Analysis of the Younger Dryas Impact Layer

PDF Version Also Available for Download.

Description

We have uncovered a thin layer of magnetic grains and microspherules, carbon spherules, and glass-like carbon at nine sites across North America, a site in Belgium, and throughout the rims of 16 Carolina Bays. It is consistent with the ejecta layer from an impact event and has been dated to 12.9 ka BP coinciding with the onset of Younger Dryas (YD) cooling and widespread megafaunal extinctions in North America. At many locations the impact layer is directly below a black mat marking the sudden disappearance of the megafauna and Clovis people. The distribution pattern of the Younger Dryas boundary (YDB) ... continued below

Physical Description

33

Creation Information

Firestone, Richard B.; West, Allen; Revay, Zsolt; Hagstrum, Jonathon T,; Belgya, Thomas; Hee, Shane S. Que et al. February 27, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 53 times , with 13 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We have uncovered a thin layer of magnetic grains and microspherules, carbon spherules, and glass-like carbon at nine sites across North America, a site in Belgium, and throughout the rims of 16 Carolina Bays. It is consistent with the ejecta layer from an impact event and has been dated to 12.9 ka BP coinciding with the onset of Younger Dryas (YD) cooling and widespread megafaunal extinctions in North America. At many locations the impact layer is directly below a black mat marking the sudden disappearance of the megafauna and Clovis people. The distribution pattern of the Younger Dryas boundary (YDB) ejecta layer is consistent with an impact near the Great Lakes that deposited terrestrial-like ejecta near the impact site and unusual, titanium-rich projectile-like ejecta further away. High water content associated with the ejecta, up to 28 at. percent hydrogen (H), suggests the impact occurred over the Laurentide Ice Sheet. YDB microspherules and magnetic grains are highly enriched in TiO{sub 2}. Magnetic grains from several sites are enriched in iridium (Ir), up to 117 ppb. The TiO{sub 2}/FeO, K/Th, TiO{sub 2}/Zr, Al{sub 2}O{sub 3}/FeO+MgO, CaO/Al{sub 2}O{sub 3}, REE/ chondrite, FeO/MnO ratios and SiO{sub 2}, Na{sub 2}O, K{sub 2}O, Cr{sub 2}O{sub 3}, Ni, Co, U, Th and other trace element abundances are inconsistent with all terrestrial and extraterrestrial (ET) sources except for KREEP, a lunar igneous rock rich in potassium (K), rare-earth elements (REE), phosphorus (P), and other incompatible elements including U and Th. Normal Fe, Ti, and {sup 238}U/{sup 235}U isotopic abundances were found in the magnetic grains, but {sup 234}U was enriched over equilibrium values by 50 percent in Murray Springs and by 130 percent in Belgium. 40K abundance is enriched by up to 100 percent in YDB sediments and Clovis chert artifacts. Highly vesicular carbon spherules containing nanodiamonds, glass-like carbon, charcoal and soot found in large quantities in the YDB layer are consistent with an impact followed by intense burning. Four holes in the Great Lakes, some deeper than Death Valley, are proposed as possible craters produced by the airburst breakup of a loosely aggregated projectile.

Physical Description

33

Source

  • Journal Name: Journal of Siberian Federal University. Engineering &Technologies; Journal Volume: 1; Journal Issue: 3; Related Information: Journal Publication Date: February, 2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-4680E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 1023385
  • Archival Resource Key: ark:/67531/metadc834541

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 27, 2010

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • June 15, 2016, 6:43 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 13
Total Uses: 53

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Firestone, Richard B.; West, Allen; Revay, Zsolt; Hagstrum, Jonathon T,; Belgya, Thomas; Hee, Shane S. Que et al. Analysis of the Younger Dryas Impact Layer, article, February 27, 2010; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc834541/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.