
SAND REPORT
SAND2010-6674
Unlimited Release
Printed September, 2010

XyceTM Parallel Electronic
Simulator Design

Developer Guide

Eric R. Keiter, Thomas V. Russo, Richard L. Schiek,
Heidi K. Thornquist, Eric L. Rankin, Ting Mei

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multiprogram laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Company, for the United States Department of Energy’s National
Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
EP

ARTMENT OF ENERG
Y

• •U
N

ITED

STATES OF AM

ER
IC

A

SAND2010-6674
Unlimited Release

Printed September, 2010

XyceTM Parallel Electronic Simulator Design

Developer Guide

Eric R. Keiter, Thomas V. Russo, Richard L. Schiek,
Heidi K. Thornquist, Eric L. Rankin, Ting Mei

Sandia National Laboratories
Department 01437

Electrical and Microsystems Modeling

Abstract

This document is the Xyce Circuit Simulator developer guide. Xyce has been de-
signed from the “ground up” to be a SPICE-compatible, distributed memory parallel
circuit simulator. While it is in many respects a research code, Xyce is intended to be a
production simulator. As such, having software quality engineering (SQE) procedures
in place to insure a high level of code quality and robustness are essential. Version
control, issue tracking customer support, C++ style guildlines and the Xyce release
process are all described.

3

XyceTM Developer Guide

Acknowledgements

The authors would like to acknowledge the entire Sandia National Laboratories HPEMS
(High Performance Electrical Modeling and Simulation) team, including Steve Wix, Carolyn
Bogdan, Regina Schells, Ken Marx, Steve Brandon and Bill Ballard, for their support on
this project.

Trademarks

The information herein is subject to change without notice.

Copyright c© 2002-2011 Sandia Corporation. All rights reserved.

XyceTM Electronic Simulator and XyceTM trademarks of Sandia Corporation.

Portions of the XyceTM code are:
Copyright c© 2002, The Regents of the University of California.
Produced at the Lawrence Livermore National Laboratory.
Written by Alan Hindmarsh, Allan Taylor, Radu Serban.
UCRL-CODE-2002-59
All rights reserved.

Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence Design
Systems, Inc.

Silicon Graphics, the Silicon Graphics logo and IRIX are registered trademarks of Silicon
Graphics, Inc.

Microsoft, Windows and Windows 2000 are registered trademark of Microsoft Corporation.

Solaris and UltraSPARC are registered trademarks of Sun Microsystems Corporation.

Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation.

HP and Alpha are registered trademarks of Hewlett-Packard company.

Amtec and TecPlot are trademarks of Amtec Engineering, Inc.

Xyce’s expression library is based on that inside Spice 3F5 developed by the EECS De-
partment at the University of California.

The EKV3 MOSFET model was developed by the EKV Team of the Electronics Laboratory-
TUC of the Technical University of Crete.

All other trademarks are property of their respective owners.

4

XyceTM Developer Guide

Contacts

Bug Reports
http://joseki.sandia.gov/bugzilla

http://charleston.sandia.gov/bugzilla

World Wide Web
http://xyce.sandia.gov

http://charleston.sandia.gov/xyce

Email xyce-support@sandia.gov

5

XyceTM Developer Guide

6

Contents

1. Introduction 21
1.1 Preface . 22
1.2 Xyce Project Statement . 23
1.3 The Xyce Project . 24
1.4 Document Organization . 25

2. CVS Directions 27
2.1 CVS Checkout . 28

2.1.1 Important CVS options and the .cvsrc file . 29
2.1.2 Keeping up-to-date . 29

2.2 Branching and Tagging . 30

3. CVS Checkin Procedure 35
3.1 Guidelines . 36

4. Bug Resolution Checklist 39
4.1 Preface . 40
4.2 Checklist . 40

5. Customer Support 45
5.1 Guidelines . 46

6. Xyce C++ Style Guidelines 47
6.1 Preface . 48
6.2 References . 49
6.3 Naming convention . 50

6.3.1 Variable names must be in mixed case starting with lower case. 50
6.3.2 Named constants (including enumeration values) must be all upper-

case using underscore to separate words. 50
6.3.3 Avoid Using Preprocessor Constants. Use Enumerated types instead 50

7

XyceTM Developer Guide CONTENTS

6.3.4 Names representing methods or functions must be verbs and written
in mixed case starting with lower case. 51

6.3.5 Private class variables and functions should have underscore suffix. 51
6.3.6 All names should be written in English. 52
6.3.7 Variables with a large scope should have long names, variables with

a small scope can have short names. 52
6.3.8 The name of the object is implicit, and should be avoided in a method

name. 52
6.3.9 The terms get/set must be used where an attribute is accessed directly. 53
6.3.10 The term compute can be used in methods where something is com-

puted . 53
6.3.11 The term find can be used in methods where something is looked up 53
6.3.12 The term initialize can be used where an object or a concept is es-

tablished. 54
6.3.13 Plural form should be used on names representing a collection of

objects. 54
6.3.14 The prefix “is” should be used for boolean variables and methods. . . 54
6.3.15 Complement names must be used for complement operations 55
6.3.16 Abbreviations in names should be avoided, except when the word is

primarily known that way . 56
6.3.17 Negated boolean variable names must be avoided 56
6.3.18 Functions (methods returning something) should be named after what

they return and procedures (void methods) after what they do 57
6.4 File, Function and Class Headers . 58

6.4.1 C++ File Header . 58
6.4.2 Function Header . 60
6.4.3 Class Header . 60

6.5 Forward Declarations. 61
6.5.1 iostream Forward Declarations . 61

6.6 Pointers vs. References . 62
6.7 Late class/package initialization is very important! . 63
6.8 Avoid C-style raw arrays. Use the Standard Library instead . 64
6.9 Avoid Raw Pointers. 65

6.9.1 Interfacing with legacy code that requires raw pointers 65
6.9.2 RCPs . 66

6.10 Files . 68
6.10.1 C++ header files should have the extension .h. Source files should

have the extension .C . 68
6.10.2 A class should be declared in a header file and defined in a source

file where the name of the files match the name of the class 68

8

CONTENTS XyceTM Developer Guide

6.10.3 All definitions should reside in source files . 68
6.10.4 File content must be kept within 80 columns . 69
6.10.5 Never Use Tabs . 69
6.10.6 The incompleteness of split lines must be made obvious 70

6.11 Include Files and Include Statements . 72
6.11.1 Header files must contain an include guard . 72
6.11.2 Include statements should be sorted and grouped 72
6.11.3 Include statements must be located at the top of a file only 73

6.12 Types . 74
6.12.1 Types that are local to one file only can be declared inside that file . . 74
6.12.2 The parts of a class must be sorted public, protected and private 74
6.12.3 Type conversions must always be done explicitly: Use C++-style Casts 74

6.13 Variables . 76
6.13.1 Variables should be initialized where they are declared 76
6.13.2 Variables must never have dual meaning . 76
6.13.3 Use of global variables should be minimized . 76
6.13.4 Class variables should never be declared public 76
6.13.5 Implicit test for 0 should not be used other than for boolean variables

and pointers . 77
6.13.6 Variables should be declared in the smallest scope possible 77

6.14 Loops . 78
6.14.1 Only loop control statements must be included in the for() construction 78
6.14.2 Loop variables should be initialized immediately before the loop 78
6.14.3 do-while loops can be avoided . 79

6.15 Conditionals. 80
6.15.1 Complex conditional expressions must be avoided 80
6.15.2 The nominal case should be put in the if-part and the exception in

the else-part of an if statement . 80
6.15.3 The conditional should be put on a separate line 81
6.15.4 Executable statements in conditionals must be avoided 81

6.16 Miscellaneous. 83
6.16.1 The use of magic numbers in the code should be avoided 83
6.16.2 Floating point constants should always be written with decimal point

and at least one decimal . 83
6.16.3 Floating point constants should always be written with a digit before

the decimal point . 83
6.16.4 Functions must always have the return type explicitly listed. 84
6.16.5 goto should not be used . 84
6.16.6 “0” should be used instead of “NULL” . 84

6.17 Layout . 85

9

XyceTM Developer Guide CONTENTS

6.17.1 Basic Indentation Length should be Two Spaces 85
6.17.2 Block Layout: Placement of braces (curly brackets) 85
6.17.3 The class declarations should have the following form 86
6.17.4 Method definitions should have the following form 86
6.17.5 The if-else class of statements should have the following form 86
6.17.6 A for statement should have the following form 87
6.17.7 A while statement should have the following form 87
6.17.8 A do-while statement should have the following form 88
6.17.9 A switch statement should have the following form 88

6.18 White Space . 90
6.18.1 Miscellaneous . 90
6.18.2 Method names can be followed by a white space when it is followed

by another name . 90
6.18.3 Logical units within a block should be separated by one blank line . . . 91
6.18.4 Methods should be separated by three blank lines 91
6.18.5 Variables in declarations can be left aligned . 91
6.18.6 Use alignment wherever it enhances readability 92

6.19 Comments . 93
6.19.1 Tricky code should not be commented but rewritten! 93
6.19.2 All comments should be written in English . 93
6.19.3 Use // for all comments, including multi-line comments 93

7. Matrix and Vector Access 95
7.1 History and Motivation. 96
7.2 Global to Local Index Relationship. .101
7.3 External Variables vs. Internal Variables .103
7.4 Topology and Device Package Interaction . 105

7.4.1 jacStamp Example . 105
7.4.2 Function registerJacLIDs Example . 107

8. Device Development Checklist 109
8.1 Introduction .110
8.2 Checklist for Device Certification . 110

8.2.1 Any device development must have a corresponding issue in bugzilla 110
8.2.2 For any device to be considered complete, tests must exist to certify it 111
8.2.3 Numerical Jacobian tests must pass . 111
8.2.4 For a variety of circuits, the new device must pass valgrind tests 112
8.2.5 Both time integrators need to be supported by any new device 112
8.2.6 Derivative devices must pass antecedant tests 113
8.2.7 Compile with the gcc option -Wshadow . 113

10

CONTENTS XyceTM Developer Guide

8.2.8 Device must follow Xyce’s style guide . 113
8.2.9 All artifacts of reference devices must be completely removed from

source . 113
8.2.10 Source code must reside in the appropriate directory 114

8.3 Additional requirements for transistor devices .114
8.3.1 Both N-type and P-type must be tested individually. 114
8.3.2 Circuits that contain both N-type and P-type must run robustly. 114
8.3.3 Automated voltlim tests must also pass . 115
8.3.4 For both N-type and P-type, the numerical jacobian, valgrind and

voltlim tests must pass for all the different model options supported
by that device. 115

8.4 Additional tests for Legacy Devices .115
8.4.1 Xyce Legacy devices Must Match Legacy Simulator 115

9. Frequently Asked Questions 117
9.1 Where to find other information .118

9.1.1 References . 118
9.1.2 I can’t find the answer to my question in this FAQ, and I can’t find it

in the other references. What do I do? . 118
9.2 General Philosophy and Miscellaneous .119

9.2.1 What is the goal of this FAQ? . 119
9.2.2 What are the requirements of Xyce? . 120
9.2.3 Who are the customers for Xyce? . 121
9.2.4 Why do devices in Xyce need to precisely match SPICE devices?

Don’t people always complain about SPICE devices? Surely we
could come up with better ones. 121

9.2.5 You said in the last question that SPICE devices have been “de-
bugged to death”. What is a bug? . 122

9.2.6 When you say “precisely match SPICE”, what does that mean? 122
9.2.7 What is a “legacy device”? What are some examples? 123
9.2.8 Are all legacy models from SPICE? . 124
9.2.9 What do we do about Verilog-A specified models? 125
9.2.10 What about V&V? . 125
9.2.11 Shouldn’t users always use the best models they can? 126
9.2.12 I’m implementing a legacy device, and I’ve noticed that books and

papers that describe this device don’t fully describe what is in SPICE.
What’s the deal? . 127

9.2.13 How we do we know that the BSIM3 (or any model) in a commercial
code is the same as the model we’ve put into Xyce? 128

11

XyceTM Developer Guide CONTENTS

9.2.14 So, if the models in Xyce are the same as commercial simulators,
how is Xyce different? . 129

9.2.15 I am really convinced that the legacy SPICE code is calculating this
small term incorrectly. Can I delete it? . 129

9.2.16 Do we support bypass? . 130
9.2.17 What should we do about SPICE convergence checking code? 131
9.2.18 Can we create a module that will allow us to plug SPICE devices

directly into Xyce, without modification? . 132
9.2.19 Why are we moving farther away from SPICE? Wouldn’t it be easier

to follow SPICE more closely? . 132
9.2.20 Why is the BSIM3 level=9 rather than level=8? 133

9.3 Equation set . 134
9.3.1 Do SPICE and Xyce solve the same equations? 134

9.4 Linear System. .135
9.4.1 How is the Xyce linear system different from SPICE? 135
9.4.2 Are there any other right-hand-side issues to be wary of? Or, how do

we handle linear resistors? . 136
9.4.3 What is GMIN, anyway? . 136
9.4.4 GMIN is such a small term. Why does it matter so much? 137
9.4.5 What is GMIN stepping? . 138
9.4.6 Why didn’t Xyce just use the same linear system as SPICE? 139
9.4.7 Is there an easy way to reverse engineer the SPICE residual? 139
9.4.8 In Xyce, what do we do with Jxk? . 140
9.4.9 What is voltage limiting? . 142
9.4.10 Why do we sometimes turn voltage limiting off? SPICE doesn’t 143
9.4.11 What other things are enabled by voltage limiting? 144
9.4.12 Does it matter if I use the same voltage limiter functions in my Xyce

device as are used in the equivalent SPICE devices? 145
9.4.13 Are the SPICE and Xyce Jacobians the same? 146
9.4.14 Are the SPICE and Xyce right-hand-side (RHS) vectors the same? . . 146
9.4.15 Are the SPICE and Xyce solution vectors the same? 147

9.5 Time Integration. .148
9.5.1 How are time derivatives calculated in Xyce? . 148
9.5.2 What should go into the state vector? . 149
9.5.3 SPICE puts variable x into the state vector. Should I also put variable

x into the state vector? . 149
9.5.4 What is solState.pdt? . 150
9.5.5 Why can’t I put a differentiation formula directly in a device? 151
9.5.6 What is “Meyer Back-Averaging?” . 152
9.5.7 What is the BJT excess phase term? . 152

12

CONTENTS XyceTM Developer Guide

9.5.8 What is the deal with the new-DAE formulation? 153
9.6 Code structure .156

9.6.1 Why do file names and class names start with N ? 156
9.6.2 What is the loader package for? . 156
9.6.3 What does N DEV DeviceMgr::setupSolverInfo do? 156
9.6.4 What happens when N DEV DeviceMgr::loadRHSVector is called? . . 157
9.6.5 That sounds like a convoluted set of function calls. Why? 157
9.6.6 Why do a lot of function names end with “Block”? 158

9.7 Device Parameters .159
9.7.1 Where are default parameters set? . 159
9.7.2 Is it important to have the same parameter defaults as SPICE? 160
9.7.3 Some devices have a lot of parameters and/or variables - do I really

have to type them all into the various model and instance constructors?160
9.8 Debugging .162

9.8.1 What’s with the Xyce DEBUG DEVICE macro? 162
9.8.2 I’ve been debugging a device. I’ve mostly been looking at the *.prn

file. Is that enough? . 162
9.8.3 If the *prn file is the wrong place to look for data to debug, where

should I look? . 163
9.8.4 How do I look at matrices and vectors in detail? 163
9.8.5 What is the namesMap.txt file? . 164
9.8.6 How do I use the numerical Jacobian? . 165
9.8.7 What should I do to compare Xyce to SPICE? 167
9.8.8 Is there an easy way to compare vectors and matrices? 168
9.8.9 I’m trying to compare Xyce with analytic Jacobian to Xyce with nu-

merical Jacobian, not Xyce and Spice. How do I use matcmp and
veccmp? . 169

9.8.10 What is the most common source of errors in Xyce devices? 169
9.9 Test circuits .171

9.9.1 Is there a good program for comparing waveforms? 171
9.9.2 My new device appears to get the correct answer in a small test

circuit. Am I done? . 171
9.9.3 Where can I get better test circuits? . 173
9.9.4 I don’t have any valid model parameters. What do I do? 173
9.9.5 Xyce and SPICE don’t match for my test legacy device circuit, unless

I tweak model parameters. Is this OK? . 174
9.9.6 In my Xyce model, I left out a small term that was in the legacy

SPICE model. It doesn’t seem to change the answer for my test
circuit. Is that OK? . 175

9.10 Testing .177

13

XyceTM Developer Guide CONTENTS

9.10.1 How do I run the regression test suite? . 177
9.10.2 Can you give some explanation of what is going on in the test suite? . 177
9.10.3 What sorts of tests should go into the nightly regression test suite,

and when should I add them? . 177
9.10.4 What sorts of tests should go into the stress tests directory, and

when should I add them? . 178

10.Xyce Release Process 179
10.1 Preface . 180
10.2 Introduction .181

10.2.1 Document Purpose . 181
10.2.2 Scope . 181
10.2.3 Goals . 182

10.3 Abbreviations and Definitions .184
10.4 Release Process .188

10.4.1 Objective . 188
10.4.2 Goals . 188
10.4.3 Process . 188

10.5 Distribution Management Process .198
10.5.1 Objective . 198
10.5.2 Goals . 198
10.5.3 Process . 198
10.5.4 Distribution Packaging . 199
10.5.5 Distributing Releases . 200
10.5.6 Distribution Logging . 202
10.5.7 Withdrawing Releases From Distribution . 202

10.6 Roles .204
10.6.1 General . 204
10.6.2 Role Definitions . 204
10.6.3 Role Details . 205

10.7 Interfaces to Other Processes .209
10.7.1 Issue Tracking . 209
10.7.2 Requirements Management . 209
10.7.3 Third-Party Software (TPS) . 209
10.7.4 Configuration Management . 210

10.8 Guidelines for Release Notes. .211
10.8.1 Scope/Product Definition . 211
10.8.2 Hardware/Software Information . 211
10.8.3 Release Documentation . 211
10.8.4 New Features and Enhancements . 211

14

CONTENTS XyceTM Developer Guide

10.8.5 Defects Fixed in this Release . 212
10.8.6 Known Defects and Workarounds . 212

10.9 Release Certification Tests .213
10.9.1 Checklist for Release Certification . 213
10.9.2 General Directions: . 213
10.9.3 Specific Directions: . 213
10.9.4 QA . 213

10.10Team Checklists. .215
10.10.1Checklists for Release Process Activities . 215
10.10.2Release Planning Checklist . 216
10.10.3Release Configuration Management (RCM) Checklist 219
10.10.4Release Development Lifestyle (RDL) Checklist 221
10.10.5Release Certification Checklist . 223
10.10.6Distribution Management Checklist . 225

10.11Individual Roles Checklists .227
10.11.1QA Roles . 227

10.12Release Activity Timeline. .230
10.12.1Release Version Numbering . 230
10.12.2Release planning meeting . 230
10.12.3Release Tag and Branch . 233
10.12.4QA process . 233
10.12.5Documentation . 233
10.12.6Final Paperwork . 233
10.12.7Website Updates . 233

11.Third Party Software Management 239
11.1 Preface . 240
11.2 Preliminaries .241

11.2.1 Purpose . 241
11.2.2 Scope . 241
11.2.3 Process Ownership . 241

11.3 Third-party software management .242
11.3.1 Introduction . 242
11.3.2 General Third Party Software Practices . 242
11.3.3 Practices for Unmodified Third Party Software (UTPS) 245
11.3.4 Practices for Modified Third Party Software (MTPS) 246
11.3.5 Practices for Xyce-Specific External Software (XSES) 246

11.4 Third Party Software List .247
11.5 High-Level Description . 248

15

XyceTM Developer Guide

16

Figures

4.1 Issue Tracking Flowchart . 44

7.1 Nodes shared by two processors. 96
7.2 Example of GID load code fragment. 98
7.3 Example of Spice3f5 load code fragment. 99
7.4 Example of LID load code fragment. 99
7.5 Global to local vector mapping. 102
7.6 Voltage Nodes and Device Nodes. 104
7.7 Example of function registerJacLIDs. 108

10.1 Release Hierarchy . 189
10.2 Release Process . 234
10.3 Example of a typical product release progression . 235
10.4 Distribution process . 236
10.5 Illustration of the Withdraw process . 237

11.1 Xyce third party management . 249

17

XyceTM Developer Guide

18

Tables

10.1 Release Numbering Terms . 190
10.2 Release Numbering Examples . 191
10.3 Baseline Identification Terms . 193
10.4 Baseline Identification Examples . 194
10.5 Release Process Activities . 196
10.6 Distribution Process Detail . 201
10.7 Withdrawing a Release . 203
10.8 Roles . 205
10.14QAL Roles . 228
10.15QAB Roles . 228
10.16QAT Roles . 229

19

XyceTM Developer Guide

20

1. Introduction

Chapter Overview
This chapter contains an introduction to the Xyce developer guide.

21

XyceTM Developer Guide Introduction

1.1 Preface
The Xyce Parallel Electronic Simulator has been under development at Sandia since 1999.
Historically, Xyce has mostly been funded by ASC, the original focus of Xyce development
has primarily been related to circuits for nuclear weapons. However, this has not been the
only focus and it is expected that the project will diversify. Like many ASC projects, Xyce is
a group development effort, which involves a number of researchers, engineers, scientists,
mathmaticians and computer scientists. In addition to diversity of background, it is to be
expected on long term projects for there to be a certain amount of staff turnover, as people
move on to different projects. As a result, it is very important that the project maintain high
software quality standards. The point of this document is to formally document a number
of the software quality practices followed by the Xyce team in one place. Also, it is hoped
that this document will be a good source of information for new developers.

22

1.2 Xyce Project Statement XyceTM Developer Guide

1.2 Xyce Project Statement
With the elimination of underground nuclear testing and declining defense budgets, science-
based stockpile stewardship requires increased reliance on high performance modeling
and simulation of weapon systems. Electrical systems and components are major ele-
ments in today’s weapon systems. The goal of this project is to provide the tools that will
allow the use of massively parallel modeling and simulation techniques on high perfor-
mance computers in existing and future nuclear weapon electrical systems models.

23

XyceTM Developer Guide Introduction

1.3 The Xyce Project
The Xyce project is an ASC-funded project at Sandia designed to meet current and future
electrical simulation needs of the weapons designers. It will provide a circuit modeling tool
for Sandia designers capable of running efficiently on high-performance parallel computers
using state-of-the-art algorithms. Some goals of this project are to

• Support Sandia-specific circuit and device models

• Support canonical industry-standard SPICE-based device models.

• Support commercial SPICE netlist interface, compatible with HSpice and PSpice
when possible.

• Implement innovative, robust and scalable algorithms.

• Produce an efficient parallel implementation on a variety of architectures

• Couple to Charon device (PDE) simulator [1] and other simulation codes, to support
multi-physics simulation.

The requirement that Xyce be massively parallel means that it needed to be designed,
“from the ground up” in a fundamentally different way than SPICE. However, the require-
ment that Xyce be backward-compatible with commercial SPICE tools required that it be, in
many respects, as similar to SPICE as we can be, without detracting from the other goals
of the project. Finding and achieving this balance is one of the challenges of developing
Xyce.

24

1.4 Document Organization XyceTM Developer Guide

1.4 Document Organization
This chapter is the introduction. Chapter 2 contains basic information about the Xyce code
repository, which (as of this writing) is based on CVS. Chapters 3, 4, and 5 all contain
checklists for Xyce developers, pertaining to CVS checkin, closing bugs, and customer
support, respectively. Chapter 6 contains a Xyce C++ source code style guide. Chapter 7
contains a description of matrix and vector access, which is necessary for device model
development, and a potentially confusing issue for new developers. Chapter 8 contains a
checklist for device model development. Chapter 9 contains frequently asked questions
(FAQs) about Xyce development.

Chapter 10 and chapter 11 are about project management, with chapter 10 pertaining to
the Xyce release process, and chapter 11 pertaining to the management of the third-party
libraries used by Xyce.

If you are a new Xyce developer, you will probably need to read chapter 2 and chapter 6
first. The rest of the chapters are all important, but the release management chapter
(chapter 10) and the third party software management chapter (chapter 11) can be read
later. They will become more important once the new developer participates in a formal
code release.

25

XyceTM Developer Guide Introduction

Document Change History

Version Author Modifications Date

1.0
Scott Hutchinson

and Rob Hoekstra
Initial Release 5/1/2001

1.1
Eric Keiter and

Heidi Thornquist
Updates 3/7/2008

1.2
Eric Keiter and

Tom Russo
Updates 3/31/2009

Table 1.1:

26

2. CVS Directions

Chapter Overview
This chapter contains descriptions and examples of CVS procedures which are commonly
used by Xyce developers. For other details about CVS usage, see reference [2].

27

XyceTM Developer Guide CVS Directions

2.1 CVS Checkout
To check out a copy of of Xyce, you will first need to insure that you have accounts on the
the CVS host machines. As of this writing, the Xyce source repository is split between
two different machines, one on the Sandia Open Network (SON) and one on the Sandia
Restricted Network (SRN). The SRN machine only contains parts of the code that are
export controlled. It is possible to build and run Xyce without any of the SRN source code,
but the opposite is not true. For the purposes of this document, given that computers
get replaced from time to time, the machine on the open network will be referred to as
son machine, and the one on the restricted network will be referred to as srn machine.

Once you have accounts, you need to do the following steps on your local machine. We
use remote CVS, so you’ll first need to set the environment variable RSH to ssh. The
checkout command is:

cvs -d :ext:son machine:/Net/Proj/Xyce/CVS checkout Xyce

This gets you the non-export controlled parts. If you have not set up RSA keys in your
accounts, you will be prompted for your password to son machine.

If you want the SRN source code (you don’t need it to compile Xyce), you will also have to
do two other checkouts, into specific sub-directories below the top:

cd Xyce/src/DeviceModelPKG

cvs -d :ext:srn machine:/Net/Proj/Xyce/CVS checkout SandiaModels

cd ../../doc

cvs -d :ext:srn machine:/Net/Proj/Xyce/CVS checkout SandiaModelsDocs

Just like with the SON repository, if you have not set up RSA keys in your accounts, you will
be prompted for your password, only in this case it will obviously be for the srn machine.

To check out the regression test suite, the proceduce is very similar:

cd (somewhere other than where you did the last command)

cvs -d :ext:son machine:/Net/Proj/Xyce/CVS checkout Xyce Regression

cd Xyce Regression

28

2.1 CVS Checkout XyceTM Developer Guide

Similarly, if you want the SRN regression tests, you will have to check it out separately.

cvs -d :ext:srn machine:/Net/Proj/Xyce/CVS checkout Xyce SandiaRegression

2.1.1 Important CVS options and the .cvsrc file

Certain options need to be specified so commonly with CVS commands that it is helpful
to save them in a .cvsrc file so that they cannot be forgotten. Create a file in your home
directory called .cvsrc and place the following lines in it:

cvs -q

update -d -P

diff -u

The first line of these makes every cvs command less verbose, which helps eliminate
some unimportant and distracting messages. The second line makes sure that every CVS
update command brings in newly defined directories and purges directories that have been
deleted.

2.1.2 Keeping up-to-date

As other people work on Xyce, you need to bring your copy up-to-date. This is done with
the cvs update command while your current working directory is the top level of your Xyce
checkout:

cvs update -dP

The “-dP” options make sure that files in newly created directories are updated, and that
files in deleted directories are purged. If you have a .cvsrc file as described in the previous
subsection, that “-dP” option may be left off as the .cvsrc file will insert it anyway.

29

XyceTM Developer Guide CVS Directions

2.2 Branching and Tagging
When doing significant development on Xyce, it is useful to first isolate those changes to a
branch. Following guidlines for CVS management [2], use these commands to create and
manage a development branch of code.

1. Tag the HEAD branch at the branch point:

cvs -d :ext:son machine:/Net/Proj/Xyce/CVS rtag TAG CREATE B1 Xyce

cvs -d :ext:srn machine:/Net/Proj/Xyce/CVS rtag TAG CREATE B1 SandiaModels

cvs -d :ext:srn machine:/Net/Proj/Xyce/CVS rtag TAG CREATE B1 SandiaModelsDocs

2. Create the new branch from the tag on the HEAD you just created:

cvs -d :ext:son machine:/Net/Proj/Xyce/CVS rtag -b -r TAG CREATE B1 BRANCH B1

Xyce

cvs -d :ext:srn machine:/Net/Proj/Xyce/CVS rtag -b -r TAG CREATE B1 BRANCH B1

SandiaModels

cvs -d :ext:srn machine:/Net/Proj/Xyce/CVS rtag -b -r TAG CREATE B1 BRANCH B1

SandiaModelsDocs

3. Create a new directory for your branch work, and check out your new branch:

mkdir BranchWork

cd BranchWork

cvs -d :ext:son machine:/Net/Proj/Xyce/CVS checkout -r BRANCH B1 Xyce

cd Xyce/src/DeviceModelPKG

cvs -d :ext:srn machine:/Net/Proj/Xyce/CVS checkout -r BRANCH B1 SandiaModels

cd ../../doc

cvs -d :ext:srn machine:/Net/Proj/Xyce/CVS checkout -r BRANCH B1 SandiaModelsDocs

4. Merge changes from the HEAD the first time.

After a few days, work on the HEAD will make your branch diverge. To bring your
branch into sync with the HEAD while maintaining your new work, you must merge

30

2.2 Branching and Tagging XyceTM Developer Guide

changes. The process you go through the first time you do this is different from the
process on subsequent merges.

(a) First tag HEAD to establish a merge point, then do the merge.
In a directory where the HEAD is checked out:
cvs rtag TAG HEAD MERGE TO B1 Xyce

cd Xyce/src/DeviceModelPKG/SandiaModels

cvs rtag TAG HEAD MERGE TO B1 SandiaModels

cvs rtag TAG HEAD MERGE TO B1 SandiaModelsDocs

Since you’re doing these commands in a directory where there is already a
checkout, CVS knows what repository to use. You have to change to the San-
diaModels directory to tag the SandiaModels component, because that is in a
different repository than the rest of the code. You don’t have to change to the
SandiaModelsDocs directory to tag that component, because it is in the same
repository as SandiaModels.

(b) Do the merge
In a directory where the BRANCH B1 is checked out
cvs update -kk -dP -jHEAD > mergeout 2>&1

In this example we assume a BASH or SH shell, and redirect STDOUT and
STDERR to a file so that the numerous messages that CVS emits will be pre-
served. You will look through this file to check for conflicts.
You may also have to merge SandiaModels and SandiaModelsDocs separately
if your “mergeout” file created above doesn’t clearly indicate that those directo-
ries were updated properly. If you need to do that, just “cd” into those directories
and do the same update command:
cd src/DeviceModelsPKG/SandiaModels

cvs update -kk -dP -jHEAD > mergeout 2>&1

cd ../../../doc/SandiaModelsDocs

cvs update -kk -dP -jHEAD > mergeout 2>&1

(c) Correct conflicts
This is a critical step where you have to be very careful. When CVS detects that
lines were modified on both branches, it can’t figure out which version to use in
the merge. It flags these “conflicts” by emiting a warning and by inserting both
versions of the lines into the merged file with delimiters surrounding the versions
from each branch. You will need to examine each file flagged as having conflicts
for all such occurrences and choose the right version of the modified code to
keep.

31

XyceTM Developer Guide CVS Directions

When you think you’re done with all the conflict resolution, it’s best to try a “cvs
diff” to make sure you didn’t miss any of the conflict delimiters. From your top
level of the BRANCH B1 checkout, do:
cvs diff -u > diffs

and look in the file “diffs” for occurrances of <<<<, ====, or >>>>, which are the
things that CVS would insert when it finds conflicts. If you find any of these
in the diffs, it means you missed some conflicts and need to go back and edit
some more.
When you’re done with the conflict resolution, you should always build the newly
merged code and make sure it compiles. You should probably also run the test
suite.

(d) Commit the merged code
After you’ve convinced yourself that the merged code builds and runs after your
conflict resolution, you may then commit the merged code. From the top level of
your checkout, simply issue the command:
cvs commit

Make sure you enter a meaningful and informative commit log about what you’ve
done.

5. After the commit, tag the branch.

In your Xyce BRANCH B1 checkout directory, do these four commands:

cvs rtag -r BRANCH B1 TAG B1 MERGE FROM HEAD Xyce

cd src/DeviceModelPKG/SandiaModels

cvs rtag -r BRANCH B1 TAG B1 MERGE FROM HEAD SandiaModels

cvs rtag -r BRANCH B1 TAG B1 MERGE FROM HEAD SandiaModelsDocs

As before, you can get away without specifying a repository (“-d :ext:...”) because
you’re doing them from a checkout directory in which CVS has already saved files to
tell it what repository to use. You need to be in the SandiaModels or SandiaModels-
Docs directory for the SRN repository to be updated properly by the second and third
“rtag” command..

6. Continue working on the branch until you want to merge in changes from the HEAD
again

7. Merge changes in the HEAD that occurred between your last merge and now.

(a) Merge from the old tag on the HEAD to the present.

32

2.2 Branching and Tagging XyceTM Developer Guide

This is mostly the same as the process you followed the very first time, except
that this time you’re making sure only to merge in changes that happened since
the last time you did this. The tags you created (TAG HEAD MERGE TO B1
and TAG B1 MERGE FROM HEAD) will mark the points from which we’ll be
updating.
In your top-level Xyce checkout of BRANCH B1, do a CVS update from the head
of all changes since the last merge:
cvs update -dP -kk -jTAG HEAD MERGE TO B1 -jHEAD > mergeout 2>&1

Note: If you leave out the -kk then keywords in the source file, like Revision

1.xx will cause conflicts. The -kk option causes cvs to ignore keywords. This is
a sticky tag in that it will remain in effect for the brach files until a cvs -A update

-jBRANCH B1 is done.
As before, we’re capturing the standard output and standard error streams to a
file so we can review them for conflict messages later.
This command merges in all the changes from the last merge time to the HEAD
of the main trunk. Once again, you should review the “mergeout” file carefully
and make sure that the entire tree was updated properly, including the San-
diaModels and SandiaModelsDocs tree. You should also make sure that all
directories that were created on the HEAD since the last merge were created
and populated properly.

(b) Move the merge tag on the main trunk
AFTER you are convinced that the update did everything you expected it to do,
move the tag:
cvs rtag -F TAG HEAD MERGE TO B1 Xyce

cd src/DeviceModelPKG/SandiaModels
cvs rtag -F TAG HEAD MERGE TO B1 SandiaModels

cvs rtag -F TAG HEAD MERGE TO B1 SandiaModelsDocs

Note: If you do this routinely immediately after the update and then find a mis-
take in the merge (such as neglecting to have “update -d -P” in your .cvsrc file
or forgetting to use “-dP” in the update command) you will be unable to re-do
the update operation to correct the mistake because the tag will no longer be
in the right place. It is therefore essential that you only move the tag when you
are convinced that the merge was done correctly and you no longer need the
previous merge point to be tagged. This has happened to team members on
occasion and it is tedious to correct it, so you should double and triple check
that your merge is complete before moving the tag on the HEAD branch.

(c) Fix conflicts.
Again, this is the step that requires careful work, but the steps are exactly the
same as the first time you did it on the branch. See above for details.

33

XyceTM Developer Guide CVS Directions

(d) Commit the merged code The commands to do this are exactly the same as
they were the first time you merged. See above for the exact commands.

(e) Update the tag on the branch
After you commit the merged code to the branch, move the tags on the branch
that mark the post-merge point:
cvs rtag -F -r BRANCH B1 TAG B1 MERGE FROM HEAD Xyce

cd src/DeviceModelPKG/SandiaModels

cvs rtag -F -r BRANCH B1 TAG B1 MERGE FROM HEAD SandiaModels

cvs rtag -F -r BRANCH B1 TAG B1 MERGE FROM HEAD SandiaModelsDocs

(f) Now update the branch to remove the sticky tags
cvs -A update -dP -jBRANCH B1

8. If more work is to be done on the branch then go to step 4, otherwise go to the next
step.

9. When the work on the branch is complete and it is time to migrate the work back to
the main line, merge changes from the branch to the HEAD.

In a directory with the HEAD version of Xyce checked out:

cvs update -dP -jBRANCH B1

10. Fix the conflicts and commit

11. Tag the branch as dead ended. This is not essential, but sometimes comes in handy.
Tag the branch code with the special tag: TAG BRANCH B1 END OF LINE:

In the directory with the BRANCH B1 checkout:

cvs rtag -r BRANCH B1 TAG BRANCH B1 END OF LINE Xyce

cd src/DeviceModelPKG/SandiaModels

cvs rtag -r BRANCH B1 TAG BRANCH B1 END OF LINE SandiaModels

cvs rtag -r BRANCH B1 TAG BRANCH B1 END OF LINE SandiaModelsDocs

Doing this makes sure that anyone viewing the graphical representation of the re-
vision tree (as, for example, through bonsai) will see the end of line marker on the
branch and know that the branch is no longer active.

34

3. CVS Checkin
Procedure

Chapter Overview
This chapter contains a pre-checkin checklist for Xyce.

35

XyceTM Developer Guide CVS Checkin Procedure

3.1 Guidelines
As a means of ensuring the integrity of the Xyce code repository, the Xyce developers are
encouraged to do everything reasonably possible to make sure that any changes they’ve
made to the code do not adversely affect the quality of the code and do not impede the
other developers. In general always remember:

� This is a group project, so it is critical that you don’t interfere with the work of others.

� Anytime a code checkin has an adverse effect, it will present an opportunity cost to
the group. Once the code in the repository is broken, it causes confusion among
all the developers. If developer ‘A’ breaks the code, developer ‘B’ may spend a
inordinate amount of time, incorrectly assuming the code failure is their fault. This
can happen even when the original bug is minor.

Thus, developers should follow the checklist listed below when checking in code.

The suggested good-citizen rules may be broken into two categories: 1) pre-check-in and
2) post-check-in. The “pre-check-in” tasks are performed in the developer’s “sandbox”
where the code is edited, etc. The “after check-in” tasks are performed in a completely
separate mirror of what’s in the repository. Here’s the suggested process:

1. Develop a test for feature and/or bugfix. Do this before developing code. This is
part of the philosophy of test-driven development. The passage of this test will be the
criteria for declaring a code feature completed. For more on bug and issue resolution,
see chapter 4.

2. In the developer’s sandbox (i.e., development directory), edit the code, manually test
it, etc.

3. In a build directory, build and test the code using the source from step 2. Please note
that if any development has been done which the developer believes may require a
special build/platform combination, those should be tested. For example, if devel-
opment has been done which may impact the MPI-enabled portion of the code, an
MPI-enabled build and successful regression test with a parallel run should be per-
formed. Another example, if the developer has modified any code within an #ifdef

block, the code should be compiled and tested with this #ifdef enabled and also
with this block disabled.

36

3.1 Guidelines XyceTM Developer Guide

4. Iterate through items 2 and 3 as needed until the test(s) created for this feature to
pass.

5. In a high-level directory (top of the Xyce source, usually), issue a “cvs commit” with
no other arguments. This assures that all the files you have changed get committed,
regardless of their package subdirectory.

6. After performing the commit, go to a “pristine” build-and-test directory (i.e. one where
you have a separate CVS checkout in which you have not been editing code) and
perform a “cvs update” to pull in the newly committed code.

7. In a build directory, do a completely default build using the code that got updated in
6.

8. Run the regression test suite on this executable. This can be done with the run xyce regression
script in Xyce Regression/TestScripts

9. Any new failures might require debugging back in the development directory (i.e.
“goto 2”).

The purpose of checking out in a pristine directory when you’re done is to make sure
you’ve actually committed all the necessary changes. This is especially important if you’ve
added or removed files; if you forgot to issue a cvs add command then your code will build
properly in your original development directory, but not in your pristine directory. Taking this
step assures that you will catch and correct the error before other developers start getting
build failures.

Here’s an example shell session for this process:

> #The "~/Xyce_Development" directory is our development sandbox

> cd ~/Xyce_Development/Xyce/src/SomePackage/src

> #the point below is that you’re editing some source code

> emacs/vi/gvim/’cat > ’/ed/whatever SomeSource.C

> cd ~/Xyce_Development/build_dirs/some_obscure_build

> ../../Xyce/configure --some-obscure_option --enable-complete_hosing

> make

> run_xyce_regression (see Xyce_Regression/TestScripts)

> cd ~/Xyce_Development/Xyce

> cvs commit

> # now test it in a pristine checkout

> cd ~/Xyce_Build_and_Test/Xyce

37

XyceTM Developer Guide CVS Checkin Procedure

> cvs update

> cd ~/Xyce_Build_and_Test/build_dirs/default_build

> ../../Xyce/configure

> run_xyce_regression

Again, this process should help ensure the integrity of the repository, provide for fewer
nightly test failures and allow the team to continue to perform at a high-efficiency level.

38

4. Bug Resolution
Checklist

Chapter Overview
This chapter contains a checklist for resolving Xyce bugs and issues.

39

XyceTM Developer Guide Bug Resolution Checklist

4.1 Preface
This document contains a checklist for processing bugs and/or issues for the Xyce Parallel
Circuit simulator. Xyce development issues are tracked using bugzilla. Currently, there are
two different bugzilla servers, one on the Sandia Restricted Network (SRN) and the other
on the Sandia Open Network (SON):

http://charleston.sandia.gov/bugzilla/ SRN

http://joseki.sandia.gov/bugzilla/ SON

In general, any bug that contains export-controlled information will be on the SRN version
of bugzilla. Most other bugs should go into the SON version.

Bug/issue resolution is a very important part of Xyce code development and it is crucial
that resolved bugs be well documented and that the resolution of any bug follow a standard
process. Doing so helps insure code quality, and it insures that code development is well
documented for outside auditors.

4.2 Checklist
This checklist provides guidance on documenting and closing bugs assigned to a devel-
oper in Bugzilla. A related flow chart is shown in figure 4.1. The process for fixing and
documenting bugs can be thought of as being part of the release process, which is de-
scribed in chapter 10.7.1.

1. When a bug is entered into bugzilla it will either start out in the UNCONFIRMED state, or
the NEW state. Bugs submitted by customers are usually entered in the UNCONFIRMED

state, and so the first step is to confirm the bug to change its state to NEW. This is
usually done by the QA lead. Confirming a bug means that the person doing so
actually verifies that the bug exists and is reproducible.

2. If the bug is in the NEW state, the QA lead may assign the bug to another developer.
Once the bug is assigned, the bug assignee needs to formally “accept” the bug AS
SOON AS POSSIBLE. Doing so lets the bug reporter know that the bug has been
recognized and acknowledged. Accepting a bug does not necessarily mean that it
will be fixed immediately. Instead, it means that the bug has been acknowledged and

40

4.2 Checklist XyceTM Developer Guide

is in the system. It is really important that bugs be accepted in a timely manner, as
doing so requires very little work.

3. At this stage, many bugs may, for one reason or another, be closable immediately.
For example, it may be immediately apparent that the submitted bug is due to a
netlisting error rather than a source code error. There are three primary resolutions
for bugs of this sort:

(a) RESOLVED WONTFIX: If the issue is a feature request that we have no intention of
implementing, or if the reporter has reported a feature as if it were a bug, this is
the resolution to use. Generally, setting a bug to this resolution is saying “Yes,
we know that, and it’s going to stay that way.”

(b) RESOLVED INVALID: This resolution is for issues where the user has a netlisting
error or other issue that is not actually a bug in Xyce.

(c) RESOLVED WORKSFORME: This signifies that the bug assignee (or QA contact) is
unable to reproduce the error reported by the bug reporter.

If the bug is worthy of one of these summary resolutions, the bug should be marked
as such as early as possible. If a bug is marked WONTFIX, INVALID, or WORKSFORME,
there should be clear documentation entered into bugzilla as to why it is being marked
this way, and proceed to step 8.

4. At this stage (after accepting the bug, and after determining that it is NOT a RESOLVED

WONTFIX) the bug assignee needs to do the work to fix the issue, as it fits the project
schedule and priorities. If possible, the bug assignee should attempt to follow a “test-
driven development” model:

(a) Create a simple test case that reproduces the error reported in the bugzilla
item. You will use this test case to verify that your bug is fixed, and will also use
it as a regression test to assure that this bug does not get reintroduced by later
development. This test case will fail when run with unmodified code.
If the bug was input by a customer, there may be a customer-submitted circuit
that demonstrated the original bug, and sometimes such customer-submitted
circuits can be used as certification tests. However, it is usually better prac-
tice to simplify customer-submitted test netlists, as they can be unneccessarily
complex. Ideally, tests which certify a bug should be the absolute minimum com-
plexity required to demonstrate the bug. Doing this simplification substantially
reduces the testing load. Additionally, by simplifying the test circuit, it is much
easier to understand the true nature of the bug. Developing a simple, focused
test case that targets the bug under consideration saves time and improves code
quality in the long run.

41

XyceTM Developer Guide Bug Resolution Checklist

(b) Fix the code so that your new test case runs properly.

(c) Verify that the fixed code solves the customer’s original problem, too. If you
properly diagnosed the problem and developed your test case correctly, this
should involve little more than running the fixed code on the customer’s problem.
If it doesn’t solve the customer’s problem completely, then you have to diagnose
the additional issues, going back to step a.

(d) Add your new test case (or test cases) to the regression suite
In some rare cases, it is not possible to develop a test for a bug. If a test
cannot be developed for the bug, then this should be documented in the bugzilla
database and commented on in:

Xyce Regression/Xyce SandiaRegression/Netlists/Certification Tests/

BUGS NOT NEEDING TEST CASES

then proceeded to step 8.
Note that “it is difficult to produce a test case for this bug” is not a good reason to
enter it into BUGS NOT NEEDING TEST CASES. There are only a few good
reasons for a bug to be entered in this file. An example of a valid reason for
being there would be when an existing test case begins failing on some plat-
form; the test case for the fix is that the existing test case stops failing, so a
new one is not needed. Other bugs that have legitimate reasons to be in the
BUGS NOT NEEDING TEST CASES file are those that changed only some in-
ternal handling, and which have no externally verifiable change on Xyce output.

5. If the bug’s test case does not involve any export-controlled material, then com-
mit the bug to the Xyce Regression repository, which resides on the SON. If the
test case involves any export controlled material, then it should be placed in the
Xyce SandiaRegression repository instead, which resides on the SRN.

6. Most tests should be included as part of automated valgrind testing. In addition to
passing the test as designed, such tests need to also pass valgrind in order to be
marked “fixed”. To add a test to automated valgrind testing requires that the tag
valgrind be added to that tests tags file. Do not add long, slow tests to valgrind
testing.

7. Verify that the new test is run in nightly or weekly testing as appropriate, and ensure
that any needed tags are set properly in the test’s “tags” file and “options” file. If the
“tags” and “options” files are not set up, then a test will be run in all environments.
Generally, for a test to be run nightly, it needs to be an inexpensive test that runs in
seconds to minutes (preferably seconds). Long tests, or very large tests requiring a
lot of memory should be consigned to weekly testing.

42

4.2 Checklist XyceTM Developer Guide

8. Comment on this bug in the bugzilla database including reference to any tests that
were added to the regression suite. Then close the bug as appropriate, if the test
reports (as well as manual testing) indicate that the tests associated with this feature
are consistently passing. When you have committed your fixed code to the repository,
mark the bug RESOLVED FIXED.

9. Run the test suite and make sure that your new test case runs and passes. Wait for
an overnight nightly test run and make sure that your test passes on all platforms. At
this point you may mark your bug RESOLVED VERIFIED.

10. You or the QA lead must now Assign another developer to verify that the test does
indeed test the feature in the bug report in an appropriate manner, and does pass
on all platforms. This developer should be entered into the bug as the “QA Contact.”
When this person performs the verification, he or she should mark the bug CLOSED.

43

XyceTM Developer Guide Bug Resolution Checklist

Figure 4.1. Issue Tracking Flowchart.

44

5. Customer Support

Chapter Overview
This chapter describes activities related to customer support. It includes a checklist that
should be followed by Xyce developers.

45

XyceTM Developer Guide Customer Support

5.1 Guidelines
This checklist provides guidance on collecting customer data (i.e. feedback and future
requirements) and using that data to guide Xyce development.

1. Collect the customer’s request through direct consultation with the customer. Detail
is important at this stage. If the customer is reporting a bug, then try to gather circuits
that demonstrate the bug. If the customer is requesting a new feature, device model,
analysis type, then try to understand how or the customer plans to use this feature.

2. Document the customer’s request. Since Xyce is a multi-developer project, the best
avenue to documenting a bug or new development request is to enter the request
into Bugzilla (charleston.sandia.gov/bugzilla). Despite the name, Bugzilla is used to
track the development of new features and reported bugs. In the new Bugzilla entry,
describe what the customer’s requirements are and add in any deadlines or time
constraints if they are known. You may also include the customer in the cc list so
that they are updated on the status of this issue as it progresses. Also, any circuit
files, meeting notes, diagrams etc. can be attached to the Bugzilla entry to further
document the request.

3. If Bugzilla is not an appropriate means to document the request – for example, the
development goals are more research focused and may change, then the customer’s
input should still be recorded. In such cases, a Xyce developer may attend project
meetings or have one to one meetings with the customer to better define Xyce’s
role in a project. Here, meetings notes maintained in a notebook should document
the customer’s needs. If or when customer requirements solidify then they can be
entered into Bugzilla.

4. Once a change or new feature is implemented for a customer, it is important for the
Xyce developer to ensure that the new feature works as the customer desired. If the
feature has been recorded in bugzilla (and most should be), the “bug checklist” given
in chapter 4 should be followed, which should include certification tests which prove
that the feature is implemented and working correctly.

5. Continued interaction and feedback with the customer should continue after feature
requests have been implemented, to insure that the customer is satisfied with the
result. If not, then the Xyce developer should repeat the above process.

46

6. Xyce C++ Style
Guidelines

Chapter Overview
This chapter contains C++ coding guidelines to be used by Xyce developers. These guide-
lines should be followed in the creation of Xyce source code.

47

XyceTM Developer Guide Xyce C++ Style Guidelines

6.1 Preface
This chapter is intended to document the C++ coding style used in source code level
development of the Xyce parallel circuit simulator. While there are many references, this
chapter has primarily been inspired by reference [3].

Unfortunately coding standards and guidelines can often start ”religious wars” among code
developers. However, setting consistent standards is critical in production codes, which
can often have many different developers. As of this writing, Xyce has had over 20 unique
developers, and will likely have more in the future.

Most of the code guidelines in this chapter were developed at the beginning of the Xyce
project in 1999, and were based on commonly used style guidelines of the time. Unfortu-
nately, the original Xyce style guide no longer exists, and we have had to reverse engineer
this one, so it may not map perfectly to the original.

Long-term Xyce developers have usually followed these style guidelines closely. In gen-
eral, if you follow the rule that you code to the pre-existing style of the file you are working in,
you will wind up following much of what is documented here. As Xyce is a mature project,
most developers will tend to work in files that are old, and already have a pre-existing style
to them.

Note that when a code team adopts a coding style, the important thing is not that it perfectly
please all the developers (as that would be impossible), but rather that it be something
everyone is willing to live with and actually practice. Ultimately, the goal is for any Xyce
developer to be able to open any Xyce source file, and have it look familiar.

In general keep please the following in mind:

� This is a group project. As such, at some point, someone other than yourself will
need to understand, and possible debug or rewrite, code that you have written. This
is true of everyone who writes source code in Xyce.

� Code refactors, new solvers, etc., are a fact of life on a large project. So is staff
turnover.

� It is your responsibility to produce source code that is clear and comprehensible to
other developers.

48

6.2 References XyceTM Developer Guide

6.2 References
Good books to use for C++ style (and other technical guidance) include the following Scott
Meyers books: “Effective C++” [4], “More Effective C++” [5] and “Effective STL” [6]. Addi-
tionally for more style suggestions, see [7], [8]. [9], and [10],

49

XyceTM Developer Guide Xyce C++ Style Guidelines

6.3 Naming convention

6.3.1 Variable names must be in mixed case starting with
lower case.

For example:

line, savingsAccount

This is common practice in the C++ development community, and makes variables easy to
distinguish from types, and effectively resolves potential naming collision as in the decla-
ration Line line;

6.3.2 Named constants (including enumeration values)
must be all uppercase using underscore to separate
words.

For example:

MAX ITERATIONS, COLOR RED, PI

This is common practice in the C++ development community.

6.3.3 Avoid Using Preprocessor Constants. Use
Enumerated types instead

In general, the use of preprocessor constants should be minimized, as they are invisible in
a debugger. When possible, enumerated types instead.

50

6.3 Naming convention XyceTM Developer Guide

6.3.4 Names representing methods or functions must be
verbs and written in mixed case starting with lower
case.

For example:

getName(), computeTotalWidth()

This is common practice in the C++ development community. This is identical to variable
names, but functions in C++ are already distinguishable from variables by their specific
form.

6.3.5 Private class variables and functions should have
underscore suffix.

For example:'

&

$

%

class N DEV Resistor

{
public:

N DEV Resistor (); // constructor

virtual ~N DEV Resistor (); // destructor

private:

void calculateResistance ();

public:

string name;

private:

double resistance ;

}

Apart from its name and its type, the scope of a variable is its most important feature.
Indicating class scope by using underscore makes it easy to distinguish class variables
from local scratch variables. This is important because class variables are considered to
have higher significance than method variables, and should be treated with special care by

51

XyceTM Developer Guide Xyce C++ Style Guidelines

the programmer. A side effect of the underscore naming convention is that it nicely resolves
the problem of finding reasonable variable names for setter methods and constructors:�

�

�

�
void setDepth (int depth)

{
depth = depth;

}

It should be noted that scope identification (via underscores) in variables has been a con-
troversial issue for quite some time. It seems, though, that this practice now is gaining
acceptance and that it is becoming more and more common as a convention in the profes-
sional development community.

6.3.6 All names should be written in English.

For example:

fileName; // NOT: filNavn

English is the preferred language for international development.

6.3.7 Variables with a large scope should have long
names, variables with a small scope can have short
names.

Never, ever use single characters for variable names, unless they are very local indexing
integers isolated to a few lines of code. This is extremely important, as single character
names are almost impossible to search for in a large file.

In general, always ask the question, “what would happen if I grep’d for this variable?”. If
grepping for a variable yields most of the file, then you need a more unique name.

6.3.8 The name of the object is implicit, and should be
avoided in a method name.

For example:

52

6.3 Naming convention XyceTM Developer Guide

line.getLength(); // NOT: line.getLineLength();

The latter seems natural in the class declaration, but proves superfluous in use, as shown
in the example.

6.3.9 The terms get/set must be used where an attribute
is accessed directly.

For example:

employee.getName(); // NOT: employee.pleaseGiveMeTheName();

employee.setName(name); // NOT: employee.changeName(name);

matrix.getElement(2, 4); // NOT: matrix.retrieveElement(2,4);

matrix.setElement(2, 4, value); // NOT: matrix.saveElement(2,4);

This is common practice in the C++ development community. In Java this convention has
become more or less standard.

6.3.10 The term compute can be used in methods where
something is computed

For example:

valueSet->computeAverage();

matrix->computeInverse()

Give the reader the immediate clue that this is a potential time consuming operation, and
if used repeatedly, he might consider caching the result. Consistent use of the term en-
hances readability.

6.3.11 The term find can be used in methods where
something is looked up

For example:

53

XyceTM Developer Guide Xyce C++ Style Guidelines

vertex.findNearestVertex();

matrix.findMinElement();

Give the reader the immediate clue that this is a simple look up method with a minimum of
computations involved. Consistent use of the term enhances readability.

6.3.12 The term initialize can be used where an object or
a concept is established.

For example:

printer.initializeFontSet();

The American initialize should be preferred over the English initialise. Abbreviation init
should be avoided. For a related issue, see section 6.7.

6.3.13 Plural form should be used on names
representing a collection of objects.

For example:

vector <Point> points;

Enhances readability since the name gives the user an immediate clue of the type of the
variable and the operations that can be performed on its elements. Additionally, the plural
form should be avoided when the name does not represent a collection of objects.

6.3.14 The prefix “is” should be used for boolean
variables and methods.

For example:

54

6.3 Naming convention XyceTM Developer Guide

isSet, isVisible, isFinished, isFound, isOpen

This is common practice in the C++ development community and partially enforced in Java.
Using the is prefix solves a common problem of choosing bad boolean names like status
or flag. isStatus or isFlag simply doesn’t fit, and the programmer is forced to choose more
meaningful names. There are a few alternatives to the is prefix that fits better in some
situations. These are the has, can and should prefixes:

bool hasLicense();

bool canEvaluate();

bool shouldSort();

6.3.15 Complement names must be used for complement
operations

For example:

get/set

add/remove

create/destroy

start/stop

insert/delete

increment/decrement

old/new

begin/end

first/last

up/down

min/max

next/previous,

old/new

open/close

show/hide

suspend/resume

etc.

Reduce complexity by symmetry.

55

XyceTM Developer Guide Xyce C++ Style Guidelines

6.3.16 Abbreviations in names should be avoided,
except when the word is primarily known that way

For example:

computeAverage(); // NOT: compAvg();

There are two types of words to consider. First are the common words listed in a language
dictionary. For example, always write:

command instead of cmd
copy instead of cp
point instead of pt
compute instead of comp
initialize instead of init
etc.

Then there are domain specific phrases that are more naturally known through their ab-
breviations/acronym. These phrases should be kept abbreviated. For example, always
write:

html instead of HypertextMarkupLanguage
cpu instead of CentralProcessingUnit
etc.

6.3.17 Negated boolean variable names must be avoided

For example:

bool isError; // NOT: isNoError

bool isFound; // NOT: isNotFound

if (!isError) // easy to understand

if (!isNotError) // less easy to understand

56

6.3 Naming convention XyceTM Developer Guide

The problem arises when such a name is used in conjunction with the logical negation op-
erator as this results in a double negative. It is not immediately apparent what !isNotFound
means.

6.3.18 Functions (methods returning something) should
be named after what they return and procedures
(void methods) after what they do

This increases readability, and makes it clear what the unit should do and especially all the
things it is not supposed to do. This again makes it easier to keep the code clean of side
effects.

57

XyceTM Developer Guide Xyce C++ Style Guidelines

6.4 File, Function and Class Headers

Xyce uses standard headers for files, functions and classes. These must be used consis-
tently, and the various metadata fields (creator, date, etc.) need to be correctly filled out.
These can be found in the source code repository, in Xyce/src/headers. Examples of each
are in the following subsections.

6.4.1 C++ File Header

The file header is particularly important, as it contains fields that are modified by CVS.
These fields are “Revision Number”, “Revision Date”, and “Current Owner”. It is not nec-
essary to change these fields manually, as CVS will do this automatically.

58

6.4 File, Function and Class Headers XyceTM Developer Guide

//---

// Copyright Notice

//

// Copyright (c) 2000, Sandia Corporation, Albuquerque, NM.

//---

//---

// Filename : $RCSfile$

//

// Purpose : Describe the purpose of the contents of the file.

// If the contains the header file of a class,

// provide a clear description of the nature of

// the class.

//

// Special Notes : Specify any "hidden" or subtle details of the

// class here. Portability details, error handling

// information, etc.

//

// Creator : {Name of File Creator}, {Affiliation}
//

// Creation Date : {mm/dd/yy}
//

// Revision Information:

// ---------------------

//

// Revision Number: $Revision$

//

// Revision Date : $Date$

//

// Current Owner : $Author$

//---

59

XyceTM Developer Guide Xyce C++ Style Guidelines

6.4.2 Function Header
//---

// Function : N DEV CCCS::factory

// Purpose :

// Special Notes :

// Scope : public

// Creator : {Name of Function Creator}, {Affiliation}
// Creation Date : {mm/dd/yy}
//---

6.4.3 Class Header
//---

// Class : N DEV AsrcInstance

// Purpose :

// Special Notes :

// Creator : {Name of Class Creator}, {Affiliation}
// Creation Date : {mm/dd/yy}
//---

60

6.5 Forward Declarations XyceTM Developer Guide

6.5 Forward Declarations
Use forward declarations as much as possible. This will reduce compile times and de-
pendencies between files. For a full explanation of this, see Scott Meyers’ books [4], [5].
In general, if a header file only contains pointers or references to a class, rather than an
explicit declaration, then the header only needs minimal information and can be forward
declared. For example, if you have a pointer to the class “myClass” in a header file then
use:

class myClass;

instead of

#include<myClass.h>

in the header file. The include statement will still be needed in whichever source file the
pointer gets allocated.

6.5.1 iostream Forward Declarations

There is a special case of forward declaration, for the C++ standard library IO stream
classes. To forward declare, use the alternate include statement:

#include <iosfwd>

instead of:

#include <iostream>

61

XyceTM Developer Guide Xyce C++ Style Guidelines

6.6 Pointers vs. References
Marshall Cline: “Use references when you can, and pointers when you have to.” Frequently
Asked Question 8.6 in [11].

In general, if it is possible to use a reference instead of a pointer, then it is always the better
choice, and will result in code that is more memory-safe. (references cannot be deallocated
or reassigned) For a complete discussion of this, see Scott Meyers’ books [4], [5], as well
as Marshall Cline’s C++ FAQs [12].

62

6.7 Late class/package initialization is very important! XyceTM Developer Guide

6.7 Late class/package initialization is
very important!

In a complex code it is best to avoid initializations in class constructors. This is be-
cause many classes are interdependent and it is easy to have circular dependencies.
Also, classes are not always guaranteed to be allocated in a particular order. So, it is
best to delay initialization of member objects until later, when the entire code is ready
to do so. In Xyce, you can see this in the functions N CIR Xyce::doAllocations and
N CIR Xyce::doInitializations.

63

XyceTM Developer Guide Xyce C++ Style Guidelines

6.8 Avoid C-style raw arrays. Use the
Standard Library instead

The C++ standard library (formerly called the standard template library, or STL) supports
many types of container objects such as stl::vector, stl::list, stl::map, etc. Each of these is
much safer and more convenient to use than raw arrays. So, for example use:

vector<double> stlExampleVector;

stlExampleVector.resize(100,0.0);

instead of:

double rawArrayExample[100];

In general raw arrays are much less safe and will lead to code that is more fragile than if
you use STL equivalents.

64

6.9 Avoid Raw Pointers XyceTM Developer Guide

6.9 Avoid Raw Pointers
Raw pointers can be dangerous. Avoid these as much as possible, by either using STL,
reference-counted pointers (RCPs), or both in combination.

Occasionally, when using legacy APIs, it may seem that raw pointers are necessary to
support the API function calls. However, there is nearly always a workaround. Some
example workarounds are given in the following subsections.

Note, for efficiency purposes, the Xyce device package (as of 2009) now uses a lot of raw
pointer-based loads. It is easier to optimize cache memory usage this way. However, all
the raw pointers are extracted from STL and Epetra objects to maintain memory safety.
This is one exception where raw pointers can be OK.

6.9.1 Interfacing with legacy code that requires raw
pointers

It is common for a legacy library (particularly one written in C) to expect function arguments
that are raw pointers to doubles or chars. Using STL libraries, you can always extract the
raw pointer from the STL object.

String Example

string name("eric");

// in this case the legacy library wants something like:

// doSomethingLegacyLibrary(char *, int size);

doSomethingLegacyLibrary(name.c str(), name.size());

Double-precision array example

vector<double> exampleVector(100,1.0);

// in this case the legacy API wants this:

//doSomethingLegacyLibrary(const double*, int size);

doSomethingLegacyLibrary(&(exampleVector[0]), exampleVector.size());

65

XyceTM Developer Guide Xyce C++ Style Guidelines

This is described in some detail in Meyers [4].

6.9.2 RCPs

Reference counted pointers (also known as smart pointers) should be used when two
classes have a persisting relationship with each other with respect to the data being passed
as a pointer. If two classes do not have a persisting relationship, it is much better to use
a reference in the argument list. Xyce uses the Trilinos Project’s Teuchos::RCP class for
reference counted pointers. The main advantage to using reference counted pointers is
that each pointer keeps track of how many references there are to it. When that reference
count goes to zero, it deletes itself, thereby preserving memory and removing deletes
from the code. It is a form of automatic memory management and it avoids many of the
common memory-leak mistakes in writing C++ code. Reference counted pointers are also
very useful when creating new objects since you don’t have to figure out when to delete
them, they take care of themselves. The following examples demontrate its use.

RCP Example

#include <Teuchos_RCPDecl.hpp>

using Teuchos::RCP;

using Teuchos::rcp;

// Declare the type for arrayPtr as a Reference Counted Pointer.

RCP< std::vector<double> > arrayRCPtr;

// Wrap a "new" call with rcp to safely handle memory.

arrayRCPtr = rcp(new std::vector<double>);

// Access the underlying object as normal for a pointer.

int size = arrayRCPtr->size();

// Pass them to functions by copying, just like pointers

int result = someFunction(arrayRCPtr);

// Get the underlying pointer out:

std::vector<double>* arrayPtr = arrayRCPtr.get();

// Check if a RCP is null:

if (arrayRCPtr == Teuchos::null) {

66

6.9 Avoid Raw Pointers XyceTM Developer Guide

std::cout << "Error, arrayRCPtr is null!" << std::endl;;

}

// Dereference a refcounted pointer just like normal:

int result = someOtherFunction(*arrayRCPtr);

// Create a reference to the underlying object just like normal:

std::vector<double>& array = *arrayRCPtr;

// If you have a raw pointer and you need to pass it to a function

// that takes a RCP, but you don’t want the object to get

// deleted, then use the extra "false" argument to rcp which tells

// it to leave the pointer alone when the reference count goes to

// zero:

N_LAS_Vector* tempVectorPtr;

tempVectorPtr = rcp(tempVectorPtr, false);

int result = someNewFunction(tempVectorPtr);

// If you need to pass a raw pointer to a function, the syntax gets a

// little different. The "*" de-references the pointer and the "&"

// gets its address.

int result = someOldFunction(&*arrayRCPtr);

// One of the main advantages of reference counted pointers is in the

// use of factories. These are classes or functions that create new

// objects for you based on parameter lists or other input

// specifications. They are particularly useful for complex objects.

// In this case, you have allocated new memory for the new object,

// but you don’t have to delete it because the reference counted

// pointer will take care of that for you.

RCP< ComplexObject > complexObjectPtr =

createNewComplexObject(paramList);

67

XyceTM Developer Guide Xyce C++ Style Guidelines

6.10 Files

6.10.1 C++ header files should have the extension .h.
Source files should have the extension .C

MyClass.C, MyClass.h

6.10.2 A class should be declared in a header file and
defined in a source file where the name of the files
match the name of the class

MyClass.h, MyClass.C

This makes it easy to find the associated files of a given class. An obvious exception is
template classes that must be both declared and defined inside a .h file.

6.10.3 All definitions should reside in source files
class MyClass

public:

int getValue () return value ; // NO! ...

private:

int value ;

The header files should declare an interface, the source file should implement it. When
looking for an implementation, the programmer should always know that it is found in the
source file. The obvious exception to this rule is of course inline functions that must be
defined in the header file.

68

6.10 Files XyceTM Developer Guide

6.10.4 File content must be kept within 80 columns

Source file text must be within a width of 80 characters, with only very rare exceptions. Most
terminal windows default to this width, and 80 columns is a common dimension for editors,
terminal emulators, printers and debuggers, and files that are shared between several
people should keep within these constraints. It improves readability when unintentional
line breaks are avoided when passing a file between programmers.

6.10.5 Never Use Tabs

There should be no tabs used, because many editors assume different indent levels for
tabs. All spaces should be true spaces. Editors (like Vim and emacs) can be configured to
automatically do this. Vim and emacs configurations are described in the next two sections.

Vim editor configuration

The “vim” editor is an update to the standard Unix “vi” editor, and stands for “vi improved”.
It is backward compatible with “vi” and has a lot of useful extensions. Most Unix and
Linux machines these days will have “vim” instead of “vim”, and the /usr/bin/vi command is
usually softlinked to an installation of “vim”. It is rare to find the original “vi” anymore.

If you use the “vim” editor, you can enforce tabbing by doing the following [13], [14]. Add
the following commands to your .vimrc file:

set expandtab
set tabstop=2
set shiftwidth=2

The first command (expandtab) will automatically force any uses of the “tab” key to insert
spaces instead. The second command (tabstop) will set the number of spaces used for
each tab. The last command (shiftwidth) will force the editor to automatically indent to two
characters.

emacs editor configuration

Emacs has “C” and “C++” modes that automatically enable certain behaviors when emacs
detects you’re editing files of that type. Unfortunately, by default it uses GNU coding stan-
dards that are not entirely compatible with the Xyce style. The most obvious difference

69

XyceTM Developer Guide Xyce C++ Style Guidelines

between Xyce and GNU coding standards is that GNU standards indent the opening curly
braces of a block, and further indent the contents of the block. This behavior is easily set
to the Xyce style by addition of a few lines to the file “.emacs” in your home directory.

(require ’cc-mode)

(c-set-offset ’substatement-open 0)

(c-set-offset ’arglist-intro 3)

(setq-default indent-tabs-mode nil)

The first guarantees that the “C” mode is loaded upon launching emacs (instead of on de-
mand), and the subsequent lines change internal parameters of the mode. The “substatement-
open” line is the one that disables indentation of the curly braces. The “arglist-intro” line
sets the indentation of the first line of argument lists of function calls, and the last disables
use of tabs for indentation. See the documentation for “CC mode” in the Emacs Info tool
(Control-H i to enter Info, then m cc<tab><enter> to locate and select the “CC Mode” info).

6.10.6 The incompleteness of split lines must be made
obvious

totalSum = a + b + c +

d + e;

function (param1, param2,

param3);

setText ("Long line split"

"into two parts.");

for (int tableNo = 0; tableNo < nTables;

tableNo += tableStep)

{
...

}

Split lines occurs when a statement exceed the 80 column limit given above. It is difficult to
give rigid rules for how lines should be split, but the examples above should give a general
hint. In general:

70

6.10 Files XyceTM Developer Guide

� Break after a comma.

� Break after an operator.

� Align the new line with the beginning of the expression on the previous line.

71

XyceTM Developer Guide Xyce C++ Style Guidelines

6.11 Include Files and Include
Statements

6.11.1 Header files must contain an include guard
#ifndef COM COMPANY MODULE CLASSNAME H

#define COM COMPANY MODULE CLASSNAME H

...

#endif

Here is a specific example:

#ifndef Xyce N DEV Resistor h

#define Xyce N DEV Resistor h

....

#endif

The construction is to avoid compilation errors. The name convention resembles the loca-
tion of the file inside the source tree and prevents naming conflicts.

6.11.2 Include statements should be sorted and grouped

Sorted by their hierarchical position in the system with low level files (standard includes)
included first. Leave an empty line between groups of include statements. If this is a
header file, then have the foward declarations last. Each block should have comments to
label them (Standard Includes, Xyce Includes, Forward Declarations).

// ---------- Standard Includes ----------

#include <vector>

#include <string>

#include <map>

#include <set>

72

6.11 Include Files and Include Statements XyceTM Developer Guide

// ---------- Xyce Includes ----------

#include <N UTL Misc.h>

#include <N UTL OptionBlock.h>

#include <N IO PkgOptionsMgr.h>

#include <N DEV Device.h>

#include <N DEV SolverState.h>

#include <N DEV ExternData.h>

#include <N DEV DeviceOptions.h>

...

// ---------- Forward Declarations ----------

class N DEV DeviceBuilder;

class N DEV DeviceInstance;

class N DEV ModelBlock;

class N DEV InstanceBlock;

class N UTL OptionBlock;

...

In addition to showing the reader the individual include files, this also gives an immedi-
ate clue about the modules that are involved. Include file paths must never be absolute.
Compiler directives should instead be used to indicate root directories for includes.

6.11.3 Include statements must be located at the top of a
file only

This is common practice in C and C++ codes. Avoid unwanted compilation side effects by
”hidden” include statements deep into a source file. Also, include statements should only
be for true header files. (ie, NEVER include a *.C file).

73

XyceTM Developer Guide Xyce C++ Style Guidelines

6.12 Types

6.12.1 Types that are local to one file only can be
declared inside that file

This enforces information hiding.

6.12.2 The parts of a class must be sorted public,
protected and private

All sections must be identified explicitly. Not applicable sections should be left out.

The ordering is ”most public first” so people who only wish to use the class can stop reading
when they reach the protected/private sections.

6.12.3 Type conversions must always be done explicitly:
Use C++-style Casts

C++ has many options for casting, more so than C. dynamic cast, static cast, etc. These
can be necessary to convert (for example) between pointers to base class objects to de-
rived class objects, or from one derived object to another. However, casting is also used
for much less exotic purposes as well, such as converting a double to an int, or an int to a
char.

When converting (for example) from a double to an int, use this format:

double doubleExample = 10.0;

int intExample = static cast<int> (doubleExample);

Do NOT do a C-style cast:

double doubleExample = 10.0;

int intExample = (int) (doubleExample);

74

6.12 Types XyceTM Developer Guide

Also do NOT do this (a fully implicit cast):

double doubleExample = 10.0;

int intExample = doubleExample;

The main reason for avoiding C-style casts is that they are hard to search for and/or grep.
Also, using C++ style casting helps reinforce the other types of casting available in C++,
which are very powerful. Also, implicit casting makes it very easy to not notice that you are
even doing casting at all, which can lead to errors. By using C++ casting, the programmer
indicates that he is aware of the different types involved and that the mix is intentional. This
is covered in a lot of detail in Meyers [4].

It is possible to using the gcc compiler warnings to prevent the use of C-style casts. Simply
add -Wold-style-cast to CXXFLAGS, and the compiler will catch all instances of old style
casts.

75

XyceTM Developer Guide Xyce C++ Style Guidelines

6.13 Variables

6.13.1 Variables should be initialized where they are
declared

This ensures that variables are valid at any time. Sometimes it is impossible to initialize a
variable to a valid value where it is declared:

int x, y, z;

getCenter(&x, &y, &z);

In these cases it should be left uninitialized rather than initialized to some phony value.

6.13.2 Variables must never have dual meaning

Enhance readability by ensuring all concepts are represented uniquely. Reduce chance of
error by side effects.

6.13.3 Use of global variables should be minimized

In C++ there is no reason global variables need to be used at all. The same is true for
global functions or file scope (static) variables.

6.13.4 Class variables should never be declared public

The concept of C++ information hiding and encapsulation is violated by public variables.
Use private variables and access functions instead. One exception to this rule is when the
class is essentially a data structure, with no behavior (equivalent to a C struct). In this case
it is appropriate to make the class’ instance variables public.

Note that structs are kept in C++ for compatibility with C only, and avoiding them increases
the readability of the code by reducing the number of constructs used. Use a class instead.

76

6.13 Variables XyceTM Developer Guide

6.13.5 Implicit test for 0 should not be used other than for
boolean variables and pointers

if (nLines != 0) // NOT: if (nLines)

if (value != 0.0) // NOT: if (value)

It is not necessarily defined by the C++ standard that ints and floats 0 are implemented as
binary 0. Also, by using explicit test the statement give immediate clue of the type being
tested.

It is common also to suggest that pointers shouldn’t test implicit for 0 either, i.e. if (line ==
0) instead of if (line), but the latter is regarded so common in C/C++ that it can be used.

6.13.6 Variables should be declared in the smallest scope
possible

Keeping the operations on a variable within a small scope, it is easier to control the effects
and side effects of the variable.

77

XyceTM Developer Guide Xyce C++ Style Guidelines

6.14 Loops

6.14.1 Only loop control statements must be included in
the for() construction

This is correct:

sum = 0;

for (i = 0; i < 100; i++)

{
sum += value[i];

}

Initializing the “sum” variable in the for() construct, as below, is incorrect:

for (i = 0, sum = 0; i < 100; i++)

{
sum += value[i];

}

Increase maintainability and readability. Make a clear distinction of what controls and what
is contained in the loop.

6.14.2 Loop variables should be initialized immediately
before the loop

Readability is enhanced when the initialization of loop variables occurs immediately before
the loop rather than at the top of a function.

This is desirable:

isDone = false;

while (!isDone)

{
[...]

}

78

6.14 Loops XyceTM Developer Guide

and this is less readable:

[... block of declarations ...]

bool isDone = false;

[... more declarations ...]

[... many lines of code ...]

while (!isDone)

{
[...]

}

6.14.3 do-while loops can be avoided

Do-while loops are less readable than ordinary while loops and for loops since the con-
ditional is at the bottom of the loop. The reader must scan the entire loop in order to
understand the scope of the loop. In addition, do-while loops are not needed. Any do-
while loop can easily be rewritten into a while loop or a for loop. Reducing the number of
constructs used enhance readability.

79

XyceTM Developer Guide Xyce C++ Style Guidelines

6.15 Conditionals

6.15.1 Complex conditional expressions must be avoided

Introduce temporary boolean variables instead.

bool isFinished = (elementNo < 0) || (elementNo > maxElement);

bool isRepeatedEntry = elementNo == lastElement;

if (isFinished || isRepeatedEntry)

{
[...]

}

instead of

if ((elementNo < 0) || (elementNo > maxElement)|| elementNo == lastElement)

{
[...]

}

By assigning boolean variables to expressions, the program gets automatic documenta-
tion. The construction will be easier to read, debug and maintain.

6.15.2 The nominal case should be put in the if-part and
the exception in the else-part of an if statement

bool isOk = readFile (fileName);

if (isOk)

{
[...]

}
else

{
[...]

}

80

6.15 Conditionals XyceTM Developer Guide

Makes sure that the exceptions don’t obscure the normal path of execution. This is impor-
tant for both the readability and performance.

6.15.3 The conditional should be put on a separate line

Place the “if” part of a conditional on a separate line from the statements to be executed
when the condition is true, and always use braces to mark the block of executable code
even if it is a single line:

if (isDone)

{
doCleanup();

}

Do not compress the conditional into a single line, as below:

if (isDone) doCleanup();

Doing so decreases clarity. When writing on a single line, it is not apparent whether the
test is really true or not.

6.15.4 Executable statements in conditionals must be
avoided

Executable statements should not be placed in the conditional of an “if” statement. A
correct usage would be:

File* fileHandle = open(fileName, "w");

if (!fileHandle)

{
[...]

}

while the following incorrectly puts the “open” function call into the conditional:

81

XyceTM Developer Guide Xyce C++ Style Guidelines

if (!(fileHandle = open(fileName, "w")))

{
[...]

}

Conditionals with executable statements are very difficult to read. This is especially true for
programmers new to C/C++. Additionally, this makes stepping through code in debuggers
such as gdb more difficult.

82

6.16 Miscellaneous XyceTM Developer Guide

6.16 Miscellaneous

6.16.1 The use of magic numbers in the code should be
avoided

Numbers other than 0 and 1 should be considered declared as named constants instead.
If the number does not have an obvious meaning by itself, the readability is enhanced by
introducing a named constant instead. A different approach is to introduce a method from
which the constant can be accessed.

6.16.2 Floating point constants should always be written
with decimal point and at least one decimal

double total = 0.0; // NOT: double total = 0;

double speed = 3.0e8; // NOT: double speed = 3e8;

double sum; : sum = (a + b) * 10.0;

This emphasizes the different nature of integer and floating point numbers. Mathematically
the two model completely different and non-compatible concepts. Also, as in the last ex-
ample above, it emphasizes the type of the assigned variable (sum) at a point in the code
where this might not be evident.

6.16.3 Floating point constants should always be written
with a digit before the decimal point

Floating point constants should always have a digit before the decimal point:

double total = 0.5; // NOT: double total = .5;

The number and expression system in C++ is borrowed from mathematics and one should
adhere to mathematical conventions for syntax wherever possible. Also, 0.5 is a lot more
readable than .5; There is no way it can be mistaken for the integer 5.

83

XyceTM Developer Guide Xyce C++ Style Guidelines

6.16.4 Functions must always have the return type
explicitly listed.

Always declare the return type of a function explicitly:

int getValue()

{
[... function definition ...]

return someValue;

}

NOT

getValue()

{
[...]

return someValue;

}

If not explicitly listed, C++ implies int return type for functions. A programmer must never
rely on this feature, since this might be confusing for programmers not aware of this artifact.

6.16.5 goto should not be used

Goto statements violates the idea of structured code. Only in some very rare cases (for
instance breaking out of deeply nested structures) should goto be considered, and then
only if the alternative structured counterpart is proven to be less readable.

6.16.6 “0” should be used instead of “NULL”

NULL is part of the standard C library, but is made obsolete in C++.

84

6.17 Layout XyceTM Developer Guide

6.17 Layout

6.17.1 Basic Indentation Length should be Two Spaces
for (i = 0; i < nElements; i++)

{
a[i] = 0;

}

Indentation of 1 is too small to emphasize the logical layout of the code. Indentation larger
than 4 makes deeply nested code difficult to read and increase the chance that the lines
must be split. Choosing between indentation of 2, 3 and 4, 2 and 4 are the more common,
and 2 has been chosen to reduce the chance of splitting code lines.

6.17.2 Block Layout: Placement of braces (curly brackets)

In Xyce the preferred braces placement is the “ANSI C++ style”:

if (a $>$ 5)

{
// This is ANSI C++ style, which Xyce uses.

}

if (a $>$ 5) {
// This is K&R style (not used by Xyce)

}

if (a $>$ 5)

{
// This is GNU style (not used by Xyce)

}

Most of the Xyce source complies with the ANSI C++ style.

85

XyceTM Developer Guide Xyce C++ Style Guidelines

6.17.3 The class declarations should have the following
form

In particular, the public, protected and private data and functions should be in separate
blocks, with the most public members first.

class SomeClass : public BaseClass

{
public:

...

protected:

...

private:

...

}

This follows partly from the general block rule above, as well as the sorting rule for public,
protected, and private data 6.12.2.

6.17.4 Method definitions should have the following form
void someMethod()

{
...

}

This follows from the general block rule above.

6.17.5 The if-else class of statements should have the
following form

if (condition)

{
statements;

}

86

6.17 Layout XyceTM Developer Guide

if (condition)

{
statements;

}
else

{
statements;

}

if (condition)

{
statements;

}
else if (condition)

{
statements;

}
else

{
statements;

}

This follows partly from the general block rule above. The else statement is put on a
separate line from the left curly bracket, This should make it easier to manipulate the
statement, for instance when moving else clauses around.

6.17.6 A for statement should have the following form
for (initialization; condition; update)

{
statements;

}

This follows from the general block rule above.

6.17.7 A while statement should have the following form
while (condition)

87

XyceTM Developer Guide Xyce C++ Style Guidelines

{
statements;

}

This follows from the general block rule above.

6.17.8 A do-while statement should have the following
form

Note that do-while statements are discouraged in general.

do

{
statements;

} while (condition);

This follows from the general block rule above.

6.17.9 A switch statement should have the following form
switch (condition)

{
case ABC :

statements; // Fallthrough

case DEF :

statements;

break;

case XYZ :

statements;

break;

default :

statements;

break;

}

88

6.17 Layout XyceTM Developer Guide

Note that each case keyword is indented relative to the switch statement as a whole. This
makes the entire switch statement stand out. Note also the extra space before the : char-
acter. The explicit Fallthrough comment should be included whenever there is a case
statement without a break statement. Leaving the break out is a common error, and it must
be made clear that it is intentional when it is not there.

89

XyceTM Developer Guide Xyce C++ Style Guidelines

6.18 White Space

6.18.1 Miscellaneous
� Conventional operators should be surrounded by a space character.

� C++ reserved words should be followed by a white space.

� Commas should be followed by a white space.

� Colons should be surrounded by white space.

� Semicolons in for statements should be followed by a space character.

a = (b + c) * d; // NOT: a=(b+c)*d

while (true) // NOT: while(true)

{
...

}

doSomething(a, b, c, d); // NOT: doSomething(a,b,c,d);

case 100 : // NOT: case 100:

for (i = 0; i < 10; i++) // NOT: for(i=0;i<10;i++)

This makes the individual components of the statements stand out, and enhances read-
ability. It is difficult to give a complete list of the suggested use of whitespace in C++ code.
However, the examples above should give a general idea.

6.18.2 Method names can be followed by a white space
when it is followed by another name

doSomething (currentFile);

This makes the individual names stand out and enhances readability. When no name fol-
lows, the space can be omitted (doSomething()) since there is no doubt about the name

90

6.18 White Space XyceTM Developer Guide

in this case. An alternative to this approach is to require a space after the opening paren-
thesis. Those that adhere to this standard usually also leave a space before the closing
parentheses: doSomething(currentFile);. This do make the individual names stand out as
is the intention, but the space before the closing parenthesis is rather artificial, and without
this space the statement looks rather asymmetrical (doSomething(currentFile);).

6.18.3 Logical units within a block should be separated by
one blank line

Matrix4x4 matrix = new Matrix4x4();

double cosAngle = Math.cos(angle);

double sinAngle = Math.sin(angle);

matrix.setElement(1, 1, cosAngle);

matrix.setElement(1, 2, sinAngle);

matrix.setElement(2, 1, -sinAngle);

matrix.setElement(2, 2, cosAngle);

multiply(matrix);

Enhance readability by introducing white space between logical units of a block.

6.18.4 Methods should be separated by three blank lines

By making the space larger than space within a method, the methods will stand out within
the class.

6.18.5 Variables in declarations can be left aligned
AsciiFile* file;

int nPoints;

float x, y;

This enhances readability. The variables are easier to spot from the types by alignment.

91

XyceTM Developer Guide Xyce C++ Style Guidelines

6.18.6 Use alignment wherever it enhances readability
value = (potential * oilDensity) / constant1 +

(depth * waterDensity) / constant2 +

(zCoordinateValue * gasDensity) / constant3;

minPosition = computeDistance(min, x, y, z);

averagePosition = computeDistance(average, x, y, z);

There are a number of places in the code where white space can be included to enhance
readability even if this violates common guidelines. Many of these cases have to do with
code alignment. General guidelines on code alignment are difficult to give, but the exam-
ples above should give a general clue.

92

6.19 Comments XyceTM Developer Guide

6.19 Comments

6.19.1 Tricky code should not be commented but
rewritten!

In general, the use of comments should be minimized by making the code self- document-
ing by appropriate name choices and an explicit logical structure.

6.19.2 All comments should be written in English

In an international environment English is the preferred language.

6.19.3 Use // for all comments, including multi-line
comments

C-style comments (/* */) should not be used.

// Comment spanning

// more than one line.

There should be a space between the ”//” and the actual comment, and comments should
always start with an upper case letter and end with a period.

93

XyceTM Developer Guide

94

7. Matrix and Vector
Access

Chapter Overview
This chapter is intended to provide a description of the vector and matrix indexing that is
used by Xyce. This is required information for developers responsible for implementing
new devices in Xyce. The primary responsibility of a device (such as a resistor or diode)
in Xyce is to sum numerical entries into the Jacobian matrix, residual vector, and related
linear algebra entities. To perform this summation, each device must access the Jacobian
matrix, and other entities, through an abstract interface. This abstract interface will be
described in this chapter. Additionally, to set context, some explanation of the general
design of Xyce will be included.

95

XyceTM Developer Guide Matrix and Vector Access

7.1 History and Motivation

Xyce is a circuit simulator, similar to other circuit simulator codes like Spice3f5 [15]. Xyce,
however, is unique in that it is designed from the ground up to be distributed memory
parallel. The message passing implementation imposes extra overhead and infastracture
on Xyce which would not be required in a serial code like Spice3f5. Figure 7.1 illustrates
how a circuit problem is distributed across multiple processors. Only certain circuit nodes
and devices (voltage nodes and device nodes) are owned by the local processor, while
others are owned by other processors. This results in “cuts” in the graph, and the need for
some information to be passed back and forth between the various processors.

Figure 7.1. Nodes shared by two processors. The dashed line
indicates the boundary between two processors.

Fortunately, many of the details related to the parallel implementation are hidden behind
abstract interfaces in the Xyce. This allows many (but not all) developers to do their work
without having to spend time worrying about parallel issues.

96

7.1 History and Motivation XyceTM Developer Guide

Global and Local Indexing

There are two indexing systems used in Xyce. One is referred to as Global ID (GID)
and the other is referred to as Local ID (LID). For the remainder of this chapter, they will
be referred to by their respective acronyms. Previously, each device in Xyce has load
functions implemented that can use either indexing system. However, a few years ago
most of the GID-based loads were removed, as they have been somewhat deprecated for
a couple of years, and were redundant with the much faster LID-based loads. In a few
cases, GID loads are still used, as they are much easier to set up.

GID was the first indexing system implemented in Xyce. It is easy to understand, but is
relatively slow. It requires the linear algebra package to perform copies during each matrix
load, and it also relies on relatively slow accessor functions. Most egregiously, the GID-
based linear algebra accessors don’t perform any index checking, so every GID load call
in the device package is bracked by if-statements. An example of a GID-based matrix load
is illustrated by the code fragment in Figure 7.2.

The if-statements required by GID are to insure that off-processor and ground-node loads
are skipped. (if they are not skipped, the code will core dump) The if-statements bloat the
device code, and (as is to be expected of branching statements) prohibitively impede the
load procedure.

Spice3f5 uses very fast pointer-based accessor to the Jacobian and residual. An example
of a Spice3f5 matrix load is illustrated by the code fragment in Figure 7.3. Note how much
smaller this fragment is than the one in Figure 7.2.

Compared to Spice3f5, the GID-based Xyce loads did not perform well. Using a pointer-
based accessor in Xyce was not practical, given the requirements of distributed memory,
but the poor GID load performance required that a new, faster, indexing system (and inter-
face) be developed for Xyce.

LID was developed to address this performance issue, and is much faster. Most impor-
tantly, the LID approach handles off-processor and ground elements automatically, behind
the interface, so LID-based loads do not require ”owned” if-statements. LID relies on in-
lined, overloaded bracket operators, so usage is very compact. LID indexing is uses indices
which are local to the processor, so the linear algebra package does minimal translation of
indices when running in parallel. Also, for the matrix load, LID obviates the need to use in-
termediate data copies in the linear algebra package, as the LID approach directly utilizes
the compressed row format (CRF). An example of a LID-based matrix load is illustrated by
the code fragment in Figure 7.4.

97

XyceTM Developer Guide Matrix and Vector Access

// row associated with the drain node

count = 0;

if (drainConductance != 0.0)

{
irow = ADrainEquDrainNode_I;

for (i=0;i<imax;++i) {cols[i]=-1;vals[i]=0.0;}
if (ADrainEquDrainNode_I != -1 &&

ADrainEquDrainNode_J != -1)

{
cols[count] = ADrainEquDrainNode_J;

vals[count] = drainConductance; ++count;

}
if (ADrainEquDrainPrimeNode_I != -1 &&

ADrainEquDrainPrimeNode_J != -1)

{
cols[count] = ADrainEquDrainPrimeNode_J;

vals[count] = -drainConductance; ++count;

}
}
if (count != 0)

{
bsuccess = bsuccess && JMatPtr->sumIntoRow

(irow, count, &vals[0], &cols[0]);

}

Figure 7.2. Example of GID load code fragment. Note the
relatively large number of lines of code, compared with the much
smaller fragments in Figure 7.3 and 7.4. Several if-statements
test if indices are equal to -1, which by convention indicates if (1)
the node is ground or (2) off-processor.

This fragment was taken from the BSIM3 MOSFET Jacobian load
function. The sumIntoRow function call is the accessor function
into the Jacobian matrix. The two arrays, vals and cols are tem-
porary storage arrays, which store the compressed row structure.
cols contains the global column indices. irow is the global index
for the matrix row. Note that all the GID-related load code is no
longer present in the Xyce BSIM3 source, but this example is still
useful.

98

7.1 History and Motivation XyceTM Developer Guide

/* Row corresponding to the drain node */

*(here->BSIM3DdPtr) += BSIM3drainConductance;

*(here->BSIM3DdpPtr) -= BSIM3drainConductance;

Figure 7.3. Example of Spice3f5 load code fragment. Note the
small number of lines, and the lack of if-statements. This frag-
ment was taken (slightly modified for clarity) from the BSIM3 load
function. Also, note that the load places the conductance values
directly into the pre-determined memory locations.

// Row corresponding to the drain node:

(*JMatPtr)[li Drain][ADrainEquDrainNodeOffset]

+= drainConductance;

(*JMatPtr)[li Drain][ADrainEquDrainPrimeNodeOffset]

-= drainConductance;

Figure 7.4. Example of LID load code fragment. This fragment
was taken from the BSIM3 load function. Similar to the Spice3f5
fragment, there are no if-statements, and the specification is rel-
atively compact. Unlike the Spice3f5 load, pointers are not used,
and the overloaded bracket operator are used to hide details re-
lated to parallelism.

99

XyceTM Developer Guide Matrix and Vector Access

The usage of LID has two separate categories, Direct Vector Access (DVA) and Direct
Matrix Access (DMA). DVA was much easier to implement and understand, so it was im-
plemented and made the default first. This chapter will describe both, but as DMA is more
complex, it will be the focus.

Note that conceptually, it is convenient to think of GID as the main indexing system for the
topology package, and LID to be the main indexing system for the device package.

100

7.2 Global to Local Index Relationship XyceTM Developer Guide

7.2 Global to Local Index Relationship
The relationship between global and local indices into the residual (or solution) vector is
shown in figure 7.5.

Global indices into the residual and solution vector go from 0 to N − 1, where N is the
number of unknowns. In a distributed memory environment, each processor will own, and
have direct access to, a fraction of the entire solution vector (and Jacobian matrix, residual
vector, etc.). On any given processor, the global indices in use will probably not start at 0,
and may not be continuous.

Local indices on each processor always start at 0, and run continuously up to M − 1,
where M is the number of unknowns owned by the processor. The local vector, however,
is larger than M , and has extra storage locations starting at i = M . These extra locations
in the local vector are for values that need to be discarded, or possibly communicated off-
processor. These extra storage locations preclude the use of GID-style if-statements. For
the ground node, it is faster to simply load numerical values into a dummy location than to
use an if-statement to skip the load.

101

XyceTM Developer Guide Matrix and Vector Access

Figure 7.5. Example of a global to local mapping for a vector.
The ground node is given a global index equal to -1, but there is
no location for it in the global vector. For this reason, access into
global vectors has to test for -1 first.

Each local vector has a few extra elements at the end, to hold val-
ues for either ground, or off-processor variables. These auxilliary
entries are handled behind the linear algebra interface, and are
not directly included in the linear system.

102

7.3 External Variables vs. Internal Variables XyceTM Developer Guide

7.3 External Variables vs. Internal
Variables

A circuit network is comprised of circuit nodes and devices. This is ilustrated in Figure 7.6.
Associated with each circuit node is a voltage variable, which is usually shared by two or
more devices. These voltage variables are the most common example of external variables
in Xyce.

Internal variables are variables which are not shared between devices, but instead are
completely under the jurisdiction of one device. Many simpler devices (such as the resistor)
do not have any internal variables, but more complex devices (such as transistor devices)
often do.

In addition to internal variables not being shared between devices, they are also different
from external variables in that they are always completely local. The parallelism of Xyce
cuts the circuit graph in between nodes (voltage and device). As of this writing, cuts the
circuit graph are never through a device. Any device node is primarily owned by one
processor, and communication between processors only concerns external variables.

External variables are easy for the topology package to handle, as they can be determined
directly from the circuit connectivity. Internal variables are a not known by the topology
package a priori, so topology relies on the device package for this information. The inter-
action between the device and topology packages is somewhat complex, and is the subject
of the next section.

103

XyceTM Developer Guide Matrix and Vector Access

Figure 7.6. Voltage Nodes and Devices Nodes. Voltage nodes
all (except ground) have associated external solution variables.
Some device nodes have associated internal solution variables.
Device nodes are on the edges of the graph, and voltage nodes
are on the vertices. The dashed line indicates the boundary of the
local processor.

104

7.4 Topology and Device Package Interaction XyceTM Developer Guide

7.4 Topology and Device Package
Interaction

The Xyce topology package is responsible for translating the circuit topology into a linear
system topology (among other things). In order to do this, it is neccessary for it to keep
track of all of the internal and external variables of a simulation, which devices those vari-
ables are associated with, setting up all their local and global indices, and providing all of
this information to the linear algebra, parallel services, and device packages.

7.4.1 jacStamp Example

For this example, assume that a device is being implemented that has the following Jaco-
bian stamp structure:

A B 0 0
B 0 B 0
0 B C 0
B 0 C C

 (7.1)

The full Jacobian matrix, of course, will be much larger than this stamp, but the stamp
represents the part of the matrix that the hypothetical device cares about. This contribution
will be summed into the full matrix at each Newton step.

During the setup phase, all the device (and the device developer) really know about is the
abstract sparsity pattern of the Jacobian stamp. In Xyce, the sparsity pattern is repre-
sented by the jacStamp data structure. For this example, the jacStamp structure will be as
follows:

Row 0, with nonzeros in column 0 and column 1:

jacStamp[0][0] = 0 (7.2)
jacStamp[0][1] = 1 (7.3)

Row 1, with nonzeros in column 0 and column 2:

jacStamp[1][0] = 0 (7.4)
jacStamp[1][1] = 2 (7.5)

105

XyceTM Developer Guide Matrix and Vector Access

Row 2, with nonzeros in column 1 and column 2:

jacStamp[2][0] = 1 (7.6)
jacStamp[2][1] = 2 (7.7)

Row 3, with nonzeros in column 0, 2 and 3:

jacStamp[3][0] = 0 (7.8)
jacStamp[3][1] = 2 (7.9)
jacStamp[3][2] = 3 (7.10)

As one can see from the jacStamp, the jacStamp structure specifies the sparsity pattern
for the device’s Jacobian Stamp in a compressed row format. Note that for every device,
the jacStamp will start at index zero, as it is just for specifying the local sparsity pattern.

Topology will obtain this jacStamp structure during the setup phase. Once topology has
enough information (the number of internal variables for each device, and the jacStamp
sparsity pattern for each device), it will integrate them into the global linear system. For
the hypothetical device in this example, the matrix entries of interest could theoretically be
anywhere in the global system:

c1 c2 c3 c4
...

...
...

...
r1 . . . A . . . B
r2 . . . B B
r3 B . . . C
r4 . . . B C . . . C . . .

...
...

...

(7.11)

The global system, being stored in a compressed row format, will have a small (compared
to the size of the system, N) array of values for each row. Each array will contain (only) the
nonzero elements of the row.

After the topology package creates the matrix structures, it calls the function, ”register-
JacLIDs” for each device. The purpose of this function is to pass in the LID-based com-
pressed row column offsets for each row. The form of registerJacLIDs is similar to that of
the jacStamp - the difference is that the integer values owned by the data structure cor-
respond to the column offsets relative to the entire global matrix, rather than the column
offsets for the sparsity pattern of a single device.

106

7.4 Topology and Device Package Interaction XyceTM Developer Guide

7.4.2 Function registerJacLIDs Example

Figure 7.7 shows a very simple example of the registerJacLIDs function, taken from the
resistor device. This function is called by the topology package, but only after all the final
matrix details have been determined. So, it is called long after jacobianStamp is called.
jacLIDVec, the two-dimensional array which is passed in as an argument, follows the same
structure as the jacStamp, except that the contents of it are offsets into the global matrix
rows, rather than row indices into the local stamp.

This is an important point. The matrix storage is based on a compressed row format,
meaning that only nonzero entries are stored. Row offsets are not global (or local) row
indices. They are just offsets into a specific row-vector. This means that the offset corre-
sponding to row J in one row may not be the same as the offset corresponding to row J in
another row. In other words,

APosEquPosNodeOffset 6= ANegEquPosNodeOffset

So, it is very important that different offset variables are for every single row, even if they
refer to the same columns.

107

XyceTM Developer Guide Matrix and Vector Access

//--

// Function : N DEV ResistorInstance::registerJacLIDs

// Purpose :

// Special Notes :

// Scope : public

// Creator : Robert Hoekstra

// Creation Date : 08/27/01

//--

void N DEV ResistorInstance::registerJacLIDs

(const vector< vector<int> > & jacLIDVec)

{
N DEV DeviceInstance::registerJacLIDs(jacLIDVec);

APosEquPosNodeOffset = jacLIDVec[0][0];

APosEquNegNodeOffset = jacLIDVec[0][1];

ANegEquPosNodeOffset = jacLIDVec[1][0];

ANegEquNegNodeOffset = jacLIDVec[1][1];

}

Figure 7.7. Example of function registerJacLIDs.

108

8. Device Development
Checklist

Chapter Overview
This chapter gives guidelines for Xyce device model development. It attempts to address
development of both industry-standard legacy devices and also of Sandia-developed de-
vices. The goal of this chapter is to provide standard checklists that should be followed for
Xyce devices, and to help new developers understand the criteria for declaring a device to
be completed.

109

XyceTM Developer Guide Device Development Checklist

8.1 Introduction
Xyce is a SPICE-compatible simulator, and as such many of the device models are stan-
dard in the electronics industry. On the other hand, as Sandia has a number of unique
modeling needs, there are a number of original models in Xyce as well. As such, there are
2 categories of devices that go into Xyce.

1. Original device models developed from scratch specifically for Sandia’s unique needs.
Example: photocurrent models, biological models, etc.

2. Legacy devices from SPICE (or spice-like codes), where the source is publically avail-
able. Examples: level-1 MOSFET, level-1 JFET, level-1 BJT, level-1 Diode, BSIM3,
BSIM4, BSIMSOI, etc. Spice3f5 is in the public domain, has been a defacto industry-
standard for years, and many commercial simulators are derrived from it. As such,
the models in Spice3f5 are standard to nearly any circuit simulator. Similarly, many
newer models, developed under the auspices of the Compact Model Council [16] can
also be considered industry standards.

This checklist is divided as follows. Section 8.2 contains a checklist that applies to any
device, whether it is a legacy device or not. Section 8.3 lists additional tests specific to
transistor devices. These also apply to any device, whether it is an original device or a
legacy device. Section 8.4 contains a checklist of specific tests for legacy devices.

8.2 Checklist for Device Certification
The following set of tests must pass for any device developed in Xyce, whether it repre-
sents original work or not.

8.2.1 Any device development must have a
corresponding issue in bugzilla

This is really important. If no bugzilla issue exists, you (or someone else on the team)
should create one before doing any CVS checkins. Ideally, the issue should be recorded
in bugzilla before any code development even starts. From the point of view of our devel-
opment process, if work is not recorded in bugzilla, it doesn’t exist.

110

8.2 Checklist for Device Certification XyceTM Developer Guide

8.2.2 For any device to be considered complete, tests
must exist to certify it

This requirement goes hand-in-hand with item 8.2.1. For any bugzilla issued to be declared
“fixed”, and later “verified”, certification tests, which will be part of nightly and weekly re-
gression testing, must be created to prove that the issue is actually resolved.

Guidance for appropriate tests can be gleaned from the other items in this document. A
short, minimal, necessary-but-not-sufficient test list is given below, with links to sections
that describe these tests in more detail. Note, these are tests that a bare minimum for auto-
mated regression testing. A lot of other testing (such as numerical Jacobian testing 8.2.3)
may be more appropriate for manual hand-testing during development.

1. All states of the device must be tested. (saturation, inversion, forward active, reverse
bias, etc.)

2. All model options must be exercised (optional nodes, optional equations, etc)

3. All parameter defaults must be tested.

4. Non-default values of parameters must be exercised as well.

5. Tests against analytic solutions (when possible) should be created.

6. All relevant analysis types must be exercised (DCOP, TRAN, etc).

7. Any derivative device must pass all the antecedant tests.

8.2.3 Numerical Jacobian tests must pass

The numerical Jacobian test must pass (with some exceptions) for a variety of operating
conditions for the device i.e. all equations modeling the device should be exercised in the
numerical Jacobian test through tests involving more than one circuit.

There are cases in which incorrect Jacobian terms can be justified. An example of a good
justification is if there are clear round-off errors in the numerical Jacobian terms. Another
example would be if it can be demonstrated that doing the more correct and complete
derivative actually causes the solvers to be less robust. This can sometimes happen if the
derivative term in question causes the matrix to be more poorly conditioned.

111

XyceTM Developer Guide Device Development Checklist

In the old days (1960’s), codes were sometimes designed with inaccurate derivatives (or
even constant Jacobians) because computing the derivatives required too much memory
and/or floating point operations. This was an issue when computers were much slower
and smaller than they are today, and should not be used as a justification for imprecise
Jacobians in Xyce.

Because there are (rare) examples in which imprecise Jacobian terms might be desirable,
this test is not appropriate as a catch-all regression test, and should be done manually as
part of device development. Currently, it is up to the individual developers to insure that
this happens.

8.2.4 For a variety of circuits, the new device must pass
valgrind tests

This is to check for memory leaks, etc., uninitialized variables, etc.

8.2.5 Both time integrators need to be supported by any
new device

As of Xyce release 4.0, the new-DAE time integrator will be the default time integrator. The
old integrator will be maintained for one or two more releases, and then probably discarded.
Until then, however, both must be supported. That means that any and all of the tests in
this chapter must pass for both the netlist option:

.options timeint newdae=1

and also:

.options timeint newdae=0

If any test fails for either time integrator, the device is not a finished device. In prac-
tice, this means that the old-DAE load functions: loadAnalyticJacobianBlock and load-
RHSBlock must be completed, and the new-DAE load functions: loadDAEFVectorBlock,
loadDAEQVectorBlock, loadDAEdFdxMatrixBlock, loadDAEdQdxMatrixBlock need to be
completed. This is discussed, somewhat in section 9.5.8 of the FAQs.

112

8.2 Checklist for Device Certification XyceTM Developer Guide

8.2.6 Derivative devices must pass antecedant tests

It is common to develop new devices by adding physics to an existing device. Hence, we
have devices such as the level-4 BJT, which consists of the level-1 BJT plus photocurrent
effects. It is important that the behavior of the original device be maintained, so in this
example, it is necessary for the level-4 BJT to pass all the level-1 BJT tests to be considered
a completed device. Of course, this can only be done for derivative devices that have been
modified only from adding effects, rather than replacing or modifying existing effects.

8.2.7 Compile with the gcc option -Wshadow

This will warn about shadowed variables, which is an easy mistake to make (especially
when importing a SPICE device into Xyce). For the device to be considered finished, there
should be zero shadowed variables.

8.2.8 Device must follow Xyce’s style guide

The style guide is described in chapter 6.

8.2.9 All artifacts of reference devices must be
completely removed from source

It is common to create a new device by initially copying an existing device, and then doing
global searches and replaces on the class names, and then removing most of the internal
details and replacing them. A common mistake has been to leave behind artifacts of the
original device, and the result of this mistake is for other developers to find code and or
comment fragments in one device, that obviously originated with another one. This can be
very, very confusing to any developer who later tries to understand the code and should be
avoided at all costs.

For example, a developer might be assigned the BSIM4 device. A common starting point
would be to copy the BSIM3, and rename it BSIM4. Then, after that, to carefully remove
BSIM3 code and comments (as needed) and replace with BSIM4 code and comments. As
the two devices are very similar, this can jump-start development, but it is really easy to
inadvertently mix code from the two models. If this development path is taken, it is best to
remove as much of the source code from the original device as possible, before starting
code development on the new device.

113

XyceTM Developer Guide Device Development Checklist

Any device that still has old code artifacts left around cannot be considered finished. Re-
member, this is a team project, and it is important to have your code be as comprehensible
as possible.

8.2.10 Source code must reside in the appropriate
directory

Source code for devices in Xyce are stored in one of several sub-directories in the DevicePKG

directory. DevicePGK/src and DevicePKG/include should be used for non-export con-
trolled models as this source code is stored on the SON. DevicePKG/SandiaModels should
be used for any export controlled models as this data is held on a server on the SRN. If
your new device uses automatic differentiation then it should reside in DevicePGK/AD or
DevicePKG/SandiaModels/AD as appropriate.

8.3 Additional requirements for
transistor devices

8.3.1 Both N-type and P-type must be tested individually.

Test circuits that run the device as an N-type and as a P-type must run on their own.

8.3.2 Circuits that contain both N-type and P-type must
run robustly.

More specifically, this means N-type and P-type for BJTs, and NMOS and PMOS for MOS-
FETS. Circuits of this type are often fundamental digital building blocks such as inverters,
nand gates, ring oscillators, etc. In general, circuits which contain both device types, and
which run through a variety of states, are much more challenging numerically than circuits
that contain only one type of device. Single device cirucits are usually just set up to look at
I-V curves, which are necessary but not important. However, I-V curve circuits are usually
so simple as to not be much of a numerical challenge. There are many examples of de-
vices, that ran find in an I-V circuit, but had mistakes that rendered an inverter non-robust.

114

8.4 Additional tests for Legacy Devices XyceTM Developer Guide

Many examples of such circuits exist in the Xyce test suite, which can be checked out
as Xyce Regression. Often, good robustness tests can be created by simply copying an
appropriate circuit for a similar device, changing the level numbers, and running with default
parameters.

8.3.3 Automated voltlim tests must also pass

Voltage-limited solves will have an extra limiter term in the residual. That extra term has
to be stored (in the Jdxp vector for old-DAE, and the dFdxdVp and dQdxdVp vectors for
new-DAE integrator). The automatic test compares the contents of these vectors against
matrix-vector multiplies. As with the numerical jacobian test, it is important to test voltlim
with a variety of test circuits. This should be with a single device as well as more complex
circuits including both N- and P-type devices.

8.3.4 For both N-type and P-type, the numerical jacobian,
valgrind and voltlim tests must pass for all the
different model options supported by that device.

For example, the BSIM4 has 4 different gate models, 2 different rds models, etc. Some of
these options significantly change the equations solved by the model, so it is important to
test all of them. Exceptions can be made if it is known that a certain model option is not
needed by any current users. For example, the reference implementations of BSIM3 and
BSIM4 have options that enable a non-quasi-static (NQS) model; this NQS model is not
required by anyone at Sandia, so we have not implemented that part of the model and we
don’t have any tests for it.

8.4 Additional tests for Legacy Devices

8.4.1 Xyce Legacy devices Must Match Legacy Simulator

In most cases, the legacy simulator is SPICE. This of course requires that the developer
have a copy of the original source that they can run. Spice3 or chilespice. If the original
legacy simulator is SPICE, then a highly modified version of Spice3f5 source can be found
in our repository to use for detailed code comparisons.

115

XyceTM Developer Guide Device Development Checklist

Here is a list of detailed comparison tests (between Xyce and SPICE) that will need to pass
for a legacy device implementation in Xyce to be considered complete.

� All the default parameters must match between the Xyce implementation and the
legacy code implementation. This sounds obvious but is can sometimes be a source
of error, particularly if the starting point for a new Xyce device is a copy of an old
device (see section 8.2.9).

� During the DCOP. SPICE and Xyce (for a variety of circuits) must match exactly
over many Newton iterations. This means that every Jacobian matrix will match
to machine precision, and every intermediate solution vector will match to machine
precision as well, and every corrected residual vector will match to machine precision.

The residual vector can be tricky, as SPICE and Xyce handle voltlim differently. (for
good reasons).

� Same, as previous item, but for transient. For the first two time steps out of the DCOP,
all the Jacobians and vectors should match, if the time integration is forced to match.
To do this, force both Xyce and SPICE to use backward euler integration, and force
them to use constant step sizes, with the same step size. This should work for both
new- and old-DAE.

116

9. Frequently Asked
Questions

Chapter Overview
This chapter contains a list of frequently asked questions (FAQ) from Xyce developers.
Most of it centers around device model implementation, but there are also many questions
pertaining to other Xyce development subjects. In addition to questions about other mod-
ules of the source, there are also questions pertaining to Xyce’s purpose, mandate, and
general philosophy. The original FAQ was written in 2004, and has been updated several
times for this chapter.

117

XyceTM Developer Guide Frequently Asked Questions

9.1 Where to find other information

9.1.1 References

For more information, consult:

• Xyce Math Guide. [17].

• Xyce Users Guide [18].

• Xyce Reference Guide [19].

• Xyce Reference Guide [20].

9.1.2 I can’t find the answer to my question in this FAQ,
and I can’t find it in the other references. What do I
do?

Ask someone. The authors of this document are a good place to start.

Xyce has been in development since 1999. At this point, there around 50 device models
in Xyce. If you are confused about an issue, it is unlikely that you are the first person to
encounter it. You probably aren’t even the second person to encounter it. Someone on
the project has probably already figured it out, possibly years ago, and that person may
consider it to be an officially “solved problem”.

Xyce isn’t perfect, but most of the code that is there was put there for a deliberate reason.
Most of the code in Xyce was written by people who are still here.

If you get stuck on an issue, don’t sit on it for long. There’s no point in re-inventing the
wheel. It is better for everyone involved if you seek out other developers and ask questions.
Even if the issue is truly a new one (unlikely, but possible), the more people on the team
who know about it, the better. Your development process will go a lot faster (and result in
much better code) if you proactively seek advice.

118

9.2 General Philosophy and Miscellaneous XyceTM Developer Guide

9.2 General Philosophy and
Miscellaneous

9.2.1 What is the goal of this FAQ?

The purpose of this chapter (and the other chapters) is to provide a guide to Xyce software
developers. In particular the hope is that this FAQ contains information not covered by other
chapters of this document, or by other Xyce developer documents. This will prevent new
developers from “reinventing the wheel”, as many issues encountered by a new developer
have probably already been addressed by others. This FAQ was originally written with
device model implementation in mind, so much of the focus is on that subject, but other
topics are addressed as well. Issues addressed in the FAQ include (in no particular order):

• Historical Xyce design decisions.

• Context; the relationship of Xyce to other circuit simulators, both commercial and
public domain.

• Random “gotcha” issues that have confused everyone.

• Code quality.

• Code consistency. To the extent possible, devices should follow a standard blueprint.

• Verification. Or: making sure that for a given set of equations, you are actually solving
them correctly and reliably.

• Numerical stability. This is really important! Xyce runs huge circuits. The larger the
circuit, the more crucial this is.

In general, this chapter does not address:

• Detailed mathematical description of Xyce. For a mathematical description, see the
Xyce Math Guide [17].

• How to write “best practice” C++ code. (for this see chapter 6, which contains the
Xyce C++ style guidelines).

• Model validation issues.

119

XyceTM Developer Guide Frequently Asked Questions

• Original Model creation. In other words, if you are trying to determine or derive a new
set of equations for your new organic thin-film transistor (TFT) model (for example),
this chapter will not tell you how to do that. However, if you have a set of equations
in mind, it will probably help you set them up for Xyce to solve them.

9.2.2 What are the requirements of Xyce?

This question is addressed in chapter 1. Xyce has mostly been funded by ASC, and is
intended to support the Nuclear Weapons community at Sandia. Requirements include:

• To be SPICE-compatible, which includes supporting SPICE legacy devices, and also
using a netlist-based input file.

• To be a high-performance computing application (massively parallel, where “mas-
sively” means up to 1000’s of processors).

• To include specialized device models and algorithms, unique the the weapons com-
munity at Sandia.

Much of Xyce’s design is based on these requirements. The second requirement (high-
performance computing) necessitates that Xyce be fundamentally different than SPICE, in
many respects. The first requirement, that we be compatible with SPICE, requires that we
be the same (or at least similar) to SPICE in other respects.

To illustrate this issue consider:

• Common Xyce user question: “Why doesn’t my PSpice (or HSpice, AimSpice, or
SmartSpice) circuit work in Xyce?”

• Common question from ASC (and other) review panels: “How is Xyce different from
PSpice (or any other commercial simulator)? In other words, why are we funding it?
Can’t we just buy one for less money?”

For the Xyce project to be successful, we have to be able to give good answers to both of
these questions.

120

9.2 General Philosophy and Miscellaneous XyceTM Developer Guide

9.2.3 Who are the customers for Xyce?

At Sandia National Laboratories, the most common type of engineer is electrical, and
there are literally hundreds (possibly thousands) of engineers who use some form of circuit
simulator. Most of these users are actually not Xyce customers, but the internal Xyce
download list has about a hundred unique users, and can be expected to grow. Some of
these users are relatively low-maintenance, and others require a lot of attention, because
they are applying Xyce to problems which push the edge of Xyce’s capabilities.

Xyce is a relatively large software project, but we don’t have the resources to support (for
example) 500 customers, so we have always presented Xyce as a niche tool, to be used as
appropriate. To date, Xyce has been designed for very large circuit problems (beyond the
capability of serial SPICE simulators), and which include hostile radiation effects. Nearly
all of our users also use commercial tools, such as HSpice, PSpice, SmartSpice, etc. From
our point of view, that is fine. We aren’t trying to compete with commercial tools for every
user. We’re primarily trying to provide capability that is unavailable elsewhere.

9.2.4 Why do devices in Xyce need to precisely match
SPICE devices? Don’t people always complain
about SPICE devices? Surely we could come up
with better ones.

Yes, theoretically, we could come up with better ones, and in many cases we have. How-
ever, most Sandia devices are intended to address physics not addressed in the larger
circuit community. There aren’t very many companies in the world who care about neutron
effects, for example, so the only option is for us to develop such models. For most non-
specialized physics, it is more practical to use the same canonical set of industry models
that everyone else uses.

As noted in the question 9.2.3, most circuit designers jump between circuit simulators,
depending on their needs. For example, a designer might do some early work in SPICE,
to take advantage of the parts library, but then switch to Xyce, once they need to add their
small PSPICE-developed circuit, to a much larger Xyce circuit.

What this means is that a designer needs to be confident that they can use the same
model, and model parameters in code A that they used in code B, and still get the same
answer. Switching codes should never result in significant changes in the answer. Minor

121

XyceTM Developer Guide Frequently Asked Questions

differences due to platform differences, error tolerances, etc., can be acceptable, but ulti-
mately, a trusted result from code A should match a result from code B. This means that
we need to make the models precisely the same, to the extent that this is possible.

Also, while legacy SPICE models are often “not very good”, their source code has been
debugged to death. After 30 years, and thousands of users, you can bet that just about
any numerical bug has been found already. Most of the time, the fastest way to get a
canonical SPICE device correctly implemented in Xyce is to refer to the SPICE device
source extensively.

9.2.5 You said in the last question that SPICE devices
have been “debugged to death”. What is a bug?

This may seem like a silly question, but it isn’t. It is important to define terms.

When I say “bug”, I mean something like a sign error. Or, an incorrect derivative in the
Jacobian. Or, a divide-by-zero error that causes the code to crash. Or, an inconsistently
implemented gmin resistor.

A bad model derivation, however, is not a bug. For example, suppose you had a SPICE de-
vice where an exponential term should clearly (based on you understanding of the physics
of that device) be an error function. That is not a bug. That is an invalid model.

9.2.6 When you say “precisely match SPICE”, what does
that mean?

It means that if we force SPICE and Xyce to run with equivalent solver options, they should
give exactly the same answer, out to (something like) 8 digits. This should be true, even
many time steps into the run. It should also be true at intermediate points in the solve.
For example, the 10th Newton step of the 10th time step should yield identical Jacobian
matrices in SPICE and Xyce.

To get SPICE and Xyce to run equivalently for the DCOP phase is trivial. If Xyce has
.options nonlin searchmethod=0, .options linsol type=ksparse, and .options device

voltlim=1, then it should run the same as SPICE. (Note these options are no longer the
defaults in Xyce, since we use KLU as the default solver now.)

To get SPICE and Xyce to run identically in transient is harder, as they can use different

122

9.2 General Philosophy and Miscellaneous XyceTM Developer Guide

time stepping algorithms. The only way to force them to do the same thing it to force both
codes to run with constant time stepping enabled, and to force both codes to use backward
Euler integration. In Xyce this is set with .options timeint conststep=1 maxord=1.

For any device, Xyce and SPICE should match in this manner for a variety of circuits and
device parameters. This variety of circuits should include different levels of complexity,
nonlinearity and size. It isn’t sufficient to show that Xyce and SPICE “precisely match” for
just one circuit.

Note that this does NOT mean that running in SPICE mode is generally a good idea. It is
only something you should do if you are debugging a legacy device.

9.2.7 What is a “legacy device”? What are some
examples?

Sometimes I also use the term “canonical device”, or “canonical SPICE device”, and I
mean the same thing by these terms as “legacy device”.

Legacy devices are devices for which the following is true:

• developed outside of Sandia (probably).

• are considered to be industry standards.

• can be found in most commercial and free simulators.

• are widely used by circuit designers.

Some examples of legacy devices include:

• any “level=1” model - the level-1 BJT, the level-1 diode, etc.

• any model from the Berkeley BSIM group. (BSIM3, BSIM4, etc.)

• any model developed under the auspices of the compact model council. (this includes
the BSIM group, and also models like the Mextram BJT, developed at Phillips)

• any model that can be found in free versions of Spice3.

Some examples of devices which are not legacy devices are:

123

XyceTM Developer Guide Frequently Asked Questions

• Any proprietary, or export-controlled models developed at Sandia.

• Any models developed under contract with RPI, or other university or organization.

• Most rad-aware models.

By necessity, a large fraction of Xyce’s device library are legacy models. Models in this
category are easier (in some respects) to work with, as most of the difficult model de-
velopment work has been done by others, and they’ve already been used extensively by
(literally) thousands of users. As such, putting them in Xyce is more a code development
exercise than a model development exercise. After all, we didn’t invent the BSIM3, a group
at UC-Berkeley did.

Despite their extensive vetting by the industry, legacy models aren’t perfect by any means.
However, based on our experience, they are relatively solid numerically and in terms of
software quality. They aren’t likely to have silly bugs, like sign errors, or units mistakes,
or Jacobian mistakes, etc., although we have found mistakes like this occasionally. What
deficiencies they do have are more likely to be in the conception of the model, not the
implementation. You can certainly argue if any of them include the correct physics, but that
is a different discussion.

What this means, from a Xyce development standpoint, is that a large part of the device
code development will involve very detailed comparisons to SPICE. The job of implement-
ing a legacy model in Xyce is mostly a code development job, not a model development or
model validation activity.

For models that are not legacy models, then the development process needs to be very
different. A developer should make every effort to think critically about the model, and all
its implementation issues. For models developed here, it is more important that an attempt
is made at V&V.

9.2.8 Are all legacy models from SPICE?

No. At this point, many are not, and this trend will continue, as the industry has moved
towards specifying models in Verilog-A format. The advantage of this is that it separates
(mostly) the fundamentals of the model from the details of the simulator. At this point, most
compact model groups (if they put their models in the public domain) do so in Verilog-A
form, rather than SPICE. The disadvantage (to us) of the trend towards Verilog-A is that
we have historically implemented models from SPICE source, and have less experience
with Verilog-A (see then next question, below).

124

9.2 General Philosophy and Miscellaneous XyceTM Developer Guide

SPICE has been the de-factor industry standard for a long time, and SPICE itself is in the
public domain, so most of the models that have gone into Xyce so far have been SPICE-
based models, either taken from the original Spice3f5 code, or from separate Spice3 im-
plementations, such as the BSIM3.

At this point, we’ve nearly run out of public domain models that come in SPICE form. We’ve
implemented most of the models from Spice3, and have implemented most of the models
from the BSIM group at Berkeley. The one remaining BSIM model (as of this writing), that
we have not implemented is the BSIM5, and while many papers have been published about
this model, the BSIM5 source code isn’t in the public domain yet.

9.2.9 What do we do about Verilog-A specified models?

As of this writing we’re in the process of setting up the ADMS model compiler [21] to work
with Xyce. This requires doing an extensive customization of the back end of ADMS. The
function of a model compiler is to take a model specified in Verilog-A form, and the convert
it into the detailed source code of a specific simulator. Once the back end to ADMS is set
up, we should be able to plug most Verilog-A models directly into Xyce. Potentially, this
will mean that a large number of models will come into the code in short order.

9.2.10 What about V&V?

V&V = Verification and Validation. Loosely speaking, validation means answering the ques-
tion “am I solving the right equations?” and verification means answering the question
“given a set of equations, am I solving them correctly?”

Following good software quality engineering (SQE) practices is part of verification. On
the Xyce project, we have historically done a pretty good job with SQE. The real gaping
hole has been with validation. Prior to FY05, the Xyce project essentially did no formal
validation, primarily due to lack of funding. This situation has turned around, but validation
methods are still under development. Also, it has been necessary to prioritize the work.

In terms of priorities, validation work needs to address models that are high risk. Generally,
this has meant focusing on compact models developed at Sandia, which primarily focus
on abnormal or hostile effects, including radiation environments (gamma, neutron, x-ray),
high temperatures, etc. Legacy models have received less validation attention, mostly due
to resource constraints, and also because there is some implicit trust in models that have
already been vetted by the world at large.

125

XyceTM Developer Guide Frequently Asked Questions

To do good validation, verification has to be done first. Doing a lot of validation work on
broken (un-verified) code can be waste of time. So, when implementing a device, worry
about getting it set up correctly and consistently first. Validation (if it happens) comes later.

9.2.11 Shouldn’t users always use the best models they
can?

Yes. But remember, Xyce (and other circuit simulators) are primarily engineering design
tools. They are not “basic science” or “research” tools. A compact model is generally not
going to be high fidelity enough to learn much new about the physics of a single transistor.
Instead, a compact model is going to contain a discrete representation of the physical
behavior of that transistor. The compact model is in some ways the result of physics
research, not the driver of it.

Ironically sometimes a circuit designer or analyst will use a bad model, knowing full well
that it is a bad model. Why? Because bad models are often really simple and easy to
understand. The level-1 MOSFET, for example, is a very simple transistor model, and a
typical designer can plausibly estimate model parameters for it, without much difficulty.

The BSIM3 MOSFET, on the other hand, is a much “better” model, in terms of how much
physics it includes, and how numerically stable it is. The drawback to the BSIM3, however,
is that it has over 300 model parameters, and many of them are not particularly intuitive.
If a designer is in a hurry, and just wants a qualitative answer, it may be easier to just use
the level-1 MOSFET.

Sometimes a designer is using a model, not to model a specific discrete part, but to model
the behavior of a larger, more complex component. For a case like this, all a designer may
want is something that “qualitatively behaves like a MOSFET”. For a case like this, a simple
model is often preferable.

As long as a user has a good understanding of a model’s deficiencies, and that awareness
is incorporated into their work, then it can be OK to use one of the older, simpler device
models.

126

9.2 General Philosophy and Miscellaneous XyceTM Developer Guide

9.2.12 I’m implementing a legacy device, and I’ve noticed
that books and papers that describe this device
don’t fully describe what is in SPICE. What’s the
deal?

You will see this a lot. Generally, textbooks are written for people who want to use SPICE,
rather than people who want to write SPICE (or Xyce). As such, textbooks will tend to
focus on the “high points” of the model. Also, textbooks usually aren’t going to focus much
(at all) on code implementation details - you aren’t their target audience.

Like books, papers are often a very good reference, if you are interested in learning how
a device model was originally conceived. However, often times a model has been iterated
upon for years after the original publication of the paper. For example, the Gummel-Poon
BJT model was originally described in a paper dated 1970. Most SPICE development
happened after that, and as SPICE evolved the model was enhanced. It is still referred to
as the “Gummel-Poon BJT Model”, but the original paper does not fully describe it.

Code implementation details are almost never in books and papers. You will not see a
description of voltage limiting in the definition of any transistor model, for example.

In general, if you want to understand the assumptions used in developing a model, and
to understand the physics of a device, books and papers are very useful. If you want to
understand, in detail, how a given model is set up in SPICE, the best place to look is in the
SPICE code. If the SPICE code and a textbook appear to disagree, you should trust the
SPICE code first.

Why? Consider the consequences for mistakes. If a textbook has a mistake in it, the
result is that some students might (or might not) get confused. If SPICE has a mistake, the
result is that the code won’t run reliably, or possibly at all. A sign error in a textbook won’t
significantly change how a human being understands the Gummel-Poon BJT, but it will be
catastrophic in SPICE.

127

XyceTM Developer Guide Frequently Asked Questions

9.2.13 How we do we know that the BSIM3 (or any
model) in a commercial code is the same as the
model we’ve put into Xyce?

Technically, we don’t know for sure, but if the vendor’s documentation claims that they are
using (for example) the “industry standard BSIM SOI model, version 3.2”, we’ve generally
believed them. Usually, vendors document what differences there are between models, if
any.

Unfortunately, we don’t have access to Silvaco’s (or Agilent’s, or Cadence’s) source code,
so we don’t have much choice but to trust the documentation. Our experience using a vari-
ety of circuit codes (both commercial and free) is important here as well. In practice, Xyce
has consistently gotten similar enough results to other simulators, that it seems unlikely
that there’s much difference in the device models.

This issue is one of the motivations for Sandia to develop its own code - with Xyce a Sandia
user can always find out what is in the source.

In general, the EDA (electrical design automation) industry by and large depends on mod-
els being consistent across simulators. Many device models are industry standards, which
have been developed jointly by a consortium of companies. The industry has attempted
to develop and impose standards (starting at least 10 years ago), and this was necessary
for the industry to mature. In practice, electronics designers frequently jump from one tool
to another, using similar data sets and/or model parameters. If there were significant dif-
ferences between commercial codes, designers wouldn’t trust them, and this is bad for
business (the EDA vendor’s business, that is).

Most commercial simulators are derived from Berkeley SPICE. Some, like HSpice, were
derived from Spice2, and others, like PSpice, were derived from Spice3. Even if the com-
mercial vendors made model changes, they had the same starting point that we did.

Note that there has been one such case (that we’re aware of) in the history of Xyce,
where a commercial simulator used a slightly different model than Spice3. This one case
concerned how breakdown voltage is handled in the PSpice level 1 diode, compared with
the Spice3 and Xyce level 1 diode. The vendor’s documentation didn’t spell out “here’s
how our model is different from Spice3”; the documentation instead said, “here are the
parameters and equations for our model”. This particular difference didn’t get noticed
until users reported “the Xyce diode doesn’t recognize the parameter IBV”. In this case,
however, as long as users didn’t try to use this parameter, PSpice appeared to be using the

128

9.2 General Philosophy and Miscellaneous XyceTM Developer Guide

same model as Spice3 and Xyce. We concluded that this particular parameter represented
an enhancement to the Spice3 diode, not a major departure.

One final point: From a commercial vendor’s point of view, it is a selling point for them to
support an industry-standard model. That’s a necessary “hook” to lure customers away
from rival codes. The EDA industry is very competitive, and it wouldn’t make sense for
a vendor to secretly make significant changes to their implementation of the BSIM3, or
any other industry-standard device. If they wanted to make changes, they’d probably just
create a new model, and advertise it as such - “the new Silvaco high-frequency BJT” or
something like that.

9.2.14 So, if the models in Xyce are the same as
commercial simulators, how is Xyce different?

The answer to the question 9.2.13 doesn’t mean that Xyce isn’t different from commercial
codes, just that the differences are generally not in the legacy device models. Commercial
simulators are mostly different with regard to:

• solver technology.

• the GUI.

• output file format.

• code structure.

• analysis capabilities (most support .AC. We currently do not, for example.)

• platform support (a lot of commercial simulators are mainly for Windows).

• large model parts libraries (parameter set databases).

• a lack of hostile environment models (radiation, etc.)

9.2.15 I am really convinced that the legacy SPICE code
is calculating this small term incorrectly. Can I
delete it?

Probably not, for several reasons.

129

XyceTM Developer Guide Frequently Asked Questions

First, you’re probably wrong. Really. It is extraordinarily rare for the legacy code to be so
wrong that a particular effect should be removed. It is most likely that you have coded
it incorrectly, and you should assume that this is the case until you can absolutely prove
otherwise. In almost every case that we’ve had where a developer suspected the legacy
code was bad, it has turned out to be something else. It is very easy to become convinced
that certain terms are wrong, especially after an extended period of pouring over debugging
output in the small hours of the morning.

But it is not unheard of that legacy devices have coding errors. If you can prove that there
is in fact an issue in the legacy code that is causing a problem, it is usually the case that
the real issue is that Xyce solves things differently than SPICE does, and certain types of
errors that kill Xyce simply don’t matter to SPICE. An error of this sort was once found in
the MOSFET level 3, where a pair of charge-fitting expressions used in different ranges
of voltage were supposed to be continuous at the transition — and were not because of
a mistake in the constant term. In this case, since only the derivative really mattered (i.e.
the current, which matched on either side of the transition), this error somehow had no
effect on SPICE. When Xyce attempted to do its numerical derivative of charge to get the
current, the discontinuity caused it to see a massive impulse current as soon as the voltage
crossed the transition point — at which time it would repeatedly scale back the timestep,
see an even bigger current, and spiral down the timestep until it crashed.

When finding such an error — which takes some intensive detective work and detailed
debugging using both SPICE and Xyce, and not just hand-waving — it is not correct to
delete the offending expressions, but to correct them and equally important document the
correction. At a minimum there should be detailed explanations of your changes in the
commit log, and comments in the code. It is also usually wise to leave the incorrect code
enclosed in an “ifdef” so that the traces of your change are obvious.

But really, you’re probably mistaken, and the error is not in the legacy device. “Fixing” a
port of a SPICE model to Xyce almost always means undoing the mistakes you made in
porting it.

For a related question, see question 9.8.10.

9.2.16 Do we support bypass?

No, we don’t. We’ve never really supported bypass, although it was included in the initial
Xyce implementation of the BSIM3 a long time ago (circa 2001). At the time, we experi-
mented with it and concluded it was a bad idea. The bypass code was then removed from
the BSIM3 and bypass has not been implemented in any other Xyce device.

130

9.2 General Philosophy and Miscellaneous XyceTM Developer Guide

The idea behind bypass is to check the devices to see if the inputs to a device have
changed since the last load. If they haven’t changed (to within a tolerance), then the
device doesn’t recalculate its currents or conductances, it just re-loads them. This requires
storing the previous load values and keeping them around until the end of the run.

In SPICE, this works a little better than in Xyce, as the bypass stuff is intimately tied to its
convergence tests. By definition, in SPICE, if a device us “bypassing” that means that it is
converged. In Xyce, this isn’t necessarily true, which can cause problems. The tolerances
used to invoke bypass in Xyce have nothing to do with the tolerances used by the solvers.

In practice, this tended to lead to the Xyce nonlinear algorithm not making any more
progress towards convergence, once bypass was turned on for a device. This was a unde-
sirable effect, so we’ve never supported bypass.

Also, note that modern circuit codes apparently don’t use bypass either. Kundert [22] refers
to bypass as a “dubious” optimization, which was “not implemented in Spectre”. According
to Kundert, “bypass has been found to improve performance by 15-30%. In the worst case
it degrades performance, injects noise into the circuit ..., causes convergence problems
and wastes a considerable amount of memory.”

So, anyway, don’t try to copy SPICE’s bypass stuff into a Xyce device - ignore that stuff.

9.2.17 What should we do about SPICE convergence
checking code?

In most SPICE devices you’ll often see a block of code that checks how much the device
inputs have changed with respect to a tolerance (voltTol, currentTol, etc.) In Xyce all of our
convergence checking is done in the solvers, not the devices. In keeping with our code
design, solver issues should not be part of the device package in Xyce.

The tolerance stuff is also used by SPICE as part of bypass (see question 9.2.16). If Xyce
supported bypass, it might make sense to include it in a Xyce model implementation.
However, we do not support bypass, so any code performing tolerance checks in SPICE
should not be imported into Xyce.

131

XyceTM Developer Guide Frequently Asked Questions

9.2.18 Can we create a module that will allow us to plug
SPICE devices directly into Xyce, without
modification?

This has been suggested before, but it isn’t likely. The fact that Xyce uses a different linear
system (see section 9.4) makes doing this difficult, although not impossible.

However, as the code has evolved, we’ve been gradually moving further away from SPICE,
rather than closer. The new-DAE formulation (see question 9.5.8) is a good example of this.
It is hard to imagine how one would “plug in” a SPICE device to that formulation. In that
formulation, the charge (and flux) terms are stored separately in the Q-vector, which is
organized around circuit nodes (like the F-vector) rather than around capacitor branches,
like the SPICE state-vector. In theory, it might be possible to make an automatic mapping
between the SPICE state vector and the Xyce Q-vector, but it would be difficult.

In general, as we’ll be moving further from SPICE in the future, plugging SPICE devices
directly into Xyce will become even more difficult. Given that we’re nearly out of SPICE
devices anyway (and are re-directing our focus to using Verilog-A model compilers like
ADMS [21]), we aren’t likely to ever plug SPICE devices directly into Xyce.

9.2.19 Why are we moving farther away from SPICE?
Wouldn’t it be easier to follow SPICE more
closely?

Yes, it would be easier, but then part of the rationale for this project would go away.

Part of the point of Xyce is to develop a code that pushes the “bleeding edge” of circuit
solver technology. SPICE has (by modern standards) a cryptic, restrictive, 20-year old,
design. If we followed this design too closely, it would stifle numerical innovation. As it is,
we’re still pretty restricted. SPICE is a long-term industry standard, so users expect Xyce
to be bug-compatible with SPICE.

Rewriting device models from SPICE to Xyce is difficult, but it isn’t impossible. That’s why
we hire PhDs.

Finally, don’t compare this task to adding SPICE devices to a SPICE-based code (like
ChileSPICE, or your locally hacked version of Spice3f5). If the model is SPICE-based, and

132

9.2 General Philosophy and Miscellaneous XyceTM Developer Guide

the target application is SPICE-based, then the job of adding the model is trivial. All the
hard work was done by the SPICE model developer. All the code developer really has to
do, in that case, is make minor modifications to a few source files and the Makefile.

9.2.20 Why is the BSIM3 level=9 rather than level=8?

There is no gold standard for level numbers. Or at least, many model level numbers are
not very standardized.

133

XyceTM Developer Guide Frequently Asked Questions

9.3 Equation set

9.3.1 Do SPICE and Xyce solve the same equations?

The short answer is yes. Both codes rely on the “modified KCL” equation set. This is
also referred to as “modified nodal analysis”. See the Xyce Math document for a detailed
explanation.

The fact that both codes use modified nodal analysis means:

• Most equations are Kirchhoff current law equations.

• Most solution variables (that are part of the linear system, not a post-process) are
voltage node values.

• The only exceptions to the first 2 items in this list are devices which have non-Ohmic
currents (currents which are a function of voltage). The most common example is the
independent voltage source.

Note that Xyce may someday use a different type of analysis, such as tableau analysis,
but this has not happened yet.

134

9.4 Linear System XyceTM Developer Guide

9.4 Linear System

9.4.1 How is the Xyce linear system different from
SPICE?

Both SPICE and Xyce use Newton’s method to solve the nonlinear system. Both Xyce
and SPICE solve a linear system at each iteration of Newton’s method. The linear systems
used by the 2 codes are related, but not the same. Most traditional nonlinear solvers
(including Xyce) will solve this nonlinear system at each Newton iteration:

J∆xk+1 = −f (9.1)

xk+1 = xk + ∆xk+1 (9.2)

The index, k, is the Newton iteration step number. J is the Jacobian matrix, and f is the
residual vector. J = δf/δx.

In contrast, the SPICE nonlinear iteration is accomplished by solving this equivalent linear
system:

Jxk+1 = −f + Jxk (9.3)

The SPICE equation, given by equation 9.3 is algebraically equivalent to the traditional
system, given by equations 9.1 and 9.2. Note that the term Jxk is a vector term. Using
equation 9.3 has one less step involved, so it probably requires slightly fewer floating point
operations to execute. This slight optimization might by why SPICE uses it. (or it might not)

Equation 9.1 and/or equation 9.3 are solved by invoking a linear solver such as KLU, or
AztecOO. Equation 9.2 is solved simply by the vector addition of xk to ∆xk+1.

For either approach, the code is trying to obtain a correct solution vector, x, and declares
success when (by some measure) the norm of the f vector is small. In circuit codes, the
matrix J and vector f are provided by the device models.

135

XyceTM Developer Guide Frequently Asked Questions

As you can see, a SPICE device model has to provide J and f , and the same is true of
a Xyce model. However, the right hand side of equations 9.1 and 9.3 is different, and as
such a different system is handed off to the linear solver.

SPICE devices load −f + Jxk directly into a vector structure - they don’t set up a separate
f vector and Jxk vector. Unfortunately, SPICE doesn’t even go out of its way to spell out
which device contributions are part of f , and which ones are part of Jxk. This issue is the
main thing that makes converting a SPICE device to a Xyce device difficult.

9.4.2 Are there any other right-hand-side issues to be
wary of? Or, how do we handle linear resistors?

YES! Linear resistors are a potential “gotcha”.

Because SPICE loads −f+Jxk for the right hand side, it means that any terms in f that are
purely linear are cancelled when Jxk is subtracted off. This has been a significant source
of coding errors in converting SPICE models to Xyce.

As an obvious example, consider the simple resistor, whose f vector is simply (vpos−vneg)
R ,

or (vpos − vneg) ∗ G. This is precisely the same as the Jacobian multiplied by the current
solution vector, so the SPICE load function would add zero in to the right-hand side. Rather
than wasting code to add in and subtract the same thing, there is simply no code in SPICE
related to loading the right-hand side for the resistor. In Xyce, however, it is necessary to
calculate and load this term.

This issue comes up immediately for any semiconductor device model that contains par-
asitic resistance models, such as the BJT or any of the MOSFET models. In SPICE, the
terms involving the parasitic resistors are missing from the right-hand side load, but are
present in the Jacobian. Another common place for this issue is when GMIN is added to
Jacobian elements. These result in additional linear right-hand side terms that are usually
not included in the SPICE implementation. It is essential that the Xyce developer be aware
of these missing linear terms and add them in appropriately.

9.4.3 What is GMIN, anyway?

GMIN is a SPICE-ism, that we’ve decided to adopt. It is apparently intended to improve
solver stability, but we’ve never been able to prove (to ourselves) that it actually helps much.
However, for the sake of SPICE compatibility, we’ve made it part of Xyce.

136

9.4 Linear System XyceTM Developer Guide

GMIN is a global device package parameter. It is a small conductance, which has a default
value of 1.0e-12. In SPICE, you can set GMIN from the netlist with:

.options gmin=1.0e-7

In Xyce, it is set like this:

.options device gmin=1.0e-7

Many SPICE transistor devices include “gmin” resistors. These resistors are not connected
to anything physical - they are just there to allow a small amount of current. This probably
adds some degrees of freedom to the circuit solve, and it could be argued that might make
things easier for the nonlinear solver. Also, having them there might improve the condition-
ing of the Jacobian, thus helping the linear solver. However, in practice, we haven’t seen
Xyce behave much differently with them there vs. not there.

In SPICE, it is impossible to set gmin to zero from the netlist, but you can always hack
SPICE code to force gmin=0.0 if you you need to. If you don’t hack SPICE, then SPICE
will always force it to some nonzero number (I think the minimum is 1.0e-14). In Xyce,
however, it is possible to make it truly zero. Xyce doesn’t impose a limit, nor do we plan to
implement a limit.

Often, the last remaining issue in a device, the one final thing that prevents a Xyce device
from completely matching SPICE, are the gmin resistors. As they are very small, it is
often difficult to notice that they are missing. If you are seeing subtle differences between
your Xyce device and the equivalent SPICE device, check to see if the GMIN resistors are
correctly set up.

Note, as they are linear resistors, you need to understand the answer to question 9.4.2.

9.4.4 GMIN is such a small term. Why does it matter so
much?

If you implement gmin correctly, then it doesn’t change the answer very much, for most
circuits.

The real problem comes if you implement gmin in a mathematically inconsistent way. Gen-
erally, if you have gmin in your device, you must set it up correctly, or your device will be
numerically unstable. The device, if it converges, may give an answer that looks reason-
able, so it is easy to not notice this type of mistake at first. However, a gmin mistake always

137

XyceTM Developer Guide Frequently Asked Questions

means that the device will numerically diverge a lot more often than it should.

That may sound hard to believe, given that gmin is (typically) 1.0e-12, but it has been
observed for many devices, during the many years that Xyce has been under development.

Linear resistors are handled much differently in Xyce, compared to SPICE. (see ques-
tion 9.4.2). Because of this, a very common error in Xyce devices happens when a Xyce
developer naively copies the SPICE Jacobian (which includes gmin), but doesn’t set up the
corresponding right hand side terms. In general, it is better to leave gmin out of the device
altogether, than it is to set it up with this mistake.

9.4.5 What is GMIN stepping?

Gmin stepping is a nonlinear solver algorithm used by SPICE. It is a continuation algorithm,
similar to some of the ones we use in Xyce with LOCA. The name, however is deceptive.
Continuation algorithms typically work by sweeping a parameter over a range of values,
and having the nonlinear solver do a Newton solve at each value. At the end of the pa-
rameter sweep, the solved solution is a solution to the desired problem that was originally
specified by the user.

The reason the term “gmin stepping” is deceptive is that it implies that the various GMIN
resistors, present in many SPICE devices, are set to some artificial value and progressively
modified over the course of the sweep.

What actually happens is that a variable, called diagGmin, is summed on to the diagonal
of the Jacobian matrix in SPICE. Initially, this diagGmin variable is set to a scalar of gmin.
By default, it is 10 orders of magnitude larger, so by default diagGmin is initially 1.0e-2.
The continuation sweeps over diagGmin, going one order of magnitude at a time. On the
final step, diagGmin is set to zero, so for the final solve, the original circuit problem is being
solved.

In effect, what this does is put a large resistor in between every single voltage node and
ground. On the first step, given that diagGmin is 1.0e-2 by default, this resistor is 100
ohms by default. Over the course of the continuation, the resistor gets larger and larger
and larger, until it is essentially infinite (or the current between this node and ground is
zero).

Given that diagGmin is put onto every diagonal in the matrix, that means that diagGmin is
occasionally added to voltage drop equations, rather than KCL equations. Recall that in
SPICE and Xyce, most equations are Kirchhoff current law (KCL) equations, and that most

138

9.4 Linear System XyceTM Developer Guide

variables are voltage node variables. Occasionally, a device (like an independent voltage
source) exists that doesn’t have an Ohm’s law I-V relationship. For devices like this, it is
necessary to add a voltage drop equation, and a corresponding current variable. Anyway,
the “gmin stepping” algorithm puts diagGmin on every single diagonal of the matrix, so it
is added to a handful of equations that are associated with a current variable, rather than
a voltage variable.

For such equations, adding diagGmin is not adding a resistor to ground - it is doing some-
thing else. It is essentially adding a (const*I) term, instead of a G*V term.

GMIN stepping has been implemented in Xyce, but it is not automatically invoked like it
is in SPICE. In SPICE, when the traditional DCOP fails, the code automatically attempts
GMIN stepping and if that fails it automatically attempts to use source stepping to solve the
DCOP. In Xyce these options have to be turned on manually.

9.4.6 Why didn’t Xyce just use the same linear system as
SPICE?

Because we think SPICE’s linear system is weird. Hardly any other implicit numerical
codes use it. This is in part because many, many nonlinear solver algorithms depend upon
being able to manipulate ∆x. In SPICE’s approach, there is no ∆x vector, so you can’t do
anything to it directly. Also, a lot of numerical algorithms depend on testing the f vector,
and in SPICE’s linear system, there is no true f vector.

From a pragmatic point of view, Xyce depends a lot on the ASC Algorithm libraries, which
includes the NOX nonlinear solver library, and LOCA (library of continuation algorithms).
(actually, LOCA is part of NOX, but whatever) Both of those libraries, as they are designed
with a variety of applications in mind, not just circuits, expect to perform a traditional non-
linear solve, not a SPICE-style nonlinear solve. For us to use these libraries (and we need
to use them), Xyce needs to set up a traditional nonlinear solve.

9.4.7 Is there an easy way to reverse engineer the SPICE
residual?

Yes. Or, at least there is a rule of thumb that will work most of the time.

If you look at the load functions of a SPICE device, you’ll probably notice that there are a lot
of currents being calculated, and a lot of conductances being calculated. Conductances

139

XyceTM Developer Guide Frequently Asked Questions

are generally derivatives of current with respect to voltage (δI/δV), so in general, they
belong in the Jacobian, J. However, you’ll notice that they are used in the right-hand-side
vector a great deal, via G ·∆V terms. For example, you will frequently see expressions like
this:

here->BSIM3csub = Isub - (Gbb * Vbseff + Gbd * Vds + Gbg * Vgs);

(this example is take from the SPICE BSIM3 device). Here, Isub is a current variable.
Vbseff, Vds, and Vgs are all junction voltages. (i.e. the difference between two nodal
voltages). Gbb, Gbd and Gbg are all conductance variables. So, variables starting with the
letter I are usually currents, variables starting with the letter V are usually voltages, and
variables starting with the letter G are usually conductances. (note: there are, of course,
exceptions to this!)

csub is the variable that will actually be put into the right-hand-side vector from the SPICE
BSIM3. Near the bottom of the BSIM3 load function (the SPICE version), you’ll find this:

ceqbs = -here->BSIM3csub;

And later on, you’ll see this:

(*(ckt->CKTrhs + here->BSIM3bNode) -=(ceqbs + ceqbd + ceqqb));

(Note: these terms have been simplified, somewhat.) What th is all means is that csub
corresponds to −f + Jxk. Therefore, Isub corresponds to −f , and all the G*V terms corre-
spond to +Jxk.

csub, starting with the letter c, is kind of a current, but only kind of. It has the units of
current (amps). However, given that most conductances in the BSIM3 are nonlinear, terms
like Gbb * Vbseff are not intended to provide currents that correspond to real currents in
the device. They are there to make the linear system consistent.

So, here is the rule of thumb: Assume that current variables (starting with I) are part of f ,
and that conductance-voltage terms (G*V) are part of +Jxk.

9.4.8 In Xyce, what do we do with Jxk?

In reading the answer to the previous question, it might seem that the Jxk term isn’t needed
in Xyce. After all, it doesn’t appear in equation 9.1. However, we don’t throw it away. If
we want to use voltage limiting (a nonlinear solver enhancement that SPICE uses) then
we need to keep it, in a modified form. When voltage limiting is enabled, the linear system

140

9.4 Linear System XyceTM Developer Guide

solved at each Newton step is given by:

J∆xk+1 = −f + J∆xvoltlim (9.4)

The effect of J∆xvoltlim is to force the nonlinear solver to include the changes due to
voltage limiters in the nonlinear step.

If Xyce is run with this netlist option:

.options device voltlim=0

then Xyce solves equation 9.1, and it doesn’t need anything like the Jxk term. However, if
Xyce is run with this netlist option:

.options device voltlim=1

then voltage limiting is enabled, and Xyce solves equation 9.4 instead of equation 9.1.
(Note that this is the default in Xyce.) In this case, a term like Jxk is needed, but the
equivalent term in Xyce is given by J∆xvoltlim. This translates, in the Xyce source code to
something that looks like this:

csub = Isub;

if (devOptions.voltageLimterFlag) // set from the netlist

{
csub Jdxp = - (Gbb * (Vbseff-Vbseff orig)

+ Gbd * (Vds - Vds orig)

+ Gbg * (Vgs - Vgs orig));

csub += csub Jdxp;

}
else

{
csub Jdxp = 0.0;

}

In the above code fragment, the term csub Jdxp is the J∆xvoltlim term, while Isub is the f
term. Compare this code fragment with the fragment in question 9.4.7. If you can see the
pattern match between these two code blocks, you’ll be able to convert most devices from
SPICE to Xyce quickly.

141

XyceTM Developer Guide Frequently Asked Questions

9.4.9 What is voltage limiting?

Voltage limiting is a unique circuit nonlinear solver enhancement. For a mathematical
description, see the Xyce Math document. The premise for it is to prevent junction voltages
from changing too much from Newton step to Newton step. For some devices, this is
crucial. In particular, devices with an exponential current-voltage relationship are very
sensitive to minor changes in voltage, and will often “blow up” numerically.

Voltage limiting is only set up in nonlinear devices, such as diodes, BJTs and MOSFETs.
There are 3 functions that are commonly used: fetlim, pnjlim, and limvds. These 3
functions are available in Xyce, and while some devices (like the BSIM SOI) use other
functions, these are by far the most common.

Voltage limiting can be thought of as the code “going into denial”. During a device load,
a device will first obtain nodal voltages from the solution vector of the current nonlinear
iteration. What follows is a simplified example, for a diode. For any device, the first step is
to obtain relevant nodal voltages from the solution vector. This is done near the top of the
updateIntermediateVarsBlock function:

Vpp = (*solVectorPtr)[li Pri];

Vn = (*solVectorPtr)[li Neg];

Voltage is a relative quantity, so currents in the diode are calculated based on voltage
drops. These are calculated next:

Vd = Vpp - Vn;

For safekeeping, this junction voltage is saved:

Vd orig = Vd;

At this point, the device “limits” the voltage:

Vd = devSupport.pnjlim(Vd, Vd old, Vte, tVcrit, &ichk);

The input value, Vd, was just calculated. Vd old is from the previous Newton iteration, if it
exists. Vte and tVcrit are inputs that determine the extent to which Vd should be limited.
(they help determine the shape of the I-V curve, which determines how much Vd should
be allowed to change) This function call returns a new value for Vd. Sometimes, the same
value of Vd is returned that was passed in. If Vd is changed by this function call, then
Vd-Vd orig is nonzero.

142

9.4 Linear System XyceTM Developer Guide

At this point, now that the limiter functions have been called, it is safe to reset Vd old:

Vd old = Vd;

From this point onward, the device uses the new value for Vd in all of its current and
voltage calculations. The problem with this is that the current and voltage calculations are
not consistent with the contents in the solution vector. Xyce is not aware of this change to
Vd, except inside this device.

To correct for this, this change to Vd is incorporated into the right-hand-side vector load of
this device. The correction term (referred to previously in this chapter as J∆xvoltlim) forces
the nonlinear solver to include this change in the ∆x vector, when it is calculated for the
current nonlinear solver iteration.

So, when the final load is performed for the diode, in the function loadRHSBlock, the load
has this form:

double Gd Jdxp = 0.0;

double Vd diff = Vd - Vd orig;

if(devOptions.voltageLimiterFlag && !origFlag)

{
Gd Jdxp = -(Gd + Gcd) * Vd diff;

}

coef = Id + Icd + Gd Jdxp;

(*extData.RHSVectorPtr)[li Neg] += coef;

Note that this example has been simplified.

9.4.10 Why do we sometimes turn voltage limiting off?
SPICE doesn’t

Because when voltage limiting is on, the right hand side vector (RHSVector) is not f (the
residual). Some nonlinear solver algorithms depend on this vector structure being f , and
nothing but f . Also, some nonlinear solver algorithms need to be able to load and re-load
f , multiple times at each Newton step, and reliably get the same f for the same x. Voltage
limiting is not set up in a sophisticated enough way to do this without introducing hysteresis
into f .

143

XyceTM Developer Guide Frequently Asked Questions

Xyce actually does create another vector (fvector) which contains nothing but f . However,
it is difficult to make NOX (or any solver) understand that it needs to use fvector for some
uses and RHSVector for others. Generally, these libraries are set up to use one vector for
everything.

The main solver algorithm that is inconsistent with voltage limiting is line search, and all
of its variants. Currently, there is no easy way to use any type of line search and voltage
limiting at the same time. In other words, you should never see this in the input file:

.options device voltlim=1

.options nonlin searchmethod=2

If voltlim=1, then searchmethod should never be anything other than 0.

Voltage limiting could be implemented with better bookkeeping, to get line search to work
with it. However, given that line search and voltage limiting are essentially trying to accom-
plish the same thing (reduce the nonlinear step size), the benefits of combining the two
methods are not clear.

SPICE doesn’t give you the option to turn off voltage limiting. This simplifies the SPICE
source code, and for most circuits voltage limiting is an effective algorithm. SPICE doesn’t
have nearly as many solver options as Xyce, so it doesn’t have to accommodate them.

9.4.11 What other things are enabled by voltage limiting?

The netlist specification, .options device voltlim=1 turns on several things that use the
voltage limiter machinery in Xyce.

Anything in a device, that modifies junction voltages to values other than what would have
been obtained directly from the solution vector has to be treated as a voltage limiter. This
includes:

• Initial junction voltages, that are set on the very first Newton step of the first DCOP
solve.

• The SPICE way of applying IC=.

• bypass, if we used it.

Each of these things will change junction voltages to non-solution-vector values. As such,
these changes need to be propagated back to the nonlinear solver, in the same manner as

144

9.4 Linear System XyceTM Developer Guide

voltage limiter changes.

When viewed in this way, it is more accurate to think of .options device voltlim=0 really
meaning, “remove all hacks that artificially change device junction voltages”. It could also
be thought to mean “Force the RHSVector to contain f , and only f .

9.4.12 Does it matter if I use the same voltage limiter
functions in my Xyce device as are used in the
equivalent SPICE devices?

In general, yes, it does matter.

It is true that the exact limiter function used doesn’t really change the model. Voltage
limiting is really a solver enhancement, so one could make the argument that using a
different limiter function (from the original SPICE device) is OK. So, for example, in your
implementation of the diode, you could use a new function ”newlim” instead of ”pnjlim”, and
your diode would still be a diode.

However, the problem with doing this is that it makes comparing to the original SPICE
device much more difficult. In practice, the fastest way to debug a Xyce model is to make
it identical to the SPICE equivalent. If you use a different limiter function, you’ve rendered
that debugging approach nearly impossible. The benefits of doing a lot of detailed, direct
comparisons to SPICE far outweigh any benefit that you could possibly get from using
your own limiter. If you must come up with a new limiter, do it much later. Do your initial
development and debugging using the same limiter as SPICE. Once you are 100% certain
that the model is correct, then you can consider using a different function, but only then.

Another issue is that one common bug report is, ”this circuit worked fine in PSpice (or
Spice3, or ChileSPICE, or whatever), but fails in Xyce.” If you make certain to use the
same limiter functions, and apply them in an equivalent manner, this type of bug report is
a lot less likely. Generally, the SPICE limiters have been set up that way for a reason -
they’ve been well-tailored to that device, and the particular I-V relationships of that device.

To put it bluntly, if you try to come up with your own limiter, you are probably making a lot of
pointless work for yourself. Instead of just copying over a few lines of SPICE (which should
be trivial), you’ll have to invent something yourself. Chances are, whatever you invent won’t
work as well, unless you spend a lot of time thinking about it.

You should only try to come up with a different limiter if you have a compelling reason to

145

XyceTM Developer Guide Frequently Asked Questions

think the original SPICE limiter is inadequate. One example of a valid, compelling reason
would be if a user has a very important circuit that won’t converge with the original SPICE
limiter. If this is your justification, make 100% sure that it is the SPICE limiter’s fault, and not
some other bug in the device. One good test is to see if the users’ circuit runs in Spice3,
or ChileSPICE, or some other SPICE variant. If it runs in SPICE, then the issue is not the
limiter - you probably have a bug in the implementation of the device.

9.4.13 Are the SPICE and Xyce Jacobians the same?

The short answer is yes, they should be identical at every Newton step. This comes with a
few caveats:

• The variable ordering will be different - for example the (row=5, col=5) element of
a Xyce matrix may actually correspond to the (row=3, col=3) element of a SPICE
matrix.

• Jacobians are 100% the same for the DCOP case. For transient, they will only be
identical if the time step size is identical. For testing purposes, it is easy to force this
to happen, by using the constant step size option in both codes.

• Xyce has a lot of solver options that SPICE lacks. Only compare Jacobians if you
are running with equivalent options.

By default, Xyce runs with options that are roughly equivalent to SPICE.

9.4.14 Are the SPICE and Xyce right-hand-side (RHS)
vectors the same?

The short answer is no. The one exception is the very first residual (RHS vector) of the
very first Newton solve. At this stage of the solution, the initial guess to the solution vector
is all zero’s. Thus, by coincidence, the xorig vector can always be considered to be zero,
and the Xyce and SPICE linear systems become identical. (for this case xk = ∆xvoltlim)
This will not be true for any other nonlinear iteration.

146

9.4 Linear System XyceTM Developer Guide

9.4.15 Are the SPICE and Xyce solution vectors the
same?

The short answer is yes. The same rules hold true as for the Jacobian. Variable orders will
be different, and in transient time step sizes may be different. Also, make sure the same
solver algorithms are used. Other than that, the solution vectors should match at every
Newton step.

147

XyceTM Developer Guide Frequently Asked Questions

9.5 Time Integration

9.5.1 How are time derivatives calculated in Xyce?

The answer to this question pertains to the old time integrator. There is a new time integra-
tor (see the new-DAE formulation, question 9.5.8), for which this question does not apply.
Also, note that the old time integrator was removed from Xyce in 2008. This question is
left in place merely for historical purposes.

Time derivatives are calculated (for now, with the old time integrator) via the state vector(s).
Any quantity that needs to be differentiated with respect to time should be set up as a state
variable, and put into the state vector. (extData.nextStateVector). This placement into
the state vector should happen in the updatePrimaryStateBlock function.

After the updatePrimaryStateBlock function has exited, the time integrator will calculate
time derivatives of the entire vector, and put the result into the
extData.nextStateDerivVector. Using the same state vector index, you can then obtain
the time derivative that you need.

For a concise example of all of this, see the capacitor device (N DEV Capacitor). Most
time derivatives are of capacitor charges, q.

So, the procedure should be, to calculate dq/dt, do the following.

• In updateIntermediateVarsBlock, calculate the most up-to-date C and q that you can.
In the capacitor device, C is a constant provided by the user, and q=C*V. In other
devices such as the BSIM3, C and q are calculated independently from a bunch of
other quantities, and C = dq

dV . In still other devices (notably the level 1 and level
3 MOSFET devices), q is calculated from the capacitance and voltage by a simple
approximate integration (this is sometimes referred to in comments by the imprecise
term “Meyer Back-Averaging”. See question 9.5.6 for more details.).

• in updatePrimaryStateBlock, place q in the state vector. It will look something like:

staVectorPtr = *(extData.nextStaVectorPtrPtr);

(*staVectorPtr)[li QState] = q0;

• in the updateSecondaryStateBlock function, obtain dq/dt. It will look something like
this:

148

9.5 Time Integration XyceTM Developer Guide

i0 = (*(*extData.nextStaDerivVectorPtrPtr))[li QState];

Once you have i0 (or whatever you call it) you can use it to set up the residual vector.

For a related question, see question 9.6.4.

9.5.2 What should go into the state vector?

Anything you want to differentiate with respect to time, and not much else. Occasionally,
you may need to access the previous history of a device, and you can use the state vector
to do this. This second justification (previous history) is rare.

This issue is sometimes confusing for people who have looked at SPICE code, as SPICE
uses the state vector for all sorts of things. We don’t. Most times that a SPICE device puts
stuff in the state vector, it is not necessary for us to do that.

Remember, as Xyce is a C++ code, most data an individual device needs can easily be
stored in said device’s instance or model class. It isn’t necessary to bother with the state
vector. The entire state vector gets differentiated, many times, over the course of a run, so
anytime you put stuff in it that doesn’t strictly need to be there, you’ll just be adding extra
work to the time integrator.

For example, it is almost never necessary to put DC (or transient, for that matter) con-
ductances in a state vector. It is almost never necessary to store junction voltages either,
although this can be handy for enforcing voltage limiting from one time step to another.

9.5.3 SPICE puts variable x into the state vector. Should I
also put variable x into the state vector?

Probably not, unless you need to obtain dx/dt. See question 9.5.2.

Occasionally, there will be other state vector uses, but they are rare. For example, the
transmission line device needs to refer to previous points in the time history, and the
amount of time it needs to “look back” is completely arbitrary and specified by the user.
So, the only easy way to support this is via the state vector. For this type of exception, it is
OK to use the state vector.

It is not appropriate to put things into the state vector, just for safekeeping. You should be
able to store most of your information in the local instance class.

149

XyceTM Developer Guide Frequently Asked Questions

9.5.4 What is solState.pdt?

This term is used for capacitor current Jacobian terms in Xyce. “pdt” is an acronym for
“partial time derivative”. Capacitor currents are in Xyce given by:

Icap =
dq

dt
=

α

∆t
(qi+1) + other terms (9.5)

The index i + 1 is intended to denote the most recent time point. It is still unknown, and
subject to the (in progress) nonlinear solve. The “other terms” contain information about
previous time points (i, i − 1, etc., depending on the integration method). These previous
time points have already been obtained, and are no longer unknowns from the perspective
of the nonlinear solver. Thus, from the nonlinear (and linear) solver’s point of view, the only
term in equation 9.5 that will give a nonzero derivative with respect to the solution vector is
the leading term, αqi+1/∆t.

The backward differentiation formulas (BDFs) used by the old Xyce time integrator all have
the form given by equation 9.5. solState.pdt is given by:

solState.pdt =
α

∆t
(9.6)

solState.pdt is used for capacitor Jacobian contributions (capacitor conductances). The
conductance for any capacitor in Xyce is given byCα/∆t, or (in other words), C * solState.pdt.

This is an approximation for capacitor conductance that isn’t quite correct for nonlinear
capacitors. In Xyce (and SPICE) the derivative of equation 9.5 with respect to V is approx-
imated by:

Gcap =
dIcap
dVi+1

=
dqi+1/dt

dVi+1
=
CdVi+1/dt

dVi+1
=
CαVi+1/∆t+ other terms

dVi+1
= C

α

∆t
(9.7)

Note that for Backward-Euler, α = 1.0, and the “other terms” are just qi/∆t. For other
BDFs, α can be other numbers. Equation 9.7 is an approximation that depends, in part, on
dqi+1/dt = CdVi+1/dt. This assumption is only true for linear capacitors, but equation 9.7
is used in Xyce (and SPICE) for nonlinear capacitors anyway. In practice, it has been good
enough.

To set up the capacitor conductance for a Xyce device, a pattern like this should be used
(taken from the BJT device):

150

9.5 Time Integration XyceTM Developer Guide

if (!solState.dcopFlag)

{
gCapBEdiff = capBEdiff * solState.pdt;

}
else

{
gCapBEdiff = 0.0;

}

Never use the actual time step size directly to set this up. In other words, don’t set
gCapBEdiff = capBEdiff/solState.currTimeStep. This will only be correct if α coin-
cidentally happens to be 1.0, and there is no guarantee that this will be true. The Xyce
device package doesn’t have a way to directly obtain α.

NOTE: In the BSIM devices, the variable ag0 is the equivalent of solState.pdt. When
implementing a BSIM device, make sure the Xyce version sets ag0 to solState.pdt. So, if
you see a line like this:

gcgmdb = -cgdo local * ag0;

The variable gcgmdb is a capacitor “conductance”, and the variable cgdo local is a capac-
itance, and ag0 is α/∆t.

9.5.5 Why can’t I put a differentiation formula directly in a
device?

Some backward-differentiation formulas (BDFs) are easy to set up (in particular, Backward
Euler). SPICE obtains time derivatives by calling NIintegrate whenever it needs one.
When implementing a SPICE device in Xyce, it can be tempting to just hardwire a BDF
in the corresponding locations in the Xyce source. Sometimes, using the “state” functions
can be a hassle, as they apply some constraints on when you can obtain derivatives.

However, you should never hardwire BDF formulas in devices, unless you have a really,
really good reason to do so. All the time stepping and error control is handled by the
time integration package, and it can’t do it correctly if you aren’t using its time derivatives.
Also, Xyce allows users to set the integration method from the input file, as well as time
integrator tolerances. If you hardwire time derivatives into the device package, you won’t
use any of those options.

Finally, philosophically, calculating time derivatives really isn’t the job of the device pack-
age. The device package is a physics package, not a solver package. Most issues perti-

151

XyceTM Developer Guide Frequently Asked Questions

nent to a solution method should be done in the various solvers packages.

There are a few exceptions to this in Xyce, in which time discretizations are hardwired
directly inside of device models. The intention is to eventually get rid of them. These
exceptions include the handling of Meyer capacitors in the level 1 and level 3 MOSFETs
(see question 9.5.6), and the handling of excess phase in the BJT (question 9.5.7).

9.5.6 What is “Meyer Back-Averaging?”

The simplest MOSFET models include computation of “Meyer capacitances” and the charges
on these. Since the Meyer capacitances depend on voltage, it is not correct to calculate
the charges stored in these parasitic capacitors as q = C ∗ V . The correct way to do it is
via integration, q =

∫ v1
v0 C(V)dV . In the level 1 and level 3 SPICE MOSFET models, this is

done by using a simple trapezoid rule approximation to the integral:

q(t1) = q(t0) +
1

2
(C(V (t1)) + C(V (t0))) ∗ (V (t1)− V (t0))

It is essential to perform the charge computation in this way to guarantee charge conser-
vation.

Unfortunately, the way the original SPICE code was written this approximation looked very
much like it was averaging the old and new capacitance. This lead to a number of com-
ments in the Xyce code referring to this as “Meyer Back-averaging,” but it is in fact nothing
more than an obfuscated coding of a simple approximate integration.

At some point Xyce may support performing integrations over such quantities through the
time integrator in a manner that is consistent with the order of the time integration being
performed on the DAE. At that time (if it happens) it might be appropriate to update these
simple MOSFET devices to use that facility. On the other hand, for strict SPICE compati-
bility it might be desirable to leave it alone.

9.5.7 What is the BJT excess phase term?

The excess phase term of the level-1 BJT is one Xyce example of a hardwired time deriva-
tive function. Explaining excess phase in detail is beyond the scope of this document. From
a physical point of view, excess phase is due to distributed phenomena in the base region
of the BJT, which causes an extra phase shift than would be predicted by the Gummel-Poon
model.

152

9.5 Time Integration XyceTM Developer Guide

From a mathematical point of view, the excess phase term is represented by a second-
order differential equation:

d2IFX

dt2
+ 3ω0

dIFX

dt
+ 3ω2

0IFX = 3ω2
0

ICC

qB
(9.8)

Being a second-order equation, it doesn’t fit naturally into the capabilities of the old time
integrator, and for that reason this expression is hardwired (using a Backward-Euler BDF)
into the Xyce. However, for the new-DAE version of the BJT (see question 9.5.8, the
equation has been recast as a pair of first-order equations, and for that implementation,
the differentiation is handled by the time integration package.

Note that the new-DAE version of excess-phase is not used by default, even when the
new time integrator is being used. The reason for this is efficiency. Using the new form of
excess phase requires an extra two solution variables per device, and for circuits with a lot
of BJT’s in them, this noticably slows down the linear solve time. So, by default, the old,
state-vector method is used. If MPDE or harmonic balance are used, then the new form
must be used, and that is the default for those types of analysis.

9.5.8 What is the deal with the new-DAE formulation?

This is a new time integrator in Xyce. The old time integrator was, essentially, an ODE
(ordinary differential equation) time integrator. Note that as of 2008, the old time integrator
has been removed from Xyce.

The new integrator is more appropriate for DAE (differential algebraic equation) problems,
which is what circuits actually are, as it is possible for some (or many) of the equations
to lack time derivative terms, thus making them algebraic constraints rather than differen-
tial equations. In terms of stability and accuracy, it is better to use algorithms that were
designed for DAEs instead of ODEs.

Another advantage of the new time integrator (theoretically, anyway) is speed. The new
integrator is variable timestep, variable order, while the old one had a fixed order The new
integrator has shown dramatic improvements over the old, in terms of simulation time, and
accuracy for some circuits.

Also, the new time integrator is required for the Multi-time PDE (MPDE) algorithm and also
the harmonic balance (HB) algorithm, which we are supporting in Xyce.

153

XyceTM Developer Guide Frequently Asked Questions

As of this writing the old integrator has been removed. Prior to its removal, it was necessary
to support two versions of every device, one for each integrator. After removing the old
integrator, the “old” implementations were mostly removed, but there may still be a few
devices that have not been purged yet.

The new-DAE formulation casts the problem like this:

f =
dQ

dt
+ F(x, t) (9.9)

In this formulation, two different vectors (Q and F) are set up by the device package. The
time integrator is then responsible for summing them together in an appropriate manner to
create f

In terms of device implementation, the new-DAE algorithm has a few key differences. For
both integrators, the updatePrimaryStateBlock function (and hence, the updateIntermedi-
ateVarsBlock function) will always get called.

However, for the new-DAE integrator, updateSecondaryState, and loadRHSBlock and load-
AnalyticalJacobianBlock are ignored, i.e. not called. Instead, the new-DAE time integrator
will call the vector loaders (the B-vector is combined with the F-vector so it doesn’t get its
own load function):

• loadDAEQVectorBlock

• loadDAEFVectorBlock

It will also call the matrix loaders:

• loadDAEdQdxBlock

• loadDAEdFdxBlock

The residual (or RHS) vector will be assembled as a linear combination of the FVector
and the time derivative of the QVector. (see equation 9.9). The Jacobian matrix will be
assembled as a linear combination of the dFdx matrix, and the time-derivative of the dQdx
matrix. These linear combinations are handled outside of the device package, and are not
the device package’s responsibility.

154

9.5 Time Integration XyceTM Developer Guide

One nice thing about this is that the function call sequence for a device load will be less
confusing. Another nice thing is that the separation of the physics (the device package)
from the numerical solver techniques (in the time integration package) will be more com-
plete.

Explaining the F and Q vectors in detail is beyond the scope of this document. They all
follow the form of KCL equations, like the residual vector. Concisely, one can think of them
as:

• The Q-vector is for any KCL contribution that needs to be differentiated with respect
to time. It is similar to our old state vector, but has the ordering of a solution vector.
Q is dependent on the solution (x) and time (t).

• The F-vector is dependent upon x, and if the device contains sources, it may also be
dependent on time. This vector contains KCL contributions to a DCOP calculation.

For simple examples of how this is set up, see the resistor, capacitor, and voltage source.
For a complex example, see the BSIM3 (N DEV MOSFET B3) device.

155

XyceTM Developer Guide Frequently Asked Questions

9.6 Code structure

9.6.1 Why do file names and class names start with N ?

This is historical. Our naming convention was set up to be hierarchical. The first letter
indicates the “componenent” and the next 3-letter string indicates the “package”. N indi-
cates the “numerical” component. Originally, on the project we intended to have a graphical
user interface (GUI), which would have been another component, possibly labeled as G .
However as the project evolved we never had the resources (or priority) to create a GUI.

Examples of packages include the “device model package”, labeled as DEV. So a file or
class in the device package would have the prefix N DEV in the name.

9.6.2 What is the loader package for?

The idea of the loader package is to provide a layer of insulation between the device (or
physics) package, and the solver packages.

However, the encapsulation mostly goes one way. When solvers need to call the device
package, they call the loader, which subsequently calls the device package. However,
when the device package calls a solver, it just calls it directly. (this will someday change)
Almost all of the calls from the device package to the solvers come from the device man-
ager class.

9.6.3 What does N DEV DeviceMgr::setupSolverInfo
do?

This function calls the solvers (nonlinear and time integrator, mainly) to get things like the
current time step size, the current time, the Newton step number etc. It is supposed to
be one of the only places in the device package that calls the solvers. Anyway, all of the
random “bookkeeping” information is obtained here. This function is called at the beginning
of every loadRHS and loadJacobian function call.

156

9.6 Code structure XyceTM Developer Guide

9.6.4 What happens when
N DEV DeviceMgr::loadRHSVector is called?

Note that this answer pertains to the old time integrator, not the new-DAE time integrator.
(see question 9.5.8). For the old time integrator, a bunch of functions in the device package
are called:

• The RHSVector is set to zero.

• N DEV DeviceMgr::setupSolverInfo is called.

• The device manager loops over all the device instances, and the updatePrimaryS-
tateBlock function is called for each one. Each updatePrimaryStateBlock function
calls the updateIntermediateVarsBlock function.

• After the updatePrimaryState functions, the device manager then tells the time inte-
grator to calculate time derivatives, by calling:

tiaMgrPtr ->updateDivDiffs();

tiaMgrPtr ->updateDerivs();

• updateSecondaryState is called for all the device instances, so each device can ob-
tain the time derivatives it needs.

• loadRHSBlock is called for every device instance, to complete the load. loadRHS-
Block is the function in which each device instance actually sums quantities into the
RHSVector.

The most important thing to understand here is the calls to the time integrator that happen
in between the updatePrimaryState and updateSecondaryState calls. Once the time inte-
grator functions have completed, all the time derivatives needed to complete the RHS load
are available.

9.6.5 That sounds like a convoluted set of function calls.
Why?

The code was written in a hurry.

Also, it happened because the time integrator was designed to do everything (calculating
time derivatives, etc.) as all-at-once vector operations. This required that the loadRHS

157

XyceTM Developer Guide Frequently Asked Questions

process include a “pause”, during which the time integrator is called, after which the code
returns to the device package, to complete the RHS load.

A lot of this confusing structure can (and will) go away once we complete the switch to the
new-DAE formulation. (see question 9.5.8). The biggest thing that will change for new-
DAE, is that once the device package exits, and control goes back to the time integrator,
it will stay there. The code will not go back to the device package for the final RHS load.
The final assembly of the RHS vector will happen in the time integrator, which is actually a
more logical place for it to happen.

9.6.6 Why do a lot of function names end with “Block”?

A lot of device instance functions once had counterparts in the device class. (Each device
has a device class, a device model class, and a device instance class) It used to be that
when a load was called (say loadRHS) for a device, the function that was called was the
device class function. Inside that function, there would be a nested loop structure that
looped over device models and instances, to perform the loadRHS for each instance.

There wasn’t much reason to do it that way, other than to mimic SPICE, so I eventually
stripped out the device class functions and set up equivalents down in the device instance
classes. To distinguish between the old device class “loadRHS”, and the new device in-
stance version, I added the word “Block” to the end of the function. I’m not sure why I
bothered to add the word “Block”. The class name by itself makes it clear that this is a
different scope of function.

Anyway, for example, N DEV Resistor::loadRHS() was replaced by
N DEV ResistorInstance::loadRHSBlock ().

Note - this may seem like a minor change, but when it was propagated to every device,
for every load-related function, I was able to reduce the total number of lines in the device
package by about 15-20,000 lines.

158

9.7 Device Parameters XyceTM Developer Guide

9.7 Device Parameters

9.7.1 Where are default parameters set?

They are set (currently) in two places:

1. In the initializations of model and instance constructors. (these are just to make sure
the data is not uninitialized).

2. After the parTable, in the constructors of models and instances, when the overloaded
device entity function “addPar” is called. These “addPar” functions are where the
defaults are set for real.

There are a few notes of interest here:

� Double-precision parameters are set up in the static parTable object, which is a local
data structure to any device constructor. This table is looped over and addPars are
called for each row. As this is a static structure, it only needs to be processed for one
instance or model of the device type.

� Non-double-precision parameters are not in the parTable, and are handled via indi-
vidual addPar calls.

� The addPar function is an overloaded function of N DEV DeviceEntity, and there is a
version available for every type of parameter data (double, int, string, etc).

� Some devices have documentation for each parameter embedded in their parTables
and some devices do not. addPar is sufficiently overloaded to handle either kind.

� There is also a “processParams” function in every device instance and model class.
This function is nearly deprecated at the moment. In earlier versions of Xyce, all
the hard work in parameter processing happened here. This was changed when
the parTable approach was first implemented. However, as the parTable approach
breaks the C++ guidelines of having initializations delayed(see 6.7), and not tied to
the constructor, this will probably get refactored in the future, to make processParams
a meaningful function again.

� processParams still gets called from the constructor, even though in many cases it is
a no-op.

159

XyceTM Developer Guide Frequently Asked Questions

� The instance version of processParams includes calls to updateTemperature for a lot
of devices, so in that case it is not a no-op.

� The parTable approach actually violates a number of C++ style guidelines, and is
somewhat unsafe in terms of memory usage. Its one advantage is that it ties param-
eter information directly to memory offset locations in the class. Most parameters
have a corresponding class variable, which gets set to their value. By using the table,
the parameter has a direct mapping into the memory location, and this reduces the
number of times it has to be stored. This is one of the rare exceptions when having
static data is OK.

At some point, the parameter handling in the device package will need to go through a
major refactor, in order for the code to follow best-practice C++, and for the code to be
easier to maintain and extend. As the device package is large, this will require a substantial
effort.

9.7.2 Is it important to have the same parameter defaults
as SPICE?

Yes!

Make sure your defaults match SPICE’s defaults, assuming you are working on a SPICE-
based model. The most commonly used value for any model parameter is its default value.
Defaults don’t necessarily correspond to a specific “real” device, but any device model put
into Xyce should run to convergence with all the default values, and produce the same
answer as SPICE.

Even when users specify a lot of model parameters, they usually don’t set every single
parameter, just a subset. For us to match SPICE results, default parameters must be the
same. If the defaults are not the same, then effectively, it is not the same model.

9.7.3 Some devices have a lot of parameters and/or
variables - do I really have to type them all into the
various model and instance constructors?

Yes.

160

9.7 Device Parameters XyceTM Developer Guide

As noted in question 9.7.1, it is necessary to initialize all variables, or else some C++
compilers will barf.

It is recommended to use scripts, global replaces, and other editor tricks as much as
possible. You probably won’t be able to do 100% of the constructor using scripts, but you
can take care of the worst of it. If you are clever about using scripts, then setting these
constructors up shouldn’t be that hard.

For variables coming from SPICE, copy over the relevant header file(s) from SPICE, and
edit it down to a list of variable names. Do some global replaces to get rid of the ex-
tra SPICE-centric stuff. For example, a variable like “JFETbeta” will probably need to be
changed to just “beta”. (the name “JFET” will be implicit from the name of its owner class).
Eventually, you’ll be left of a file that has nothing but a list of (for example) instance vari-
ables used by the SPICE model, one variable per line. Once you have this, you can use
this file a lot to set up the Xyce header file, and the constructors.

161

XyceTM Developer Guide Frequently Asked Questions

9.8 Debugging

9.8.1 What’s with the Xyce DEBUG DEVICE macro?

Most debug output in Xyce is inside of ifdefs. If you want to use it, you have to configure
and compile Xyce with it enabled. To use code inside the Xyce DEBUG DEVICE ifdefs,
you need to configure and compile with (at least):

configure --enable-debug device

9.8.2 I’ve been debugging a device. I’ve mostly been
looking at the *.prn file. Is that enough?

No. For debugging the *.prn file should be considered “necessary but not sufficient”.

The *.prn file contains output specified by the .PRINT line in the netlist. While this output
needs to be correct, it really isn’t “debug” level output - it’s user output.

Data in the *.prn file is supposed to represent a converged answer. If the problem is non-
linear, that means that even for a single converged data point, Xyce has gone through
numerous nonlinear iterations. If (for example) it takes 5 Newton steps to obtain conver-
gence, then the code has (at a minimum) performed 5 linear solves, 5 matrix loads, and 6
(not 5) residual loads.

Most errors in device models will be invoked at load time. For a 5-iteration solve, an error
in the residual load will be exercised at least 6 times. Possibly many more than that,
depending on the algorithm you choose. By the time you obtain a converged answer, the
error will have been invoked enough times that it will be nearly impossible to diagnose it, if
all you look at is *.prn file data.

Note - of course, ultimately, the *prn file data needs to be correct, so certainly look at it -
but realize that any errors you have will be very hard to diagnose from the data in this file.

162

9.8 Debugging XyceTM Developer Guide

9.8.3 If the *prn file is the wrong place to look for data to
debug, where should I look?

Look at matrices and vectors for individual Newton steps, and do it mainly for the first 2
Newton steps of the initial DCOP.

If you have an error in a device model, then there is a good chance that error will be in
place on the first Newton step of the first Newton solve. In other words, look at the very
first Jacobian load and the very first residual load, and nothing else.

Once you have satisfied yourself that the first set of loads are 100% correct, then, AND
ONLY THEN, move on to examining the second Newton step in detail. The first step is, in
some sense “special”, in that there are things that happen on the first step that happen on
no other step. The second step, however, is not special, in terms of the code it exercises,
so if it is correct, most of the other steps should be correct.

In general, if the first step is 100% correct, and the second Newton step is 100% correct,
then probably the entire DCOP calculation will be correct. Once you are confident that the
DCOP calculation is right, then start debugging the transient. As with the DCOP, debug
the first Newton step of the first time step, then the second Newton step of the first time
step.

In summary:

• Debug the first Newton step of the DCOP.

• Debug the second Newton step of the DCOP.

• Check that the full DCOP is correct.

• Debug the first Newton step of the first time step.

• Debug the second Newton step of the first time step.

These are the “critical points” of the calculation. If you get these right, you’ll get most of
the simulation right.

9.8.4 How do I look at matrices and vectors in detail?

The easiest way is to use the old nonlinear solver, which is specified in the netlist by setting
.options nonlin nox=0. (NOX is the newer solver). To dump matrices and vectors out to

163

XyceTM Developer Guide Frequently Asked Questions

files, you need to be using a version of Xyce that has been configured and compiled with
(at least):

configure --enable-debug nonlinear --enable-verbose nonlinear

By default, if you have compiled with these enabled, and you use the old nonlinear solver,
you will get a lot of matrix and vector files dumped out every time you run Xyce. The
amount of output is dependent upon the debuglevel parameter. For example:

.options nonlin nox=0 debuglevel=-1

will result in no matrix or vector output files. Setting:

.options nonlin nox=0 debuglevel=1

or
.options nonlin nox=0

will result in files at every Newton step, with unique names for each Newton step. Setting:

.options nonlin nox=0 debuglevel=2 (or higher)

will result in files at every Newton step, with unique names set by both the Newton step
number and the time step number. This is by far the most verbose option.

The files of interest are matrix.*.txt, rhs.*.txt and solution.*.txt. In the default mode, the
“*” part will be a 3-digit number, set to the Newton step number. For most debugging
purposes, this is enough - I’m usually only interested in debugging one particular nonlinear
solve, not several.

9.8.5 What is the namesMap.txt file?

This file will tell you the mapping between solution variable index and solution variable
name. Most solution variable names are determined by voltage node names, set in the
netlist. A typical namesMap.txt file looks like this:

164

9.8 Debugging XyceTM Developer Guide

0 4

1 vmon branch

2 vdd branch

3 source

4 drain

5 5

6 gate

The first column is the solution vector index, and the second column is the variable name.
You can get a nice, useful output if you do a Unix “paste” of the namesMap.txt file to one
of the solution sized vector files. For example:

paste namesMap.txt rhs.002.txt <return>

will give you (for example):

0 4 8.673617379884035472e-19

1 vmon branch 0.000000000000000000e+00

2 vdd branch 0.000000000000000000e+00

3 source 4.541535243477754641e-03

4 drain -4.656753028599916293e-03

5 5 8.267041565201971309e-19

6 gate 1.152177851223489614e-04

In this example, you have the index in the first column, the variable name in the second
column, and the residual vector value (from the second Newton iteration) in the last column.

Xyce will not output a namesMap.txt file, unless it has been configured to do so. To enable
this capability, Xyce must be configured with:

configure --enable-test soln var map

When Xyce has been configured to do this, it will always produce this file. This capability
will probably not work correctly in parallel.

9.8.6 How do I use the numerical Jacobian?

You can use the numerical Jacobian by adding this to a netlist:

.options device voltlim=0 numjac=1

165

XyceTM Developer Guide Frequently Asked Questions

Voltage limiting must be turned off (by voltlim=0), for this to work. In general, voltage
limiting can be thought of as an option that forces the right-hand-side (RHS) vector to
contain the residual (f-vector) and only the f-vector.

As the Jacobian, J = df/dx, the numerical Jacobian is calculated by perturbing individual
values of the x vector, recalculating f , and doing a simple finite difference for each entry.
This is, of course, much, much slower than using hand calculated analytical expressions
for these derivatives in the code, which is what Xyce normally does. However, calculating
Jacobians in this manner can help a great deal in tracking down Jacobian mistakes.

Do NOT assume that your Jacobian is perfect, just because you can get a circuit to con-
verge in the nonlinear solve. Convergence should be considered necessary, but not suffi-
cient evidence for any device you claim is completed in Xyce.

Always do at least a few numerical Jacobian tests on any device you add to Xyce. It is
easy to do this. Simply run a relevant circuit with these options:

.options device voltlim=0 numjac=1

.options nonlin nox=0 searchmethod=0

Then run it again with these options:

.options device voltlim=0 numjac=0

.options nonlin nox=0 searchmethod=0

Note that with voltlim=0, a lot of circuits won’t converge. That’s OK. Whether it converges
or not, Xyce should behave almost exactly the same with these 2 options. For circuits that
fail to converge, they should still fail in (almost) exactly the same way. If you are running a
circuit that doesn’t converge, it is often best to set the maximum number of nonlinear solver
steps to a low number, just to save time. (if the circuit isn’t going to converge anyway, don’t
bother calculating a lot of steps, just look at the first few). You can set the number of
nonlinear solver steps to (for example) 3 steps like this:

.options device voltlim=0 numjac=0

.options nonlin nox=0 maxstep=3 searchmethod=0

Note the addition of maxstep=3 to the nonlinear solver options line.

In general, the first few numerical Jacobian matrices should be nearly identical, to their cor-

166

9.8 Debugging XyceTM Developer Guide

responding analytical Jacobian matrices. (i.e. the first numerical Jacobian should match
the first analytical Jacobian, the second numerical Jacobian should match the second ana-
lytical Jacobian, etc.). As the solve progresses, minor differences will start to emerge, due
to roundoff differences, so the match will be less perfect later in the solve.

In general, for circuits that do converge, the code should take approximately the same
number of nonlinear iterations. If the final number of iterations is off by more than one, you
probably have a mistake. Also, (as with failed circuits) if you see discrepancies in Jacobian
matrices, you probably also have a mistake. Occasionally, there can be differences due to
inaccuracies in the numerical Jacobian calculation, but these inaccuracies will not cause
dramatic differences in the solve.

In general, if your device does not pass the above test, then either the device has a bug
(likely) or the numerical Jacobian calculation has a bug (not very likely).

9.8.7 What should I do to compare Xyce to SPICE?

For any legacy device, this will be the focus of model development. There’s a lot to be said
here. In short:

• This is more important (for legacy devices) than the numerical Jacobian test. (see
question 9.8.6) The numerical Jacobian tests don’t voltage limiting, which needs to
be tested.

• Compare Jacobians, solution vectors, and residual vectors, especially on the first two
or three Newton steps of the initial DCOP.

• You will find over half of your mistakes in the first few Newton iterations, and it is
easier to see them if you examine the artifacts of those iterations in detail. This
means....

• Comparing the final output, in a *prn files (or their equivalents), is not adequate. You
will not find any subtle errors this way.

• When comparing transient, make sure to force a constant stepsize in both codes.

In general, when comparing Xyce and SPICE, if you are comparing a small DCOP calcu-
lation, the two codes should get nearly identical answers, for every variable in the solution
vector. Consider:

167

XyceTM Developer Guide Frequently Asked Questions

• SPICE always uses a direct solver. For small circuits, Xyce also uses a direct solver.
Direct solvers give exact answers, with the exception of roundoff error. For a small
problem, roundoff error should be negligible.

• The linear systems solved by Xyce and SPICE are algebraically equivalent, even
though they look different.

• For the DCOP phase, there are no time integration differences to consider.

Solver tolerances are slightly different between Xyce and SPICE, so Xyce may take a
slightly different number of nonlinear iterations than Xyce. If this happens, the final “con-
verged” answer will be different, and actually should be different. Make sure to only do
detailed comparisons for the same nonlinear iteration. For example, if Xyce takes 12 it-
erations, and SPICE takes 10 iterations, compare the 10th iteration of Xyce to the 10th
iteration of SPICE.

Unfortunately, Xyce and SPICE will order their solution variables differently, so comparing
matrices, solution vectors, etc., of the two codes can be tricky. Fortunately, there is an easy
way to do this, which is described in the answer to the next question.

9.8.8 Is there an easy way to compare vectors and
matrices?

Yes. Use the programs matcmp, veccmp, and mapMerge, which can be found in the
Xyce/utils directory. They can be compiled by running the script “Build” , from the directory.
There is a README in that directory, which explains how to use them.

Note, these programs can be used to compare a Xyce matrix to a SPICE matrix, and also
a Xyce vector to a SPICE vector. However, you’ll need a hacked up version of SPICE
(or ChileSPICE) to do it. This capability is really, really useful, as these programs can
automatically track what the mapping is between a SPICE variable ordering and Xyce’s
variable ordering, for a given problem. This can save a lot of time, especially for larger
problems.

The ordering issues are resolved with the Xyce namesMap.txt file (see question 9.8.5) ,
and an equivalent ”names” file from SPICE. The mapMerge utility takes both of them as
input, and comes up with an index map to translate between the two codes.

168

9.8 Debugging XyceTM Developer Guide

9.8.9 I’m trying to compare Xyce with analytic Jacobian to
Xyce with numerical Jacobian, not Xyce and Spice.
How do I use matcmp and veccmp?

You need to edit basecmp.h and un-ifdef the line “#define BOTH FILES ARE XYCE 1”,
then recompile matcmp and veccmp. Once done, you no longer need the “mergedMap.txt”
file — the utilities will use the one namesMap.txt file and work on both matrix and vector
files as if they came from Xyce.

There is no automatic detection by matcmp and veccmp that both files are from the same
simulator — you need to recompile them.

9.8.10 What is the most common source of errors in
Xyce devices?

Errors in translation.

Most Xyce devices are based on legacy SPICE devices. Most SPICE devices have been
around a really, really long time, and have been debugged by (literally) thousands of users
and developers. By the time we look at them, they are usually rock solid.

In general, when we implement SPICE models in Xyce, one way to think about it is that
we are “translating” them from one code to another. We aren’t changing the functionality of
the model - we’re changing how it looks. If mistakes exist in a Xyce translation, it is most
commonly an error in the translation, not in the original SPICE model.

Note, when I say the old SPICE models are well-debugged, I’m not talking about how
valid or accurate the models are. In that respect, a lot of legacy devices are terrible, and
everyone knows it. The types of errors I’m referring to involve:

• sign errors.

• errors relating to “type” (N-type vs. P-type) - these are often sign errors.

• errors relating to the mode of the device.

• matrix and vector indices.

• mistakes in voltage limiting terms.

169

XyceTM Developer Guide Frequently Asked Questions

• mistakes in bypass terms (which we don’t support! see question 9.2.16).

• incorrectly evaluating time derivatives.

• incorrectly handling gmin.

• incorrectly calculating derivatives for the Jacobian.

In general, old SPICE models wouldn’t work correctly, and be so widely used, if they had
continued to have errors like this over the years. It is really, really rare to find them in SPICE
models. As Xyce is a much newer, much less mature code, these types of errors usually
originate with Xyce developers, not SPICE.

So, from a development point of view, when implementing a Xyce model, it behooves you
to translate the SPICE code, while changing it as minimally as you can.

For a related question, see question 9.2.15.

170

9.9 Test circuits XyceTM Developer Guide

9.9 Test circuits

9.9.1 Is there a good program for comparing waveforms?

Try using xyce verify.pl. It can be found in Xyce Regression/TestScripts . It is good for
comparing both transient and DCOP data. Its usage can be determined by running it with
no arguments:

> xyce verify.pl

xyce verify.pl

Usage: ./xyce verify.pl [options] netlist goodfile testfile [plotfile]

This script is the main comparison script used by our nightly and weekly regression testing.
It works pretty well. In addition to comparing data, it also checks to insure that all the
requested variables have been output. Also, for DC sweeps it will check that the correct
number of distinct sweep steps have been output.

9.9.2 My new device appears to get the correct answer in
a small test circuit. Am I done?

Probably not. If you’ve only been working with one test circuit, and are only looking at the
final answer (the contents of a *prn file, for example), that is in the category of “necessary
but not sufficient”.

There have been many observed cases on this project, in which a device appeared to give
the right answer for a small test problem, but in fact was very, very broken. You may be
wondering, why? Here’s why:

• Full coverage of the device. A lot of small tests don’t fully exercise a device. For
example, I’ve seen a number of simple test circuits apply zero-value junction voltages
to a subset of the input terminals. Any current that depends on one of these junction
voltages isn’t getting tested - it will just be zero, whether you set that current term
correctly or not. Also, some devices have optional internal variables, that are turned
on or off by certain parameters. For devices like this, it isn’t possible to fully test the
device with one test circuit. Every mode, and combination of modes, available to the
device needs to be tested.

171

XyceTM Developer Guide Frequently Asked Questions

• DCOP vs. Transient. If your test circuit is a DCOP or DC sweep circuit, then you
haven’t tested everything. Transient has all the same terms as DC, with capacitors
added. You need to test both analysis modes before you can declare a device fin-
ished.

• Numerical stability. If you have the correct residual vector, but an inconsistent Ja-
cobian, then your device is “correct”, in the sense that if it converges it will give the
right answer, but it is incorrect in that it won’t converge very often. Small, simple test
circuits are usually very easy to solve, from a numerical point of view. Bugs due to
mathematically inconsistencies will not be caught by small tests.

• Numerical stability, part 2. If your test consists of your new device, and a minimal
driver circuit, then (probably) all the nonlinearity in the test circuit is in your new
device. In the real world, your device will be used inside of a meaningful circuit,
which will have lots of nonlinearities. If your device has any mistakes in it (which
negatively affect the nonlinear solve), those mistakes will cause a lot more problems
in a complex, nonlinear circuit than they will in a tiny, almost linear circuit.

• N-type vs. P-type. If your device is a transistor, and your test just has only one device
in it, then you are either only testing a P-type device, or an N-type device. You need
to test both.

• N-type vs. P-type, part 2. If your new device is a transistor, you need to have some
test cases that contain both an N-type and a P-type device, in the same circuit.
Almost any digital component will consist of an equal number of multiple instances,
of both types.

Unfortunately, mistakes are sometimes discovered, not during development, but after code
has been distributed to users. A user attempts to use Xyce, and reports back, “A circuit
that ran just fine in PSpice totally bombs in Xyce”. When this happens it is embarrassing
for the project, and degrades trust among the Xyce user community.

Xyce is a relatively mature code at this point. Most of the issues pertaining to making
Xyce match SPICE are well-known issues. If we declare that a device is available and
supported, and said device is an old, legacy device, we should never get the “it ran in
PSpice but not Xyce” bug report

Before we declare that a device is available for users, it needs to be bulletproof. The
penalty for releasing bad code is much worse than the penalty for delaying a release.

Note: of course, we will always get bug-reports from users, but we should strive to only get
bug reports having to do with “bleeding edge” capabilities, or capabilities that we don’t yet

172

9.9 Test circuits XyceTM Developer Guide

support.

9.9.3 Where can I get better test circuits?

A really good place to get ideas is Xyce Regression. Most transistor devices can be mixed
and matched (somewhat), so you can often take a test circuit that was originally designed
for another, similar device, and modify it slightly to use your new device.

For example, if you are implementing a new MOSFET device, there are many MOSFET
tests in the Xyce Regression sub-directories. As a first step, grab one of them, change the
level number, and run with default parameters. Even if it doesn’t run right out of the box, it
can still be a valuable test. Run it in SPICE and compare. If it fails in Xyce it should also
fail in SPICE, in nearly the same way. If it doesn’t you still have work to do.

Make sure that you do some tests involving multiple instances of your new device. In
particular, MOSFET devices need to be tested in circuits that contain both NMOS and
PMOS device types, as CMOS technology is based on “complimentary logic”. For CMOS
technologies, there will be no meaningful circuits that don’t have both types.

We’ve used inverter chains a lot in our testing of Xyce devices, because it is an easy prob-
lem to scale to arbitrary size. There are perl scripts that can be used to create arbitrary-
length chains. Some perl examples can be found in
Xyce Regression/Xyce SandiaRegression/Netlists/stress tests/BSIM3/INVERTERS.

If your device is a transistor device, then any circuit of traditional digital building blocks can
work pretty well as a test circuit. This includes inverters, NAND gates, ring oscillators, etc.

9.9.4 I don’t have any valid model parameters. What do I
do?

If you are implementing a industry-standard SPICE device, you don’t need “valid” parame-
ters, at least not at first. You mainly need to do a lot of comparisons to SPICE. Remember,
if you have been tasked with implementing a legacy device model, your primary job is code
development, not model validation.

Model validation is, of course, very important, and it may be necessary later. However,
you can’t do good model validation until you’ve properly implemented the model!
Any attempts to “validate” a buggy model will be a waste of time!

173

XyceTM Developer Guide Frequently Asked Questions

For any new device, start out comparing Xyce with SPICE, in detail, for the device’s default
parameters. This is a good first step. Do this for a variety of circuits.

As you work more with the model, you’ll probably develop an understanding of what some
(or most) of the parameters are supposed to do. As you develop this understanding, start
experimenting with modifying your test circuits away from the defaults. Xyce and SPICE
should still match.

Also, remember that “valid” parameters just means that someone has gone to the trouble of
fitting the device model to a particular “real-life” electronic part. For debugging (verification)
purposes, a hypothetical device is just as good.

Finally, if you have been asked to implement a legacy model, that probably means that a
user has requested it, and has a particular circuit problem in mind, that they want to solve.
Once you are ready (i.e. once the device is mostly implemented), ask that user (or users)
for the model parameters they plan to use, and try them out. Again, run them in Xyce and
SPICE, and compare.

9.9.5 Xyce and SPICE don’t match for my test legacy
device circuit, unless I tweak model parameters. Is
this OK?

By “legacy device” I mean, “device developed outside Sandia, that can be found in most
circuit simulators”. See question 9.2.7.

If this is a DCOP simulation, then no, this is not OK under any circumstances. You have a
mistake that you need to fix.

If this is a transient simulation, then it might be a solver tolerance issue. Try making the
two codes match by setting stricter solver tolerances in both codes. Also, try running both
codes in constant time step mode, with the same stepsize. If neither of these works, then
you have a mistake in your Xyce device that you need to fix.

174

9.9 Test circuits XyceTM Developer Guide

9.9.6 In my Xyce model, I left out a small term that was in
the legacy SPICE model. It doesn’t seem to change
the answer for my test circuit. Is that OK?

Absolutely not!

If it is the SPICE model, it needs to be in the Xyce model. In general:

• Just because a term is small in your test circuit, that doesn’t mean it will be small in
other circuits.

• Even if the term is always small, that doesn’t mean that it isn’t important. For exam-
ple, the excess phase term in the level=1 BJT is usually small, but a lot of circuits
won’t run without it. (see question 9.5.7.

• Terms were put into a SPICE model for a reason. If you don’t have a clear, well-
argued reason to exclude it, then you haven’t justified removing it. The vague reason,
“It seems like a small effect.” is not an adequate reason.

• Claiming, “this term is a really bad approximation for this effect” is also not a valid
reason. If it is such a bad approximation, the correct way to handle it is to come up
with a better one, and make the new approximation a optional (non-default) choice.
Do not delete the old approximation - a lot of users have extracted parameter sets
that were fitted to that approximation, so it needs to be supported.

Valid reasons for excluding a term include:

• The term is zero by default, and is only nonzero if a certain device option is invoked,
and you know for a fact that Xyce users will not be invoking that option. An example
of this is the NQS term in the BSIM3. It has never been supported in Xyce, but it is
an option that none of users has ever used. If a user were to need it, we would need
to add it.

• If the term is wrong to a point of breaking the device and rendering it unusable. This
has happened a couple of times on the Xyce project, but it is incredibly rare. (See
question 9.2.15.) It will almost never happen, if you are developing a legacy device.
Usually, if your device is broken, it is your fault, not the model’s.

175

XyceTM Developer Guide Frequently Asked Questions

In general, if your model is going to deviate from SPICE, you need to have a really strong
justification for it. If your best justification is, essentially, “it seemed to work”, you’ve gone
to the dark side.

This question mainly refers to legacy SPICE models. For new models that are under
development at Sandia, it is a different can of worms. For new devices under development,
you aren’t trying to match an industry standard.

176

9.10 Testing XyceTM Developer Guide

9.10 Testing

9.10.1 How do I run the regression test suite?

To run the test suite, you’ll need to run a script called run xyce regression. It can be
found in Xyce Regression/TestScripts. It can be run directly from that directory. If you
do not specify a path to a Xyce executable, it will use the first one it find in your path. You
can double-check which Xyce is in your path by typing which Xyce.

9.10.2 Can you give some explanation of what is going
on in the test suite?

The top test suite directory is Xyce Regression. The main subdirectories directly under it
are: Netlists, OutputData, and TestScripts. Once you start running it, you’ll start to see
other directories and files, related to test results.

The test scripts have evolved considerably since the beginning of the Xyce project. In the
old days, we had two separate repositories, one for regression, and one for certification
tests.

9.10.3 What sorts of tests should go into the nightly
regression test suite, and when should I add
them?

The point of the nightly regression tests is to make sure that the code doesn’t get acciden-
tally broken. It is not intended to be complete proof that Xyce gets the right answer. Of
course, it is best if developers make an effort to insure that the “gold standard” files contain,
to the best of our knowledge, “correct” answers, but this isn’t the primary goal.

Regression tests should usually be tests that can run very quickly, in a few seconds. Gen-
erally, the smallest test you can come up with, that exercises the capability, is what you
should shoot for. Of course, we need to have some tests that are large, in part to test the
parallel capability of Xyce. Tests that are large, and take minutes or more to run, should
be given the “weekly” tag.

177

XyceTM Developer Guide Frequently Asked Questions

9.10.4 What sorts of tests should go into the
stress tests directory, and when should I add
them?

Generally, the original idea behind stress tests was to have a place to store test circuits
that were not ready for regular regression testing. Often they have been circuits set up
as part of a test-driven development process, meaning that initially Xyce is incapable of
running them. At this point, however, the test framework is sophisticated enough to place
any test into any Netlists subdirectory, without necessarily adding it to regression testing.
This can be accomplished, either by using an “exclude” file in the local netlist directory, or
by including the “exclude” tag in the “tags” file.

At this point the stress tests directory is deprecated and is only kept around for historical
reasons. Nowadays tests which are still under development, and not ready for nightly test-
ing, should be developed in Xyce Regression/Netlists/ with appropriate exclude tags.
Once they are ready, then the developer can simply change the tags for that test.

178

10. Xyce Release
Process

Chapter Overview
This chapter presents a high-level description of the Xyce Parallel Electronic Simulator Re-
lease and Distribution Management Process. The purpose of this process is to standardize
the manner in which all Xyce software products progress toward release and how releases
are made available to customers. Rigorous Release Management will assure that Xyce
releases are created in such a way that the elements comprising the release are traceable
and the release itself is reproducible. Distribution Management describes what is to be
done with a Xyce release that is eligible for distribution.

179

XyceTM Developer Guide Xyce Release Process

10.1 Preface
This chapter presents a high-level description of the Xyce Parallel Electronic Simulator Re-
lease and Distribution Management Process. The purpose of this process is to standardize
the manner in which all Xyce software products progress toward release and how releases
are made available to customers. Rigorous Release Management will assure that Xyce
releases are created in such a way that the elements comprising the release are traceable
and the release itself is reproducible. Distribution Management describes what is to be
done with a Xyce release that is eligible for distribution.

180

10.2 Introduction XyceTM Developer Guide

10.2 Introduction

10.2.1 Document Purpose

The purpose of this chapter is to provide a high-level description of the Xyce Parallel Elec-
tornic Simulator Release and Distribution Management (RDM) process. This chapter de-
scribes the process elements of RDM, but it does not describe their specific implementa-
tion. No specific tool is recommended or discussed in detail. There are several implemen-
tations that would successfully carry out the process described in this chapter. Therefore,
even if the implementation or the toolset changes in the future, this process remains stable.

10.2.2 Scope

The Xyce Release and Distribution Management (RDM) process described in this chap-
ter is required for each Xyce product. The main sections of this chapter focus on the
tasks and activities that are required for RDM. Templates and project specific extensions
are included in the sections and the end of this chapter. This RDM process applies to
all of the work products of application engineering, software development, and verifica-
tion. A subset of these work products and artifacts are included in the product release that
is distributed to customers. The specific subset of work products and artifacts included
in the product release is dependent upon the product being released, the intended use,
and the customer. These dependencies should be captured in the Requirements Man-
agement Process. RDM consists of two processes: the Release Management Process
(Section 10.4) and the Distribution Management Process (Section 10.2.2). The Release
Management Process identifies the activities that must be addressed for a product release
to become eligible for distribution. The Distribution Process describes the activities that
must be addressed when distributing a product release to customers.

Release Management Process

The Release Management Process identifies the objectives, goals and activities that need
to be addressed for a product release to be eligible for distribution. The output of the
Release Management Process is a product release that is eligible for distribution. The
Release Management Process relates to activities that occur internally to the Xyce project.
It includes activities that must begin when a new software release is initially foreseen, as
well as activities up to and including the point in time when the new product release is
eligible for distribution to customers.

181

XyceTM Developer Guide Xyce Release Process

The outputs of the Release Process include:

� Xyce product release(s), comprising features to meet customer requirements, en-
hancement requests and potentially fixes for specific defects.

� Installation notes, describing installation activities for the release.

� Release notes, describing new features, changes to existing features, defect fixes,
deficiencies, known defects and limitations.

The Release Management Process is described in Section 10.4. The complete set of arti-
facts that comprise a product release are not defined in this process. Refer to Section 10.7
for a list of the interfaces between this document and other Xyce processes.

Distribution Management Process

The Distribution Management Process describes the objectives, goals and activities that
need to be addressed once a product release is eligible for distribution to customers. The
output of the Release Management Process, a product release, is an input to the Distri-
bution Management Process. The outputs of the Distribution Management Process are
data items that are used to track and manage product distributions (i.e. track and manage
which customers have which release artifacts).

The Distribution Management Process describes the needs for a product becomes eligible
for distribution, when the product is distributed, and when a product is withdrawn. The
Distribution Process is covered in Section 10.2.2.

Roles

Roles are functional divisions of the process responsibilities and they are defined based
on the activities that comprise RDM. Roles are covered in Section 10.6.

10.2.3 Goals

Since 2001, Sandia National Laboratories (Sandia) has been developing a DOE-ASCI
funded parallel electric circuit simulation code named Xyce. The Xyce Parallel Electronic
Simulator has been written to support, in a rigorous manner, the simulation needs of the
Sandia National Laboratories electrical designers. The code has been developed using

182

10.2 Introduction XyceTM Developer Guide

an object-oriented design and modern coding-practices that ensure that the Xyce will be
maintainable and extensible far into the future.

Developing and modifying the Xyce products in time frames responsive to the customer
can be a significant effort, so the procedures to manage the items that make up the Xyce
products need to be as clear and non-intrusive as possible so that efficient response to the
customer can be maintained.

The primary goal is to document the Release and Distribution Process for the managers
and developers of Xyce.

Thus, the main goals of the RDM process are to:

� Ensure that all Xyce releases contain the proper artifacts;

� Ensure that all Xyce releases are reproducible;

� Ensure that all phases of the Xyce release life cycle are adequately tracked and
documented;

� Define a process that is adequate for current Xyce needs and which can be enhanced
with additional procedures at a later date if desired;

� Ensure that distributions of all Xyce product releases can be tracked; and

� Allow prior releases of Xyce products to be withdrawn if needed.

183

XyceTM Developer Guide Xyce Release Process

10.3 Abbreviations and Definitions
artifact A deliverable or work product that is the output of some phase of the software
development life cycle. A configuration-controlled artifact is an artifact that is stored in a
corporate repository (library), and changes to it are controlled.

authorized maintiner The person responsible for installing and maintaining the Xyce ap-
plication on the platform or specific environment. This person is also a customer.

baseline (verb) To capture a snapshot of a controlled item (or group of controlled items)
at a reference point within the item’s development life cycle. (noun) A reference point in
the development of a controlled item or the snapshot of the controlled item captured at a
reference point within the item’s development life cycle.

change request Documentation (formal or informal) of enhancements, modifications, or
bug fixes being succested for the system. The change request must be approved prior
to the work specified in the change request beginning. Examples include formal change
control documents, issues (bugs), and enhancement requests.

check in (commit) To put the initial or a new revision of an element into a version control
system

check out To extract a revision of an element from a version control system.

components Tightly coupled/interdependent sets of modules that provide functionality.
Capabilities trace to components.

customer Any person who wants to use the software application, report a problem, request
an enhancement, or request a specific version of the application.

distribute To make a product release available to a customer. Depending on the cus-
tomer’s needs, the customer may pull the product distribution or Xyce may push the distri-
bution to the customer.

distribution management Establishing, maintaining, and tracking procedures, roles, and
responsibilities for distribution of products to customers.

element Lowest level (atomic) item that is subject to version control.

element version The revision of an element. Used when referring to a specific revision of
an element; such as, “What version of the file is in the release?”

184

10.3 Abbreviations and Definitions XyceTM Developer Guide

emergency patch A patch that has to be implemented and released as quickly as possible
because critical operations, decisions, or results are impacted. Contrast to immediate
patch.

full release A release that is self contained (i.e. the release may be installed and used
without access to any previous release).

freeze To prevent additional changes to a specific version of a version controlled item.

immediate patch A patch that needs to be implemented before the next scheduled primary
release, but the updates are not critical. Contrast to emergency patch.

label An identifying marker that can be associated with specific versions of version con-
trolled elements. Multiple elements can be assigned the same label as a means of group-
ing the elements.

locked An indicator that a specific reversion of a version controlled element may not be
modified.

major release A scheduled or planned release of a product that comes out when there
are extensive new product features, when there is a significant redesign of the product
or when customers of the product are required to make significant changes in how they
use the product or in support elements of the product such as the version of a supporting
commercial application or third party software. See definitions for minor release and patch
release, Figure 10.1.

minor release A scheduled or planned release of a product that comes out when a product
feature has been added or significantly modified from its original documented behavior. A
minor release usually does not imply significant redesign of the product although there
may be redesign of some of its components. A minor release also should not require the
customer to make significant changes in how they use or support the product. See major
release and patch release. See Figure 10.1.

module Smallest coherent unit of a product. Requirements trace to modules. Modules are
composed of one to many version controlled elements.

partial release A release that contains some subset of a products elements and/or com-
ponents. Partial releases must be installed over, or in conjunction with, a previous full
release. See full release.

patch An as-needed update to one or more of the elements that comprise a product for
the express purpose of fixing critical or function-impacting defects. See Figure 10.1.

185

XyceTM Developer Guide Xyce Release Process

patch release A product release that is generated due to a patch. See release and primary
release.

primary release A scheduled and planned release of the product which is either a major
release or a minor release. A release is categorized as either a primary release or a patch
release. See release and patch release.

product Items offered for use by licensed customers. Xyce products will be the Xyce
Framework, ASCI Applications that utilize the Xyce Framework, third-party libraries, and
Xyce Tools.

product release (formal) A captured occurrence of a product. Release is used in referring
to the identification of a product; such as, “What is the release of the product?”

promotion Moving from one release development life cycle activity to a higher release
development life cycle activity.

resource distribution A distribution of the application provided as a resource on specific
simulation platforms, for specific environments, for use by authorized persons with ac-
counts on the platform. These distribtutions are maintained by an authorized maintainer.

release An integrated set of one to many products that will, when ready, be made available
for distribution to customers. See full release, partial release, primary release, and patch
release.

release management Establishing, maintaining, and tracking procedures, release devel-
opment lifecycle activity, roles, and responsibilities for releasing product to customers.

release number The alpha-numeric identifier given to a specific product release.

role A functional division of responsibilities.

subsystem An architecturally motivated organization of components.

bf tasks The major activities that are performed in the release process.

version One of a sequence of copies of an element, each incorporating modifications. See
product release and element version.

version control Identifying, maintaining, and tracking versions of the components of a
product and versions of the product itself.

186

10.3 Abbreviations and Definitions XyceTM Developer Guide

version-controlled file A file that has been placed under the version control system.

version number A numeric identifier assigned to a specific occurrence of an element or
product. See product release and element version.

withdraw To make a specific product release ineligible for distribution. A product release
that has been withdrawn is no longer supported.

187

XyceTM Developer Guide Xyce Release Process

10.4 Release Process

10.4.1 Objective

The objective of the Release Process is to define the activities in the Release Process with
adequate detail to facilitate the process implementation.

10.4.2 Goals

The goals of the Release Process are to:

� Define Release Process activities;

� Identify roles that are responsible for the activities.

10.4.3 Process

A simple definition of a release is a version of a product that will, when ready, be made
eligible for distribution.

This definition of a release is very general and has broad application. For example, the
release might be a single element, a group of elements, an application, or a suite of appli-
cations.

Xyce products that are subject to this process include the Xyce Parallel Electronic Sim-
ulator as well as any associated third-party software (TPS). Xyce release customers are
internal Sandia analysts and designers as well as non-Sandians associated with the ASCI
program. This may be expanded in the future to include external customers.

Prior to defining the activities in the Release Process, it is necessary to explain release
types, release numbering and baselining.

Release Types

Software products are frequently refined, enhanced, and fixed. Consequently, new ver-
sions of products are apt to become available for release. Releases may be preplanned,
where the features are outlined in an overall strategy for the product, or the releases may

188

10.4 Release Process XyceTM Developer Guide

be extemporaneous to fix issues in a current release. Full releases will contain all prod-
uct components, and partial releases will contain some subset of product elements and
components.

Figure 10.1. Release Hierarchy.

Primary Release

A release that is pre-planned is called a primary release. A primary release can be either a
major release where the product has had significant changes made to it or a minor release
where the changes are more incremental in nature.

All primary releases need to be made available as full releases (they contain all compo-
nents required to install and use the product). A primary release must include the features
and fixes of all previous primary and patch releases, unless the feature is being discontin-
ued.

Xyce primary releases will occur periodically. The specific release schedule for primary
releases is outside the scope of this document.

Patch Release

An extemporaneous release that is implemented to fix issues in an existing release is
known as a patch release. The two types of patch releases are immediate patch and
emergency patch. Patch releases may be full or partial releases (depending on project
need) but will generally be partial releases.

189

XyceTM Developer Guide Xyce Release Process

An immediate patch is indicated when the patch release must be eligible for distribution
prior to the forecast distribution date of the next planned release, and the need for the
patch release is not critical enough to justify an emergency patch. All normal Release
Process steps are followed for an immediate patch.

An emergency patch is indicated when the patch release must be eligible for distribution as
quickly as possible. When generating an emergency patch, some of the activities normally
required for a product release may be deferred. Deferral of process activities involves
risk management decisions and must be preceded by appropriate approvals. All deferred
activities must be completed retroactively after the release. Emergency patches should be
rare as they are only generated in critical situations.

Release Numbering

Release numbering is the way a release is named and labeled so that it can be uniquely
identified and referenced. The release number format for Xyce is the following:

(baseline) MajorRelease.MinorRelease.Patch.ModificationType

Table 10.1 describes the terms in the release number format. Refer to Table 10.5 for
information on the release development life cycle activities.

Term Description

Baseline
Indicates the intermediate release development life cycle activity (S

for STABLE, Q for QA). This term is not used for PROD releases.
Major Release A numeric term that is required for all releases.

Minor Release A numeric term that is required for all releases.

Patch Release A numeric term that is optional if the patch number is 0.

Modification
A numeric term that is used for baseline identification and is always

suppressed in PROD release labels.

Type
Alpha-numeric term that is used to identify sub-varieties of the

release. This term is intentionally flexible as release types may
surface at any point during the release life cycle and packaging.

Table 10.1: Release Numbering Terms

Table 10.2 provides a few examples of baseline and release numbers for a fictitious Xyce

190

10.4 Release Process XyceTM Developer Guide

product.

Description Sample Release Number

Stable release of Xyce 1.0 (S) Xyce 1.0

QA release of Xyce 1.0 (Q) Xyce 1.0

Production release of version 1.0 Xyce 1.0

First production patch release Xyce 1.0.1

First production minor release Xyce 1.1

Version 1.1 packaged on CD for run-time-only

licensed customers
Xyce 1.1 RTO-CD

Table 10.2: Release Numbering Examples

Baselining

Baselining is defined as capturing a snapshot of a controlled element (or controlled ele-
ments) at some reference point. Baselining provides a mechanism for logical groupings of
elements, such as the elements that compose a product release. Baseline creation can
be triggered by events in the release development life cycle as well as date or milestone
events.

Baselines are comprised of a single revision of at least one version controlled element. A
single revision of an element may be a member of multiple baselines. However, only one
revision of each element may be in any specific baseline. In other words, if a revision of an
element is denoted as being in a specific baseline, no other revision of that element can
be in the same baseline.

What to Baseline

aAll elements that comprise Xyce product releases will be baselined during the appropriate
release activity. There is a hierarchy of relationships that goes from the element level to
the product:

� Element - the lowest level (atomic level) object that is subject to version control.
Examples of elements include: source code files, build dependency files, build scripts
and important outputs of release activities (artifacts).

191

XyceTM Developer Guide Xyce Release Process

� Module - composed of one to many elements. Modules are the smallest coherent
unit of a product.

� Component - Tightly coupled/interdependent sets of one to many modules that pro-
vide functionality. Capabilities trace to components.

� Subsystem - An architecturally motivated organization of one to many components.

� Product - Items offered for use by licensed customers. Xyce products will be the
Xyce Parallel Electronic Simulator and associated third-party libraries. A product is
comprised of from one to many subsystems.

Release Baselines

A release baseline is created when a Xyce product, or a component of a Xyce product,
completes the STABLE, QA, or PROD release development life cycle activities.

Reference Baseline

A reference baseline is created any time a traceable and reproducible reference point is
desired. Possible examples include representing the product state as of a specific date or
milestone.

Modifying a Baseline

With only one exception, baselines are never modified. The single exception relates to
release baselines. Release baselines may be modified in that they may have elements that
represent artifacts of the current activity added to the baseline (e.g. test results, installation
instructions). Once a product release has been moved to the next release development
life cycle activity, all previous release development life cycle activity release baselines are
permanently frozen.

Baseline Abandonment

There are times when events require that a release baseline be abandoned. Abandoning
a baseline implies that the product release is being returned to the previous release life
cycle activity. Reference baselines are never abandoned.

For example, if a release baseline fails to pass all acceptance criteria, then that release
baseline is not accepted. Notification that the release baseline has failed is passed back
to the previous development life cycle activity along with results for the criteria that were

192

10.4 Release Process XyceTM Developer Guide

failed. The specific release baseline is said to be abandoned. The release baseline is
retained for historical record.

When a release baseline fails acceptance criteria and is abandoned, element fixes occur in
the previous release development lifecycle activity. A new release baseline is created that
includes the fixes. The baseline modification term is incremented so that every baseline is
uniquely identified.

Baseline Identification

The standard that will be used for identifying baselines should be flexible enough to uniquely
identify all varieties of product and reference baselines. The Xyce baseline identification
format is:

ID Type release-number

Term Description

ID

An alpha-numeric string that identifies the product for a release

baseline, and is a freeform identifier for reference baselines.
Legitimate values for release baselines will be Xyce and ¡TPS
NAME¿.

Type
A literal string that is used to indicate the type of baseline. - Rel for

release baselines - Ref for reference baselines
Release-number

or text

The number described in Table 1. This term is used for release

baselines only (i.e. it is not used for reference baselines).
Table 10.3: Baseline Identification Terms

Since the baseline identification must be flexible enough to accommodate both product and
reference baseline labeling, a few examples may be useful. Table 10.4 contains baseline
identification examples

Description Baseline Identifier

Second DEVEL iteration for release baseline of

Xyce version 1.0.
(D) Xyce Rel 1.0.0.1

First Stable release baseline of Xyce version 1.0. (S) Xyce Rel 1.0.0.0

Fourth QA release baseline of Xyce version 1.0. (Q) Xyce Rel 1.0.0.4

193

XyceTM Developer Guide Xyce Release Process

Description Baseline Identifier

Production release baseline of version 1.0. Xyce Rel 1.0.0

Date specified reference baseline (DOE literal is

intended to represent some request from DOE to
checkpoint progress at a point in time).

DOE Ref Jan 4, 2001

Reference baseline for Xyce product that is not

based on the release life cycle. The text “for media
test” is the term “release-number or text.”

Xyce Ref for media test

Table 10.4: Baseline Identification Examples

Release Activities

The Release Process for Xyce consists of activities and the roles that are primarily respon-
sible for those activities. Each activity has entry and exit criteria. Activities are performed
in a specific order, with a limited number of paths to completion of the release request.

Products can be in multiple release cycles at the same time. For example, if a product has a
release that is in the Release Development Lifecycle PROD activity and new development
has been started since the release, the product will also be in the Release Development
Lifecycle DEVEL, STABLE, or QA activities. If the product is also being patched then there
will be another patch release in one of the same activities. This represents three different
releases (current release, next primary release, patch release) for the product.

Reference [23] provides a good visual overview of the Release Process flow, but it is not
detailed enough to guide implementation. Table 10.5 gives more detail for the activities in
the Release Process and identifies the role that is responsible for each activity. Additional
information is provided for the four execute activities (DEVEL, STABLE, QA, PROD) that
follow. Roles are defined in Section 10.6

Activity Description Role Re-

sponsible

Submit

Submission of the Product Release Request begins the

Release Process. The release request must contain
specific enough information to allow the PTL to review
and scope the request.

PTL or CCB

194

10.4 Release Process XyceTM Developer Guide

Activity Description Role Re-

sponsible

Review

Review includes scoping and requires careful study of

the request, requirements, and other release requests.
The request may be:

� Returned to the originator for more
information;

� Combined with other requests; or

� Forwarded for approval.

PTL

Approve

Approval is required before the request moves into the

activities that consume more resources. The request
may be:

� Approved;

� Returned for more information;

� Deferred; or

� Rejected.

CCB

Plan

The planning activity includes:

� Resource planning and allocation;

� Generation of schedules; and

� Milestone identification.

PTL

195

XyceTM Developer Guide Xyce Release Process

Activity Description Role Re-

sponsible

Execute

The execute activity encompasses all activities of the

Release Development Lifecycle. The activities in the
Release Development Lifecycle are:

� DEVEL;

� STABLE;

� QA; and

� PROD

DEV & QA

Certify
Certification indicates that this is an appropriate time for

the release to be made eligible for distribution.
RL

Notify
Interested parties are notified that the release is “eligible

for distribution”. One key interested party that is always
notified is the Distribution Lead (DL)

RL

Close

Request

Process improvement tasks are performed. The release

request is administratively closed.
RL

Table 10.5: Release Process Activities

Execute: DEVEL

The first activity executed in the Release Development Lifecycle is the DEVEL activity.
During this activity releases are in said to be in development. Releases in DEVEL are
not subject to mandatory version control (although version control is recommended), or
mandatory baselines. Work is done to add, enhance, fix, or remove functionality.

Releases may be returned to this activity from the Release Development Lifecycle STABLE
activity.

All work done during this activity must be directly linked to some form of a change requests
(new reqreuiement, bug reports). Any work that exceeds the scope of existing change
requests mandates that new or updated change request(s) be generated.

196

10.4 Release Process XyceTM Developer Guide

Execute: STABLE

The second activity in the Release Development Lifecycle is the STABLE activity. Releases
that have reached this activity are ready for element and component level testing. This is
the first Release Development Cycle activity with a mandatory baseline, and from this point
on all Release Development Lifecycle activities require a baseline.

Releases that fail to meet acceptance criteria are returned to the DEVEL activity with error
descriptions and/or change requests. Similarly, releases may be returned to the

STABLE activity from the Release Development Lifecycle QA activity. All work done during
this activity must be directly linked to change requests. Any work that exceeds the scope of
existing change requests mandates that new or updated change request(s) be generated.

Execute: QA

The third activity in the Release Development Lifecycle is the QA activity. During this
activity releases are built in an environment as close to the target platform as possible. All
acceptance tests are executed.

If the release fails to pass any test criteria it is returned to the Release Development Life-
cycle STABLE activity along with error descriptions and change requests.

Execute: PROD

The final activity in the Release Development Lifecycle is the PROD activity. The primary
reason for this activity is to indicate that the release is ready to be certified. Various tasks
may be completed during this activity including:

� Release notes;

� Installation documentation; and

� Planning for release packaging.

Product Release Progression

Products go through a progression of releases as time goes on. Major releases are suc-
ceeded by minor releases. Major and Minor releases are “patched”. Figure 10.3 shows a
typical product release progression.

197

XyceTM Developer Guide Xyce Release Process

10.5 Distribution Management Process

10.5.1 Objective

The objective of the Distribution Process is to define the activities in the distribution man-
agement process with adequate detail to facilitate the process implementation.

10.5.2 Goals

The goals of the Distribution Process are to:

� Outline activities, documentation and roles associated with providing released ver-
sions of the product(s) to the customers in a documented and controlled manner.

� Define high-level Distribution Process activities and the roles that are responsible for
those activities;

� Establish documentation requirements for distribution management

10.5.3 Process

Scope

This distribution management process applies to all Xyce-related product releases.

General

Once a release has successfully completed the Release Management certification activ-
ity it becomes eligible for distribution. Releases that are eligible for distribution may be
moved to an electronic distribution system, packaged for distribution, shipped to autho-
rized customers, or installed as a resource on specific simulation platforms by authorized
maintainers (to be accessed by customers).

Distribution management deals with the packaging, shipping, tracking and notifications
associated with releases. Distribution management does not allow for any changes to be
made to the underlying release as part of the Distribution Process.

198

10.5 Distribution Management Process XyceTM Developer Guide

For the period of time that a release is to be available to customers the release is said
to be in distribution. If, for any reason, it is determined that a specific release should no
longer be available for customers that specific release is said to be withdrawn. Withdrawn
releases must not be distributed to any customer.

Requirements

The requirements for distribution management are as follows:

� All Xyce-related product distributions shall be controlled under this Xyce Distribution
Process. As part of the release notes (and preferably as part of a product license)
release customers should be advised that they are not allowed to redistribute any
part of any Xyce-related product.

� Only those products that have successfully completed the certification activity of the
Release Process are eligible for distribution.

� All requests for distributions and all actual distributions will be tracked. The minimum
information required for distribution tracking includes customer name, customer lo-
cation, Xyce product(s), release number, distribution date, media type, and target
platform.

� Any release may be withdrawn from distribution. For example, an old release might
be retired when a new release becomes eligible for distribution.

� Distribution must take place in such a way that only authorized customers receive the
release.

10.5.4 Distribution Packaging

Prior to being distributed releases are packaged. Distribution packaging consists of:

� Identification of the correct product elements;

� Selection of media type based on customer requirements;

� Selection of a package format; and

� Packaging.

The key requirements for packaging are:

199

XyceTM Developer Guide Xyce Release Process

� All release packages will be properly labeled (physically and/or electronically) with
the proper release identifier;

� The contents of all release packages will be properly documented; and

� Other than documentation activities (e.g. Release Notes), releases are never created
or modified during the Distribution Process.

Media Type

The media type identifies the physical storage mechanism used by the release. Examples
of media type include: CD, tape, and distribution server.

Package Type

Package type identifies a storage format. The three package types are multiple files,
archive files, and mixed files.

A multiple file package contains all of the elements required to install the release with each
file independently stored on the media.

An archive file is a single file that contains multiple files. Examples of archive files are tar
files, ZIP files, and self contained installation files.

Mixed file packages will contain some combination of multiple files and archive files.

10.5.5 Distributing Releases

Once a release is eligible for distribution, customer requests for the release may be con-
sidered. Figure 10.4 illustrates the Distribution Process and the role(s) responsible for the
activity. Roles are defined in Section 10.6.

Figure 10.4 shows the process flow and the role(s) responsible for each activity. Additional
details of each activity, the role with primary responsibility for the activity, and the transitions
between activities are covered in Table 10.6.

200

10.5 Distribution Management Process XyceTM Developer Guide

Activity Description Role Re-

sponsible

Submit

The request must include the customer name, product

release number, media type, and target system. The
request may be automatically generated from customer
license lists (standing orders), generated by an electronic
customer interface, or generated as a result of verbal or
textual communications with the customer.

Customer

or DL

Check
All distribution requests are checked for completeness.

The request may be returned to the submitter or
transitioned to the next activity.

DL

Evaluate

Distributions may only be made to customers who are

licensed and authorized to receive the specific release
requested. In addition, only requests for releases that are
“eligible for distribution” may be considered. Requests
may be rejected or transitioned to the next activity.

DL

Distribute

There are numerous ways that the actual distribution may

occur. While the method of distribution and the specific
packaging may vary, in no case shall the underlying
release be modified. See Section 4.6.1 and Section 4.6.2
for additional details.

DL

Track
All distribution requests are tracked. The minimum data

that is retained is customer name, request date and
request status.

DL

Close
Perform process improvement and administratively close

the distribution request.
DL

Table 10.6: Distribution Process Detail

Distribution Mechanisms

Examples of distribution mechanisms include;

� Releases may be automatically packaged, copied to selected media, and shipped to
specific customers;

� Releases may be packaged and electronically distributed (pushed) to specific cus-

201

XyceTM Developer Guide Xyce Release Process

tomers; and

� Releases may be placed on a distribution server and made available for customers
to “pull” at their convenience. In all cases, the distribution server software must au-
thenticate customers prior to distribution.

10.5.6 Distribution Logging

All distributions will be logged. The minimum information that will be logged is:

� Customer name;

� Authentication source;

� Specific release (product and version);

� Distribution media;

� Distribution packaging;

� Shipment mechanism; and

� Distribution date.

10.5.7 Withdrawing Releases From Distribution

At times there will be need to withdraw Xyce releases from distribution. There are two
general reasons that a release might be withdrawn.

First, old releases may become out of date as new releases become eligible for distribution.

Second, a release that is determined to contain significant issues may influence the CCB
to decide to withdraw that specific release from distribution. In this case the release may
be withdrawn immediately or it may be withdrawn at some time prior to the end the normal
distribution cycle (i.e. after a patch release is available). In all cases release tracking
information is referenced so that all customers of the release can be notified.

Table 10.7 provides more detail on the withdraw activities, descriptions, and the role pri-
marily responsible for the activity.

202

10.5 Distribution Management Process XyceTM Developer Guide

Activity Description Role Re-

sponsible

Submit

A formal request is made to withdraw a specific release

from distribution The request must at a minimum specify
the product, the release(s) impacted, and the reason for
the request.

CCB or PTL

Check
The request is checked for completeness. The request

may be returned to the originator or transitioned to the
next activity.

DL

Evaluate
The evaluator(s) must determine if it is appropriate to

withdraw the release. Requests may be refused,
deferred, or approved.

CCB

Withdraw The release is withdrawn from distribution. DL

Notify

All interest parties are notified that the release has been

withdrawn. Interested parties include: customers, PTL,
and CCB. Customers must be advised that withdrawn
releases are not supported.

DL

Close
Perform process improvement and administratively close

the distribution request.
DL

Table 10.7: Withdrawing a Release

203

XyceTM Developer Guide Xyce Release Process

10.6 Roles

10.6.1 General

Roles represent a functional division of process responsibilities. Roles are defined based
on the current activity, and the tasks that need to be accomplished.

Individuals may function in more than one role; however, an individual needs to know in
what role he/she is functioning at any single point of time so they can verify that the proper
set of tasks is being executed.

10.6.2 Role Definitions

Table 10.8 identifies the roles that are required for the Release Process and the Distribution
Processes. Additional detail for each role is provided in the sections following Table 10.8.

Role Description

Change Control

Board (CCB)

A group of individuals who are responsible for making high-level

decisions regarding releases.

Product Team

Lead (PTL)

An individual who is responsible for the product architecture,

product development, and managing resources assigned to product
related activities.

Developer

(DEV)

Responsible for designing, writing, and maintaining the source and

related documentation files that comprise some part of a product.

Quality

Assurance (QA)

Individuals who are responsible for assuring that application

software conforms to project standards, and for the testing and
evaluating releases. This includes the Quality Assurance Lead
(QAL), the Quality Assurance Builders (QAB), and the Quality
Assurance Testers (QAT).

Release Lead

(RL)
Responsible for overseeing and documenting all releases.

Distribution

Lead (DL)
Responsibly for the majority of the tasks in the Distribution Process.

Customer
Recipient and/or User of the product. Customers primary

reponsibilities include requesting releases.

204

10.6 Roles XyceTM Developer Guide

Role Description

Table 10.8: Roles

10.6.3 Role Details

Table 8 defined the roles required for RDM. The following sections expand, clarify, and
illustrate those roles.

CCB

The CCB has defacto management authority of overall project direction and development
resources. The CCB is comprised (at a minimum) of a representative from management,
a representative from product management, and the product team lead (PTL).

Examples of the tasks that fall under the authority of the CCB include:

� Approving and certifying release requests;

� Evaluating withdraw requests;

� Resolving project level technical issues;

� Managing project resource availability; and

� Approving release timing.

PTL

The product team lead is responsible for day-to-day oversight of product technical issues
and resources assigned to the product.

Examples of the tasks that fall under the authority of the PTL include:

� Review and scope release requests;

� Plan releases; and

� Direct release development.

205

XyceTM Developer Guide Xyce Release Process

DEV

The developer is responsible for designing, writing, and documenting code.

Examples of the tasks that fall under the authority of the developer include:

� Receiving assignments from the PTL to create, enhance, or debug product function-
ality;

� DEVEL activity of the Release Development Lifecycle including identification of the
elements that go into the STABLE baseline; and

� Notifying QA when the release is ready to be transitioned to the STABLE activity.

QA

Quality Assurance has several sub-roles. The QA Lead (QAL), QA Builder (QAB, and the
QA Tester (QAT).

QAL

The QA Lead (QAL) is responsible for:

� Managing evaluation of the Release Development Lifecycle STABLE and QA activi-
ties; and

� Verifying that all work done to support a release relates to specific change requests.

QAB

The QA Builder (QAB) is responsible for creating QA product releases at the direction of
the QAL. Activities include:

� Documenting which element versions are included in the STABLE and QA

� Release Development Lifecycle activities;

� Creating the STABLE and QA release baselines; and

� Performing and evaluating the STABLE and QA builds for targeted release item envi-
ronments.

206

10.6 Roles XyceTM Developer Guide

QAT

The QA Tester (QAT) is responsible for preforming tasks to evaluate releases at the direc-
tion of the QAL. Activities include:

� Manual testing of releases; and

� Automated release testing.

RL

The release lead is responsible for overseeing the Release Process and for documenting
all releases. Activities include:

� Ensuring inclusion of release notes and installation notes;

� Creating the PROD release baseline. Verifying contents of the PROD baseline;

� Documenting the date that the release becomes eligible for distribution; and

� Closing release requests.

DL

The distribution lead is responsible for the majority of the tasks during the Distribution
Process. Activities include:

� Notifying of customers when a release becomes eligible for distribution;

� Notifying customers when a release is withdrawn from distribution; and

� Documenting and tracking distributions.

Customer

The customer has few (if any) official responsibilities related to RDM. Examples of the
activities in which the customer may engage include:

� Obtaining appropriate licenses;

207

XyceTM Developer Guide Xyce Release Process

� Receiving and installing releases;

� Submitting product trouble reports;

� Submitting product enhancement requests; and

� Calling the help desk with issues.

208

10.7 Interfaces to Other Processes XyceTM Developer Guide

10.7 Interfaces to Other Processes
Release and Distribution Management (RDM) has interfaces to other Xyce processes.

10.7.1 Issue Tracking

Release requests may be initiated as a result of defect reports or when the PTL requests
a defect patch. Both require that an issue be reported to issue tracking. The QA Lead
(QAL) may allow a release to proceed (with a defect) while reporting an issue (that will
eventually generate another release request). The DL uses issue tracking to report media
and packaging issues

The PTL (product team lead) is called the Team Lead (TL) in the Issue Tracking process
(see [24]).

The work required for individual issue tracking is descibed in chapter 4. A flowchart
(from that chapter) documenting issue tracking, and its relationship to the release process
phases is shown in figure 4.1.

10.7.2 Requirements Management

Release requests may be initiated by a variety of sources. Release requests may include
references to both new and existing requirements. Any new requirements that arise from
release requests must be handled through the Requirements Management Process [25].

All release request links to requirements need to be documented sufficiently to allow re-
quirements base testing of release functionality.

The PTL (product team lead) is called the TL in the Requirements Management docu-
ment [25].

10.7.3 Third-Party Software (TPS)

The Xyce Parallel Electronic Simulator has dependencies on third-party software (TPS).
The TPS required to build Xyce is typically utilized in the form of statically linked libraries
that can be categorized in the following manner:

209

XyceTM Developer Guide Xyce Release Process

� Unmodified third party software (UTPS)

� Modified third party software (MTPS)

� Xyce specific external software (XSES)

Depending on which category of which a given library is a member, the maintenance and
distribution of this software is handled slightly differently as is described in the Third-Party
Software Configuration Management Plan, given in chapter 11. Here we simply specify
that TPS artifacts are baselined and tracked in coordination with the Release Process.

10.7.4 Configuration Management

Product release and product distribution are components of Configuration Management
(CM). Proper implementation of RDM requires that another component of CM, version con-
trol, is properly defined and implemented. Since version control procedures are not defined
in this document, the assumption is made that proper version control will be performed for
all items that are needed for Xyce releases. That is, all instances of all controlled Xyce ele-
ments (e.g. source files, build files, test files, data files, thirdparty libraries, documentation,
release notes,...) will be placed under version control.

The Release Management Process assumes that a Configuration Management Process
is properly implemented. Version control of elements that compose releases is of partic-
ular importance to the Release Development Lifecycle DEVEL, STABLE, QA, and PROD
activities.

210

10.8 Guidelines for Release Notes XyceTM Developer Guide

10.8 Guidelines for Release Notes
Suggested Outline for Release Notes

The following is a generic outline for release notes for a software product. The philosophy
implied by this generic outline is that the release notes will provide an overall description
of the product and then provide information just about the current release of the product.

10.8.1 Scope/Product Definition

This section would have an overall description of the product. This description should be
general enough that it applies to all releases of the product. In other words, this section is
release-independent.

10.8.2 Hardware/Software Information

Supported Platforms

This section gives the currently supported hardware/operating-system combinations.

Hardware Requirements

Minimum hardware requirements required for running the code. These may be platform
dependent.

Software Requirements

Minimum software requirements for running the code, including any standard or third party
libraries required by the code.

10.8.3 Release Documentation

10.8.4 New Features and Enhancements

211

XyceTM Developer Guide Xyce Release Process

Highlights

This section describes major features of the product that should be highlighted. In essence
this is the “sales pitch” section. Like the Product Description section, the highlights de-
scribed in this section should be general enough to apply to all releases of the product.
Features specific to a release that should be highlighted will be included in the next sec-
tion, New Features.

Package-Specific Features and Enhancements

This section describes the new features and enhancements at the UML package level.

10.8.5 Defects Fixed in this Release

This section details the defects that were fixed specifically in the noted release. Since a sub
release should include all the fixes in the patches that preceded the subareas, descriptions
of the defects fixed by those patches do not have to be included.

10.8.6 Known Defects and Workarounds

This section is optional. It highlights significant defects that were not fixed in the release.
This section should be included if there are some major defects that are still outstanding
or if before the completion of the release, a release was advertised to fix certain defects,
but the fixes were not included. It should also include workarounds, if available.

212

10.9 Release Certification Tests XyceTM Developer Guide

10.9 Release Certification Tests

10.9.1 Checklist for Release Certification

The following checklist outlines the test necessary for certification of a Xyce release. As the
Xyce code matures, this list will expand and evolve to match its capabilities. These tests
encompass the standard Xyce test suite and add in several other tests which exercise
other aspects of Xyce not covered by the current regression tests.

10.9.2 General Directions:

The release certification date should be filled in immediately to initiate this process. The
initiation date must be the date of printing. The indicated steps may be completed in any
reasonable order. The process shall be considered complete when all steps have been
completed.

10.9.3 Specific Directions:

No specific form of review is required (i.e. Fagan Inspection). The project leader shall
determine the scope of the planning and the method of conducting the review. The project
leader shall notify planning participants and provide them with the applicable material.

This checklist is complete when the project leader determines its disposition. The project
leader may consult with the participants to determine the final disposition.

10.9.4 QA

Process Ownership:

This document and associated procedure are owned by the Project Leader who must ap-
prove any changes. This document is version 1.0 and supercedes all previous versions.
This document is under version control. All previous versions will print with a banner “OB-
SOLETE”.

Authority to perform process:

Any team member may initiate a meeting using this procedure.

213

XyceTM Developer Guide Xyce Release Process

If this process or associated document is superceded after an activity has been initiated,
the process shall be completed under this version unless specifically notified otherwise by
the team leader.

Stage Entrance and Stage Exit:

The stage entrance is the process initiation by any authorized person. All necessary pro-
cess inputs are built into the checklist. The stage exit is the completion of this form (all steps
completed and metrics entered.) Note (see Specific Directions above) that the project
leader can terminate the process once the disposition can be determined to avoid wasted
effort.

214

10.10 Team Checklists XyceTM Developer Guide

10.10 Team Checklists

10.10.1 Checklists for Release Process Activities

The following are a set of checklist tables for use with Xyce releases to help ensure com-
pletion and documentation of necessary activities. This section is focused on checklists for
team-level activities. Following each table is a set of directions as well as QA information
for the list. Note that these checklist are available as separate documents to be used and
archived for each release cycle.

215

XyceTM Developer Guide Xyce Release Process

10.10.2 Release Planning Checklist

Release Number:

Release Planning Date:

Release Planning Participants:

Activity Description Owner Completion

Date

Plan Target

Capabilities

Generate list of target capabilities for

current release. If possible, these
should be traced to specific
requirements and/or change requests.

Develop

Acceptance
Criteria

Specify acceptance criteria for each

target capability and/or functionality.

Plan Target

Functionality

Generate list of target functionality for

current release. If possible, these
should be traced to specific
requirements and/or change requests.

Activity

Dates

Establish dates for each activity:

� Code repository branch

� Production build

� Release notes completion

� Release certification

� Release notification

Note that these activities may be
specified in a relative manner (e.g.,
relative to the process initiation or an
activity completion).

216

10.10 Team Checklists XyceTM Developer Guide

Activity Description Owner Completion

Date
Table 10.9:

Plan Completion: Release plan complete

Completion Date:

General Directions:

The release planning date and participants should be filled in immediately to initiate this
process. The initiation date must be the date of printing. The indicated steps may be
completed in any reasonable order. The process shall be considered complete when all
steps have been completed.

Specific Directions:

No specific form of review is required (i.e. Fagan Inspection). The project leader shall
determine the scope of the planning and the method of conducting the review. The project
leader shall notify planning participants and provide them with the applicable material.

This checklist is complete when the project leader determines its disposition. The project
leader may consult with the participants to determine the final disposition.

QA

Process Ownership:

This document and associated procedure are owned by the Project Leader who must ap-
prove any changes. This document is version 1.0 and supercedes all previous versions.
This document is under version control. All previous versions will print with a banner “OB-
SOLETE”.

Authority to perform process:

Any team member may initiate a meeting using this procedure. If this process or associated
document is superceded after an activity has been initiated, the process shall be completed
under this version unless specifically notified otherwise by the team leader.

217

XyceTM Developer Guide Xyce Release Process

Stage Entrance and Stage Exit:

The stage entrance is the process initiation by any authorized person. All necessary pro-
cess inputs are built into the checklist. The stage exit is the completion of this form (all steps
completed and metrics entered.) Note (see Specific Directions above) that the project
leader can terminate the process once the disposition can be determined to avoid wasted
effort.

218

10.10 Team Checklists XyceTM Developer Guide

10.10.3 Release Configuration Management (RCM)
Checklist

Release Number:

RCM Initiation Date:

RCM Initiation Owner:

Activity Description Owner Completion

Date

Baseline CM

Code
Repository

The code CM repository should be

baselined (tagged) according to the
labeling convention established in the
Release and Distribution Management.

Create

Release
Branch

The code CM repository shall be

branched in support of the Release
Development Lifecycle.

Track

Release
Development
Lifecycle

The RDL shall be tracked in a manner

consistent with the Release and
Distribution Management document.
This shall be accomplished by
baselining each promotion through the
RDL.

Baseline

Final
Release
Configuration

At the completion of the RDL (PROD

stage), the repository shall be tagged
according to the labeling convention
established in the Release and
Distribution Management guide.

Table 10.10:

RCM Completion: RCM complete

Completion Date:

219

XyceTM Developer Guide Xyce Release Process

General Directions:

As release activities proceed through the RDL, this checklist must be updated/completed.
The initiation date and owner shall be filled in immediately to initiate this process. The
initiation date must be the date of printing. The indicated steps may be completed in any
reasonable order. The process shall be considered complete when all steps have been
completed.

QA

Process Ownership:

This document and associated procedure are owned by the Project Leader who must ap-
prove any changes. This document is version 1.0 and supercedes all previous versions.
This document is under version control. All previous versions will print with a banner “OB-
SOLETE”.

Authority to perform process:

Any team member may initiate a meeting using this procedure. If this process or associated
document is superceded after an activity has been initiated, the process shall be completed
under this version unless specifically notified otherwise by the team leader.

Stage Entrance and Stage Exit:

The stage entrance is the process initiation by any authorized person. All necessary pro-
cess inputs are built into the checklist. The stage exit is the completion of this form (all steps
completed and metrics entered.) Note (see Specific Directions above) that the project
leader can terminate the process once the disposition can be determined to avoid wasted
effort.

220

10.10 Team Checklists XyceTM Developer Guide

10.10.4 Release Development Lifestyle (RDL) Checklist

Release Number:

RDL Initiation Date:

RDL Initiation Owner:

Activity Description Owner Completion

Date

DEVEL

During DEVEL for a given RDL, work is

performed to add, enhance, fix or remove
functionality. Completion of this stage is
determined by the assigned developers and
results in promotion to the STABLE stage.

STABLE

Releases that have reached this activity are

ready for element and component level
testing. This is performed according to
associated test plans. Failure in this stage
requires returning to the DEVEL stage with
associated change requests will be
entered.

QA

During this phase, acceptance tests are

performed on all target platforms. In
addition, testing and related activities may
be performed by other QA individuals.
Failure here will result in returning to the
STABLE stage and possibly the DEVEL
stage with associated change requests will
be entered.

PROD
At this final stage, the product is ready for

certification. Here, release notes and other
documentation may be initiated.

Table 10.11:

RDL Completion: RDL complete

221

XyceTM Developer Guide Xyce Release Process

Completion Date:

General Directions:

For each of possibly multiple passes (minimum one) through the RDL, this checklist must
be completed. The initiation date and owner shall be filled in immediately to initiate this
process. The initiation date must be the date of printing. The indicated steps may be
completed in any reasonable order. The process shall be considered complete when all
steps have been completed.

QA

Process Ownership:

This document and associated procedure are owned by the Project Leader who must ap-
prove any changes. This document is version 1.0 and supercedes all previous versions.
This document is under version control. All previous versions will print with a banner “OB-
SOLETE”.

Authority to perform process:

Any team member may initiate a meeting using this procedure. If this process or associated
document is superceded after an activity has been initiated, the process shall be completed
under this version unless specifically notified otherwise by the team leader.

Stage Entrance and Stage Exit:

The stage entrance is the process initiation by any authorized person. All necessary pro-
cess inputs are built into the checklist. The stage exit is the completion of this form (all steps
completed and metrics entered.) Note (see Specific Directions above) that the project
leader can terminate the process once the disposition can be determined to avoid wasted
effort.

222

10.10 Team Checklists XyceTM Developer Guide

10.10.5 Release Certification Checklist

Release Number:

Certification Initiation Date:

Certification Participants:

Activity Description Owner Completion

Date
Perform

Accep-
tance
Tests

Acceptance test, as specified in the

Release Plan, are performed and
documented.

Complete

and
Review
Docu-
mentation

Documentation (Release Notes, updated

Guides, etc.) is generated and reviewed by
assigned participants.

Certify

Release

Release is certified assigned reviewers and

management. The review form is archived.
Table 10.12:

Certification Completion: Release Certification complete

Completion Date:

Certification Signatures:

QAL:

PTL:

PI:

Mgt. Rep.:

223

XyceTM Developer Guide Xyce Release Process

General Directions:

The certification date and participants should be filled in immediately to initiate this pro-
cess. The initiation date must be the date of printing. The indicated steps may be com-
pleted in any reasonable order. The process shall be considered complete when all steps
have been completed.

Specific Directions:

No specific form of review is required (i.e. Fagan Inspection). The project leader shall
determine the scope of the planning and the method of conducting the review. The project
leader shall notify planning participants and provide them with the applicable material.

This checklist is complete when the project leader determines its disposition. The project
leader may consult with the participants to determine the final disposition.

QA

Process Ownership:

This document and associated procedure are owned by the Project Leader who must ap-
prove any changes. This document is version 1.0 and supercedes all previous versions.
This document is under version control. All previous versions will print with a banner “OB-
SOLETE”.

Authority to perform process:

Any team member may initiate a meeting using this procedure. If this process or associated
document is superceded after an activity has been initiated, the process shall be completed
under this version unless specifically notified otherwise by the team leader.

Stage Entrance and Stage Exit:

The stage entrance is the process initiation by any authorized person. All necessary pro-
cess inputs are built into the checklist. The stage exit is the completion of this form (all steps
completed and metrics entered.) Note (see Specific Directions above) that the project
leader can terminate the process once the disposition can be determined to avoid wasted
effort.

224

10.10 Team Checklists XyceTM Developer Guide

10.10.6 Distribution Management Checklist

Release Number:

Distribution Initiation Date:

Distribution Owner:

Activity Description Owner Completion

Date

Build Platform

Executables

For each supported platform, build

executables from the baselined
release.

Distribute

Release

Distribute supported executables and

associated artifacts according to
distribution plan.

Notify

Customers

Notify customers of Release and

provide release artifacts (either actual
artifacts or instructions on access).

Table 10.13:

Distribution Completion: Distribution complete

Completion Date:

General Directions:

Complete this checklist as part of the overall distribution process. The initiation date and
owner shall be filled in immediately to initiate this process. The initiation date must be
the date of printing. The indicated steps may be completed in any reasonable order. The
process shall be considered complete when all steps have been completed.

QA

Process Ownership:

This document and associated procedure are owned by the Project Leader who must ap-

225

XyceTM Developer Guide Xyce Release Process

prove any changes. This document is version 1.0 and supercedes all previous versions.
This document is under version control. All previous versions will print with a banner “OB-
SOLETE”.

Authority to perform process:

Any team member may initiate a meeting using this procedure. If this process or associated
document is superceded after an activity has been initiated, the process shall be completed
under this version unless specifically notified otherwise by the team leader.

Stage Entrance and Stage Exit:

The stage entrance is the process initiation by any authorized person. All necessary pro-
cess inputs are built into the checklist. The stage exit is the completion of this form (all steps
completed and metrics entered.) Note (see Specific Directions above) that the project
leader can terminate the process once the disposition can be determined to avoid wasted
effort.

226

10.11 Individual Roles Checklists XyceTM Developer Guide

10.11 Individual Roles Checklists

10.11.1 QA Roles

The Quality Assurance Lead, Builder, and Tester are responsible for ensuring that each
product release conforms to project standards by compiling, testing, packaging, and eval-
uating release components in a rigorous and repeatable manner. The following checklists
may be used as a guide for QA activities.

Release Number:

Quality Assurance Initiation Date:

Quality Assurance Lead:

Quality Assurance Lead (QAL)

Activity Description Owner Completion

Date

Test Harness
Prepare the tools and environments

necessary for testing prior to beginning
QA activities.

Test

Coverage

Confirm that at least one test exists for

every RESOLVED VERIFIED
bug/feature.

Initiate

Testing

Provide lists of the build configurations,

run-time configurations, and required
tests to the QAB and QAT.

Manage

Testing

Check build and test reports for

completeness. Initiate successive QA
rounds as needed. Coordinate QAB and
QAT activities.

Verification
Verify that each build configuration

passes its required set of tests.

227

XyceTM Developer Guide Xyce Release Process

Activity Description Owner Completion

Date

Sign-off
Sign official release management

documentation to certify that the QA
process is complete.

Table 10.14: QAL Roles

Quality Assurance Builder (QAB)

Activity Description Owner Completion

Date

Packaging
Compile and bundle release packages

requested by the QAL.

Verification

Verify that each release package is

correctly formatted, containing proper
documentation, static/shared
executables, bundled libraries, support
software, etc.

Documentation

Document the configuration used to

create release artifacts. This includes all
data necessary to duplicate each QA
round.

Table 10.15: QAB Roles

Quality Assurance Tester (QAT)

Role Description Owner Completion

Date

Test

Use a combination of the automated

test framework and manual testing to
produce results for all run-time
configurations and tests requested by
the QAL.

228

10.11 Individual Roles Checklists XyceTM Developer Guide

Role Description Owner Completion

Date

Verification
Verify that each release package

passes all required tests.

Archive
Archive configuration and test results in

persistent storage. This includes all data
necessary to reproduce each QA round.

Table 10.16: QAT Roles

QA Completion: QA complete

Completion Date:

229

XyceTM Developer Guide Xyce Release Process

10.12 Release Activity Timeline
The preceding sections have given an overview of the Xyce release process from a high
level. However, such an overview can be confusing to the typical code developer. What
follows in this section is (in plain English) the steps typically taken to produce a formal a
Xyce code release.

10.12.1 Release Version Numbering

Historically, the project has nominally aimed for two major releases a year, and they alter-
nate between the *.0 and *.1 version number suffixes. So, for example, one could have
major releases Xyce version 5.0 and Xyce version 5.1 in the same year. Being “major
releases” means that the entire release process is followed and that the release is cre-
ated from a completely new CVS branch. Generally, this is enough work that it should not
be attempted very often, and each “major” release should include a large number of new
features. In practice, the project has not managed to maintain the schedule necessary
to complete two major releases in a year, and a more typical period is eight months per
release. A typical release process will take about two months to execute, so this can be
thought of as six months of major code development plus two months of release activity.

10.12.2 Release planning meeting

The first step in executing a formal release is to hold a release planning meeting. It may
be necessary to have more than one. The planning meeting has a checklist which is
documented in section 10.10.2, and this checklist can be used as a loose guideline for
the goals of the meeting. Primarily, the meeting should address, features for the release,
supported platforms, updated library builds, and setting various release dates.

In general, the earlier you can have this meeting, relative to when the release is supposed
to happen, the better. Almost every step of the release will take longer than expected, so
plan for it.

Feature, Issue and Bugfix Selection

Major features of a release should be agreed upon in a release planning meeting. Once
they are agreed upon, all non-essentially bugzilla issues should be deferred to target later
releases than the current one. Often, it will be necessary to create a new target milesone
in bugzilla, to accomodate deferred bugs. So, for example, if the current release is going

230

10.12 Release Activity Timeline XyceTM Developer Guide

to be version 5.1, it may be necessary to create a new target milestone for version 6.0, to
which low-priority bugs will be deferred.

Sometimes, on the Xyce project, we have gone through every bug in bugzilla during the
meeting and decided as a team which ones to defer. Other times, we have left it up to
the individual developers to make that choice. Most Xyce developers work with specific
customers of the project, and as such each developer essentially represents the needs
of their customers to the group. So, customer schedules and customer feature requests
should be taken into account. It is sometimes not possible to accomodate every feature
that every customer wants, so some compromises may need to be made.

Build/Platform/Library Support

Platforms and library versions to support should be agreed upon in a release planning
meeting. At first glance, this may seem to be a trivial issue, but it can result in a non-trivial
amount of work.

Build decisions include, but are not limited to, the following issues:

� Hardware platforms (intel, mac, windows etc.)

� OS Versions. Strive to support the corporate operating environment (COE), when
possible.

� MPI implementation (mpich, OpenMPI, MPILAM, etc.)

� Compilers. Examples include Intel, gcc, Portland Group, etc.

� Libraries, especially Trilinos version. Trilinos typically has major releases once a year,
in the fall. If possible, Xyce releases should use the most recent Trilinos released
version.

� Special builds. For a variety of reasons, it may be desirable to support builds with spe-
cial features enabled or disabled. Example include builds with and without OpenMP,
with and without radiation models, with and without the Dakota library, and with and
without the reaction parser enabled.

Ultimately, the agreed-upon library and platform support for a release will result in at least
10 or more unique builds. Each unique build needs to be tested separately for release, and
the number of platforms that can be supported will be practically constrained by testing
resources. It can also take weeks to months to get all the builds and all the automated
testing to stabilize. As such, the earlier the platform decisions are made, the better.

231

XyceTM Developer Guide Xyce Release Process

Setting Activity Dates

Set dates for the following. Note, before the CVS Tag and Branch phase, you’ll want to have
all platforms in good shape. That means that all libraries and builds need to be installed and
well established in regression testing. If you are upgrading libraries, or operating systems
(to suit the current COE), it can take weeks for all test platforms to stabilize, so allow at
least a month for this activity.

� Set a date for all test platorms to be upgraded to the current corporate operating
environment (COE). This may require purchasing software licenses (for both OS and
compilers), so allow for this. Not all test platforms are covered under site licenses,
even for the COE. For example, some platforms require the server version of the OS,
and server versions are often not covered by site licenses.

� Set a date for all library and platform updates to be complete. This means that li-
braries (such as Trilinos) are built and installed on a network drive for every supported
platform.

� Set CVS Tag and Branch date. This should probably be a month after the library/platform
date.

� Set QA cycle dates. Assume at least two QA cycles, and a week per cycle. Assume
a day in between each one, for miscellaneous bookkeeping, etc.

� Set a date for final paperwork, including website updates.

� Set a date for the release announcement.

It is likely that some of these dates will slip. Ideally, most schedule slippage should happen
in the first phase, prior to the branch date. It is much better to be doing bugfixes prior to
branching than after.

Platform and Testing upgrades

Make a list of all the new libraries that need to be built, for every supported platform. Divide
up the work by assigning a subset of platforms to each developer. It may be necessary to
upgrade the OS and/or compilers on test platforms, if they have not been updated already.

232

10.12 Release Activity Timeline XyceTM Developer Guide

10.12.3 Release Tag and Branch

10.12.4 QA process

10.12.5 Documentation

10.12.6 Final Paperwork

10.12.7 Website Updates

233

XyceTM Developer Guide Xyce Release Process

Figure 10.2. Release Process.
234

10.12 Release Activity Timeline XyceTM Developer Guide

Figure 10.3. Example of a typical product release progression.

235

XyceTM Developer Guide Xyce Release Process

Figure 10.4. Distribution process.

236

10.12 Release Activity Timeline XyceTM Developer Guide

Figure 10.5. Illustration of the Withdraw process.

237

XyceTM Developer Guide

238

11. Third Party Software
Management

Chapter Overview
This chapter presents a high-level description of the XyceTM Third Party Software Configu-
ration Management Plan. The purpose of this plan is to standardize the manner in which
all third party software products required by XyceTM maintained and made available for
developers and others to build XyceTM .

239

XyceTM Developer Guide Third Party Software Management

11.1 Preface
This chapter presents a high-level description of the XyceTM Third Party Software Configu-
ration Management Plan. The purpose of this plan is to standardize the manner in which
all third party software products required by XyceTM maintained and made available for
developers and others to build XyceTM . [23].

240

11.2 Preliminaries XyceTM Developer Guide

11.2 Preliminaries

11.2.1 Purpose

The purpose of this chapter is to provide a high-level description of the Xyce third-party
software configuration management plan (TPSCM). This chapter describes the process
elements of TPSCM, but it does not describe how they are being implemented. No specific
tools are recommended or discussed in detail. There are several implementations that
would successfully carry out the process described in this chapter. Therefore, even if the
implementation or the toolset changes in the future, this process remains stable.

This chapter explains the acceptance/integration of related or dependent software devel-
oped by non-Xyce team members, herein called ”third party software.” Examples of third
party software (TPS) are listed in the table in section 11.4. Many of these software groups
or libraries are developed at Sandia. Many of these software sets are developed by other
government or academic laboratories, by commercial vendors or by Sandia commercial or
university partners.

11.2.2 Scope

The Xyce TPSCM process described in this chapter is required for each Xyce product. The
main sections of this chapter focus on the tasks and activities that are required to manage
the TPS.

11.2.3 Process Ownership

This chapter and associated procedure are owned by the Xyce Technical Leader and the
Xyce Third Party Software owner who must approve any changes. Previous versions of
this document were stand-alone documents, unlike this one which is a chapter of a larger
document. This chapter is Version 1.1 of the third-party release plan, and supercedes all
previous versions.

241

XyceTM Developer Guide Third Party Software Management

11.3 Third-party software management

11.3.1 Introduction

The TPS required to build Xyce is typically utilized in the form of statically linked libraries
that can be categorized in the following manner:

� Unmodified third party software (UTPS)

� Modified third party software (MTPS)

� Xyce specific external software (XSES)

Depending on which category of which a given library is a member, the maintenance of the
library is handled slightly differently as will be discussed. Currently, the issues regarding
the overall maintenance of these libraries fall into two areas:

� The manner in which the source code for the libraries is handled, etc. (e.g., stored in
a repository).

� The location of the built library files on the Xyce project file server

This is a simplification of the overall process and a more complete management system
will be implemented in the near future. However, given the limited resources available, this
chapter accurately represents the process currently in place.

11.3.2 General Third Party Software Practices

CM: Artifacts Supplied by Responsible Third Party Organization

All product artifacts received from the supplier for unmodified TPS will be stored in the
associated tar file. Supplier-furnished artifacts might include:

� tar files, including source, documentation, MAKE, etc.

� Executables (object code)

242

11.3 Third-party software management XyceTM Developer Guide

� MAKEFILE for creating each library per platform

� Source Code

� Test Suites

� List of viable libraries (4th party) and associated details (e.g., build order dependen-
cies)

� User documentation

Quality Assurance Practices

Supplied Source

Integration of externally supplied artifacts should include QA. If the software is delivered
(source, library, executable), the QA should include applicable acceptance testing. This
may consist of running supplied unit tests, followed by running any of the teams’ own
acceptance unit tests, and finally running integrated (regression) tests.

Supplied Documentation

The supplied software package should include documentation that consists of installation
instructions, user guide, test cases, and test results. The documentation may guide the
QA activities that are carried out.

Supplied Tests

The supplied software must go through the Xyce regression tests; if an error is encountered
that points to the library, the Xyce developers will work with the suppliers to resolve the
error. Some suppliers provide regression testing results or proof of validation; others do
not.

Multi-Platform Support

Supporting MAKE/BUILD on all required platforms will be part of the integration work. The
code management team may ask a supplier to deliver artifacts for all platforms but be told
that only 80% of these platforms are supported. The team will have to port the TPS to the
other 20%.

The Xyce development team will validate that a library runs on each of the required plat-
forms and that test results are consistent across different platforms.

243

XyceTM Developer Guide Third Party Software Management

Platforms (both parallel and serial, as appropriate) include:

� Linux (Intel)

� Apple OSX (Intel)

� Apple OSX (Power PC)

� FreeBSD (Intel)

� Microsoft Windows (NT based)

� NWCC (Spirit)

� Thunderbird

Specialized research platforms that most external suppliers do not support will require the
code management team support in-house on that particular platform:

� ICC

� ASC Red Storm

Managing Upgrades

Each active release of Xyce may depend upon externally supplied artifacts. All externally
supplied artifacts required by an active release must be maintained. When maintenance
is no longer needed, or a release has been archived, the dependent external artifacts may
also be archived.

The phase-in period for a new version of third party software is defined to be ”time- limited”
according to its replacement cycle. The Xyce development team will keep at most two
versions current. All other versions will be archived.

The new software version will be announced when it has passed all quality assurance
activities that are deemed reasonable by the process owner. These activities shall include,
at a minimum, the suppliers unit and regression tests as well as integration testing within
Xyce (see Appendix 2). Then the software will be integrated into the Xyce code system
and the phase-in cycle for that software will be announced to the development team. This
announcement serves to notify the team that the default TPS artifacts for the project have
been upgraded and how the previous version, still available, may be accessed.

244

11.3 Third-party software management XyceTM Developer Guide

Build and Archiving Process

As new versions of a given TPS product are received, their respective improvements and
enhancements are evaluated by the TPS owner and/or the Technical lead and may be
scheduled for integration into the current working version of Xyce. This determination,
informally conducted among the team members, is based upon a number of criteria includ-
ing:

� Timing of the new TPS integration and its impact on other project drivers

� A cost/benefit analysis of the TPS integration that will take into account any interface
changes required, etc.

If the outcome of this analysis provides for the integration of the upgraded TPS product,
the libraries will be built and tested, with Xyce, against all supported platforms (see Section
2.2 above). The resulting artifacts (typically include files and statically linked library files)
will then be archived on the server for access by processes that build Xyce. This is in a
directory structure that parallels the supported platforms. As an example, these may be
stored in

/Net/Proj/Xyce/arch/platform

where platform designates the appropriate supported platform (e.g., linux).

11.3.3 Practices for Unmodified Third Party Software
(UTPS)

Unmodified TPS are those software artifacts used by Xyce as provided by the suppliers.
The source code for these libraries is updated per the methods and frequency dictated by
the suppliers. It will, however, only integrated into the Xyce build structure after acceptance
testing has been performed. Interfaces with Configuration Management (CM) All artifacts
associated with unmodified TPS used by Xyce will be stored in simple UNIX tar files on the
Xyce fileserver. This is in a directory structure that parallels the supported platforms. As
an example, these may be stored in

/Net/Proj/Xyce/arch/OTHER SOURCES

on the Xyce file server.

245

XyceTM Developer Guide Third Party Software Management

11.3.4 Practices for Modified Third Party Software
(MTPS)

Modified TPS artifacts are those used by Xyce by external suppliers but which must be
modified, to some degree, in order to by used by Xyce. The source code and other ar-
tifacts supplied will be updated per the methods and frequency dictated by the suppliers.
As above, it will only integrated into the Xyce build structure only after acceptance test-
ing has been performed. Interfaces with Configuration Management All artifacts associ-
ated with modified TPS used by Xyce will be placed under internal configuration man-
agement/version control (CVS module). Once this is completed, the Xyce developers will
modify the supplied source code as necessary, to support its integration with the current
version of Xyce. These modifications are then tracked the CM/version control system.

11.3.5 Practices for Xyce-Specific External Software
(XSES)

Xyce-Specific External Software (XSES) artifacts are those developed and supported by
Xyce development team and are typically used as interfaces to TPS artifacts. They have
been developed and/or maintained outside of the main Xyce source for a variety of reasons.
Typically, however, it is because the functionality they provide is planned to be integrated
into the associated TPS by its supplier. The source code and other artifacts will be updated
per the methods and frequency dictated by the either the development team and/or the
suppliers of the associated TPS. As above, it will only be integrated into the Xyce build
structure after acceptance testing has been performed.

Interfaces with Configuration Management

All artifacts associated with XSES used by Xyce will be placed under internal configuration
management/version control (CVS module). Once this is completed, the Xyce developers
will modify the supplied source code as necessary, to support its integration with the current
version of Xyce. These modifications are then tracked via the CM/version control system.

246

11.4 Third Party Software List XyceTM Developer Guide

11.4 Third Party Software List

Software Description Owner/Vendor
UTPS

/MTPS
/XSES

Supported

Release

Trilinos (and

the individual
packages
therein) [26]

Parallel Linear Solver

Framework

Mike Heroux

(01416)
MTPS

7.0, 8.0

and devel-
opment

Zoltan [27] /

ParMETIS

Parallel Partioning and

Data-Management
Services

Karen

Devine
(01416)

UTPS 3.0

AMD / UMF-

PACK [28]

UMFPACK is a set of

routines for solving
unsymmetric sparse
linear systems, Ax=b,
using the Unsymmetric
MultiFrontal method. AMD
is a set of routines for
ordering a sparse matrix.

Tim Davis

(U. Florida)
UTPS 4.1

KLU/BTF [29]

KLU is a circuit-specific

sparse direct linear solver.
BTF is a block triangular
form permutation package

Tim Davis

(U. Florida)
MTPS 1.0

SuperLU [30]
General purpose sparse

direct linear solver

Sherry Li

(LBNL)
UTPS 3.0

Table 11.1:

247

XyceTM Developer Guide Third Party Software Management

11.5 High-Level Description
Acquisition - TPS packages are acquired as a result of a request from a developer, sup-
plier, or other interested party. The physical acquisition includes receipt of supplier/license
and redistribution agreements, and the software distribution package and its associated
artifacts.

Configuration - The TPS package is installed on all targeted platforms using the build
instructions. Modifications are documented and versioned.

Unit/Regression Testing - If provided, the supplier’s unit and regression tests will be run
on each targeted platform. If problems occur, the executable may be returned to Con-
figuration for rework. If interfaces to Xyce packages are affected, the package will go to
Development & Migration.

Development & Migration - Developers of affected packages will modify these to ac-
commodate interfaces to the TPS. These mods will be tested and migrated for integration
testing.

Integration Testing - Each impacted Xyce executable will be rebuilt with the new TPS
and tested via regression/integration tests. The results will be verified. Discrepancies
may result in returning the TPS to Configuration or in returning the Xyce application to
Development & Migration.

QA Review - A team or individual will review the Integration Testing results to determine
that all activities are complete, that standards are upheld, and that test results are suitable.
More testing or rework may result or the QA Review may result in acceptance of TPS.

Baseline - Now the TPS has been accepted. All associated and necessary agreements,
licenses, user documentation, etc. have been resolved and prepared. The TPS, including
all delivered artifacts as well as all built artifacts (e.g., libraries) for each targeted platform
will be included in the baseline. The TPS is ready for internal use.

Release - The TPS package is installed in the Xyce environment. This will include installing
end user documentation and updating the TPS web page information. Developers will
be notified that the phase-in period for the new (current) software and will then have an
announced period of time to phase out the previous version of the package.

248

11.5 High-Level Description XyceTM Developer Guide

Figure 11.1. Xyce third party management.

249

XyceTM Developer Guide

250

Bibliography

[1] Charon Device Simulator. http://micro.sandia.gov/charon.html.

[2] Michael D. Simpson. Cvs version control & branch management. Dr. Dobb’s Journal,
pages 108–112, October 2000.

[3] C++ Programming Style Guidelines.
http://geosoft.no/development/cppstyle.html.

[4] Scott Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and
Designs, 3rd Edition. Addison-Wesley Professional, 2005.

[5] Scott Meyers. More Effective C++: 35 New Ways to Improve Your Programs and
Designs. Addison-Wesley Professional, 1996.

[6] Scott Meyers. Effective STL: 50 Specific Ways to Improve Your Use of the Standard
Template Library. Addison-Wesley Professional, 2001.

[7] C++ Coding Standard, Todd Hoff.
http://www.possibility.com/Cpp/CppCodingStandard.htm .

[8] Doxygen documentation system.
http://www.stack.nl/ dimitri/doxygen/index.html.

[9] Keith Gabryelski. Wildfire C++ Programming Style.
http://www.wildfire.com/ ag/Engineering/Development/C++Style/ .

[10] Steve McConnel. Code Complete.

[11] Marshall Cline. C++ FAQ Lite.
http://www.parashift.com/c++-faq-lite/ .

[12] Marshall Cline. C++ FAQs. Addison-Wesley, 1999.

[13] Steve Oualine. Vi IMproved - Vim, 2001.

251

XyceTM Developer Guide BIBLIOGRAPHY

[14] Vim Tip 12: Converting tabs to spaces.
http://www.vim.org/tips/.

[15] Tom Quarles. Spice3f5 users’ guide. Technical report, University of California-
Berkeley, Berkeley, California, 1994.

[16] Compact Model Council. http://www.eigroup.org/cmc/ .

[17] Eric R. Keiter, Scott A. Hutchinson, Robert J. Hoekstra, Lon J. Waters, and Thomas V.
Russo. Xyce parallel electronic simulator design: Mathematical formulation, version
2.0. Technical Report SAND2004-2283, Sandia National Laboratories, Albuquerque,
NM, June 2004.

[18] Eric R. Keiter, Thomas V. Russo, Eric L. Rankin, Richard L. Schiek, Keith R. Santarelli,
Heidi K. Thornquist, , Deborah A. Fixel, Todd S. Coffey, and Roger P. Pawlowski.
Xyce parallel electronic simulator: User’s guide, version 5.1.2. Technical Report
SAND2010-3332, Sandia National Laboratories, Albuquerque, NM, 2010.

[19] Eric R. Keiter, Thomas V. Russo, Eric L. Rankin, Richard L. Schiek, Keith R. Santarelli,
Heidi K. Thornquist, , Deborah A. Fixel, Todd S. Coffey, and Roger P. Pawlowski.
Xyce parallel electronic simulator: Reference guide, version 5.1.2. Technical Report
SAND2010-3331, Sandia National Laboratories, Albuquerque, NM, 2010.

[20] Eric R. Keiter, Thomas V. Russo, Eric L. Rankin, and Roger P. Pawlowski. Xyce
parallel electronic simulator: Radiation models reference guide, version 5.1. Technical
Report SAND2009-7324, Sandia National Laboratories, Albuquerque, NM, 2009.

[21] ADMS Model Compiler. http://mot-adms.sourceforge.net/.

[22] Kenneth S. Kundert. The Designer’s Guide to SPICE and Spectre. Kluwer Academic
Publishers, 1995.

[23] Asci apps software development guide. Technical report, May 2001.

[24] Xyce issue tracking. Technical report.

[25] Xyce requirements management. Technical report.

[26] The Trilinos Project. http://www.cs.sandia.gov/Trilinos/, 2002.

[27] Erik Boman and Karen Devine. Zoltan: Parallel Partitioning, Load Balancing and
Data-Management Services. http://www.cs.sandia.gov/Zoltan/, 2007.

[28] Tim Davis. UMFPACK. http://www.cise.ufl.edu/research/sparse/umfpack/ ,
2007.

252

BIBLIOGRAPHY XyceTM Developer Guide

[29] Tim Davis. KLU. http://www.cise.ufl.edu/research/sparse/klu/ , 2007.

[30] James W. Demmel, John R. Gilbert, and Xiaoye Li. SuperLU Users’ Guide.
http://www.nersc.gov/ xiaoye/SuperLU/, 1999.

253

XyceTM Developer Guide

254

Index

backward differentiation formula, 150, 151
BDF, 150, 151

leading term, 150
bug, 122
bypass, 130

C++ Style, 47
Coding Style, 47
constructors, 160
customer support, 45
CVS, 27
CVS Branching, 30
CVS Checkout, 28
CVS Tagging, 30

Direct Matrix Access, 95
Direct Vector Access, 95
DMA, 95
DVA, 95

errors in translation, 169

file
prn, 162

gmin, 136, 137
gmin stepping, 138

instance constructors, 160

linear resistors, 136

Matrix Access, 95

model constructors, 160
Modified KCL, 134
Modified Nodal Analysis, 134

namesMap.txt, 164
numerical Jacobian, 165

SPICE state vector, 149

validation, 125, 173
Vector Access, 95
verification, 125, 173
voltage limiting, 142

Xyce state vector, 149

255

XyceTM Developer Guide INDEX

DISTRIBUTION:

0 none

Unless otherwise noted, all of the fol-
lowing copies were distributed elec-
tronically

1 MS 1323
Eric R. Keiter, 1445

1 MS 1138
Biliana Paskaleva, 06923

1 MS 1323
Eric L. Rankin, 1445

1 MS 1323
Thomas V. Russo, 1445

1 MS 1323
Richard Schiek, 1445

1 MS 1323
Heidi K. Thornquist, 1445

1 MS 1323
Scott A. Hutchinson, 1445

1 MS 1188
Christina E. Warrender, 6343

1 MS 1322
Ting Mei, 1445

1 MS 0899
Technical Library, 9536

256

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Preface
	Xyce Project Statement
	The Xyce Project
	Document Organization

	CVS Directions
	CVS Checkout
	Important CVS options and the .cvsrc file
	Keeping up-to-date

	Branching and Tagging

	CVS Checkin Procedure
	Guidelines

	Bug Resolution Checklist
	Preface
	Checklist

	Customer Support
	Guidelines

	Xyce C++ Style Guidelines
	Preface
	References
	Naming convention
	Variable names must be in mixed case starting with lower case.
	Named constants (including enumeration values) must be all uppercase using underscore to separate words.
	Avoid Using Preprocessor Constants. Use Enumerated types instead
	 Names representing methods or functions must be verbs and written in mixed case starting with lower case.
	 Private class variables and functions should have underscore suffix.
	 All names should be written in English.
	Variables with a large scope should have long names, variables with a small scope can have short names.
	 The name of the object is implicit, and should be avoided in a method name.
	 The terms get/set must be used where an attribute is accessed directly.
	 The term compute can be used in methods where something is computed
	 The term find can be used in methods where something is looked up
	The term initialize can be used where an object or a concept is established.
	 Plural form should be used on names representing a collection of objects.
	 The prefix ``is'' should be used for boolean variables and methods.
	Complement names must be used for complement operations
	 Abbreviations in names should be avoided, except when the word is primarily known that way
	Negated boolean variable names must be avoided
	Functions (methods returning something) should be named after what they return and procedures (void methods) after what they do

	File, Function and Class Headers
	C++ File Header
	Function Header
	Class Header

	Forward Declarations
	iostream Forward Declarations

	Pointers vs. References
	Late class/package initialization is very important!
	Avoid C-style raw arrays. Use the Standard Library instead
	Avoid Raw Pointers
	Interfacing with legacy code that requires raw pointers
	RCPs

	Files
	C++ header files should have the extension .h. Source files should have the extension .C
	A class should be declared in a header file and defined in a source file where the name of the files match the name of the class
	All definitions should reside in source files
	File content must be kept within 80 columns
	Never Use Tabs
	The incompleteness of split lines must be made obvious

	Include Files and Include Statements
	Header files must contain an include guard
	Include statements should be sorted and grouped
	Include statements must be located at the top of a file only

	Types
	Types that are local to one file only can be declared inside that file
	The parts of a class must be sorted public, protected and private
	Type conversions must always be done explicitly: Use C++-style Casts

	Variables
	Variables should be initialized where they are declared
	Variables must never have dual meaning
	Use of global variables should be minimized
	Class variables should never be declared public
	Implicit test for 0 should not be used other than for boolean variables and pointers
	Variables should be declared in the smallest scope possible

	Loops
	Only loop control statements must be included in the for() construction
	Loop variables should be initialized immediately before the loop
	do-while loops can be avoided

	Conditionals
	Complex conditional expressions must be avoided
	The nominal case should be put in the if-part and the exception in the else-part of an if statement
	The conditional should be put on a separate line
	Executable statements in conditionals must be avoided

	Miscellaneous
	The use of magic numbers in the code should be avoided
	Floating point constants should always be written with decimal point and at least one decimal
	Floating point constants should always be written with a digit before the decimal point
	Functions must always have the return type explicitly listed.
	goto should not be used
	``0'' should be used instead of ``NULL''

	Layout
	Basic Indentation Length should be Two Spaces
	Block Layout: Placement of braces (curly brackets)
	The class declarations should have the following form
	Method definitions should have the following form
	The if-else class of statements should have the following form
	A for statement should have the following form
	A while statement should have the following form
	A do-while statement should have the following form
	A switch statement should have the following form

	White Space
	Miscellaneous
	Method names can be followed by a white space when it is followed by another name
	Logical units within a block should be separated by one blank line
	Methods should be separated by three blank lines
	Variables in declarations can be left aligned
	Use alignment wherever it enhances readability

	Comments
	Tricky code should not be commented but rewritten!
	All comments should be written in English
	Use // for all comments, including multi-line comments

	Matrix and Vector Access
	History and Motivation
	Global to Local Index Relationship
	External Variables vs. Internal Variables
	Topology and Device Package Interaction
	jacStamp Example
	Function registerJacLIDs Example

	Device Development Checklist
	Introduction
	Checklist for Device Certification
	Any device development must have a corresponding issue in bugzilla
	For any device to be considered complete, tests must exist to certify it
	Numerical Jacobian tests must pass
	For a variety of circuits, the new device must pass valgrind tests
	Both time integrators need to be supported by any new device
	Derivative devices must pass antecedant tests
	Compile with the gcc option -Wshadow
	Device must follow Xyce's style guide
	All artifacts of reference devices must be completely removed from source
	Source code must reside in the appropriate directory

	Additional requirements for transistor devices
	Both N-type and P-type must be tested individually.
	Circuits that contain both N-type and P-type must run robustly.
	Automated voltlim tests must also pass
	For both N-type and P-type, the numerical jacobian, valgrind and voltlim tests must pass for all the different model options supported by that device.

	Additional tests for Legacy Devices
	Xyce Legacy devices Must Match Legacy Simulator

	Frequently Asked Questions
	Where to find other information
	References
	I can't find the answer to my question in this FAQ, and I can't find it in the other references. What do I do?

	General Philosophy and Miscellaneous
	What is the goal of this FAQ?
	What are the requirements of Xyce?
	Who are the customers for Xyce?
	Why do devices in Xyce need to precisely match SPICE devices? Don't people always complain about SPICE devices? Surely we could come up with better ones.
	You said in the last question that SPICE devices have been ``debugged to death''. What is a bug?
	When you say ``precisely match SPICE'', what does that mean?
	What is a ``legacy device''? What are some examples?
	Are all legacy models from SPICE?
	What do we do about Verilog-A specified models?
	What about V&V?
	Shouldn't users always use the best models they can?
	I'm implementing a legacy device, and I've noticed that books and papers that describe this device don't fully describe what is in SPICE. What's the deal?
	How we do we know that the BSIM3 (or any model) in a commercial code is the same as the model we've put into Xyce?
	So, if the models in Xyce are the same as commercial simulators, how is Xyce different?
	I am really convinced that the legacy SPICE code is calculating this small term incorrectly. Can I delete it?
	Do we support bypass?
	What should we do about SPICE convergence checking code?
	Can we create a module that will allow us to plug SPICE devices directly into Xyce, without modification?
	Why are we moving farther away from SPICE? Wouldn't it be easier to follow SPICE more closely?
	Why is the BSIM3 level=9 rather than level=8?

	Equation set
	Do SPICE and Xyce solve the same equations?

	Linear System
	How is the Xyce linear system different from SPICE?
	Are there any other right-hand-side issues to be wary of? Or, how do we handle linear resistors?
	What is GMIN, anyway?
	GMIN is such a small term. Why does it matter so much?
	What is GMIN stepping?
	Why didn't Xyce just use the same linear system as SPICE?
	Is there an easy way to reverse engineer the SPICE residual?
	In Xyce, what do we do with J xk?
	What is voltage limiting?
	Why do we sometimes turn voltage limiting off? SPICE doesn't
	What other things are enabled by voltage limiting?
	Does it matter if I use the same voltage limiter functions in my Xyce device as are used in the equivalent SPICE devices?
	Are the SPICE and Xyce Jacobians the same?
	Are the SPICE and Xyce right-hand-side (RHS) vectors the same?
	Are the SPICE and Xyce solution vectors the same?

	Time Integration
	How are time derivatives calculated in Xyce?
	What should go into the state vector?
	SPICE puts variable x into the state vector. Should I also put variable x into the state vector?
	What is solState.pdt?
	Why can't I put a differentiation formula directly in a device?
	What is ``Meyer Back-Averaging?''
	What is the BJT excess phase term?
	What is the deal with the new-DAE formulation?

	Code structure
	Why do file names and class names start with N_?
	What is the loader package for?
	What does N_DEV_DeviceMgr::setupSolverInfo_ do?
	What happens when N_DEV_DeviceMgr::loadRHSVector is called?
	That sounds like a convoluted set of function calls. Why?
	Why do a lot of function names end with ``Block''?

	Device Parameters
	Where are default parameters set?
	Is it important to have the same parameter defaults as SPICE?
	Some devices have a lot of parameters and/or variables - do I really have to type them all into the various model and instance constructors?

	Debugging
	What's with the Xyce_DEBUG_DEVICE macro?
	I've been debugging a device. I've mostly been looking at the *.prn file. Is that enough?
	If the *prn file is the wrong place to look for data to debug, where should I look?
	How do I look at matrices and vectors in detail?
	What is the namesMap.txt file?
	How do I use the numerical Jacobian?
	What should I do to compare Xyce to SPICE?
	Is there an easy way to compare vectors and matrices?
	I'm trying to compare Xyce with analytic Jacobian to Xyce with numerical Jacobian, not Xyce and Spice. How do I use matcmp and veccmp?
	What is the most common source of errors in Xyce devices?

	Test circuits
	Is there a good program for comparing waveforms?
	My new device appears to get the correct answer in a small test circuit. Am I done?
	Where can I get better test circuits?
	I don't have any valid model parameters. What do I do?
	Xyce and SPICE don't match for my test legacy device circuit, unless I tweak model parameters. Is this OK?
	In my Xyce model, I left out a small term that was in the legacy SPICE model. It doesn't seem to change the answer for my test circuit. Is that OK?

	Testing
	How do I run the regression test suite?
	Can you give some explanation of what is going on in the test suite?
	What sorts of tests should go into the nightly regression test suite, and when should I add them?
	What sorts of tests should go into the stress_tests directory, and when should I add them?

	Xyce Release Process
	Preface
	Introduction
	Document Purpose
	Scope
	Goals

	Abbreviations and Definitions
	Release Process
	Objective
	Goals
	Process

	Distribution Management Process
	Objective
	Goals
	Process
	Distribution Packaging
	Distributing Releases
	Distribution Logging
	Withdrawing Releases From Distribution

	Roles
	General
	Role Definitions
	Role Details

	Interfaces to Other Processes
	Issue Tracking
	Requirements Management
	Third-Party Software (TPS)
	Configuration Management

	Guidelines for Release Notes
	Scope/Product Definition
	Hardware/Software Information
	Release Documentation
	New Features and Enhancements
	Defects Fixed in this Release
	Known Defects and Workarounds

	Release Certification Tests
	Checklist for Release Certification
	General Directions:
	Specific Directions:
	QA

	Team Checklists
	Checklists for Release Process Activities
	Release Planning Checklist
	Release Configuration Management (RCM) Checklist
	Release Development Lifestyle (RDL) Checklist
	Release Certification Checklist
	Distribution Management Checklist

	Individual Roles Checklists
	QA Roles

	Release Activity Timeline
	Release Version Numbering
	Release planning meeting
	Release Tag and Branch
	QA process
	Documentation
	Final Paperwork
	Website Updates

	Third Party Software Management
	Preface
	Preliminaries
	Purpose
	Scope
	Process Ownership

	Third-party software management
	Introduction
	General Third Party Software Practices
	Practices for Unmodified Third Party Software (UTPS)
	Practices for Modified Third Party Software (MTPS)
	Practices for Xyce-Specific External Software (XSES)

	Third Party Software List
	High-Level Description

	Bibliography
	Index

