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The Courant-Snyder (CS) theory and the Kapchinskij-Vladimirskij (KV) distribution for

high-intensity beams in a uncoupled focusing lattice are generalized to the case of coupled

transverse dynamics. The envelope function is generalized to an envelope matrix, and the

envelope equation becomes a matrix envelope equation with matrix operations that are

non-commutative. In an uncoupled lattice, the KV distribution function, first analyzed

in 1959, is the only known exact solution of the nonlinear Vlasov-Maxwell equations for

high-intensity beams including self-fields in a self-consistent manner. The KV solution is

generalized to high-intensity beams in a coupled transverse lattice using the generalized

CS invariant. This solution projects to a rotating, pulsating elliptical beam in transverse

configuration space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell

equations to a nonlinear matrix ordinary differential equation for the envelope matrix, which

determines the geometry of the pulsating and rotating beam ellipse. These results provide us

with a new theoretical tool to investigate the dynamics of high-intensity beams in a coupled

transverse lattice. A strongly coupled lattice, a so-called N-rolling lattice, is studied as an

example. It is found that strong coupling does not deteriorate the beam quality. Instead,

the coupling induces beam rotation, and reduces beam pulsation.

I. INTRODUCTION

Modern high-intensity beams have many important applications including high energy

density physics, ion-beam-driven fusion, accelerator-driven subcritical systems, high-flux

neutron sources, and light sources. Because it is critical to increase beam intensities as much

as possible for these applications, it is becoming increasingly important to understand the

self-field effects of high-intensity beams including both self-electric and self-magnetic fields

in a fully self-consistent manner, from the nonlinear Vlasov-Maxwell equations [1]. In an

uncoupled lattice, the Kapchinskij-Vladimirskij (KV) distribution function analyzed in 1959

[2] is the only known exact self-consistent solution of the nonlinear Vlasov-Maxwell equations

for high-intensity beams, and it provides us with the basic theoretical understanding of

high-intensity beam dynamics in an uncoupled lattice. In practical accelerators and beam

transport systems, the transverse coupling between the horizontal and vertical directions,

induced by error fields and misalignment, is always a significant effect [3–8]. Strong coupling

of the transverse dynamics is introduced intentionally in certain type of cooling channels and
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in the final focusing system for high energy density physics experiment [9], as well as in the

conceptual design of the Möbius accelerator [10]. A beam transport system with strong

coupling was implemented in the Spiral Line Induction Accelerator (SLIA) [11–17], which

reached up to 10kA electron current at 5MeV beam energy. The success of the proof of

concept experiment at SLIA demonstrated the potential advantages of using a strongly

coupled lattice for transporting high-intensity beams.

In this paper, we present a theoretical framework to study high intensity beam dynamics

in a coupled lattice using the Vlasov-Maxwell equations. We generalize the classical KV

solution and the associated nonlinear envelope equations for high intensity beams to the

case of a coupled lattice [18]. To construct the generalized KV solution for high intensity

beams in a coupled lattice, we need to first generalize the Courant-Snyder (CS) theory

for a single charged particle to the case of a couple lattice [19–21]. In particular, it is

necessary to find a generalized CS invariant. It turns out that the original CS theory for one

degree of freedom can be elegantly generalized to arbitrary degree of freedom using a time-

dependent symplectic transformation technique. The generalized CS theory gives a complete

description of the coupled transverse dynamics, and has the same structure as the original

CS theory for one degree of freedom. The four basic components of the original CS theory

that have physical importance, i.e., the envelope equation, phase advance, transfer matrix,

and the CS invariant, all have their counterparts, with remarkably similar expressions, in

the generalized CS theory developed here. The unique feature of the generalized CS theory

presented here is the non-Abelian (non-commutative) nature of the theory. In the generalized

theory, the envelope function is generalized to an envelope matrix, and the envelope equation

becomes a matrix envelope equation with matrix operations that are not commutative. The

generalized theory gives a parametrization of the 4D symplectic transfer matrix [Eq. (56)]

that has the same structure as the parametrization of the 2D symplectic transfer matrix

[Eq. (21)] in the original CS theory.

Using the generalized CS invariant, we can generalize the KV solution to the case of

a coupled lattice. In the coupled case, the generalized KV distribution that solves the

nonlinear Vlasov-Maxwell system projects to a rotating, pulsating beam with elliptical cross-

section in transverse configuration space with constant density inside the beam. Both the

major and minor radii and the tilting angle of the elliptical cross-section are functions

of the time [see Fig. 3(b)], in contrast with the pulsating upright elliptical beam cross-
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section for the uncoupled case [see Fig. 3(a)]. We apply the theoretical results to the case

of a strongly coupled lattice called the N-rolling lattice, which consists of N equally-spaced

quadrupole magnets, each of which rotates by an angle of π/N relative to its predecessor. It

is found that strong coupling does not deteriorate the beam quality. Instead, the coupling

induces beam rotation, and reduces the beam pulsation. The oscillation amplitude of the

transverse dimensions decreases for increasing number of magnets, and the beam cross-

section is asymptotic to a rigid rotor profile as the number of magnet increases.

The paper is organized as follows. In Sec.II, the Vlasov-Maxwell system of equations

for high-intensity beams in a coupled focusing lattice is presented, and in Sec. III we review

the classical CS theory and KV solution for high-intensity beams in uncoupled lattices.

Then the CS theory is generalized to coupled lattices in Sec. IV using a time-dependent

canonical transformation technique. The generalized KV solution and examples of the N-

rolling lattices are given in Sec.V.

II. VLASOV-MAXWELL SYSTEM FOR HIGH-INTENSITY BEAM IN COUPLED

FOCUSING LATTICE

In a coupled transverse focusing lattice, the Vlasov-Maxwell equations that govern the

evolution of the distribution function f of a high-intensity beam and the corresponding

normalized space-charge potential ψ are

∂f

∂s
+ v · ∂f

∂x
− (∇ψ + κxx + κvv) · ∂f

∂v
= 0 , (1)

∇2ψ =
−2πKb

Nb

ˆ
fdvxdvy . (2)

Here, particle motion in the beam frame is assumed to be non-relativistic, ψ is the space-

charge potential normalized by γ3bmβ
2
b c

2/qb, βbc is the directed beam velocity in the lon-

gitudinal direction, γb = (1− β2
b )
−1/2 is the relativistic mass factor, s = βbct is the

time variable normalized by 1/βbc, Kb = 2Nbq
2
b/γ

3
bmβ

2
b c

2 is the beam self-field perveance,

Nb =
´
fdxdydvxdvy is the line density, x=(x, y)T represents the transverse displacement

of a beam particle, and v = dx/ds = (vx, vy)
T is the normalized transverse velocity. The

corresponding normalization factor for the velocity is βbc. In Eq. (1), the term κxx is the

linear focusing force proportional to the transverse displacement from the beam axis, and

κvv is that proportional to the transverse velocity. In a coupled lattice with quadrupole,
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skew-quadrupole, and solenoidal fields,

κx = κq + κs, κq =

 κqx κqxy

κqyx κqy

 , (3)

κs =

 0 Ω′

−Ω′ 0

 , κv =

 0 2Ω

−2Ω 0

 , (4)

where the matrix κq describes the focusing fields due to the quadrupole and skew-quadrupole

magnets, and κs and κv describe the focusing field due to the solenoidal lattice. First, let’s

consider κq, whose components can be expressed as

κqx = −κqy = κq0 (s) cos 2τ (s) , (5)

κqxy = κqyx = κq0 (s) sin 2τ (s) . (6)

Here, τ(s) is the rotation angle of the quadrupole magnet and κq0 (s) is the magnetic field

gradient on axis normalized by γbmβbc2/q. In a standard FODO lattice,

τ (s) =


0, −η

4
<
s

S
<
η

4
,

π

2
, −η

4
<
s

S
− 1

2
<
η

4
,

π, −η
4
<
s

S
− 1 <

η

4
,

(7)

κq0 (s) =


qB′q

γbmβbc2
,

s

S
∈ ∪2i=0

[
i

2
− η

4
,
i

2
+
η

4

]
,

0, otherwise ,
(8)

where η is the filling factor of the FODO lattice, S is the lattice period, and B′q is the field

gradient on axis for the quadrupole magnets. Equation (7) gives κqxy = κqyx = 0, implying

that there is no coupling between x and y due to the quadrupole magnets. If a misalignment

of a FODO quadrupole magnet occurs, τ (s) will be different from its design value of π or

π/2, resulting in a non-vanishing κqxy = κqyx. It is not difficult to design a quadrupole lattice

which strongly couples the x and y dynamics. For example, we can choose the following

N-rolling quadrupole lattice which consists of N equally spaced quadrupole magnets (see

Fig. 1). Each magnet rotates by an angle of δ = π/N relative to its predecessor, and the
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filing factor for each magnet is η/N,

τ (s) =



0, − η

2N
<
s

S
<

η

2N
,

π

N
− η

2N
<
s

S
− 1

N
<

η

2N
,

2π

N
− η

2N
<
s

S
− 2

N
<

η

2N
,

...

π, − η

2N
<
s

S
− 1 <

η

2N
,

(9)

κq0 (s) =


qB′q

γbmβbc2
,

s

S
∈ ∪Ni=0

[
i

N
− η

2N
,
i

N
+

η

2N

]
,

0, otherwise .
(10)

This example will be studied in Sec.V. The standard FODO lattice is a special case of the

N-rolling lattice with N = 2.

The solenoidal field in Eq. (4) is expressed in terms of the normalized Larmor frequency

Ω (s) = qBz (s) /2γbβbmc
2. When the solenoidal component exists, the (x,v) coordinates in

Eqs. (1) and (2) are not canonical coordinates, i.e., their dynamics cannot be cast into the

canonical Hamiltonina form. To determine the dynamics of a single particle, or the charac-

teristics of the Vlasov equation (1), it is advantageous to use a canonical Hamiltonina form

for the dynamical equations. This can be achieved by introducing the canonical momentum

defined as

px = vx − Ωy , (11)

py = vy + Ωx . (12)

The corresponding Hamiltonian is

Hc = z†Acz + ψ , z = (x, y, px, py)
† , (13)

Ac =

 κ R

R†
I

2

 , κ =

 Ω2

2
+
κqx
2

κqxy

κqyx
Ω2

2
+
κqy
2

 , R =

 0 −Ω

2
Ω

2
0

 . (14)

The Vlasov-Maxwell equations in the canonical coordinates (x,p) are

∂f

∂t
+
∂H

∂p
· ∂f
∂x
− ∂H

∂x
· ∂f
∂p

= 0, (15)

∇2ψ =
−2πKb

Nb

ˆ
fdpxdpy . (16)
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Figure 1: An N-rolling lattice consists of N equally spaced quadrupole magnets. Each magnet

rotates by an angle of δ = π/N relative to its predecessor. The standard FODO lattice is a special

case of the N-rolling lattice with N = 2.

The momentum dependent part of the focusing force, i.e., the term proportional to R, can

be transformed away if we transform to the local Larmor frame [1, 19]. For simplicity of

presentation, we will assume that there is no solenoidal field, and consider here only the

coupling due to skew-quadrupole magnets given by Eq. (3) in this paper.

The −∇ψ term in Eq. (1) describes the self-field force, and is nonlinearly coupled to f

through Eq. (2). Equations (1) and (2) form a set of nonlinear integro-differential equations,

whose analytical solutions are difficult to find in general.
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III. COURANT-SNYDER THEORY AND KAPCHINSKIJ-VLADIMIRSKIJ DIS-

TRIBUTION FOR HIGH-INTENSITY BEAM IN UNCOUPLED FOCUSING LAT-

TICE

For the case of an uncoupled lattice, i.e., κqxy = κqyx = 0, Eqs. (1) and (2) admit

a remarkable exact solution known as the Kapchinskij-Vladimirskij (KV) distribution [2],

which has played a crucial role in high-intensity beam physics [22–25]. The KV distribution

function is constructed as a function of the Courant-Snyder (CS) invariants of the transverse

dynamics [26]. Therefore, we first review the CS theory for a uncoupled lattice.

The transverse dynamics of a charged particle in a linear focusing lattice κξ(s) is described

by an oscillator equation with time-dependent frequency

ξ̈ + κξ(s)ξ = 0 , (17)

where ξ represents one of the transverse coordinates, either x or y, and ξ̈ represents d2ξ/dt2.

For a quadrupole lattice, κx (s) = −κy (s) . The Courant-Snyder (CS) theory [26] gives

a complete description of the solution to Eq. (17), and serves as the fundamental theory

that underlies the design of modern accelerators and storage rings. There are four main

components of the CS theory: the envelope equation, the phase advance, the transfer matrix,

and the CS invariant. The Courant-Snyder theory can be summarized as follows. Because

Eq. (17) is linear, its solution can be expressed as a time-dependent linear map from the

initial conditions, i.e., (ξ, ξ̇)† = M (s) (ξ0, ξ̇0)
†, where

M (s) =


√
β

β0
[cosφ+ α0 sinφ]

√
ββ0 sinφ

−1 + αα0√
ββ0

sinφ+
α0 − α√
ββ0

cosφ

√
β0
β

[cosφ− α sinφ]

 (18)

with ξ0 = ξ (s = 0) , ξ̇0 = ξ̇ (s = 0) , β0 = β (s = 0) , and α0 = α (s = 0) . The superscript

“†” denotes the transpose operation. The time-dependent functions α (s) , β (s) , and φ (s)

in the transfer matrix M (s) are directly related to the envelope function w (s) by

β (s) = w2 (s) , α (s) = −wẇ , φ (s) =

ˆ s

0

ds

β (s)
. (19)

The envelope function w (s) satisfies the nonlinear envelope equation

ẅ + κξ (s)w = w−3 . (20)
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The physical meanings of β−1 and φ correspond to the phase advance rate and the phase

advance, respectively. The transfer matrixM (s) is symplectic and has the following decom-

position [27]

M (s) =

 w 0

ẇ
1

w

 cosφ sinφ

− sinφ cosφ

 w−10 0

−ẇ0 w0

 . (21)

The well-known CS invariant [26, 28] is

I =
ξ2

w2
+
(
wξ̇ − ẇξ

)2
. (22)

We emphasize that the CS theory provides an important mathematical scheme to

parametrize the symplectic transfer matrix. The parameters of envelope, phase advance,

and CS invariant furnished by the CS theory are of vital importance for beam physics.

These parameters describes the physical dimensions and the emittance of the beam, and

set the foundation for many important concepts in beam physics, as is demonstrated in the

construction of the KV distribution function for beams with strong space-charge field.

The oscillation dynamics with time-dependent frequency described by Eq. (17) is generic

physics problem of great importance. It can be viewed as the second simplest physics

problem. The associated envelope equation (20) and the CS invariant (22) are manifestation

of the underpining symmetry of the dynamics [28, 29].

Since the CS invariants are valid for linear, uncoupled transverse force components, the

KV distribution must self-consistently generates a linear, uncoupled space-charge force. The

KV distribution indeed satisfies this requirement. It is given by [1, 2]

fKV =
Nb

π2εxεy
δ

(
Ix
εx

+
Iy
εy
− 1

)
, (23)

Ix =
x2

w2
x

+ (wxvx − xẇx)2 , Iy =
y2

w2
y

+ (wyvy − yẇy)2 . (24)

Here, Ix and Iy are the CS invariants for the x- and y- motions, respectively, εx and εy are

the constant transverse emittances, and wx and wy are the envelope functions satisfying the

envelope equations,

ẅx + κxwx = w−3x , ẅy + κywy = w−3y , (25)

κx = κqx −
2Kb

a (a+ b)
, κy = κqy −

2Kb

b (a+ b)
, (26)

a ≡
√
εxwx , b ≡

√
εywy . (27)
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The density profile in the transverse configuration space projected by the distribution func-

tion fKV in Eq. (23) is given by

n (x, y, s) =

ˆ
dvxdvyfKV =


Nb

πab
= const., 0 ≤ x2

a2
+
y2

b2
< 1,

0, 1 <
x2

a2
+
y2

b2
,

(28)

which corresponds to a constant-density beam with elliptical cross-section and pulsating

transverse dimensions a and b [see Fig. 3(a)]. The associated space-charge potential inside

the beam, determined from Eq. (2), is given by

ψ =
−Kb

a+ b

(
x2

a
+
y2

b

)
, 0 ≤ x2

a2
+
y2

b2
< 1. (29)

The KV distribution (23) reduces the original nonlinear Vlasov-Maxwell equations (1) and

(2) to the two envelope equations in Eq. (25) for wx and wy, or equivalently, for a =
√
εxwx

and b =
√
εywy [Eq. (27)]. As the only known solution of the nonlinear Vlasov-Maxwell

equations (1) and (2), the KV distribution and the associated envelope equations provide

very important elementary theoretical tools for our understanding of high-intensity beam

dynamics [22–25]. The KV distribution in Eq. (23) is constructed from the exact dynamical

invariants Ix and Iy in Eq. (24), and constitutes an exact solution of the Vlasov equation

(1), which also generates the uncoupled linear space-charge force assumed a priori.

In Sec. IV, we will first generalize the CS theory to the case of a coupled lattice, and then

in Sec.V the KV solution will be generalized to high-intensity beams in a coupled focusing

lattice, using the generalized CS invariant in Sec. IV.

IV. GENERALIZED COURANT-SNYDER THEORY FOR HIGH-INTENSITY

BEAM IN A COUPLED FOCUSING LATTICE

We will generate the CS theory to coupled focusing lattice using a time-dependent canon-

ical transformation technique [30]. Let’s consider a linear, time-dependent Hamiltonian

system with n-degree of freedom given by

H =
1

2
zA (s) zT , (30)

z = (x1, x2, ..., xn, p1, p2, ..., pn) .
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Here, A (s) is a 2n× 2n time-dependent, symmetric matrix, and s is the time variable. The

Hamiltonian in Eq. (13) has this form with n = 2. We introduce a time-dependent linear

canonical transformation [30]

z̄ = S (s) z , (31)

such that in the new coordinate z̄, the transformed Hamiltonian has the form

H̄ =
1

2
z̄Ā (s) z̄T , (32)

where Ā (s) is a targeted symmetric matrix. Because the transformation between z and z̄ is

required to be a canonical transformation, we have

∂z̄j
∂zk

Jkl
∂z̄j
∂zl

= Jij . (33)

Here, J represents the 2n× 2n unit symplectic matrix of order 2n,

J =

 0 I

−I 0

 , (34)

where I is the n× n unit matrix. From Eq. (31), Eq. (33) is equivalent to

SJST = J ,

i.e., the matrix S specifying the coordination transformation between z and z̄ needs to a

symplectic matrix. In addition, the matrix S (t) that renders this canonical transformation

needs to satisfy a differential equation, which can be derived as follows. Hamilton’s equation

for z is

ż = J∇H . (35)

With the quadratic form of the Hamiltonian in Eq. (30), Eq. (35) becomes

żj = Jij
∂H

∂zj
=

1

2
Jij (δljAlmzm + zlAlkδkj)

=
1

2
Jij (Ajm + Amj) zm = JijAjmzm . (36)

In matrix notation without indices, it is expressed as

ż = JAz . (37)
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Since we require that in z̄ the transformed Hamiltonian is given by Eq. (32), the following

equation holds as well,

˙̄z = JĀz̄. (38)

Using Eq. (31), we can rewrite Eq. (38) as

˙̄z = JĀz̄ = JĀSz . (39)

Meanwhile, ˙̄z can be directly calculated from Eq. (31) by taking a time-derivative, which

gives

˙̄z = Ṡz + Sż =
(
Ṡ + SJA

)
z . (40)

Combining Eqs. (39) and (40) gives the differential equation

Ṡ = JĀS − SJA , (41)

which S needs to satisfy if z̄ = S (t) z is a canonical transformation.

The remarkable feature of Eq. (41) is that its solution S is always symplectic (i.e., SJST =

J), if S is symplectic at t = 0. To prove this fact, we follow Leach [30] and consider the

dynamics of the matrix K = SJST ,

K̇ = ṠJST + SJṠT

= 2
[(
JĀS − SJA

)
JST + SJ

(
−SĀJ + AJST

)]
= 2

[
JĀSJST − SJST ĀJ

]
= 2

[
JĀK −KĀJ

]
. (42)

Equation (42) has a fixed point at K = J. If S(s = 0) is symplectic, i.e., K (s = 0) = J,

then K̇ = 0 and K = J for all s, and S is symplectic for all s.

A more physical and geometric proof can be given from the viewpoint of the flow of S (see

Fig. 2). Because A is symmetric, JJĀ−ĀTJJ = 0, which implies that JĀ belongs to the Lie

algebra sp (2n,R) of the Lie group of the symplectic matrix Sp (2n,R) . If S ∈ Sp (2n,R) at a

given t, then JĀS belongs to the tangent space of Sp (2n,R) at S, i.e., JĀS ∈ TSSP (2n,R) .

This is because if we examine the Lie group right action with

S : a 7→ aS (43)

for any a in Sp (2n,R) , and the associated tangent map

TS : TaSp (2n,R)→ TaSSp (2n,R) , (44)

12



( )0S s=

( , )2Sp n R

( , )2
S
T Sp n R

S

Figure 2: The space of the symplectic group Sp (2n,R) and the flow of S on Sp(2n,R). At any

given time, JĀS − SJA is always tangential to Sp(2n,R). Therefore, the flow of S according to

Eq. (41) is always on Sp(2n,R).

it is evident that JĀS is the image of the Lie algebra element JĀ under the tangential map

TS. This means that JĀS is a “vector” tangential to the space of Sp (2n,R) at S, if S is

on Sp (2n,R). The same argument applies to SJA as well. Consequently, the S dynamics

will stay on the space of Sp(2n,R) according to Eq. (41). Since the initial condition for S

is arbitrary, we can always chose the initial condition such that S is symplectic at s = 0,

and guarantee that the time-dependent canonical transformation satisfying Eq. (41) to be

symplectic for all s.

We are now ready to develop the generalized Courant-Snyder theory for coupled trans-

verse dynamics, using this technique of time-dependent canonical transformation. As indi-

cated in Sec. II, for simplicity of presentation, we present here only the results for the case

of the coupled dynamics induced by a skew quadrupole component, i.e., κsq 6= 0, R = 0, and

Ω = 0. A treatment of the coupling due to the solenoidal lattice can be found in Ref. [31].

We also assume the space-charge potential is quadratic in (x, y), i.e.,

−∇ψ = −κsx , κs =

 κsx κsxy

κsyx κsy

 , (45)
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where κsxy = κsyx. The Hamiltonian then takes the form of

Hc = z†Acz , (46)

Ac =

 κ 0

0
I

2

, κ = κq + κs . (47)

Our objective is to solve the coupled system by finding the transfer matrix between the

initial condition z0 = (x0, y0, ẋ0, ẏ0)
† and z = (x, y, ẋ, ẏ)† at time s. We accomplish this goal

by two time-dependent canonical transformations. The first step is to transform Hc into

H̄c = z̄†Ācz̄ , Āc =

 β−1

2
0

0
β−1

2

 , (48)

and the second step is to transform H̄c into ¯̄Hc = 0. Here, β is a time-dependent 2 × 2

matrix yet to be determined. As implied by its notation, the matrix of β is the generalized

β function for the coupled dynamics. The physics that appears in the first step is the

envelope matrix and the non-Abelian matrix envelope equation. The physics that appears

in the second step is the phase advance. Let z̄ = Sz be the transformation that transforms

Hc into H̄c. From Eq. (41), the differential equation for S is

Ṡ = 2
(
JĀcS − SJAc

)
. (49)

The solution to Eq. (49) is

S =

 (w−1)
†

0

−ẇ w

 ,

where w is the 2× 2 envelope matrix satisfying the envelope matrix equation

ẅ + wκ =
(
w−1

)†
w−1

(
w−1

)†
. (50)

The β matrix in Eq. (48) is given by

β−1 =
(
w−1

)†
w−1, (51)

which is remarkably similar to the the phase advance rate β−1 = 1/w2 in the original

Courant-Snyder theory for one degree of freedom [see Eq. (19)]. The inverse transformation

is

z = S−1z̄ , S−1 =

 w† 0

w−1ẇw† w−1

 . (52)
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The matrix S−1 is the non-Abelian generalization for the first matrix in the expression of

the transfer matrixM in the original Courant-Snyder theory, i.e., the first term on the right

hand side of Eq. (21).

The next step is to transform H̄c into ¯̄Hc = 0 with ¯̄Ac = 0 by a transformation specified

by ¯̄z = P z̄. Following the same procedure, the differential equation for P is

Ṗ = Pφ̇ , φ̇ ≡

 0 − (w−1)
†
w−1

(w−1)
†
w−1 0

 , (53)

which admits solution of the form

P =

 P1 P2

−P2 P1

 . (54)

From the fact that P belongs to Sp (4, R) , we can readily show that PP † = I, andDet (P ) =

1. Therefore, P corresponds to a rotation in the 4D phase space, P ∈ SO (4) . In this sense,

P † is the 4D non-Abelian generalization of the 2D rotation matrix in the expression of the

transfer matrix M for the original Courant-Snyder theory, i.e., the second term on the right

hand side of Eq. (21). Because φ̇† = −φ̇, it follows that φ̇ belongs to the Lie algebra so (4)

of the rotation group SO (4) , i.e., φ̇ is an infinitesimal generator of a 4D rotation. In other

words, φ̇ is an “angular velocity” in 4D space, which is equivalent to a phase advance rate in

4D space. The 4D phase advance rate φ̇ is determined from the generalized phase advance

matrix β−1 in Eq. (51).

Because ¯̄Hc = 0, the dynamics of ¯̄z is trivial, i.e., ¯̄z = ¯̄z0, and we have solved the

Hamiltonian system Hc in ¯̄z. From ¯̄z = PSz and ¯̄z = ¯̄z0, we obtain the linear map between

z0 and z, i.e.,

z = S−1P−1 ¯̄z = S−1P−1 ¯̄z0 = S−1P−1P0S0z0 . (55)

Because P ∈ SO(4, R), without loss of generality we select the initial condition P0 =

P (t = 0) = I, to obtain z = Mcz0 ,

Mc = S−1P−1S0 =

 w† 0

w−1ẇw† w−1

 P1 −P2

P2 P1

 w−1†0 0

−ẇ0 w0

 . (56)

The transfer matrix Mc in Eq. (56) is the 4D non-Abelian generalization of the transfer

matrix in Eq. (21) for one degree of freedom. The similarities between Mc and M is evident
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from Eqs. (56) and (21). The generalized Courant-Snyder invariant for 4D coupled dynamics

corresponding to the original Courant-Snyder invariant is

ICS = ¯̄z† ¯̄z = z†S†P †PSz = z†S†Sz (57)

= x†w−1w−1†x +
(
v†w† − x†ẇ†

)
(wv − ẇx) , (58)

where v = ẋ the phase advance has been removed due to the fact that P is a 4D rotation.

In general, for any constant real positive definite matrix ε,

ICSg = z†S†P †εPSz , (59)

is an invariant of the dynamics, and should be called a generalized CS invariant as well.

As pointed out in Ref. [6], for the coupled 4D transverse dynamics, there should be two

(independent) invariants of this kind.

We now show that the generalized CS theory developed for coupled transverse dynamics

recovers the original CS theory for dynamics with one degree of freedom as a special case.

For the uncoupled transverse dynamics given by Hc with κxy = κyx = 0, κ is diagonal, and

the matrix envelope equation Eq. (50) admits solutions with diagonal envelope matrix

w =

 wx 0

0 wy

 .

Consequently, every matrix in Eq. (50) is diagonal, and the matrix operation is Abelian

(commutative). The matrix envelope equation reduces to two de-coupled envelope equations

of the conventional form for wx and wy, i.e.,

ẅx + wxκx = w−3x , (60)

ẅy + wyκy = w−3y . (61)

The 2× 2 matrix of phase advance rate β−1 reduces to a diagonal matrix as well, i.e.,

β−1 =

 w−2x 0

0 w−2y

 .

The components of the phase advance (54) are

P1 =

 cosφx 0

0 cosφy

 ,

P2 =

 sinφx 0

0 sinφy

 ,
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where φ̇x = w−2x and φ̇y = w−2y are the phase advances in the x- and y-directions. The

transfer matrix reduces to

M =


wx 0 0 0

0 wy 0 0

ẇx 0 w−1x 0

0 ẇy 0 w−1y




cosφx 0 − sinφx 0

0 cosφy 0 − sinφy

sinφx 0 cosφx 0

0 sinφy 0 cosφy




w−1x0 0 0 0

0 w−1y0 0 0

−ẇx0 0 wx0 0

0 −ẇy0 0 wy0

 .

(62)

Apparently, the (x, ẋ) dynamics and the (y, ẏ) dynamics are decoupled, and the transfer

matrices for (x, ẋ) and (y, ẏ) extracted from Eq. (62) are identical to that in Eq. (21) for one

degree of freedom.

V. GENERALIZED KAPCHINSKIJ-VLADIMIRSKIJ DISTRIBUTION FOR A

HIGH-INTENSITY BEAM IN COUPLED FOCUSING LATTICES

In this section, we generalize the classical KV solution described in Sec. III to the case

of coupled transverse dynamics when κqxy = κqyx 6= 0, using the generalized CS invariant

for coupled transverse lattice developed in Sec. IV. In the coupled case, the generalized

KV distribution that solves the nonlinear Vlasov-Maxwell system (1) and (2) projects to

a rotating, pulsating beam with elliptical cross-section in transverse configuration space

with constant density inside the beam. Both the dimensions a and b, and the tilt angle

θ are functions of s = βbct [see Fig. 3(b)], in contrast with the pulsating upright elliptical

beam cross-section for the uncoupled case [see Fig. 3(a)]. The rotating, pulsating beam

with elliptical cross-section in transverse configuration space, and constant density inside

the beam, generates a coupled linear space-charge force in the form of Eq. (45), which allows

us to apply the generalized CS invariant for the coupled transverse dynamics. The exact

form of κs will be determined self-consistently [see Eq. (76)]. Our strategy is to use the

generalized CS invariant to construct a generalized KV solution of the Vlasov equation (1),

which also projects to a rotating, pulsating elliptical beam with constant density inside the

beam. In this manner, a self-consistent solution of the nonlinear Vlasov-Maxwell equations

(1) and (2) is found for high-intensity beams in a coupled transverse focusing lattice.

For clarity, we summarize the key results obtained in Sec. (IV) that will be used to
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Figure 3: Beam cross-sections for the KV distribution. (a) Uncoupled lattice: the cross-section is

determined from 0 ≤ x2/a2 + y2/b2 < 1; and (b) Coupled lattice: the cross-section is determined

from 0 ≤ xTw−1w−1Tx < ε.

construct the generalized KV solution. For a charged particle subject to the coupled linear

focusing force and the coupled linear space-charge force

−∇ψ − κqx= −κx , κ = κq + κs , (63)

the generalized CS invariant is given by

ICS = x†w−1w−1†x +
(
v†w† − x†ẇ†

)
(wv − ẇx) , (64)

where

w =

 w1 w2

w3 w4


is the 2× 2 envelope matrix determined from the matrix envelope equation

ẅ + wκ =
(
w−1

)†
w−1

(
w−1

)†
. (65)

Since ICS is an invariant of the particle dynamics, any function of ICS is a solution of the

Vlasov equation (1). However, in order to solve for the nonlinear Vlasov-Maxwell equations

(1) and (2), the distribution function must generate the coupled linear space-charge force of

the form in Eq. (63) as well. To achieve this goal, we select the distribution function to be

the following generalized KV distribution

fKV =
Nb|w|
Aεπ

δ

(
ICS
ε
− 1

)
. (66)
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Here, Nb and ε are constants, where Nb is the line density, and ε is the transverse emittance.

Moreover, |w| is the determinant of the envelope matrix w, and A is the area of the beam

cross-section determined by |w| and ε. Both |w| and A are functions of s = βbct. The beam

density profile in transverse configuration space is

n (x, y, s) =

ˆ
dẋdẏfKV =

ˆ
d

(
r2

ε

)
Nb

A
δ

(
ICS
ε
− 1

)

=

 Nb/A, 0 ≤ xTw−1w−1Tx < ε ,

0, ε < xTw−1w−1Tx .
(67)

In Eq. (67), the velocity integration with respect to dvxdvy is calculated in the new coordi-

nates (p, q) defined as

p ≡ w1vx + w2vy − ẇ1x− ẇ2y, (68)

q ≡ w3vx + w4vy − ẇ3x− ẇ4y , (69)

r2 ≡ p2 + q2 , (70)

and the volume element transformation is

dvxdvy =
1

|w|
dpdq =

2π

|w|
rdr .

The density profile n (x, y, s) obtained in Eq. (67) is indeed of the desired form. That is,

n (x, y, s) is constant inside the ellipse defined by

x†β∗x = ε , β∗ ≡ w−1w−1†, (71)

and n (x, y, s) = 0 outside the ellipse. The ellipse defined by Eq. (71) is pulsating and

rotating. Its transverse dimensions a (s) and b (s), and tilt angle θ (s) depend on s = βbct

and are determined from the matrix β∗. Because β∗ is obviously real, symmetric, and

positive definite, the two eigenvectors v1 and v2 of β∗ are orthogonal with two positive

eigenvalues λ1 and λ2. It is an elementary result [32] that the transverse dimensions of the

ellipse are given by a =
√
ε/λ1 and b =

√
ε/λ2, and the tilt angle θ is that of v1. The

principal axis theorem [32] states that the diagonalizing matrix Q of β∗ can be constructed

as Q = (v1, v2) with Q−1 = QT and

Q−1 β∗Q =

 λ1 0

0 λ2

 . (72)
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We now introduce the rotating frame X

Y

 = Q−1

 x

y

 . (73)

The ellipse in (X, Y ) coordinates is given

X2

a2
+
Y 2

b2
= 1 , (74)

and the self-field force is

−

 ∂ψ/∂X

∂ψ/∂Y

 =
2Kb

a+ b

 1/a 0

0 1/b

 X

Y

 . (75)

Transforming back to the (x, y) coordinate, the self-field force can be expressed as

−

 ∂ψ/∂x

∂ψ/∂y

 = −κs

 x

y

 , κs =
−2Kb

a+ b
Q

 1/a 0

0 1/b

Q−1 . (76)

The coupled linear space-charge coefficient κs is a function of the envelope matrix w and the

constant emittance ε.When Eq. (76) is substituted back into Eq. (63), the envelope equation

(65) becomes a closed nonlinear matrix equation for the envelope matrix w. Therefore, we

have succeeded in finding a class of self-consistent solutions of the nonlinear Vlasov-Maxwell

equations for high-intensity beams in a coupled transverse focusing lattice. The solution

reduces to a nonlinear matrix ordinary differential equation for the envelope matrix w,

which determines the geometry of the pulsating and rotating beam ellipse. The matrix

envelope equation (65) can be numerically solved in a straightforward manner. Generalized

KV solution can also be constructed using other generalized CS invariants of Eq. (59) with

the help of the block Cholesky decomposition. This will be addressed in a future publication.

In 1979, Gluckstern [11] first derived a self-consistent KV distribution for the strongly

coupled system with continuously rotated quadrupole field. However, as pointed out by

Gluckstern, this method is only valid for this special focusing field. It does not apply to other

coupled focusing field configurations, such as the N-rolling lattice. On the other hand, the

method developed in the present study is applicable to any coupled focusing field. Chernin

[13] also found a KV distribution solution using a 4 x 4 transfer matrix [Eqs. (5)-(7) of Ref.

[13]], and found the equation for the evolution of the second order averages in closed form

[Eqs. (3), (5) and (8) in Ref. [13]]. To find a matched solution to these equations Chernin
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Figure 4: Matched solution in a standard FODO lattice, which is a 2-rolling lattice. Beam cross-

section (a) and major and minor dimensions (b) are plotted as functions of s/S = βbct/S over the

interval 0 ≤ s/S ≤ 1. The beam cross-section pulsates without rotation. The transverse dimensions

are normalized by
√
εS.

proposed an iterative algorithm to find the solution numerically. In Ref. [13], the case of

continuously rotated quadrupoles was also studied, and the analytical matched solution was

constructed using Gluckstern’s method, instead of using the iterative numerical solution. In

comparison, our envelope equation (65) is a closed equation for the envelope matrix which

determines the generalized KV distribution.
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Figure 5: Matched solution in a 3-rolling lattice. Beam cross-section (a) and major and minor

dimensions (b) are plotted as functions of s/S = βbct/S over the interval 0 ≤ s/S ≤ 1. The beam

cross-section pulsates and rotates. However the amplitude of the transverse pulsations reduce

in comparison to the standard FODO lattice (2-rolling lattice). The transverse dimensions are

normalized by
√
εS.

The generalized CS theory and KV solution and the associated envelope equation can

be used to study both weakly coupled system and strongly coupled system. An undesirable

misalignment in a standard FODO lattice will result in a weakly coupled system, which has

been studied in Ref. [18]. In this paper, we will investigate the strongly coupled system with
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Figure 6: Matched solution in a 4-rolling lattice. Beam cross-section (a) and major and minor

dimensions (b) are plotted as functions of s/S = βbct/S over the interval 0 ≤ s/S ≤ 1. The

beam cross-section pulsates and rotates. The amplitude of the transverse pulsations is reduced

significantly in comparison to the standard FODO lattice (2-rolling lattice). The beam cross-

section is asymptotic to a rigid rotor profile as the number of magnets increases. The transverse

dimensions are normalized by
√
εS.

the N-rolling lattices described in Sec. II. We will compare the cases of strongly coupled 3-

rolling lattice and 4-rolling lattice with the uncoupled FODO lattice (2-rolling lattice). In all

three cases presented here, the normalized quadrupole focusing field is κq ≡ qbB
′
q/γbmβbc

2 =
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15. However, the filling factor for each magnets is reduced proportionally according to the

number of magnets in the lattice, such that the total filling factor for the entire lattice is

30% for all three cases. The normalized self-field perveance is Kb/ε = 0.1. The matrix

envelope equation (65) has been solved numerically to find a matched solution for each

case. The numerical results plotted in Figs. 4-6 are the beam cross-sections and major

and minor radii plotted a function of s/S = βbct/S for the three cases, respectively. The

transverse dimensions are normalized by
√
εS. The dynamics of the beam pulsation and

rotation are clearly demonstrated. By comparing the three cases, we see that the strong

coupling in the 3-rolling and 4-rolling lattices do no deteriorate the beam quality. Instead,

the coupling induces beam rotation, and reduces beam pulsation. The oscillation amplitude

of the beam dimensions decreases as the number of magnets increases. The reduction of

oscillation amplitude for the 4-rolling lattice, in comparison with the FODO (2-rolling)

lattice, is remarkable. With a 5-rolling lattice (not shown), we can achieve nearly constant

beam radius, corresponding to a rigid rotor beam profile.

VI. CONCLUSIONS

In this paper, the CS theory and the KV distribution for high-intensity beams in a uncou-

pled focusing lattice have been generalized to the case of coupled transverse dynamics. The

generalized CS theory has the same structure as the original CS theory for one degree of free-

dom. The four basic components of the original CS theory, i.e., the envelope equation, phase

advance, transfer matrix, and the CS invariant, all have their counterparts in the generalized

theory. The envelope function is generalized to an envelope matrix, and the envelope equa-

tion becomes a matrix envelope equation with matrix operations that are non-commutative.

The generalized theory can provide a valuable framework for accelerator design and parti-

cle simulation studies for strongly and weakly coupled system. For example, it has been

shown that the stability of coupled dynamics is completely determined by the generalized

phase advance. Two stability criteria were given, which recover the known results about the

sum and difference resonances in the weakly coupled limit [19, 20]. In an uncoupled lattice,

the KV distribution function, first analyzed in 1959, is the only known exact solution of

the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a

self-consistent manner. The KV solution has been generalized to high-intensity beams in a
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coupled transverse lattice using the generalized CS invariant for coupled transverse dynam-

ics. This solution projects to a rotating, pulsating elliptical beam in transverse configuration

space, determined by the generalized matrix envelope equations. The fully self-consistent

solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear matrix ordinary dif-

ferential equation for the envelope matrix w, which determines the geometry of the pulsating

and rotating beam ellipse. This result provides us with a new theoretical tool to investigate

the dynamics of high-intensity beams in a coupled transverse lattice. In particular, we have

designed and studied a type of strongly couple lattice, the so-called N-rollling lattice, which

consists of N equally spaced quadrupole magnets. Each magnet rotates by an angle of π/N

relative to its predecessor. It is found that strong coupling does not deteriorate the beam

quality. Instead, the coupling induces beam rotation, and reduces the beam pulsation. The

oscillation amplitude of the transverse beam dimensions decreases for increasing number of

magnets, and the beam cross-section is asymptotic to a rigid rotor profile as the number of

magnets increases.

Acknowledgments

This research was supported by the U.S. Department of Energy.

[1] R. C. Davidson and H. Qin, Physics of Intense Charged Particle Beams in High Energy Accel-

erators (Imperial College Press and World Scientific, 2001).

[2] I. Kapchinskij and V. Vladimirskij, in Proc. of the International Conference on High Energy

Accelerators and Instrumentation (CERN Scientific Information Service, Geneva, 1959).

[3] D. A. Edwards and M. J. Syphers, An Introduction to the Physics of High-Energy Accelerators

(Wiley, New York, 1993).

[4] J. J. Barnard, in Proc. of the 1995 Particle Accelerators Conference (IEEE, Piscataway, NJ,

1996), p. 3241.

[5] Y. Cai, Physical Review E 68, 036501 (2003).

[6] R. A. Kishek, J. J. Barnard, and D. P. Grote, in Proc. of the 1999 Particle Accelerator Con-

ference (IEEE, Piscataway, NJ, 1999), p. 1761.

25



[7] J. J. Barnard and R. Losic, in Proc. of the 20th International Linac Conference (2001), p.

MOE12.

[8] F. J. Sacherer, Ph.D. thesis, Univ. of California, Berkeley (1968).

[9] B. G. Logan, J. J. Barnard, F. Bieniosek, C. M. Celata, R. C.Davidson, A. Friedman, E. Gilson,

I. Kaganovich, J. W. K. M. Leitner, A. Molvik, et al., Nucl. Instrum. Methods Phys. Res. A

577, 1 (2007).

[10] R. Talman, Physical Review Letters 74, 1590 (1995).

[11] R. L. Gluckstern, in Proceedings of the 1979 LInear Accelerator Conference (Brookhaven Na-

tional Laboratory, 1979), pp. 245–248.

[12] C. Roberson, A. Mondelli, and D. Chernin, Particle Accelerators 17, 79 (1985).

[13] D. Chernin, Particle Accelerators 24, 29 (1988).

[14] J. Petillo, D. Chernin, and A. Mondelli, in Proc. of the 1989 Particle Accelerator Conference

(IEEE, Piscataway, NJ, 1989), pp. 1055–1057.

[15] J. Smith, V. Bailey, H. Lackner, and S. Putnam, in Proc. of the 1997 Particle Accelerator

Conference (IEEE, Piscataway, NJ, 1998), 1, pp. 1251–1253.

[16] J. Petillo, C. Kostas, D. Chernin, and A. Mondelli, in Proc. of the 1991 Particle Accelerator

Conference (IEEE, Piscataway, NJ, 2002), pp. 613–615.

[17] J. Krall, S. Slinker, M. Lampe, and G. Joyce, Journal of Applied Physics 77, 463 (1995), ISSN

00218979.

[18] H. Qin, M. Chung, and R. C. Davidson, Physical Review Letters 103, 224802 (2009).

[19] H. Qin and R. C. Davidson, PRST-AB 12, 064001 (2009).

[20] H. Qin and R. C. Davidson, Phys. Plasmas 16, 050705 (2009).

[21] M. Chung, H. Qin, and R. C. Davidson, Physics of Plasmas 17, 084502 (2010).

[22] T. S. Wang and L. Smith, Part. Accel. 12, 247 (1982).

[23] I. Hofmann, L. J. Laslett, L. Smith, and I. Haber, Part. Accel. 13, 145 (1983).

[24] J. Struckmeier and I. Hofmann, Part. Accel. 39, 219 (1992).

[25] C. Chen, R. Parker, and R. C. Davidson, Phy. Rev. Lett. 79, 225 (1997).

[26] E. Courant and H. Snyder, Annals of Physics 3, 1 (1958).

[27] S. Y. Lee, Accelerator Physics (World Scientific, Singapore, 1999), p. 47.

[28] H. Qin and R. C. Davidson, Physical Review Special Topics - Accelerators and Beams 9,

054001 (2006).

26



[29] H. Qin and R. C. Davidson, Physical Review Letters 96, 085003 (2006).

[30] P. Leach, Journal of Mathematical Physics 18, 1608 (1977).

[31] H. Qin, R. C. Davidson, and B. G. Logan, Phy. Rev. Lett. 104, 254801 (2010).

[32] G. Strang, Linear Algebra and Its Applicatons (Harcourt Brace Jovanovich, San Diego, 1988),

3rd ed.

27



The Princeton Plasma Physics Laboratory is operated 
by Princeton University under contract 
with the U.S. Department of Energy. 

 
Information Services  

Princeton Plasma Physics Laboratory 
P.O. Box 451 

Princeton, NJ 08543 
 
 
 
 

Phone: 609-243-2245 
Fax: 609-243-2751 

e-mail: pppl_info@pppl.gov 
Internet Address: http://www.pppl.gov 


	M_Richman_extender.pdf
	Background
	Extender
	Parallel Algorithms

	Speed Optimization
	Efficient Parallelization
	Optimizing Representation of Plasma Surface
	Results


	Automation
	Fortran 90 module
	Generalized PBS job scripts

	Conclusion
	PBS batch job template


	report number: 4638
	Title: Generalized Courant-Snyder Theory and Kapchinskij-Vladimirskij Distribution for High-internsity Beams In A 
Coupled Transverse Focusing Lattice
	Date: July, 2011
	authors: Hong Qin


