LOW HORIZONTAL BETA FUNCTION IN LONG STRAIGHTS OF THE NSLS-II LATTICE

PDF Version Also Available for Download.

Description

The NSLS-II storage ring lattice is comprised of 30 DBA cells arranged in 15 superperiods. There are 15 long straight sections (9.3m) for injection, RF and insertion devices and 15 short straights (6.6m) for insertion devices. In the baseline lattice, the short straights have small horizontal and vertical beta functions but the long straights have large horizontal beta function optimized for injection. In this paper, we explore the possibility of maintaining three long straights with large horizontal beta function while providing the other 12 long straights with smaller horizontal beta function to optimize the brightness of insertion devices. Our study ... continued below

Creation Information

Fanglei, L.; Bengtsson, J.; Guo, W.; Krinsky, S.; Li, Y. & Yang, L. March 28, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The NSLS-II storage ring lattice is comprised of 30 DBA cells arranged in 15 superperiods. There are 15 long straight sections (9.3m) for injection, RF and insertion devices and 15 short straights (6.6m) for insertion devices. In the baseline lattice, the short straights have small horizontal and vertical beta functions but the long straights have large horizontal beta function optimized for injection. In this paper, we explore the possibility of maintaining three long straights with large horizontal beta function while providing the other 12 long straights with smaller horizontal beta function to optimize the brightness of insertion devices. Our study considers the possible linear lattice solutions as well as characterizing the nonlinear dynamics. Results are reported on optimization of dynamic aperture required for good injection efficiency and adequate Touschek lifetime. This paper discusses dynamic aperture optimization for the NSLS-II lattice with alternate high and low horizontal beta function in the long straights, which is proposed for the optimization of the brightness of insertion devices. The linear optics is optimized to meet the requirements of lattice function and source properties. Nonlinear optimization for a lattice with working point at (37.18, 16.2) is performed. Considering the realistic magnets errors and physical apertures, we calculate the frequency maps and plot the tune footprint. The results show that the lattice with high-low beta function has adequate dynamic aperture for good injection efficiency and sufficient Touschek lifetime.

Source

  • Particle Accelerator Conference PAC11; New York, NY; 20110328 through 20110401

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--94941-2011-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 1016641
  • Archival Resource Key: ark:/67531/metadc834331

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 28, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 29, 2016, 8:46 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Fanglei, L.; Bengtsson, J.; Guo, W.; Krinsky, S.; Li, Y. & Yang, L. LOW HORIZONTAL BETA FUNCTION IN LONG STRAIGHTS OF THE NSLS-II LATTICE, article, March 28, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc834331/: accessed September 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.