Exhaust-gas measurements from NASA<U+2019>s HYMETS arc jet.

PDF Version Also Available for Download.

Description

Arc-jet wind tunnels produce conditions simulating high-altitude hypersonic flight such as occurs upon entry of space craft into planetary atmospheres. They have traditionally been used to study flight in Earth's atmosphere, which consists mostly of nitrogen and oxygen. NASA is presently using arc jets to study entry into Mars' atmosphere, which consists of carbon dioxide and nitrogen. In both cases, a wide variety of chemical reactions take place among the gas constituents and with test articles placed in the flow. In support of those studies, we made measurements using a residual gas analyzer (RGA) that sampled the exhaust stream of ... continued below

Physical Description

26 p.

Creation Information

Miller, Paul Albert November 1, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Arc-jet wind tunnels produce conditions simulating high-altitude hypersonic flight such as occurs upon entry of space craft into planetary atmospheres. They have traditionally been used to study flight in Earth's atmosphere, which consists mostly of nitrogen and oxygen. NASA is presently using arc jets to study entry into Mars' atmosphere, which consists of carbon dioxide and nitrogen. In both cases, a wide variety of chemical reactions take place among the gas constituents and with test articles placed in the flow. In support of those studies, we made measurements using a residual gas analyzer (RGA) that sampled the exhaust stream of a NASA arc jet. The experiments were conducted at the HYMETS arc jet (Hypersonic Materials Environmental Test System) located at the NASA Langley Research Center, Hampton, VA. This report describes our RGA measurements, which are intended to be used for model validation in combination with similar measurements on other systems.

Physical Description

26 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2010-7747
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/1002096 | External Link
  • Office of Scientific & Technical Information Report Number: 1002096
  • Archival Resource Key: ark:/67531/metadc834614

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 2010

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Dec. 5, 2016, 3:29 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 13

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Miller, Paul Albert. Exhaust-gas measurements from NASA<U+2019>s HYMETS arc jet., report, November 1, 2010; United States. (digital.library.unt.edu/ark:/67531/metadc834614/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.