approach, high-

fidelity and low-fidelity data responses to uncertainty are considered to be statistically 

independent, so two separate response models are constructed and then aggregated. This 

approach uses the fewest assumptions on the relationship between perfect data and its 

approximations; it may, however, require separate sampling procedures. 

The suggested approach for the use of lower-fidelity data fits well with our previous work 

on using derivatives to accelerate surrogate model construction. In fact, we can reformulate 

our older work in a new language: having a gradient is equivalent to having access to lower-

quality (linear) approximations of the model. It appears that for uncertainty quantification of 

advanced simulation models at least some intrusive analysis capacity must be made available: 

either algorithmic differentiation or POD-based reduction (or some other as-yet-undeveloped 

approach). 

 



 

 

2.2 POD-Based Dimensionality Reduction of Model Dynamics 

Given a static data set of 'n  observations, stored as a matrix 'nn
RA

×∈ , an optimal 

approximation Â  of fixed rank nk <  is obtained using Singular Value Decomposition 

(SVD). If ∑
=

=
n

i

T

iii vuA
1

σ , with singular values iσ  in descending order, then ∑
=

=
k

i

T

iii vuA
1

ˆ σ ; 

the error ∑
+=

=−
n

ki

iAA
1

2

ˆ σ  is minimal for the given k. In practice, the dimension k  is chosen 

so that the relative error ∑∑
=+=

n

i

i

n

ki

i

11

σσ  is close to 1. 

A similar approach for reducing evolving data is variously known as Proper Orthogonal 

Decomposition (POD), Principal Component Analysis (PCA), or method of snapshots. 

According to the method of snapshots (Sirovich), reducing projection can also be applied to 

underlying equations of a mathematical model. The available observations (or snapshots) 

from a solution trajectory at times '21 ,...,, nttt  are recorded as matrix columns: 

))(),...,(),(( '21 ntTtTtTA = . An empirical correlation matrix is defined as T
AAC = . In 

practice, instead of a SVD of A , we may solve the related eigenvalue problem λφφ =C , and 

record the k dominant eigenvectors as ),...,,( 21 kφφφ=Φ . The matrix Φ  is used to project the 

model state-vector into a dominant eigenspace of the correlation matrix. The projection is 

optimal for the training data. If training data is representative of the model dynamics (and if 

true model dynamics are essentially low-dimensional), then the POD approximation  

∑
=

=
k

i

ii tqtT
1

)()(ˆ φ           (3) 

is effective. Here, )(tq  is the approximating trajectory in low-rank subspace coordinates. 

POD-based projection can be used for many formats of the problem. We can write a reduced 

form of the general DAE (2) as 0),,,( =Φ xPtqF . In particular, for a model discretized to an 

ODE we have: 

),()(

),,,(

00 xPutu

xPtuf
dt

du

=

=
          (4) 

The reduced-order approximation is determined by solving  

),()(

),,,(

00 xPutq

xPtqf
dt

dq

T

T

Φ=

ΦΦ=
         (5) 

The main advantage here is the reduced integration time in comparison to the full model 

equations. The difficulty of implementing reduction and, furthermore, the difficulty of 

intrusive model analysis depend on access to the right side operator ),,,( xPtuf . This operator 

has to be identified in the code and evaluated, furthermore, evaluated in the lower-

dimensional space, without explicitly calculating the “lifted” term qΦ .  



 

 

This problem of operator identification and evaluation will appear in any representation of 

the reduced model equations, in particular, in the POD-Galerkin setup for the reduced-order 

Navier-Stokes equations. 

Suppose the model dynamics are reducible. We expect that if uu ˆ≈ , then the reduced 

model will also provide an effective approximation for an output of interest: )ˆ()( uu ℑ≈ℑ . In 

general, we cannot make similar empirical statements concerning the effects of uncertainty. 

The reduced model is based on a projection matrix, based on a set of snapshots. There is no 

guarantee that a set of snapshots obtained at a specific point in the uncertainty space will be 

adequate for estimating model’s response to other values of x . 

It is possible to the POD basis Φ  to some extent, by weighting of snapshot data, or by 

combining snapshots from trajectories started from several different points in the uncertainty 

space-,15]. In practice, this improvement can be very limited, and any procedure for 

enrichment will run into problems of computational cost (we will not have the additional 

budget of full model runs) and circular logic (we cannot “emphasize” the response to 

uncertainty in the reduced model snapshots without knowledge about full model’s response to 

uncertainty). 

We can, however, take the reduced-model output data as is, and pass it to the next stage of 

the process: machine learning of the imperfection in the reduced model performance over the 

uncertainty space. 

2.3 Gaussian-Processes-Based Inference of Covariance 

At the core, Gaussian-processes (GP) machine learning is a response surface fitting 

technique; unlike standard regression, it estimates the shape of the covariance function on the 

training data, rather than the shape of the data itself [11].  

Consider a basic task of constructing the GP representation on the training set of outputs 

OY  corresponding to a set of inputs n

iNO RxxxxX ∈= :),...,,( 21
. We denote the covariance 

function on the inputs by RRxx n →:);',cov( θ . For the algebraic form of covariance, we 

shall use an empirically effective “Matern 3/2” function 

∑
=













 −
−⋅









 −
+=

n

l i

j

j

l

i

l

i

j

l

i

l
xxxx

xx
1

2 3exp31);',cov(
θθ

σθ      (6) 

(Note: a small number of other suitable functions are also available). The parameter 2σ  here 

is estimated by )var( OY . The hyperparameters θ  are modified to adjust the shape of the 

covariance function to best fit the training data using the maximal marginal likelihood 

approach. It is convenient to write out the probability that training data follows Gaussian 

distribution with covariance );',cov( θxx  in negative logarithmic form, then fitting of the 

hyperparameters amounts to maximizing 

)2log(
2

log
2

1

2

1
);log(Pr( 1 πθ

m
KYKYXY

T

OO −−−=− −
     (7) 



 

 

where );,cov( θOO XXK =  is the covariance matrix on the training data. The nonlinear 

optimization problem (7) may present a computational challenge, and does not, in practice, 

yield an ideal solution: we expect to find an acceptable local minimum using standard tools 

based on a BFGS algorithm (Matlab routines fminsearch and fminunc are acceptable here). 

Now that the covariance function is specified, we can perform pointwise predictions on 

any testing set by kriging. A cross-covariance matrix );,cov( θVOV XXK =  relates testing set 

VX  to the training set OX . The outputs are predicted as 

O

T

VV YKKY ⋅⋅= −1
           (8) 

For the initial (or prior) version of mean function, we use a regression model )(xR  (it can 

be linear, if higher-order approximation cannot be constructed). A posterior version of the 

mean is written as 

))()(()()(' 1 xRxYKKXRxR V

T

VO −⋅⋅+= −       (9) 

A more important posterior prediction for the variance is given by 

( )V

T

V KKKxxXV ⋅⋅−⋅= −12 );,cov()( θσ        (10) 

The estimate (10) provides confidence information for pointwise predictions such as (9) 

by using Chebyshev’s rule, or the less conservative empirical rule. The effectiveness of the 

estimate depends on how well the underlying assumptions for Kriging are satisfied by the 

data: essentially, the training data is of sufficient quality to estimate the variogram correctly 

[17].  

Now we return to the context of uncertainty quantification. GP provides us with a tool that 

performs unbiased, locally smooth prediction on training data, and also provides confidence 

intervals for the prediction, we seek to apply it to the situation where training data is some 

measure of the difference between outputs of the perfect and imperfect versions of the 

simulation model.  

A straightforward application of GP prediction is to define the training data as 

)(ˆ)( xxYO ℑ−ℑ= , and then output the calibrated data as 
VVC YXJ +ℑ= )(ˆ . The confidence 

intervals would be written as ( ))()(),()( xzVxJxzVxJ CC +−  where z  is the appropriate 

coefficient corresponding to the measure of confidence: for example, 645,1=z  for 90% 

confidence using the empirical rule. Note that this approach will require n  full model 

evaluations to form the training data (a bit fewer if we allow the parameters θ  to have 

dependencies on each other; usually they are assumed to be independent). If the 

computational budget does not allow this, we will need to use a different strategy of relating 

reduced model data to full model data: one alternative is suggested in the following section. 

2.4 Method Algorithm and Tuning Options 

The proposed method consists of three components that are executed in sequence, and can 

be tuned for improved performance independently of each other (because feedback and 

adaptive improvement will, counter-productively, require additional model evaluations). The 

components are: 



 

 

- POD-based model reduction 

- Assembly of training data for calibration 

- GP-based calibration. 

Model reduction requires sampling of the model trajectory; thus the basic cost is one 

complete (or incomplete!) model evaluation. We choose a single point in the uncertainty 

space (by default, uncertainty quantifiers are given nominal values, for example, 0=ix ) and 

evaluate the model. From this process, only the projection matrix Φ  needs to be stored.  

In principle, POD-based model reduction has a lot of tuning options available. It is 

reasonable to use the snapshot selection and weighting schemes if they are suggested by the 

model developer, but in general such schemes require more knowledge about the model (in 

particular, about its sensitivities) than would be available in complex cases under the 

influence of uncertainty.  

If several full-model runs are available, with projection matrices ,..., 21 ΦΦ , they can be 

aggregated into the form >ΦΦ<=Φ ,...,' 21span ; in practice that can be accomplished by the 

Gramm-Schmidt orthogonalization procedure. Moreover, increasing the reduced model 

dimension k  may improve the performance of the reduced model. 

By design, the reduced model will be inexpensive to evaluate at any point in the 

uncertainty space. As opposed to costly high-fidelity data, we can have low-fidelity samples 

of almost arbitrary size and consider the reduced model outputs on both the training set and 

the testing set known, almost for free. 

Note, however, that the organization of the full- and the reduced-model code may differ; 

in fact, most of the development effort for implementing the overall method may be spent on 

overcoming such difficulties. For example, the reduced model may have a nonexplicit initial 

state of the model (using the first snapshot instead) or may use an adaptive geometrical mesh 

that ends up being different from that of the full model. Initial-state uncertainties and 

geometric uncertainties are, correspondingly, of different format; and one needs to modify the 

code and/or to interpolate.  

There is no question as to what side the code modifications should be performed on: we 

advise always modifying the reduced code. Notably, the calibration procedure accounts for all 

the differences between the models, without distinguishing their source. Thus it will also 

partially make up for interpolation errors and even human coding errors. Of course, the 

overall quality of prediction depends on the situation. 

Assembly of the training set depends on which interpretation of the “difference” between 

the full and the reduced data better fits the available budget. Besides the arithmetic difference 

between the outputs, we can use any correspondence between the perfect and approximate 

outputs on the same input that could be used in the calibration process. The only restriction on 

this generic relationship )(ˆ)( OOO XXY ℑ↔ℑ=  is that it must be reversible, that is, at least 

locally bijective and smooth.  

 



 

 

With the computational budget of the full-model runs approximately equal to the 

dimension of the uncertainty space, we sample the full and reduced models in pairs and use 

)(ˆ)( OOO XXY ℑ−ℑ= . 

If the number of runs must be less than m , we suggest a scheme based on comparing both 

the full- and reduced-model outputs with an intermediate response function, instead of with 

each other. We construct an intermediate regression model )(xr using the available full-model 

runs only: in practice, it will be a low-rank least-squares linear approximation for )(xℑ .Then 

we define the training set as )}()(ˆ),()({ OOOOO XrXXrXY −ℑ−ℑ= . The calibration 

procedure will then add an error estimate to an interpolation from the nearest known values of 

)(xℑ  and )(xr . The full-model outputs in this training set can be weighted, in other words, 

repeated multiple times for increased influence on the resulting variance structure. This 

approach will have a lower quality in pointwise prediction but is dramatically (for its 

computational cost) successful in recovering the variance. 

Ultimately, the choice of the correspondence relationship “ ↔” involves a tradeoff 

between computational cost and quality. On the one hand, the assembly of the training set 

should require only a few full-model evaluations; on the other hand, the correspondence must 

be reversible, allowing one to decipher the predicted values VY  into calibrated data CJ  

without significant loss of quality. Clearly, more options will be discovered with additional 

research effort.  

 

 
Figure 1: Reduced-order model sampling and calibration process. 

 

Gaussian-processes learning of covariance structure is treated mostly as a black-box 

procedure for producing posterior mean and variance from a training data set, however that is 

defined. The performance of the process largely depends on the nonlinear optimization 

algorithm chosen to solve the marginal likelihood problem. 

The scheme of the complete process, from construction of the reduced model to 

calibration of lower-quality data, is depicted in Figure 1. 



 

 

Once the calibration process is complete and we have an inexpensive source of training 

data CJ with a corresponding estimation of variance, the statistics of the model under 

uncertainty can be assessed by sampling the calibrated data. In particular, we now have 

enough data for a straightforward method for estimating confidence intervals for order 

statistics (DasGupta, 2008). Consider the pth quantile for the distribution of the output of 

interest ℑ , and choose a confidence level α . A commonly used “95/95 estimate” has 

95.0=p , 05.0=α . A conditional quantile estimate approach involves uniformly sampling 

CJ  over the uncertainty space and recording the pth quantile for each sample, thus forming 

variable pc . The sought-for double-sided confidence interval is estimated from the empirical 

distribution of pc , that is, from an empirical distribution function (EDF) defined on M points 

by ∑
=
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M
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)( ; here [..]1  is the binary indicator of the event. 

We note that insight into the behavior of the model has traditionally been used in tuning 

model reduction and choosing the most appropriate transform for representation of training 

data for subsequent statistical analysis. At this stage, we cannot provide a full range of options 

even for the field of fluid mechanics (although this is an interesting direction for future work). 

We emphasize, however, that including lower-fidelity data and relating it to the high-fidelity 

data by the means of an additional statistical model enables many forms of additional 

analysis, previously not possible because of computational budget constraints. 

3 Results 

In this section we present and analyze our numerical results with prototype models and 

models using Nek5000.  

3.1 Prototype Models and Nek5000 

In preparation for the advanced uncertainty analysis on the high-performance fluid dynamics 

simulation code Nek5000, we tested our approach on several prototype models of Navier-

Stokes flow. Since we developed the models, it was straightforward to implement 

dimensionality reduction and to ensure that the format of uncertainty is consistent between the 

versions of the model. We briefly describe two of the codes used in the method early 

development stages. 

Model 1 was a much-simplified 2-D flow, described by a PDE  
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discretized on a rectangular grid, that is, in a rectangular channel with proportions 1×10. The 

ODE was integrated over a time interval of length 1 with a time step 01.0=∆t , with in-flow 

conditions  
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Uncertainty was introduced into values iu  and allowed to vary +/- 30% from unity value. 

The output of interest was an averaged quantity ∑ ∑
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 (this quantity is 

approximately proportional to the drag coefficient, is smooth as long as the velocity is non-

zero, and is sensitive to small changes). The usual dimension of uncertainty m was 7 to 12. 

The corresponding state vector dimension 210n ranged from 490 to 1440. A straightforward, 

unweighted POD-based reduction to dimensions 40 to 150 was implemented; a reduced 

model could be integrated 15–20 times faster than the full model (this computation time does 

not include the one-time construction of reducing projection based on a given set of 

snapshots). The reduced model produced pointwise relative errors of 3–5%. 

Model 2 was a better approximation to realistic Navier-Stokes flow with uncertainty. We 

implemented a finite-element method (FEM) model of Navier-Stokes flow in a rectangular 

channel of proportions 3×10 , with uniform inflow and isolated walls. 
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For the reduced model ∑
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This setup follows the work of E. Merzari et al. [6] in implementing a reduced-order solver 

for Nek5000. Note that we only need to obtain the terms A , B , C  from the full, high-fidelity 

model. In terms of the ODE reduction described previously, this is equivalent to obtaining the 

expression for the reduced right-side operator of a reduced ODE. Of course, the stored arrays 

A , B , C  are completely valid only on a single point of the uncertainty space. 

We introduced uncertainty in two ways. In setup 2a, the only uncertainty quantity was the 

is the Reynolds number Re . In setup 2b, we kept the Reynolds number constant (at 

)200Re =  but introduced geometric irregularities into the shape of the channel. In Figure 2 

we show the configuration with the dimension of uncertainty equal to 4. The uncertain 

quantities describe the shape of the two small bumps (each made of two semi-circles of 

uncertain radius) on one of the sides of the channel; gradient coloring shows one of the 

solutions for the velocity field). In both cases, the output of interest was the average drag 

coefficient over the deformed wall. (Note: formally, a change in the geometric shape would 

lead to a change in the dimension of model state vector; we used FEM area elements with area 

0 to represent the deformations.) 



 

 

 
Figure 2: Navier-Stokes flow, uncertainty in geometry. 

 

Motivated by the good performance of the method on the prototype models described 

above (and many others), we reproduced tests 2a and 2b with the Navier-Stokes flow 

implemented by Nek5000, with the reduced-model solver developed by Merzari and 

appropriate modifications (i.e., insertion of the uncertainty structure into the code) developed 

with the help of Yulia Peet. This time, the eigenvalue problem and the resulting projection 

and the evaluation of the output of interest were essentially a black box to us: all we could do 

with confidence was perform statistical analysis on the reduced-model and the full-model 

outputs. In this case, evaluation of the full code took approximately 40 minutes on a high-

performance PC. Evaluation of the reduced model took 5–15 seconds. 

3.2 Numerical Results 

In our preliminary work on combined use of the reduced- and full-model data in 

uncertainty quantification, we examined Model 1 with uncertainty dimension 12. When 

training the Gaussian-processes covariance model on the difference between full and reduced 

models, we used a training set of size 15. We compared a sample of 1,000 surrogate model 

outputs with full-model evaluations. A selection of metrics for full-model outputs and the 

corresponding predicted outputs is reported in Table 1. (Note: here, chosen output of interest 

is fairly arbitrary; we refer to the model description.)  

 

Table 1: Model 1: prediction on reduced model data 

 

Metric Reduced Model + GP 

Prediction 

Validation Set Measurement 

Mean 9998 10065 

Range 8562 - 11259 7900 - 11259 

St. deviation  1012 1081 

Validation data within 

predicted 90% 

confidence interval 

99.0%  

N/A 

 



 

 

We calculated the 90% confidence interval, as shown in Figure 2, for a randomly selected 

sample of 85 points in the uncertainty space. The first 15 points shown are outputs of the 

surrogate model on its own training set. In this experiment, the confidence interval is fairly 

tight: only one full model output lies outside of it, while many points are placed closely to 

upper and lower bounds. 

 

Figure 2: Model 1: prediction on reduced model outputs; 90% confidence 

interval. 

For Model 2b, we used 10 reduced model outputs and 2 full model outputs and a scheme 

that involved comparison against an intermediate regression model. Figure 3 shows the 90% 

confidence interval for a randomly selected sample of 30 points. The first 10 points 

correspond to a training set assembled, hence the low quality of prediction and incorrect 

confidence interval. The quality of the prediction becomes noticeably better outside of the 

training region. 

 



 

 

 

Figure 3: Model 2b: prediction on reduced model outputs; uncertainty 

dimension 4. 

We now present a number of results for Nek5000 with setup 2b. In Table 2, we provide 

some of the prediction metrics: notice that the results obtained using >4 model evaluations 

(comparison of full model with reduced model) are almost equivalent to the results obtained 

using <4 model evaluations (comparison of full and reduced model with an intermediate 

regression model). The difference in performance is somewhat better shown in Figures 4 and 

5, where we show the pointwise predictions for randomly selected 80 points in the uncertainty 

space (training data not shown).  

Table 2: Nek5000: prediction on reduced model data 

 

Metric GP Prediction Using 

Training Set of 5 

Points 

GP Prediction Using 

Training Set of 3 

Points  

Validation Set 

Measurement 

Mean 0.5426 0.5345 0.5365 

Range 0.4774 – 0.6733 0.4774 – 0.6422 0.4721 – 0.8250 

St. deviation  0.0481 0.0543 0.0613 

Validation data 

within predicted 

90% confidence 

interval 

98.5% 95.5%  

N/A 



 

 

 

Figure 4: Nek5000: prediction and confidence interval, training set of 5 points. 

 

Figure 5: Nek5000: prediction and confidence interval, training set of 3 points. 

In Figure 6, we show the “95-95” estimate for Nek5000 output, that is, 95% double-sided 

confidence interval for the 95th quantile. Again, note that this estimate was obtained using 5 

evaluations of the full model; normally, this task requires sampling in the hundreds. 



 

 

 

Figure 6: Nek5000: 95-95 estimate. 

3.3 Discussion 

Our numerical experiments show that the introduced approach to uncertainty 

quantification based on lower-fidelity data can be effective even for high-resolution codes of 

industrial complexity such as Nek5000. While it would be helpful to also test the method on a 

wide range of other codes, this demonstration addressed one of the most challenging themes 

in uncertainty analysis for nuclear engineering applications: response of a high-fidelity 

thermohydraulics model. This is a significant result, with implications for previously 

inaccessible tasks of code verification and validation. With additional development, our work 

may become a first step to removing the constraints on uncertainty analysis related to 

prohibitive computational cost of sampling over high-fidelity spaces. 

Based on our experiments with prototype codes and Nek5000, we give the following 

(informal) characterization of the method performance. For a class of models considered, one 

can construct an effective representation of the response to uncertainty at a cost comparable to 

that of a linear interpolation. That is, the number of full-model runs required to fit the 

response can be equal to the dimension of the uncertainty space. (In comparison with the 

usual costs of running a high-performance model, the other tasks, such as multiple evaluations 

of the reduced model and nonlinear optimization required for Gaussian processes fitting of 

covariance, are negligibly cheap). This result is significantly different from traditional 

sampling-based methods, where the required number of samples can grow exponentially with 

dimension. 

The pointwise quality of prediction is not exceptional: we observe errors of 10–50% in 

many places. The more important feature of the method, however, is the ability to provide 

confidence assessment of data. Our confidence intervals are observed to be essentially correct, 

unless wrong assumptions on data were forced on the model; see comments for Figure 3). We 

can even output a correct confidence interval for order statistics (Figure 6), a task that would 

normally require large-scale sampling of the outputs. 



 

 

An interesting result is that the quality of the prediction does not grow significantly when 

using larger training sets. It appears that incremental increase of computational budget 

without the knowledge of the uncertainty response has a good chance of not benefiting the 

uncertainty analysis (because of emphasis on the “wrong” regions in the uncertainty space, 

because of detrimental effect on the nonlinear optimization search, etc.). If available, a 

slightly larger computational budget should be used to construct a better reduced model 

(again, with the important remark that in general one cannot know a priori the consequences 

of adding a point to the training data for reduction). 

Our suggested scheme for lowering the cost of prediction even further through the use of 

an intermediate regression function is fairly complex and will need additional investigation. It 

is nevertheless a remarkable demonstration of advanced uncertainty analysis performed with a 

sample size smaller than the dimension of space. 

The method has a prerequisite implementation of POD-based dimensionality reduction on 

the model equations. However, we can see from some of the numerical experiments (Figure 

3) that the reduced model can be of fairly low quality. This means that partial access, namely, 

access to a simplified form of model equations, may be sufficient. Other forms of lower-

quality data also may be used, as long as their computational cost per point is significantly 

lower and the data is of sufficient quality to fit the covariance model. 

Overall, uncertainty analysis on extremely small training sets augmented with large, 

lower-quality calibrated data sets is an ambitious new direction of development. Even now it 

is capable of producing model assessments and diagnostics previously not available because 

of the prohibitive computational cost. With additional research, we intend to more fully 

characterize the class of models for which the suggested approach is effective. 

4 Summary 

In our work, we have found that the model’s response to a moderate number of uncertain 

parameters can be effectively predicted by using a novel approach based on sampling and 

calibrating lower-fidelity data, with only a few high-fidelity data points used in the calibration 

process. We have demonstrated the effectiveness of the approach on a number of simplified 

prototype models, as well as on a channel flow simulation performed using the high-

resolution code Nek5000. 

Our suggested approach is computationally inexpensive and estimates the variability of 

the uncertainty induced output well. This type of result was not previously available except at 

a significantly higher cost (and in effect not available at all for the more expensive 

simulations). 

In the long term, we plan to implement our approach as a part of an automatic analysis 

suite of tools within NEAMS. Achieving this goal will result in a transformation of the status 

of uncertainty analysis in the field of nuclear engineering and will provide an overall stronger 

position of NEAMS in both development and analysis of advanced, high-fidelity nuclear 

engineering codes. The ultimate result will be improved understanding of safety and 

operational margins of nuclear reactors and a streamlined licensing process. 
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