How well do we know the neutron structure function?

PDF Version Also Available for Download.

Description

We present a detailed analysis of the uncertainty in the neutron F{sub 2}n structure function extracted from inclusive deuteron and proton deep-inelastic scattering data. The analysis includes experimental uncertainties as well as uncertainties associated with the deuteron wave function, nuclear smearing, and nucleon off-shell corrections. Consistently accounting for the Q{sup 2} dependence of the data and calculations, and restricting the nuclear corrections to microscopic models of the deuteron, we find significantly smaller uncertainty in the extracted F{sub 2}n/F{sub 2}p ratio than in previous analyses. In addition to yielding an improved extraction of the neutron structure function, this analysis also provides ... continued below

Physical Description

252001

Creation Information

J. Arrington, J. G. Rubin, W. Melnitchouk June 1, 2012.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We present a detailed analysis of the uncertainty in the neutron F{sub 2}n structure function extracted from inclusive deuteron and proton deep-inelastic scattering data. The analysis includes experimental uncertainties as well as uncertainties associated with the deuteron wave function, nuclear smearing, and nucleon off-shell corrections. Consistently accounting for the Q{sup 2} dependence of the data and calculations, and restricting the nuclear corrections to microscopic models of the deuteron, we find significantly smaller uncertainty in the extracted F{sub 2}n/F{sub 2}p ratio than in previous analyses. In addition to yielding an improved extraction of the neutron structure function, this analysis also provides an important baseline that will allow future, model-independent extractions of neutron structure to be used to examine nuclear medium effects in the the deuteron.

Physical Description

252001

Source

  • Journal Name: Physical Review Letters; Journal Volume: 108; Journal Issue: 25

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: JLAB-THY-11-1450
  • Report No.: DOE/OR/23177-1869
  • Report No.: arXiv:1110.3362
  • Grant Number: AC05-06OR23177
  • DOI: 10.1103/PhysRevLett.108.252001 | External Link
  • Office of Scientific & Technical Information Report Number: 1043441
  • Archival Resource Key: ark:/67531/metadc834451

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 2012

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 3, 2016, 3:58 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

J. Arrington, J. G. Rubin, W. Melnitchouk. How well do we know the neutron structure function?, article, June 1, 2012; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc834451/: accessed December 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.