RESPONSE OF ALUMINUM SPHERES IN SITU TO DETONATION

PDF Version Also Available for Download.

Description

Time sequence x-ray imaging was utilized to determine the response of aluminum spheres embedded in a detonating high-explosive cylinder. The size of these spheres ranged from 3/8-inch to 1/32-inch in diameter. These experiments directly observed the response of the spheres as a function of time after interaction with the detonation wave. As the spheres are entrained in the post-detonation flow field, they are accelerating and their velocity profile is complicated, but can be determined from the radiography. Using the aluminum spheres as tracers, radial velocities of order 1.6 mm/us and horizontal velocities of order 0.08 mm/us were measured at early ... continued below

Physical Description

PDF-file: 12 pages; size: 54.6 Mbytes

Creation Information

Molitoris, J D; Garza, R G; Tringe, J W; Batteux, J D; Wong, B M; Villafana, R J et al. March 26, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Time sequence x-ray imaging was utilized to determine the response of aluminum spheres embedded in a detonating high-explosive cylinder. The size of these spheres ranged from 3/8-inch to 1/32-inch in diameter. These experiments directly observed the response of the spheres as a function of time after interaction with the detonation wave. As the spheres are entrained in the post-detonation flow field, they are accelerating and their velocity profile is complicated, but can be determined from the radiography. Using the aluminum spheres as tracers, radial velocities of order 1.6 mm/us and horizontal velocities of order 0.08 mm/us were measured at early times post detonation. In terms of response, these data show that the largest sphere deforms and fractures post detonation. The intermediate size spheres suffer negligible deformation, but appear to ablate post detonation. Post detonation, the smallest spheres either react, mechanically disintegrate, atomize as a liquid or some combination of these.

Physical Description

PDF-file: 12 pages; size: 54.6 Mbytes

Source

  • Presented at: 14th International Detonation Symposium, Coeur d'Alene , ID, United States, Apr 11 - Apr 16, 2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LLNL-CONF-427579
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 1015403
  • Archival Resource Key: ark:/67531/metadc834628

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 26, 2010

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Dec. 1, 2016, 4:31 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Molitoris, J D; Garza, R G; Tringe, J W; Batteux, J D; Wong, B M; Villafana, R J et al. RESPONSE OF ALUMINUM SPHERES IN SITU TO DETONATION, article, March 26, 2010; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc834628/: accessed December 9, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.