Small-angle Compton Scattering to Determine the Depth of a Radioactive Source in Matter

PDF Version Also Available for Download.

Description

A gamma-ray peak in a spectrum is often accompanied by a discontinuity in the Compton continuum at the peak. The Compton continuum results from Compton scattering in the detector. The discontinuity at a peak results from small-angle Compton scattering by the gamma rays in matter situated directly between the gamma-ray source and the detector. The magnitude of this discontinuity with respect to the gamma-ray peak is therefore an indicator of the amount of material or shielding between the gamma-ray source and the detector. This small-angle scattering was used to determine the depth of highly-enriched uranium (HEU) solution standards in a ... continued below

Creation Information

Oberer, R. B.; Gunn, C. A.; Chiang, L. G.; Valiga, R. E. & Cantrell, J. A. April 1, 2011.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

  • Oak Ridge Y-12 Plant
    Publisher Info: Oak Ridge Y-12 Plant (Y-12), Oak Ridge, TN (United States)
    Place of Publication: Oak Ridge, Tennessee

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A gamma-ray peak in a spectrum is often accompanied by a discontinuity in the Compton continuum at the peak. The Compton continuum results from Compton scattering in the detector. The discontinuity at a peak results from small-angle Compton scattering by the gamma rays in matter situated directly between the gamma-ray source and the detector. The magnitude of this discontinuity with respect to the gamma-ray peak is therefore an indicator of the amount of material or shielding between the gamma-ray source and the detector. This small-angle scattering was used to determine the depth of highly-enriched uranium (HEU) solution standards in a concrete floor mockup. The empirical results of the use of this small-angle scattering discontinuity in a concrete floor experiment will be described. A Monte Carlo calculation of the experiment will also be described. In addition, the depth determined from small-angle scattering was used in conjunction with differential attenuation to more accurately measure the uranium content of the mockup. Following these empirical results, the theory of small-angle scattering will be discussed. The magnitude of the discontinuity compared to the peak count rate is directly related to the depth of the gamma-ray source in matter. This relation can be described by relatively simple mathematical expressions. This is the first instance that we are aware of in which the small-angle Compton scattering has been used to determine the depth of a radioactive source. Furthermore this is the first development of the theoretical expressions for the magnitude of the small-angle scattering discontinuity.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: RP 900000-0006
  • Grant Number: DE-AC05-00OR22800
  • DOI: 10.2172/1016162 | External Link
  • Office of Scientific & Technical Information Report Number: 1016162
  • Archival Resource Key: ark:/67531/metadc835032

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Feb. 16, 2017, 7:47 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Oberer, R. B.; Gunn, C. A.; Chiang, L. G.; Valiga, R. E. & Cantrell, J. A. Small-angle Compton Scattering to Determine the Depth of a Radioactive Source in Matter, report, April 1, 2011; Oak Ridge, Tennessee. (digital.library.unt.edu/ark:/67531/metadc835032/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.