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ls INTRODUCTION

This problem has been selected from the mathemstical
theory of elasticltys We conelder a rectangular plate of
thickness h; lengthd , snd width bs 4 right-hand system of
rectilinear coordinetes ls chogen with the coordinate sxes
parallel to the edges of the plate, the x~axig being p&tallel
to the longest edge and the y-axls helng parallel to an ende
fages The origin is taken as the geometric center of an ende
face of the plate (Flges 1)« Thlg causes the xy-plane to
coinoide with the neutral plane, that 1s, the plane midway
between, and parallel to, the two largest faces of the plate.
The plate ig subjeoted to compreessive forceg parallel to the
x=~axia, uniformly distributed along the y-axis in the interval
¢3b, %b) and along the line x #; z & O from y # -3b to
y # #b¢ These forcew act in the neutrsl plane and give the
plate a tendency to buckle,

In thle paper, an exprescslon for the dlsplacement,

z = w(x,y), of the neutral plane from its original position
is ohtained as & solutlion of the usual linecarized partial
differential equatlon applicable to|plate theory. However,
this problem differs from other plate probleme In that 1t 1le
aggumed that there are two intermediate supports located on
the sdges of the plate pargllesl to the comprasgiva forces

(hence parallel to the x-axlsg). Speecifically, they are



Fxg.\, The unadeformed plate



s

located in the neutral plans at the points (x =&, y = Ib)
and {z =%, y ®» «3b). Thie glves an additilonal condition
(namely, that w 2 O at (%, #h) and (&, =¥))e From this cone
dition we ohtaln the eritiecal value of the compressive forces
whiph cauge the plate to fail,

The solution of this sroblewm lg basged on the following

it

agsumptione:

Aqe The material lg ilgotroplie, lev., the materisl has the
gane elagtic properties in all directiocons.

Age The thickness {(h) df the plate lg small conmpared with
the length (@) and the breadth (b

Age 'The 1in&afizad {small deflection) theory of the theopy
of elasticity holdg.
In order to facillitets the mathematical formalation of

the problem, we ltemize the following notation:l

o Tength of the plate in the x-directions

he Breadth of the plate lu the y-direction,

ht Thicknege of the plate.

w: Digplacement of a particle in the z-directlion dus to sn

external foree, a Tanctlon of x and v only.

[y
(23

Modulus of elastlclity in tencion end coapreszion, s cone
stant for each material,
?: Poleson's ratle, the ratio of lateral ocntraction,

D*  Eh® . Flexural rigldity of the plate.
12(1 -7%)

1g, Tigoghenko, heorv of Plates and Shells, p. xi.




Cx, Oy: Normal componsnts of stress parallel x-, y-directlons.
Tyy? Typ» tyz‘ Shearing streesz componsuta.

2 )""w 3120
Hy ® [ € xzdz = -0 Ix> +2 J3¢*):  3Bending moment per unit

2.

leanpgth of secticn of plate perpendicular to x~-direction.

Y dw
My = ¢ yzdz = ~D(%@"*'9 oX¥: Deundling moment per unit

! “h
lenpgth of sectlion of plate perpendicular to y-direction.
h
2 2,
- . - g 1) )U o 5 ) . ER
Hyy = = T yyzdz & D(1 -2 )dxdg = =lyy: Twleting moment per
“h
e 8

ﬂﬂit length of sectlon of a plate perpendleular to x-axiaz,.

A
y = .I T ,gdz: Shearing force parallel to z-sxls per unit

-]

length of gection of a plate perpendlcular to x-axie.

h
2
Qy = ‘[ T yz0z} Shearlng force parallel to z-axis per unit

=

9

ot
™

sth of gectlon of a plate perpendicular to y-axisz.
Hys EV: Hermal forces per unit length of sectliong of a
plate perpendicular to x- and y-olrections, respectively.

ny: Shearing force in dirsction of y-azls per unit leagth

LA

of section of a plate perpendicular to x-axig.



2e TFORHULATION OF THE PROBLEM

The well-known, linearized diffserential equation® for

the deflection of the neutral plane ieg

ddw J 4w d%w N )%
oxd © “d32)y2 N oy " "p Ox2° (1)

The egustion (1) is applicable to sll plate probleans in which
there are forces In the middle (nsutrel) plane.

The boundary condltiong agsoelnted with the ahove dif-
ferential scuation for thile particular problewm may he foraue
lated ag follows:

ls Along the edpeg x ® 0 and ¥ #d:  Slnace all applied

Torcee sre normal to these edges, no displaceuent ls produced .
here, Thus, w # Q. Horeover, the curvaturs ia the y=direction,

%E%, lg aleo zeros. We algo note that aloung these edpes
y

14 p
Mg = _D(b% +2 a“““") = O, so that

ﬁ?ﬁ%?%”‘ja (

fav]
T

2+ Along the edges y =X 3b: Here wo have M, = 0f cone

m
L]
o]
E ]
jae)
=
¥
—
2t
¥

d 2w % _
§§§‘+£>5;§ 2 0. (&)

Suproze now that the adges y »t b are free along the

entire lengthe If this wers the case,® then

2Ihide, pe 514 S3Thide, pe 92,

£



. d%w ) d Sw
3 - s o =
iy X——yg + (2 )r‘g‘—x? D,

where V denotesz a vertlical force along the free edge. Howw
ever, at the polnts (¥, t3b) of the edpges y =X b, 1t isg
evident that there exliet wertical forces in the plate, eay
V(%¥, tib) =tk, We put V ® O except in a very short interval

(% -€,E+¢) in which V increases in such 8 way thaté
E+e

lim J Vix)dx = k&,

€ >0 E"

a finite cuantity.

In accordance with acceptsd notation, we write
a.

V = 8(x-¥)k, Sx(x- Pdx = 1, - {4)
Hence we have ’
3 3
3% +(2-03Eys =alla-on (5)

%2, At the points z =§, y = +}u: At these polats the

plate fg rigidly attached. Thue

w(E, £t3b) = O, (%)
Reempltulating, our boundary conditlong are:

b d 7 o b 2 ol é"‘

¥ 2 D, x ®ay w = %;% = 0, {2}

02y 4w .

' at:!?b: +’) m 0 (:’)
3 i
Z'iw }uw

o +(2-2)333e - 518 (x=8)k, (5)

x 2%, y =4 b w = D, (5)




2. SCLUTION OF THE PROBLEY

Following the usual procedure, we sssume the golution
of {1) in saries fTorm:®
w = Zlain aps foly), a, = %%% {7a)
whare f,(y) reprezente a gset of functione to be determined.

It ig apparent that such a functlon

L]

atigfies houndary con-
ditions {(2)e To determine fuly) substltute (7) in (1). This
gives

\ 1 i
Yadatn CY fn(y)—QZégasla an¥ faly)+)etn agx £oly) )
(3a

m%Zafsin 8,7 fn(y) = 0,
or
ZSin 8p% §f§y) - 28,7 f:(y) +(aﬂ4~%an2 )fn(y)} = 0. (9L}
Since (3b) muet be identicelly satisfled for all x, we
may write

s 1 77
Paly) = 202 £0(7) + (o= TaBr (y) = 0, (9)

a fourth order ordinary differentlal equation for f£,(y).
The auxiliary aeguation, readily ohtalned froum (9), ls
2 ol 4 W, 2
Ré . ﬁan R +(an had Ean ) = (3' (10)

The solutions of (10) are

, (11)
. 2N 2 -
Rzz -Yaﬂlv a, = w&n,

]

Sthroughout thle paper, 2; ghall be taken to wmean i; .

7



(5

Rﬁ s
(11)
34 =
Consequently, the gensral solutlon of {9) is
£ (y) = PgeT +0pam*Y + s el 4 mpemifhy, (12)

where Fuy Gns Sps Ty are cenatantes of integration, Thus we
nave

w2 Y atn ax ] Paetny 4 eV 435,010 wrpemByfl (70

@rom the boundapy conditioneg (3) we have, for y = b and

05X S,

hm PR%@ b 4 0qe*tn30)-p2(s, ol B30 4 ¢ o= 1A 30

L - g L . .
..;)a%(?gne*mzh.\. Qpe - An b +$nai ﬁﬂf’ah 1-’_{‘“6 i("‘;'b)l gin QpXe

Sinee thie relation muet hold for all x in the interval {0,4},

i1t 1o clear that
(¢?_»32)(p e*n b ¢ e”d“%b)u(ﬁ§+ﬂa§)(Snaiﬁ“%b—rTne“iﬁn%h) 2 0,
gimilarly, evaluating (3) at y ® -%b, leads to
@ B-7a2) (0o 0 + o~ 40 ) (B2 +9af) (Tl PP r5qe7 B E0)z0,
Adding the last two sguations yields
(42=982) (P, +0p) (0™ U0 4 gndD)

(B2 4702y (1, 5,) (1D 4 ot By 2 o

Phie relation 1s certainly satlsfled if we choose
Qp ® =Pp and Tp ® =3p,

in which case we have



faly) = Puledny = =Y} a4 Sn(aiﬁhy - e~1fy),
tting 2P, ® A, and 25, ¥ B,, we have
foly) ® Apsinhel,y + aninﬁny‘ (13)
We may now write the solution of (1) in the wmore expli=-
nit form
] =Z}in ap¥{Apsinhd 1y + >n~in(53y). (7¢)
It only rewmalns to determlne the coefflclients A, and B, from

~n
the houndary conditions (3) and (5). From (3}, we have

o 2 , .
%’%n)% = )eln anx{zzndne elnhdpdb = B0 2eln Pn%b§

ﬂiaéiéin anx{Ansinﬁdn%h + anln[SH%b%= 0,
orp
Yetn apx (Aﬂokr? einh 4p3b - Bpfrf 2infydb)
dan%naznban 1y + Buetn Ppip)} = 0. (14a)
Since (l4a) nust be ldentically satisfled for all x, we may

write

Ape @-daDelnhd,lb - By(pPedadeinPylo = 00 (14p)

H

From (5), we have

o
La
]

3
1—(2-"1))’5%%5 z ) sin aps {Anvkna coshdyih = Bnﬁns cogf kb

%ﬂ

"an(E“I))(OLnAHCO"“ ld b 1) BrpnGOE Fnb)} & S(X"'E)k.

Let usz denote now the coefficient of sin apx in the
above equstion by Cpxe Then we may write

YCpein apx = 3(x-%)k, (15)



10

Recsll now that
<

Isin ﬂgﬁ gin @gﬁﬁx = gif m=n, = O01if m ¥ n,
o

angd further that
a,

yX(x~§)ain EE% dx ® 2in Eﬂ%ﬁ
[ ]

Then, maltiplying (18) by zin ﬁ%ﬁ and iantegrating, we

obtalin
a

Jsin 8% ZGnsin apx dx = $aC; = k ein apfe
(]

Congeguently, (15) may be writien
chsin a ¥ ® %‘EZ@M aﬁfsin 8pFs

iloreover, the coefficlents Cp may be gimplified ag follows:
A S coshdy bbb, PRcos Ppib-ag(2d) (K a coshdydb + By Preosfydb)
= An&mﬂiguﬁag-¥9hg)cosh¢n%b-3npn(ﬁ§ +2a§ ~)a§)cos(%n%b
= Andn(aﬁ?ﬂ/%ag - 2&{{3 1—')&,?)@03%1& “%gbv
- Bn‘%n(nang-i— %ﬂﬂg 4+ gﬁnen j)aﬂg)eaﬁ/sﬂ%b

= g [<3% 1* e ™ 3
= Andn(ranz -n)an?)cm..bet =0 Bnﬁn(o(nﬁ Jan%cos {5 n%;rb.

Congeguently, bBoundary condition (5) becomes

Yeln apx iAneLn((ing +7adcoshdy 3b - ian(’n(*nz -?a ) cosfy %bf

= 2K zgin a,¥ gin aHE. (16a)
i
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Since (16a) must hold for all x,
dn({S ng +1)an3)cosh * nlb
- Bnpn(d -r)a r»oePnlb = f in anfa {16b)

Por each n, (14b) sncd (Léb) constitute a set of two
linear equatlons for two unknownse The zolution of each
palr is

gahgma nz,{ (ﬁn +7)a2)<zin(5n b
(’n(‘* ~7a )" sinhd o 50 cosfl bﬂd(@ni»z)a"')icoshd toein 3,50 )

(17)

and

B ~--einan§

(dﬂz - )an%sinhdn%’h %
B q(§=Pa ) 2e 1nhkyEb coa(fyhbmocty (f § +aF)RBooahd 3o sin frdb

Subetituting these values for A, and B, In (7¢) we next

gseek a condltion which gatisfles w( ¥, %b) = O, that is,
(13)

: ' 2
%Eingan“ (BE+ad)zinhydb elnfpdb=(df-Paf)einndydb sinfipdo o
a .
(ﬁn(dgkﬁag)geinhdn%bcoq%%h-dn(ﬁ§+ a &) Ecoshd, b ainf b

Sinced,>0, f, >0, b >0, it follows that sinhdy}b £ 0 and

coshdgib ¥ 0. Therefore, (13) ls satisfied only if

einfpib = 0,
or
frde = al (19)
where m 12 an inteper. Our exprescion for the displacenent
curve now bhacomes

w s 2€ Zsin apx zin a ?sirzmn—ﬂ{ ! (20)

1
Fn(o(rr' n) l.




4. CONCLUSIONS

We now change the form of (1¢) by making use of zome

algebralc manipulstions, as followss
ﬁ - 2MmIC
n” "p °?

2= 4ne T e
T 52“'9

.2 = 4m2TC
ffod = SE= 0 al,

a'b

2 ‘
e
nb2

N _ 24m2¢  n 2
== (s ¢ _
ol @)
2
Wb 2 )
T TR ¢ )R (21)

Tt 1 now reguired to find the minimum or critical value

of {21)s Tn general, thls minimum value iz obtained by taklng
m® 1, Then

W2 . o, a , nby2

Now let :
K= a nby2e

A plot of W againest a/b iz shown in Flgure 2. It should

pe noted that K 1g egual to 16 for a esguare plate ag well asz

12
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for any plate whlch can be subdivided into an integral nume
ber of squares with sgide %b. It cen also be seen that for
long plates w remains practleslly constant at the value of

16
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