Contract No. and Disclaimer:

This manuscript has been authored by Savannah River Nuclear Solutions, LLC under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. Manuscript Number: HE-D-11-01499R1

.

Title: Hybrid sulfur cycle flowsheets for hydrogen production using high-temperature gas-cooled reactors

Article Type: Full Length Article

Keywords: Hydrogen production; nuclear heat application; hybrid sulfur cycle; process flowsheet; Aspen Plus; proton exchange membrane electrolyzer; bayonet decomposition reactor

Corresponding Author: Dr. Maximilian B. Gorensek, Ph.D., P.E.

Corresponding Author's Institution: Savannah River National Laboratory

First Author: Maximilian B. Gorensek, Ph.D., P.E.

Order of Authors: Maximilian B. Gorensek, Ph.D., P.E.

Abstract: Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950°C, the other 750°C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion®, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950°C case, dropping to 39.9% for the 750°C case.

Highlights for "Hybrid sulfur cycle flowsheets for hydrogen production using hightemperature gas-cooled reactors"

- Two hybrid sulfur cycle flowsheets are presented that combine a bayonet decomposition reactor with a proton exchange membrane electrolyzer.
- Aspen Plus material and energy balances are provided.
- One flowsheet can be used with a 950°C reactor to make hydrogen at 44.0% to 47.6% net thermal efficiency, HHV basis.
- The other flowsheet can be used with a 750°C reactor to make hydrogen at 38.0% net thermal efficiency, HHV basis.

Hybrid sulfur cycle flowsheets for hydrogen production using high-temperature gas-cooled reactors

Maximilian B. Gorensek^{*}

Process Modeling and Computational Chemistry Section, Savannah River National Laboratory, Aiken, SC 29808

USA

Abstract

Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO₂-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950°C, the other 750°C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(*m*-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion®, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950°C case, dropping to 39.9% for the 750°C case. *Keywords:* Hydrogen production; nuclear heat application; hybrid sulfur cycle; process flowsheet; Aspen Plus; proton exchange membrane electrolyzer; bayonet decomposition reactor

^{*} Tel.: (803) 725-1314; Fax: (803) 725-8829;

E-mail address: <u>maximilian.gorensek@srnl.doe.gov</u>

Acronyms

DOE	US Department of Energy
DOE-NE	DOE Office of Nuclear Energy
HHV	Higher heating value
HTGR	High-temperature gas-cooled reactor
HyS	Hybrid sulfur
IHX	Intermediate heat exchanger
NGNP	Next Generation Nuclear Plant
NHI	Nuclear Hydrogen Initiative
PBI	Poly[2,2'-(<i>m</i> -phenylene)-5,5'-bibenzimidazole]
PCU	Power conversion unit
PEM	Proton exchange membrane (alternative definition: polymer electrolyte membrane)
ROT	Reactor outlet temperature (nuclear reactor)
SDE	SO ₂ -depolarized electrolyzer
SI	Sulfur-iodine
SNL	Sandia National Laboratories
SRNL	Savannah River National Laboratory
USC	University of South Carolina

2

3 **1. Introduction**

4 The HyS cycle is one of the three primary hydrogen production methods that were being 5 developed for the US Department of Energy (DOE) Office of Nuclear Energy (DOE-NE) under 6 the Nuclear Hydrogen Initiative (NHI) [1, 2]. (The other two methods were high-temperature 7 electrolysis and the sulfur-iodine (SI) cycle.) Despite significant technical progress, the NHI was 8 discontinued by DOE in October, 2009 as part of a general reduction in support for hydrogen 9 energy research. Development of the HyS cycle under the NHI had been led by the Savannah 10 River National Laboratory (SRNL) [3], which proposed to couple a PEM-based SO₂-depolarized 11 electrolyzer (SDE) [4] with a bayonet type high temperature sulfuric acid decomposition reactor 12 that had been designed and built by Sandia National Laboratories (SNL) for the SI cycle [5]. A 13 conceptual design for such a process was published previously [6]. 14 Motivation for the NHI was provided by the DOE-NE's NGNP program [7], which seeks 15 to build an HTGR for demonstration purposes to advance commercialization of HTGRs for 16 electricity generation and process heat applications. One of the original purposes of NGNP was 17 to provide a high-temperature heat source for hydrogen production [8]. However, the NGNP 18 program was recently restructured to deemphasize hydrogen generation, and the design was 19 modified to focus on lower temperature operation aimed at other process heat applications [9], 20 such as high temperature steam generation. Nevertheless, several improvements to the HyS 21 process were made in the final days of the NHI that make a strong case for its further 22 development. Two of these are detailed in the following pages.

23

24 2. Background/Motivation

The HyS cycle (Figure 1) is one of the simplest, all-fluids thermochemical cycles for splitting water with a high-temperature heat source. Originally patented in 1975 by Brecher and Wu [10], the only element it uses besides hydrogen and oxygen is sulfur, which is cycled between the +4 and +6 oxidation states. HyS comprises two steps: one is the (high-temperature) thermochemical decomposition of sulfuric acid (H₂SO₄) to sulfur dioxide (SO₂), oxygen (O₂), and water;

31
$$H_2SO_4(aq) \rightarrow H_2O(g) + SO_2(g) + \frac{1}{2}O_2(g)$$
(1)

32 the other is the SO₂-depolarized electrolysis of water to H_2SO_4 and hydrogen (H₂).

33
$$SO_2(aq) + 2H_2O(l) \rightarrow H_2SO_4(aq) + H_2(g), E^\circ = -0.156V$$
 [11] (2)

It is the electrochemical nature of this second reaction that makes it a hybrid cycle. Researchers at the SRNL and at the University of South Carolina (USC) have successfully used PEM electrolyzers (Figure 2) for the SDE (sulfur oxidation) step, while others at SNL successfully utilized a bayonet-type reactor (Figure 3) for the high-temperature sulfuric acid decomposition (sulfur reduction) step. Coupling these two operations should result in a simple process that has the potential to be more efficient and cost-effective for the massive production of hydrogen than alkaline electrolysis.

The basic concepts of the HyS cycle have already been described in the literature. A
comprehensive review has also been published recently [12].

The original plan for NGNP called for an HTGR ROT of at least 1000°C (1273K) [13].
This was initially lowered to 950°C (1223K) [14] and finally to 750°C (1023K) [15] due to
concerns about the longevity of the intermediate heat exchanger (IHX). For comparison, the
flowsheet published previously [6] assumed an ROT of 945°C (1218K). All else being equal,

47	lowering the ROT inevitably leads to lower energy efficiency, since the ideal efficiency of water-
48	splitting has a Carnot-type dependence on ROT as shown by Knoche and Funk [16].
49	Furthermore, a pinch analysis of the bayonet reactor [17] suggested that lowering the ROT below
50	825°C (1098K) would not result in a practical HyS process due to recuperation limitations within
51	the bayonet itself. These considerations prompted a careful reexamination of the flowsheet, since
52	the 685.8-kJ/mol H ₂ energy requirement that was reported earlier [6] for the 945°C (1218K)
53	ROT case corresponded to an HHV efficiency ¹ of only 41.7%. For comparison, an alkaline
54	electrolysis process powered by an HTGR power plant could be expected to achieve an HHV
55	efficiency of about 36% [6].

56

57 3. Approach

58 The simplicity of the two key components of this process is an attractive feature that 59 leads to a relatively simple flowsheet. However, there is more to HyS than just these two 60 operations, and integrating them requires some compromises.

61 Given the choice, the SDE should be maintained at the highest possible conversion (to 62 minimize the recycle of unreacted SO_2) and H_2SO_4 content (to minimize the need for further 63 concentration downstream) for efficiency considerations elsewhere in the process. However, the 64 SDE can not be operated at high conversion because the cell potential depends on the concentration of SO₂ at the anode [11]. Earlier work [6, 19] assumed that the SDE operates at 65 40% SO₂ utilization, requiring a fairly large recycle stream and leaving a significant SO₂ 66 67 concentration in the anolyte effluent. Consequently, unreacted SO₂ needs to be recovered and 68 recycled before feeding the sulfuric acid product to the decomposition reactor. More importantly,

¹ The HHV, or higher heating value of H_2 is -286 kJ/mol [18].

69	the concentration of sulfuric acid in the anolyte is also limited. Higher H ₂ SO ₄ concentration leads
70	to lower SO ₂ solubility and higher reversible potential [11]. It can also decrease the conductivity
71	of the PEM separator, especially Nafion®, thereby increasing the cell potential [20]. Since
72	efficient operation of the SDE is favored by more dilute (sulfuric acid) anolyte, the concentration
73	of H_2SO_4 in the analyte effluent also needs to be increased before it is fed to the bayonet reactor.
74	The high-temperature decomposition of H_2SO_4 is limited by thermodynamic equilibrium
75	and falls well short of complete conversion. This implies that unreacted H_2SO_4 needs to be
76	recovered and recycled in addition to the SO ₂ product having to be separated from the O ₂ co-
77	product before it can be fed to the SDE. The high-temperature heat requirement is determined by
78	the opportunity for recuperation within the bayonet. Previous work showed that the required heat
79	input is minimized by operating the reactor at the highest possible temperature and pressure, and
80	at a feed concentration of 80.1 wt% H_2SO_4 [17]. A more concentrated acid feed would actually
81	increase the heating target, while feeding less concentrated acid would cause more water to be
82	vaporized and condensed with incomplete recuperation, thereby consuming more high-
83	temperature heat. Concentrations below 65 wt% H_2SO_4 give heating targets in excess of 400
84	$kJ/mol H_2$ which, when combined with the other process heat and power needs, results in a net
85	thermal efficiency comparable to that of alkaline electrolysis. Since the HyS cycle has greater
86	complexity, it will not be more cost-effective than water electrolysis unless it has a significant
87	efficiency advantage. An obvious way to maximize efficiency is to operate the SDE at the
88	highest possible acid concentration without adversely affecting the cell potential.
89	

90

3.1. High-temperature (950°C ROT) flowsheet

91 The first modification to the original [6] HyS process was made in an effort to improve 92 the net thermal efficiency at the high temperature end, which was only 41.7%, HHV basis as 93 noted in Section 2. The anolyte acid concentration limitation was removed by assuming the use 94 of an alternative PEM material such as acid-doped PBI instead of Nafion[®]. The electrical 95 resistivity of acid-doped PBI membranes, which can operate at much higher temperatures than Nafion[®], actually decreases with acid concentration [21]. (Such membranes were not actually 96 97 tested in the SDE at SRNL because HyS development under the NHI was discontinued before 98 they could be.) It was assumed, then, that the SDE uses a PEM capable of operating at 65 wt% H_2SO_4 in the analyte and at temperatures of 120 to 140°C. (Reversible cell potential increases 99 100 with acid concentration and temperature [11], so operating at higher temperatures or 101 concentrations than this may be limited by thermodynamic considerations.) 102 The existing HyS flowsheet [19] was modified to reflect operation of the SDE at 120°C 103 and 65 wt% H₂SO₄ in the anolyte product. SO₂ conversion was also increased from 40% to 50%, and a cell potential of 0.6 V imposed. (SDE operation at 0.6 V and 0.5 A/cm^2 was the 104 105 development target for SRNL and should be attainable with acid-doped PBI PEMs.) Water flux 106 across the membrane was set to maintain a ratio of 1 mol $H_2O/mol H_2$ product despite the much 107 lower water content of acid-doped PBI and other PEM alternatives (compared to Nafion®). 108 Since a significant water activity gradient will exist between the cathode and anode, it was 109 assumed that the large driving force for water transport would compensate for the reduced water 110 content of the new PEM material.

Raising the cell temperature allows heat dissipated in the SDE due to overpotentials to be
recovered in the acid concentration step downstream. Increasing conversion reduces the quantity

113	of unreacted SO ₂ that has to be removed and recycled. Raising the analyte product acid
114	concentration from 50 to 65 wt% H_2SO_4 allows the quantity of water that has to be removed in
115	the concentration step (in order to increase the acid concentration of the bayonet reactor feed to
116	75 wt% H_2SO_4) to be reduced by roughly two-thirds. This means less than half as much energy is
117	needed to achieve the necessary concentration, so nearly all of the heat input can be provided by
118	recuperation from the SDE and the bayonet reactor.

119 Unfortunately, water recovered in the acid concentration step is needed to absorb SO_2 120 from the uncondensed product of the bayonet decomposition reactor. Since less water is now 121 available for the O_2/SO_2 separation, a single absorber is no longer sufficient because it would 122 leave too much SO_2 behind in the oxygen product.

The addition of an absorber/stripper combination reduces the SO₂ content of the oxygen co-product to ≤ 1 ppm using conventional process equipment and without introducing any new reagents. Water is the solvent; the absorber operates at the pressure of the SDE, while the stripper operates at atmospheric pressure, allowing low-pressure steam or recuperation to provide the necessary boil-up. An SO₂ compressor with atmospheric pressure feed is already being used to recycle unconverted SO₂ recovered from the anolyte product, so the overhead from the stripper can be easily added to the recycle compressor feed.

130

131 3.2. Low-temperature (750°C ROT) flowsheet

A second set of modifications was made in an effort to accommodate the decrease in ROT from 950 to 750°C for the NGNP program, leading to a new process flowsheet. An earlier pinch analysis had shown that the minimum high-temperature heat requirement (per unit of H₂ production) for the bayonet reactor increases with decreasing operating temperature (Figure 8 in

136	reference [17]). This results from the unfavorable shift in equilibrium with lower temperatures as
137	well as from changes in internal recuperation within the bayonet. H_2SO_4 conversion also suffers,
138	leading to larger quantities of unconverted acid that need to be re-concentrated and recycled. To
139	counter-act the effects of operation with a catalyst bed exit temperature below 700°C (as
140	mandated by an ROT of 750°C), the operating pressure of the bayonet was first lowered to 12
141	bar. This helped minimize the high-temperature heat requirement (e.g. see the 700°C curve in
142	Figure 9 in reference [17]) while recovering at least some of the lost H_2SO_4 conversion. A direct
143	contact exchange/quench column was then placed upstream of the bayonet to take advantage of
144	the favorable vapor-liquid equilibrium for the H ₂ O-H ₂ SO ₄ system and trap unconverted acid in
145	the liquid phase. This eliminated the unconverted acid recycle stream present in the earlier
146	flowsheet [6, 19]. The concentration of the vacuum column bottoms product was increased from
147	75 to 90 wt% H_2SO_4 to reduce the amount of water being fed to the bayonet reactor/quench
148	column combination (since every mole of water fed exits the loop in the quench overhead and
149	has to be vaporized using HTGR heat). Finally, the bayonet effluent was cooled by heat
150	exchange with heat sinks elsewhere in the process using a DOWTHERM TM G commercial heat
151	transfer fluid loop before feeding it to the bottom of the direct contact exchange/quench column.
152	This provided a significant source of intermediate temperature heat, while diluting the bayonet
153	feed to a near optimal 76 wt% H_2SO_4 . The net effect of these changes was attainment of an
154	acceptable level for the high-temperature heat requirement for the bayonet reactor while
155	providing sufficient recuperation from the decomposition reaction product streams to eliminate
156	the need for any additional heat input to the balance of the flowsheet.

157

158 **4. Results**

159	Aspen Plus (version 7.1) [22] was used to simulate the flowsheets and determine the
160	performance of individual unit operations. Specific details concerning modeling methodology
161	are available in reference [19]. Aspen Energy Analyzer (version 7.1) [23] was used to determine
162	the performance of the bayonet reactor from a pinch analysis based on Aspen Plus simulation
163	data. The details of that calculation are available in reference [17].

164

165 4.1. High-temperature (950°C ROT) flowsheet

The design basis for the 950°C ROT HyS process is summarized below in the first data 166 167 column in Table 1. Rather than pick a specific production rate to match an assumed NGNP 168 heat/power output, the flowsheet was sized at a nominal 1-kmol/sec production rate. This allows 169 all material (molar, mass, and volumetric) and energy (heat and work) flow rates to be multiplied 170 by the actual hydrogen production rate (in kmol/sec) to determine their values for a given 171 application. Note that a 950°C ROT implies hot helium is supplied to the bayonet reactor at 172 900°C due to an assumed 50°C temperature drop across the IHX. Furthermore, the peak 173 temperature of H_2SO_4 decomposition, which occurs inside the tip of the bayonet (at the outlet of 174 the catalyst bed) is 875°C due to an assumed minimum temperature difference of 25°C between 175 the helium heat transfer medium and the process fluid. Figure 4 illustrates the heat transfer 176 mechanism between the nuclear heat source and the bayonet reactor. The power conversion 177 efficiency of 48%, which assumes that the source of electricity is a power conversion unit (PCU) 178 driven by a 950°C ROT HTGR, is consistent with published projections for NGNP [24]. This 179 PCU could be driven by the same HTGR as the HyS process, or by a separate, electric power 180 HTGR.

181 The 950°C ROT HyS flowsheet is shown in Figure 5. The stream summary is presented 182 in Table 2. Figure 6 details the heat exchanger network used to preheat the vacuum column feed; 183 fresh sulfuric acid feed is preheated by interchange with the anolyte and catholyte streams, while 184 recycled unconverted acid is preheated by interchange with the bayonet vapor product stream. 185 The details of the HyS flowsheet are described at length in an earlier paper [6]. The 186 flowsheet in Figure 5 differs from the earlier flowsheet in the following respects: higher SO₂ 187 conversion in the SDE, EL-01 (50 instead of 40%); higher analyte acid concentration (65 instead 188 of 50 wt% H_2SO_4); higher SDE operating temperature (120 instead of 100°C); detailed heat 189 exchange network (EX-01 through EX-05) with realistic pressure drops (instead of simple stream 190 heaters and coolers connected by heat streams); rigorous vacuum ejector design (instead of fixed 191 entrainment ratio); the overhead product from the original SO₂ absorber, TO-02 is treated in a 192 new absorber/stripper combination (TO-03 and TO-04). 193 An energy balance was developed from the simulation results. This is presented in the

194 first energy utilization summary, Table 3. Included are the duties and power requirements for all 195 heat exchangers, compressors, pumps, and other energy consumers. Heating and cooling curves 196 were generated using Aspen Plus for all process streams undergoing heat exchange and checked 197 for feasibility. No temperature cross-over was detected; adequate temperature differences were 198 maintained for counter-current heat exchange.

The minimum high-temperature heat requirement for the bayonet reactor was determined from a pinch analysis following the methodology described in reference [17]. The heating (annular flow in) and cooling (center flow out) curves are shown in Figure 7, while the utility composite curve, which demonstrates the operating limits for the secondary helium coolant, is provided as Figure 8.

204 As shown in Table 3, the net energy efficiency of the 950°C ROT HyS flowsheet is 205 44.0%, HHV basis if no suitable waste heat source is available, and 47.6%, HHV basis if waste 206 heat from elsewhere in the plant can be exploited to make low-pressure steam. (For comparison, 207 alkaline electrolysis could be expected to achieve 38.6% HHV efficiency when coupled with a 208 PCU operating at 48% conversion efficiency.) This increase (from 41.7%) is attributable to the 209 combined effects of the higher NGNP PCU conversion efficiency (48% instead of 45%), the 210 increase in anolyte acid concentration (from 50 to 65 wt% H₂SO₄) assumed to be attainable with 211 an acid-tolerant PEM, and the increase in SDE SO₂ conversion (from 40 to 50%). It should be 212 noted that the energy required to provide cooling water is not included in this efficiency 213 calculation since the actual amount depends on the type of cooling water system used and is not 214 expected to have a major impact.

215

216 4.2. Low-temperature (750°C ROT) flowsheet

217 The design basis for the 750°C ROT HyS process is summarized below in the second 218 data column in Table 1. As is the case for the 950°C ROT version, the flowsheet was sized at a 219 nominal 1-kmol/sec production rate, allowing the values of all material (molar, mass, and 220 volumetric) and energy (heat and work) flow rates for a given application to be determined by 221 simply multiplying the tabulated value by the actual hydrogen production rate (in kmol/sec). 222 Note that a 750°C ROT implies hot helium is supplied to the bayonet reactor at 700°C due to an 223 assumed 50°C temperature drop across the IHX. An additional 25°C drop between the helium 224 heat transfer medium and the process fluid results in a 675°C peak temperature of H₂SO₄ 225 decomposition inside the tip of the bayonet (at the outlet of the catalyst bed). Heat transfer 226 follows the same path as in Figure 4; the only difference is that the stream temperatures are

227	200°C lower. The power conversion efficiency of 45% assumes that electricity is provided by a
228	750°C ROT HTGR PCU and is consistent with efficiency projections for NGNP [24]. This PCU
229	could be driven by the same HTGR as the HyS process, or by a separate, electric power HTGR.
230	The 750°C ROT HyS flowsheet is shown in Figure 9 and the corresponding stream
231	summary is presented in Table 4. Besides the lower bayonet reactor operating temperature and
232	pressure, this flowsheet differs from that in Figure 5 by the addition of a quench column/direct
233	contact exchanger (new TO-02) and elimination of the unconverted acid stream that was
234	recycled to the vacuum column (TO-01). The concentration of the vacuum column bottoms is
235	also increased from 75 to 90 wt% H_2SO_4 . Another difference is the addition of the
236	DOWTHERM TM G heat transfer fluid loop, which recovers intermediate temperature heat from
237	the bayonet reactor product in heat exchangers HX-01 and HX-02 as well as the quench column
238	(TO-02) condenser, and uses it to heat the vacuum column (TO-01) and SO ₂ stripper (TO-05)
239	reboilers as well as the steam generator (SG-01) for the vacuum ejectors. As a result, no external
240	steam heat source is needed; all of the necessary heat is provided by the HTGR heat source
241	through the bayonet reactor. Finally, the addition of some and removal of other unit operations
242	resulted in changes in many stream and equipment identification numbers (e.g. TO-03, TO-04,
243	and TO-05 were changed to TO-04, TO-05, and TO-06, respectively).
244	An energy balance was developed from the simulation results. This is presented in the
245	second energy utilization summary (Table 5). Included are the duties and power requirements for
246	all heat exchangers, compressors, pumps, and other energy consumers. Heating and cooling

247 curves were generated using Aspen Plus for all process streams undergoing heat exchange and

248 checked for feasibility. No temperature cross-over was detected; adequate temperature

249 differences were maintained for counter-current heat exchange.

250	The minimum high-temperature heat requirement for the bayonet reactor was determined
251	from a pinch analysis following the methodology described in reference [17]. The heating
252	(annular flow in) and cooling (center flow out) curves are shown in Figure 10, while the utility
253	composite curve, which demonstrates the operating limits for the secondary helium coolant, is
254	provided as Figure 11.

255 As shown in Table 5, the net energy efficiency of the 750°C ROT HyS flowsheet is 256 39.9%, HHV basis. (Alkaline electrolysis coupled with a PCU operating at 45% conversion 257 efficiency would have an HHV efficiency of 36.2% in comparison.) This is about 1 percentage 258 point lower than expected, based on the drop in energy efficiency for the NGNP PCU (from 48 259 to 45%) when lowering the ROT from 950 to 750°C. The most likely cause is the significantly 260 increased high-temperature heat requirement for the bayonet reactor, RX-01, (428.3 instead of 261 340.2 kJ/mol SO₂) which implies less efficient utilization. It should be noted again that this 262 number does not include the energy required to provide cooling water. However, the actual 263 power consumption depends on the type of cooling water system used and is not expected to 264 have a significant impact on efficiency.

265

266 **5. Discussion**

The two new HyS flowsheets presented in Section 4 are projected to achieve significantly higher energy efficiency than alkaline electrolysis coupled with nuclear power. With the exception of the SDE and the bayonet reactor, only proven, well-understood process technology is used that can be accurately characterized with process models. Furthermore, development of the SDE and the bayonet has advanced to the point where their performance targets appear to be attainable. This gives confidence in the validity of the predicted performance for the HyS cycle.

page 15 of 22

273 The design of the 750°C ROT flowsheet represents a departure from previous design 274 philosophy in several respects. The pressure differential between the secondary helium coolant 275 and the process fluid, for example, had always been kept to a minimum in order to allow the 276 smallest possible wall thickness for good heat transfer. Given the 40- to 90-bar secondary helium 277 coolant pressure range of the various HTGR options being considered for NGNP, this meant the 278 bayonet would be operated at 40- to 90-bar pressures as well. Lowering the ROT, however, 279 forced a reconsideration of this convention because of the shift in equilibrium conversion. The 280 combination of low temperature and high pressure would have had too negative an impact on the 281 high-temperature (endothermic) decomposition reaction in the bayonet. Moreover, an earlier 282 pinch analysis of the bayonet showed that for ROT below 875°C, the high-temperature heat 283 requirement was minimized by operating at the lowest possible pressure [17]. With that in mind, 284 the process pressure was dropped to 12 bar, which was typical for older sulfuric acid 285 decomposition process designs (e.g. Öztürk et al. [25]). Under the bayonet concept, the high 286 pressure (40-90 bar, depending on the NGNP heat source design) would be on the outside 287 (helium side), putting the silicon carbide walls in compression, for which they should be well-288 suited. Contamination of high-pressure helium with low-pressure sulfuric acid in the event of a 289 leak or failed seal would also be rendered highly unlikely. Consequently, there shouldn't be any 290 real barrier to operating the bayonet reactor at a significantly lower pressure than the helium heat 291 transfer medium.

The direct contact exchange/quench column is another departure from previous design philosophy. Boiling sulfuric acid is highly corrosive, especially at temperatures in excess of 100-150°C, so any operation that entailed such conditions had been eschewed. However, the H₂SO₄-SO₃-H₂O vapor-liquid equilibrium is highly favorable for trapping unreacted H₂SO₄ and SO₃ in

the liquid phase, and it was necessary to take advantage of this in order to overcome the lower
conversion resulting from lower temperature operation. Consequently, the temperature at the
bottom of the vacuum column was increased by about 50°C and a quench column was added that
handles concentrated sulfuric acid in the 230-260°C range. Suitable materials of construction
will need to be identified to withstand this severe service.
Assuming that a sulfuric acid decomposition catalyst active in the 550-675°C range can
be developed, this design is a viable option for a HyS cycle process driven by an advanced

nuclear reactor heat source operating at 750°C ROT. The projected 39.9% HHV efficiency is
 significantly better than that for alkaline electrolysis at 36.2%.

305

318

306 **6. Conclusions**

307 A HyS cycle process was developed for the massive production of hydrogen from nuclear 308 energy as part of the NGNP program under the NHI. It uses a PEM SDE for the low-309 temperature, electrochemical reaction step and a novel bayonet reactor for the high-temperature 310 decomposition step. An early version previously published that assumed an HTGR ROT of 311 945°C was projected to have a net thermal efficiency of 41.7%, HHV basis. Subsequent changes 312 in the NGNP program led to the need to accommodate significantly lower decomposition 313 temperatures. Several improvements to the process resulted from this effort. 314 If the SDE is operated at 65 wt% H₂SO₄ and the SO₂ conversion is increased to 50% by 315 using a PEM material that does not rely on high water content for its conductivity (such as acid-316 doped PBI) instead of Nafion®, Aspen Plus flowsheet simulation indicates that all of the heat 317 needed to concentrate the bayonet reactor feed can be provided by recuperation from the SDE

and from the bayonet product stream. However, the SO_2/O_2 separation can no longer be achieved

319	by selective SO ₂ absorption into the recycled water and acid using a single absorber column. The
320	addition of an absorber/stripper combination provides the necessary separation with a minimal
321	low-quality heat input. Net thermal efficiencies of 44.0% to 47.6%, HHV basis have been
322	projected if the HTGR ROT is 950°C.
323	For the 750°C ROT case, the lower decomposition temperature was accommodated by
324	dropping the bayonet pressure to 12 bar, raising the bayonet feed and outlet temperatures, adding
325	a direct contact exchange/quench column upstream, and increasing the vacuum column bottoms
326	concentration to 90 wt% H_2SO_4 . Although the minimum heating requirement for the bayonet
327	increased significantly, this was offset by an increase in the opportunity for heat recuperation
328	from the bayonet product that eliminated the need for any additional heat input for acid
329	concentration. A net thermal efficiency of 39.9%, HHV basis is projected for a 750°C HTGR
330	ROT.

331

332 Acknowledgements

333 The author wishes to acknowledge the financial support of DOE-NE provided through 334 Idaho National Laboratory MPO 94714 (Battelle Energy Alliance, LLC) under direction from 335 Mr. M.W. "Mike" Patterson, as well as the encouragement of Dr. William A. Summers, who led 336 SRNL's HyS development effort under the NHI. Helpful interactions with Mr. Charles O. 337 Bolthrunis (Shaw Stone & Webster), Prof. John W. Weidner (USC), and Dr. Edward J. Lahoda 338 (Westinghouse Electric Co.) are also gratefully acknowledged. SRNL is operated for the DOE's 339 Office of Environmental Management by Savannah River Nuclear Solutions, LLC under contract 340 number DE-A C09-08SR22470.

341

342		References
343		
344	[1]	Sink CJ. An Overview of the U.S. Department of Energy's Research and Development
345		Program on Hydrogen Production Using Nuclear Energy. Presentation, AIChE Spring
346		National Meeting, Orlando, FL, United States, April 23-27, 2006. Available at:
347		http://www.aiche-ned.org/conferences/aiche2006spring/session_51/AICHE2006spring-
348		51b-Sink.pdf. Accessed May 24, 2011.
349	[2]	US Department of Energy, US Department of Transportation. Hydrogen Posture Plan: An
350		Integrated Research, Development and Demonstration Plan. December 2006; Available
351		at: <u>http://www.hydrogen.energy.gov/pdfs/hydrogen_posture_plan_dec06.pdf</u> . Accessed
352	[0]	May 24, 2011.
353 354	[3]	and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting.
355		Arlington, VA, United States, May 18–22, 2009. Available at:
356		http://www.hydrogen.energy.gov/pdfs/review09/pd_13_summers.pdf. Accessed May 24.
357		2011.
358	[4]	Colon-Mercado HR, Elvington MC, Steimke JL, Steeper TJ, Herman DT, Gorensek MB,
359		et al. Recent Advances in the Development of the Hybrid Sulfur Process for Hydrogen
360		Production. Nuclear Energy and the Environment. ACS Symposium Series Vol 1046:
361		American Chemical Society: 2010:141-154.
362	[5]	Moore RC, Gelbard F, Parma EJ, Vernon ME, Lenard RX, Pickard PS. A Laboratory-
363		Scale Sulfuric Acid Decomposition Apparatus for Use in Hydrogen Production Cycles.
364		Proceedings: International Topical Meeting on Safety and Technology of Nuclear
365		Hydrogen Production, Control, and Management, Boston, MA, United States, June 24-
366		28, 2007. 2007:161-166.
367	[6]	Gorensek MB, Summers WA. Hybrid sulfur flowsheets using PEM electrolysis and a
368		bayonet decomposition reactor. International Journal of Hydrogen Energy.
369		2009;34(9):4097-4114.
370	[7]	Review of DOE'S Nuclear Energy Research and Development Program. Washington,
371		DC: National Research Council; 2008.
372	[8]	Public Law 109-58 - Energy Policy Act of 2005, §Title VI - Nuclear Matters, Subtitle C -
373		Next Generation Nuclear Plant Project. 109th United States Congress. August 8, 2005.
374	[9]	US Department of Energy, Office of Nuclear Energy. Next Generation Nuclear Plant
375		Demonstration Project. February 15, 2011; Available at:
376		http://www.ne.doe.gov/pdfFiles/factSheets/2012_NGNP_Factsheet_final.pdf. Accessed
377		May 24, 2011.
378	[10]	Brecher LE, Wu CK; Westinghouse Electric Corp., assignee. Electrolytic decomposition
379		of water. US patent 3888750. June 10, 1975.
380	[11]	Gorensek MB, Staser JA, Stanford TG, Weidner JW. A thermodynamic analysis of the
381		SO ₂ /H ₂ SO ₄ system in SO ₂ -depolarized electrolysis. <i>International Journal of Hydrogen</i>
382		Energy. 2009;34(15):6089-6095.
383	[12]	Gorensek MB, Summers WA. The hybrid sulfur cycle. In: Yan XL, Hino R, eds. Nuclear
384	F 1 6 -	Hydrogen Production Handbook. Boca Raton, FL: CRC Press; 2011:499-545.
385	[13]	Southworth FH, MacDonald PE, Harrell DJ, Shaber EL, Park CV, Holbrook MR, et al.
386		The Next Generation Nuclear Plant (NGNP) Project. Proceedings of Global 2003, Atoms

387		for Prosperity: Updating Eisenhower's Global Vision of Nuclear Energy; November 16 -
388		20, 2003; New Orleans, LA.
389	[14]	Burchell T, Bratton RL, Wright RN, Wright J. Next Generation Nuclear Plant Materials
390		Research and Development Program Plan. Idaho National Laboratory; INL/EXT-06-
391		11701, Rev. 4. September 2007.
392	[15]	Collins JW. NGNP Risk Management through Assessing Technology Readiness Status.
393		Idaho National Laboratory; INL/EXT-10-19197. August 2010.
394	[16]	Knoche KF, Funk JE. Entropy production, efficiency, and economics in the
395		thermochemical generation of synthetic fuels: I. The hybrid sulfuric acid process.
396		International Journal of Hydrogen Energy. 1977;2(4):377-385.
397	[17]	Gorensek MB, Edwards TB. Energy Efficiency Limits for a Recuperative Bayonet
398		Sulfuric Acid Decomposition Reactor for Sulfur Cycle Thermochemical Hydrogen
399		Production. Industrial & Engineering Chemistry Research. 2009;48(15):7232-7245.
400	[18]	The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. Washington,
401		DC: National Academy of Engineering (NAE); 2004.
402	[19]	Gorensek MB, Summers WA, Bolthrunis CO, Lahoda EJ, Allen DT, Greyvenstein R.
403		Hybrid Sulfur Process Reference Design and Cost Analysis. Savannah River National
404		Laboratory; SRNL-L1200-2008-00002. June 12, 2009.
405	[20]	Staser JA, Gorensek MB, Weidner JW. Quantifying Individual Potential Contributions of
406		the Hybrid Sulfur Electrolyzer. Journal of The Electrochemical Society.
407		2010;157(6):B952-B958.
408	[21]	Wainright JS, Wang JT, Weng D, Savinell RF, Litt M. Acid-Doped Polybenzimidazoles:
409		A New Polymer Electrolyte. Journal of The Electrochemical Society. 1995;142(7):L121-
410		L123.
411	[22]	Aspen Plus [computer program]. Version 7.1 (23.0). Burlington, MA, United States:
412		Aspen Technology, Inc.; 1981-2009.
413	[23]	Aspen Energy Analyzer [computer program]. Version 7.1 (23.0). Burlington, MA, United
414		States: Aspen Technology, Inc.; 1995-2009.
415	[24]	McKellar MG. An Analysis of the Effect of Reactor Outlet Temperature of a High
416		Temperature Reactor on Electric Power Generation, Hydrogen Production, and Process
417		Heat. Idaho National Laboratory; TEV- 981. September 14, 2010.
418	[25]	Öztürk IT, Hammache A, Bilgen E. An improved process for H ₂ SO ₄ decomposition step
419		of the sulfur-iodine cycle. Energy Conversion and Management. 1995;36(1):11-21.
420		
421		

422	List of Figure Captions
423 424	
425	Figure 1 The hybrid sulfur (HyS) cycle.
426 427	
428 429	Figure 2 SRNL PEM SO ₂ -depolarized electrolyzer (SDE) schematic. The SRNL design features a recirculating analyte saturated with dissolved SO ₂ .
430 431	
432 433 434	Figure 3 SNL high-temperature bayonet H_2SO_4 decomposer schematic. Insulated base where fluid connections are made remains cool. Silicon carbide material of construction can withstand boiling sulfuric acid at high temperatures.
435 436	
437	Figure 4 Schematic diagram of heat transfer from nuclear heat source to bayonet reactor.
438 439	
440	Figure 5 950°C ROT HyS process flowsheet.
441 442	
443	Figure 6 Recuperation detail for 950°C ROT HyS process flowsheet.
444 445	
446	Figure 7 Pinch diagram for RX-01 Bayonet Reactor in Figure 5 (950°C ROT).
447 448	
449	Figure 8 Hot He utility composite curve for RX-01 Bayonet Reactor in Figure 5 (950°C ROT).
450 451	
452	Figure 9 750°C ROT HyS process flowsheet.
453 454	
455	Figure 10 Pinch diagram for RX-01 Bayonet Reactor in Figure 9 (750°C ROT).
456 457	

458 Figure 11 Hot He utility composite curve for RX-01 Bayonet Reactor in Figure 9 (750°C ROT).
459

460 461 462	List of Table Captions
463	Table 1 Design bases for the 950°C and 750°C ROT HyS process flowsheets.
464 465	
466	Table 2950°C ROT HyS process flowsheet stream table.
467 468	
469	Table 3 950°C ROT HyS process flowsheet energy utilization summary.
470 471	
472	Table 4 750°C ROT HyS process flowsheet stream table.
473 474	
475	Table 5 750°C ROT HyS process flowsheet energy utilization summary.

Figure 1

Figure 3

Figure 4

Figure 6

Figure 7

Figure 8

Figure 10

Figure 11

	950°C F	ROT Case	750°C R	OT Case
Nominal Hydrogen Production Rate	1	kmol/sec	1	kmol/sec
Hydrogen Product Temperature	48	°C	48	°C
Hydrogen Product Pressure	20	bar	20	bar
	o -		0.5	,
Oxygen Co-product Production Rate	0.5	kmol/sec	0.5	kmol/sec
Oxygen Co-product Temperature	48	°C	48	°C
Oxygen Co-product Pressure	20	bar	20	bar
HyS SDE (EL-01) Operating Assumptions				
Operating Temperature	120	°C	120	°C
Operating Pressure	22	bar	22	bar
Operating Potential	0.6	V	0.6	V
SO ₂ Concentration in Anolyte Feed	11.8	wt%	11.8	wt%
Acid Product Concentration (Anode)	65	wt%	65	wt%
Conversion (per pass)	50	%	50	%
Cathode Pressure Drop	1	bar	1	bar
Water-swept Cathode				
Water Flux (Cathode to Anode)	1	kmol/sec	1	kmol/sec
Anode Pressure Drop	1	bar	1	bar
Bayonet Reactor (RX-01) Operating				
Assumptions				
Feed Pressure	86	bar	127	har
Pressure Drop	2	bar	12.7	bar
Feed Concentration (Quench Column)	Z N	0ai	90	Udi wt%
Freed Concentration (Quelicit Column)	75	I/A	90 76 1	wt%
Cotalyst Red Inlet Temperature	675	۵C	70.1	%۲۶0 ℃
Catalyst Bed First Temperature	075 875	°C	530	°C
Minimum AT (Halium to Process)	015	°C	075	°C
$Minimum \Delta T (Henum to Process)$	23 10	C °C	23	°C
Minimum $\Delta 1$ (internal Recuperation) Equilibrium Attained in Catalyst Pad	10		10	۰L
Equilibrium Attained in Catalyst Bed				
HTGR Operating Assumptions				
Reactor Outlet Temperature	950	°C	750	°C
He Coolant Supply Temperature	900	°C	700	°C
Vacuum Column (TO-01) Operating Conditions				
Averbaad Pressure	0.11	bar	0.11	har
Condenser Temperatura	0.11 1/1	°C	0.11 11 G	°C
Pottoms U.SO. Concentration	44.1 75	U 11/2	44.0 00	U 11/10/2
Column Drossure Dron	10 00	wl% bor	90	wt% hor
Column Pressure Drop	0.02	Uar	0.02	Dar
Quench Column Operating Conditions	N	[/A	(TO	-02)

Table 1 Design bases for the 950°C and 750°C ROT HyS process flowsheets.

Overhead Pressure Condenser Temperature			11.1 235	bar ℃
condenser remperature			233	C
1 st Stage SO ₂ Absorber Operating Conditions	(TC	D- 02)	(TO	-03)
Overhead Pressure	20.9	bar	20.9	bar
Column Pressure Drop	0.1	bar	0.1	bar
2 nd Stage SO ₂ Absorber Operating Conditions	(TC	D- 03)	(TO	-04)
Overhead Pressure	20.8	bar	20.8	bar
Column Pressure Drop	0.1	bar	0.1	bar
H ₂ O/O ₂ Molar Feed Ratio	38		40	
SO ₂ Stripper Operating Conditions	(TC	D- 04)	(TO	-05)
Overhead Pressure	1	bar	1	bar
(Partial-Vapor) Condenser Temperature	48	°C	48	°C
Bottoms Product SO ₂ Concentration*	1.8×10^{-3}	wt%	1.4×10^{-3}	wt%
Column Pressure Drop	0.1	bar	0.1	bar
Electric Power Generation Efficiency (kJe/kJth)	48	%	45	%

* Controlled to achieve 1 ppm SO₂ in 2nd Stage SO₂ Absorber overhead product

Stream		M	olar flow r	ates, kmol	/sec*		Tempe	erature,	Pressure,	Phase
ID	H ₂ O	H_2SO_4	SO_2	O_2	H_2	Total	°C	Κ	bar	
1	138.00	0	0	0	0.0422	138.04	115.45	388.60	22.750	L
2	21.834	5.7659	2	2E-05	0	29.600	112.59	385.74	22.750	L
3	137.00	0	0	0	1.0422	138.04	120.00	393.15	21.750	L + V
4	0.10347	0	0	0	1	1.1035	120.00	393.15	21.750	V
5	0	0	0	0	1	1	48.00	321.15	20.000	V
6	136.90	0	0	0	0.0422	136.94	120.00	393.15	21.750	L
7	136.90	0	0	0	0.0422	136.94	116.00	389.15	21.000	L + V
8	0.10347	0	0	0	0	0.10347	48.00	321.15	20.000	L
9	1	0	0	0	0	1	40.00	313.15	20.000	L
10	138.00	0	0	0	0.0422	138.04	115.42	388.57	20.000	L + V
11	20.834	6.7659	1	2E-05	0	28.600	120.00	393.15	21.750	L
12	20.834	6.7659	1	2E-05	0	28.600	116.00	389.15	21.000	L
13	3.0821	1.0009	0.14794	2.9E-06	0	4.2309	116.00	389.15	21.000	L
14	3.0821	1.0009	0.14794	2.9E-06	0	4.2309	105.57	378.72	1.013	L + V
15	3.0382	1.0009	0.00863	2.2E-09	0	4.0477	105.57	378.72	1.013	L
16	3.0382	1.0009	0.00863	2.2E-09	0	4.0477	103.47	376.62	0.330	L + V
17	3.0234	1.0009	0.00126	0	0	4.0256	103.47	376.62	0.330	L
18	3.0234	1.0009	0.00126	0	0	4.0256	103.47	376.62	0.430	L
19	3.0234	1.0009	0.00126	0	0	4.0256	103.47	376.62	0.330	L + V
20	3.0234	1.0009	0.00126	0	0	4.0256	115.40	388.55	0.130	L + V
21	3.7568	2.0702	1.5E-08	0	0	5.8270	122.86	396.01	0.130	L
22	3.7568	2.0702	1.5E-08	0	0	5.8270	123.62	396.77	86.000	L
23	4.7577	1.0693	1.0009	0.50046	0	7.3283	254.50	527.65	84.000	L + V
24	4.2803	1.0693	0.22812	0.00805	0	5.5857	254.50	527.65	84.000	L
25	4.2803	1.0693	0.22812	0.00805	0	5.5857	235.12	508.27	22.200	L + V
26	4.0273	1.0693	0.05077	9.8E-05	0	5.1474	235.12	508.27	22.200	L
27	4.0273	1.0693	0.05077	9.8E-05	0	5.1474	187.36	460.51	4.000	L + V
28	3.5270	1.0693	0.00205	1.1E-07	0	4.5983	187.36	460.51	4.000	L
29	3.5270	1.0693	0.00205	1.1E-07	0	4.5983	120.33	393.48	0.330	L + V
30	2.8790	1.0693	9.2E-06	0	0	3.9483	120.33	393.48	0.330	L
31	2.8790	1.0693	9.2E-06	0	0	3.9483	120.33	393.48	0.430	L
32	2.8790	1.0693	9.2E-06	0	0	3.9483	120.33	393.48	0.330	L + V
33	2.8790	1.0693	9.2E-06	0	0	3.9483	125.53	398.68	0.130	L + V
34	0.47738	5.5E-06	0.77280	0.49241	0	1.7426	254.50	527.65	84.000	V
35	0.47738	5.5E-06	0.77280	0.49241	0	1.7426	130.33	403.48	83.400	L + V
36	0.47738	5.5E-06	0.77280	0.49241	0	1.7426	48.00	321.15	82.800	L + V
37	0.47738	5.5E-06	0.77280	0.49241	0	1.7426	30.91	304.06	21.000	L + V
38	0.47566	5.5E-06	0.61477	0.00045	0	1.0909	30.91	304.06	21.000	L
39	0.00172	0	0.15802	0.49195	0	0.65170	30.91	304.06	21.000	V
40	0.25306	1.3E-06	0.17735	0.00795	0	0.43836	235.12	508.27	22.200	V
41	0.25306	1.3E-06	0.17735	0.00795	0	0.43836	130.33	403.48	21.600	L + V
42	0.25306	1.3E-06	0.17735	0.00795	0	0.43836	48.00	321.15	21.000	L + V

Table 2 950°C ROT HyS process flowsheet stream table.

43	0.25297	1.3E-06	0.17252	0.00012	0	0.42562	48.00	321.15	21.000	L
44	8.4E-05	0	0.00483	0.00783	0	0.01274	48.00	321.15	21.000	V
45	17.752	5.7650	0.85206	1.7E-05	0	24.369	116.00	389.15	21.000	L
46	21.834	5.7659	2.0000	2E-05	0	29.600	112.57	385.72	21.000	L
47	0.04392	3.1E-09	0.13931	2.9E-06	0	0.18323	105.57	378.72	1.013	V
48	0.50024	8E-07	0.04872	9.8E-05	0	0.54905	187.36	460.51	4.000	V
49	0.50024	8E-07	0.04872	9.8E-05	0	0.54905	130.33	403.48	3.900	L + V
50	0.50024	8E-07	0.04872	9.8E-05	0	0.54905	92.10	365.25	1.013	L + V
51	0.54416	8E-07	0.18803	0.0001	0	0.73229	48.00	321.15	0.913	L + V
52	0.02670	0	0.19038	0.0001	0	0.21718	48.00	321.15	0.913	V
53	0.00495	0	0.30352	0.00623	0	0.31471	48.00	321.15	21.000	L + V
54	0.00494	0	0.29896	6.4E-05	0	0.30397	48.00	321.15	21.000	L
55	0.01944	0	0.39780	6.4E-05	0	0.41731	47.19	320.34	21.000	L
56	0.03498	0	0.00099	2.4E-08	0	0.03597	48.00	321.15	2.501	L
57	0.03498	0	0.00099	2.4E-08	0	0.03597	49.13	322.28	21.000	L
58	0.0145	0	0.09884	3.9E-07	0	0.11334	48.00	321.15	7.308	L
59	0.0145	0	0.09884	3.9E-07	0	0.11334	49.27	322.42	21.000	L
60	1.1E-05	0	0.00456	0.00616	0	0.01074	48.00	321.15	21.000	V
61	0.51849	8E-07	0.005	3.9E-09	0	0.5235	48.00	321.15	0.913	L
62	0.51849	8E-07	0.005	3.9E-09	0	0.5235	48.41	321.56	21.000	L
63	0.01473	9.6E-10	0.00737	2.2E-09	0	0.0221	103.47	376.62	0.330	V
64	0.64799	2.5E-07	0.00204	1.1E-07	0	0.65004	120.33	393.48	0.330	V
65	0.66272	2.5E-07	0.00942	1.2E-07	0	0.67214	43.00	316.15	0.230	L + V
66	0.65796	2.5E-07	0.00151	0	0	0.65947	43.00	316.15	0.230	L
67	0.65796	2.5E-07	0.00151	0	0	0.65947	43.38	316.53	21.000	L
68	0.00497	0	0.00825	1.2E-07	0	0.01323	43.00	316.15	0.230	V
69	0.08905	0	0	0	0	0.08905	169.98	443.13	7.908	L + V
70	0.09402	0	0.00825	1.2E-07	0	0.10228	137.12	410.27	1.013	V
71	0.09299	0	0.0009	0	0	0.09389	48.00	321.15	0.913	L
72	0.09299	0	0.0009	0	0	0.09389	48.00	321.15	1.013	L
73	0.00103	0	0.00736	1.2E-07	0	0.00839	48.00	321.15	0.913	V
74	2.1439	0	0.0009	0	0	2.1448	44.06	317.21	0.110	L
75	2.1439	0	0.0009	0	0	2.1448	44.31	317.46	21.000	L
76	0.00178	0	0.00036	0	0	0.00215	44.06	317.21	0.110	V
77	0.00404	0	0	0	0	0.00404	169.98	443.13	7.908	L + V
78	0.00583	0	0.00036	0	0	0.00619	113.41	386.56	0.330	V
79	0.00562	0	1.3E-05	0	0	0.00563	43.00	316.15	0.230	L
80	0.00562	0	1.3E-05	0	0	0.00563	43.05	316.20	1.013	L
81	0.09861	0	0.00091	0	0	0.09952	47.73	320.88	1.013	L
82	0.00021	0	0.00035	0	0	0.00056	43.00	316.15	0.230	V
83	2.1162	0	0.00089	0	0	2.1170	44.31	317.46	21.000	L
84	3.3445	1.1E-06	0.62765	8E-06	0	3.9722	86.32	359.47	21.000	L
85	0.01835	6.5E-10	0.66481	0.00065	0	0.68381	112.57	385.72	21.000	V
86	0.00836	0	0.21303	0.50659	0	0.72798	59.80	332.95	20.900	V
87	0.02773	0	1.2E-05	0	0	0.02775	44.31	317.46	21.000	L
88	19	0	0.00011	0	0	19.000	48.00	321.15	21.000	L

89	19.005	0	0.21313	0.00613	0	19.224	51.93	325.08	20.900	L
90	0.00514	0	5.8E-05	1.7E-06	0	0.0052	51.93	325.08	20.900	L
91	19	0	0.21307	0.00613	0	19.219	51.93	325.08	20.900	L
92	19	0	0.21307	0.00613	0	19.219	52.11	325.26	1.800	L + V
93	19	0	0.21307	0.00613	0	19.219	82.29	355.44	1.050	L + V
94	18.972	0	9.4E-05	0	0	18.972	99.63	372.78	1.100	L
95	18.972	0	9.4E-05	0	0	18.972	99.86	373.01	22.500	L
96	18.972	0	9.4E-05	0	0	18.972	62.11	335.26	21.750	L
97	18.972	0	9.4E-05	0	0	18.972	48.00	321.15	21.000	L
98	0.02773	0	0.21297	0.00613	0	0.24683	48.00	321.15	1.000	V
99	0.00323	0	5E-07	0.50046	0	0.50368	48.04	321.19	20.800	V
100	0	0	0	0.50046	0	0.50046	48.00	321.15	19.800	V
101	0.00323	0	5E-07	0	0	0.00323	48.00	321.15	19.800	L
102	0.00323	0	5E-07	0	0	0.00323	48.07	321.22	21.000	L
BFW	0.09309	0	0	0	0	0.09309	38.00	311.15	1.000	L
MAKEUP	0.0046	0.00091	0	0	0	0.00552	38.00	311.15	21.000	L
STEAM	0.09309	0	0	0	0	0.09309	170.07	443.22	7.908	V

* Individual component molar flow rates $< 1 \times 10^{-9}$ kmol/sec are shown as zero.

EL-01, Electrolyzer115.782MWeCO-01, SO2 Recycle CompressorStage 11.986MWeStage 21.869MWeStage 31.254MWePP-01, Catholyte Feed Pump0.842MWePP-02, Vacuum Column Feed Pump0.001MWePP-03, Bayonet Reactor Feed Pump0.001MWePP-04, Vacuum Column Recycle Pump0.001MWePP-05, Anolyte Feed Pump0.015MWePP-06, First Stage Intercooler Condensate Pump0.012MWePP-07, Second Stage Intercooler Condensate Pump0.013MWePP-08, First Flash Stage Vapor Condensate Pump0.011MWePP-10, First Stage Ejector Condensate Pump0.000MWePP-10, First Stage Ejector Condensate Pump0.000MWePP-11, Vacuum Column Distillate Pump0.000MWePP-12, Second Stage Ejector Condensate Pump0.000MWePP-13, SO ₂ Stripper Bottoms Pump0.888MWePP-14, O ₂ Dryer Liquids Pump0.000MWeTotal electric power requirement:124.811MWeHeat recuperation summary:EX-01, Catholyte Interchanger (EX-02-HS/EX-CS-01, Q1)42.019MW _{th} Stage 1, EX-03 (EX-03-HS/EX-CS-02, Q3)24.766MW _{th} Stage 1, EX-03 (EX-03-HS/EX-CS-02, Q5)16.340MW _{th} Stage 2, EX-04 (EX-04-HS/EX-CS-02, Q5)16.340MW _{th} Stage 3, EX-05 (EX-05-HS/EX-CS-02, Q5)16.340MW _{th} Stage 1, Scol, Stripper Feed Interchanger54.136MW _{th} <t< th=""><th>Electric power requirements:</th><th></th><th></th></t<>	Electric power requirements:		
CO-01, SO ₂ Recycle Compressor Stage 1 1.986 MWe Stage 2 1.869 MWe Stage 3 1.254 MWe PP-01, Catholyte Feed Pump 0.842 MWe PP-02, Vacuum Column Reed Pump 0.001 MWe PP-03, Bayonet Reactor Feed Pump 0.001 MWe PP-04, Vacuum Column Recycle Pump 0.001 MWe PP-05, Anolyte Feed Pump 0.001 MWe PP-06, First Stage Intercooler Condensate Pump 0.002 MWe PP-07, Second Stage Intercooler Condensate Pump 0.012 MWe PP-08, First Stage Intercooler Condensate Pump 0.013 MWe PP-09, Second Flash Stage Vapor Condensate Pump 0.000 MWe PP-09, Second Flash Stage Vapor Condensate Pump 0.000 MWe PP-10, First Stage Ejector Condensate Pump 0.000 MWe PP-11, Vacuum Column Distillate Pump 0.000 MWe PP-11, Vacuum Column Distillate Pump 0.000 MWe PP-13, SO ₂ Stripper Bottoms Pump 0.000 MWe PT-14, O ₂ Dryer Liquids Pump 0.000 MWe <u>Total electric power requirement: 124.811 MWe</u> Heat recuperation summary: EX-01, Catholyte Interchanger (EX-01-HS/EX-CS-01, Q1) 42.019 MW _{th} EX-02, Anolyte Interchanger (EX-02-HS/EX-CS-01, Q2) 11.583 MWa Bayonet Vapor Product Interchanger Stage 1, EX-03 (EX-03-HS/EX-CS-02, Q3) 24.766 MW _{th} Stage 2, EX-04 (EX-04-HS/EX-CS-02, Q3) 24.766 MW _{th} Stage 3, EX-05 (EX-05-HS/EX-CS-02, Q4) 10.586 MWa _{th} Stage 1, EX-03 (EX-03-HS/EX-CS-02, Q5) 16.340 MW _{th} EX-06, SO ₂ Stripper Feed Interchanger 54.136 MW _{th} Stage 1 3.570 MW _{th} Stage 1 3.570 MW _{th} Stage 3 7.991 MW _{th} Stage 3 7.991 MW _{th} NR-02, Oxygen Dryer 6477 MW _{th} Stage 3 7.991 MW _{th} NR-02, Oxygen Dryer 6478 Condenser 70.131 MW _{th} NR-03, First Stage Flash Condenser 70.131 MW _{th} NR-04, Second Stage Flash Condenser 70.258 MW _{th} NR-04, Second Stage Flash Condenser 70.258 MW _{th} NR-04, Second Stage Ejector Condenser 70.258 MW _{th} NR-04, Second Stage Ejector Condenser 70.258 MW _{th}	EL-01, Electrolyzer	115.782	MW _e
Stage 11.986MWe Stage 31.886MWe Stage 3PP-01, Catholyte Feed Pump0.842MWe PP-02, Vacuum Column Feed Pump0.001MWe PP-03, Bayonet Reactor Feed Pump0.001MWe PP-03, Bayonet Reactor Feed Pump0.001MWe PP-04, Vacuum Column Recycle Pump0.001MWe PP-04, Vacuum Column Recycle Pump0.001MWe PP-05, Anolyte Feed Pump0.001MWe PP-06, First Stage Intercooler Condensate Pump0.001MWe PP-07, Second Stage Intercooler Condensate Pump0.012MWe PP-09, Second Stage Intercooler Condensate Pump0.013MWe PP-09, Second Flash Stage Vapor Condensate Pump0.001MWe PP-09, Second Flash Stage Vapor Condensate Pump0.001MWe PP-09, Second Flash Stage Vapor Condensate Pump0.001MWe PP-10, First Stage Ejector Condensate Pump0.000MWe PP-11, Vacuum Column Distillate Pump0.000MWe PP-13, SO ₂ Stripper Bottoms Pump0.888MWe PP-14, O ₂ Dryer Liquids Pump0.000MWe MWe Total electric power requirement:124.811MWe MWeHeat recuperation summary: EX-01, Catholyte Interchanger (EX-01-HS/EX-CS-01, Q1)42.019MWm M Mgago 4Stage 1, EX-03 (EX-03-HS/EX-CS-02, Q3)24.766MWm M Stage 3, EX-05 (EX-03-HS/EX-CS-02, Q4)10.586MWm M Stage 3, EX-05 (EX-03-HS/EX-CS-02, Q5)16.340MWm M Stage 3, Stage 13.570MWm M Mm Stage 3, Stage 13.570MWm M Mm Stage 3, Stage 13.570MWm M Mm Mage 3MWm MMm MMm MAMMm MMm MA Mage 37.991MWm MMm 	CO-01, SO ₂ Recycle Compressor		
Stage 21.869MWc Stage 3Stage 31.254MWcPP-01, Catholyte Feed Pump0.842MWcPP-02, Vacuum Column Feed Pump0.001MWcPP-03, Bayonet Reactor Feed Pump0.001MWcPP-04, Vacuum Column Recycle Pump0.015MWcPP-05, Anolyte Feed Pump0.155MWcPP-06, First Stage Intercooler Condensate Pump0.001MWcPP-07, Second Stage Intercooler Condensate Pump0.012MWcPP-08, First Flash Stage Vapor Condensate Pump0.033MWcPP-09, Second Flash Stage Vapor Condensate Pump0.000MWcPP-10, First Stage Ejector Condensate Pump0.000MWcPP-11, Vacuum Column Distilate Pump0.111MWcPP-12, Scoand Stage Ejector Condensate Pump0.000MWcPP-13, SO ₂ Stripper Bottoms Pump0.888MWcPP-14, O ₂ Dryer Liquids Pump0.000MWcTotal electric power requirement:124.811MWcHeat recuperation summary:124.811MWcEX-01, Catholyte Interchanger (EX-01-HS/EX-CS-01, Q1)42.019MWthStage 1, EX-03 (EX-03-HS/EX-CS-02, Q4)11.583MWthStage 3, EX-05 (EX-05-HS/EX-CS-02, Q5)16.340MWthStage 1, EX-05 (EX-05-HS/EX-CS-02, Q5)16.340MWthStage 1, Stage Sige Tota Product Interchanger54.136MWthKage 37.991MWthBR-01, Hydrogen Dryer6.774MWthRC-01 - SO2 Recycle Compressor Intercoolers5tage 13.570<	Stage 1	1.986	MW_e
Stage 31.254MWePP-01, Catholyte Feed Pump0.842MWePP-02, Vacuum Column Feed Pump0.001MWePP-03, Bayonet Reactor Feed Pump0.001MWePP-04, Vacuum Column Recycle Pump0.001MWePP-05, Anolyte Feed Pump0.155MWePP-06, First Stage Intercooler Condensate Pump0.004MWePP-07, Second Stage Intercooler Condensate Pump0.011MWePP-09, Second Stage Intercooler Condensate Pump0.003MWePP-09, Second Stage Intercooler Condensate Pump0.000MWePP-10, First Stage Ejector Condensate Pump0.000MWePP-11, Vacuum Column Distillate Pump0.000MWePP-12, Second Stage Ejector Condensate Pump0.000MWePP-13, SO ₂ Stripper Bottoms Pump0.888MWePP-14, O ₂ Dryer Liquids Pump0.000MWePP-14, O ₂ Dryer Liquids Pump0.000MWeEX-01, Catholyte Interchanger (EX-01-HS/EX-CS-01, Q1)42.019MWthEX-02, Anolyte Interchanger (EX-01-HS/EX-CS-01, Q2)11.583MWthBayonet Vapor Product InterchangersStage 1, EX-03 (EX-03-HS/EX-CS-02, Q3)24.766MWthStage 1, EX-03 (EX-03-HS/EX-CS-02, Q3)24.766MWthStage 2, EX-04 (EX-04-HS/EX-CS-02, Q3)24.766MWthStage 1, EX-03 (EX-03-HS/EX-CS-02, Q3)10.586MWthStage 3, EX-05 (EX-05-HS/EX-CS-02, Q3)10.586MWthStage 1, EX-03 (EX-03-HS/EX-CS-02, Q3)24.766MWthStage 3, EX-05 (EX-05-HS/EX-CS-02, Q3)24.766<	Stage 2	1.869	MW_e
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Stage 3	1.254	MW _e
PP-02, Vacuum Column Feed Pump 0.001 MWePP-03, Bayonet Reactor Feed Pump 1.830 MWePP-04, Vacuum Column Recycle Pump 0.001 MWePP-05, Anolyte Feed Pump 0.015 MWePP-06, First Stage Intercooler Condensate Pump 0.004 MWePP-07, Second Stage Intercooler Condensate Pump 0.013 MWePP-08, First Flash Stage Vapor Condensate Pump 0.014 MWePP-09, Second Flash Stage Vapor Condensate Pump 0.000 MWePP-10, First Stage Ejector Condensate Pump 0.000 MWePP-11, Vacuum Column Distillate Pump 0.000 MWePP-12, Second Stage Ejector Condensate Pump 0.000 MWePP-14, O2 Dryer Liquids Pump 0.000 MWePP-14, O2 Dryer Liquids Pump 0.000 MWePT-14, O2 Dryer Liquids Pump 0.000 MWeMeat recuperation summary: 124.811 MWeEX-01, Catholyte Interchanger (EX-01-HS/EX-CS-01, Q1) 42.019 MWthStage 1, EX-03 (EX-03-HS/EX-CS-02, Q3) 24.766 MWthStage 2, EX-04 (EX-04-HS/EX-CS-02, Q4) 10.586 MWthStage 3, EX-05 (EX-05-HS/EX-CS-02, Q5) 16.340 MWthEX-06, SO2 Stripper Feed Interchanger 4.704 MWthStage 1 3.570 MWthStage 3 7.991 MWthStage 3 7.991 MWthStage 3 7.991 MWthStage 3 7.991 MWthStage 1 3.570 MWthStage 3 7.991 MW	PP-01, Catholyte Feed Pump	0.842	MW _e
PP-03, Bayonet Reactor Feed Pump1.830MWePP-04, Vacuum Column Recycle Pump0.001MWePP-04, Vacuum Column Recycle Pump0.155MWePP-05, First Stage Intercooler Condensate Pump0.002MWePP-07, Second Stage Intercooler Condensate Pump0.013MWePP-08, First Flash Stage Vapor Condensate Pump0.033MWePP-09, Second Flash Stage Vapor Condensate Pump0.000MWePP-10, First Stage Ejector Condensate Pump0.011MWePP-11, Vacuum Column Distillate Pump0.111MWePP-12, Second Stage Ejector Condensate Pump0.000MWePP-14, O2 Dryer Liquids Pump0.000MWe	PP-02, Vacuum Column Feed Pump	0.001	MW _e
$\begin{array}{llllllllllllllllllllllllllllllllllll$	PP-03, Bayonet Reactor Feed Pump	1.830	MW _e
$\begin{array}{llllllllllllllllllllllllllllllllllll$	PP-04, Vacuum Column Recycle Pump	0.001	MW _e
$\begin{array}{llllllllllllllllllllllllllllllllllll$	PP-05, Anolyte Feed Pump	0.155	MW _e
$\begin{array}{llllllllllllllllllllllllllllllllllll$	PP-06, First Stage Intercooler Condensate Pump	0.004	MW _e
$\begin{array}{llllllllllllllllllllllllllllllllllll$	PP-07, Second Stage Intercooler Condensate Pump	0.012	MW _e
$\begin{array}{llllllllllllllllllllllllllllllllllll$	PP-08, First Flash Stage Vapor Condensate Pump	0.033	MW _e
PP-10, First Stage Ejector Condensate Pump 0.000 MWePP-11, Vacuum Column Distillate Pump 0.111 MWePP-12, Second Stage Ejector Condensate Pump 0.000 MWePP-13, SO ₂ Stripper Bottoms Pump 0.888 MWePP-14, O ₂ Dryer Liquids Pump 0.000 MWeTotal electric power requirement: 124.811 MWeHeat recuperation summary: 124.811 MWeEX-01, Catholyte Interchanger (EX-01-HS/EX-CS-01, Q1) 42.019 MWthEX-02, Anolyte Interchanger (EX-02-HS/EX-CS-01, Q2) 11.583 MWthBayonet Vapor Product Interchangers $3tage 1, EX-03 (EX-03-HS/EX-CS-02, Q3)$ 24.766 MWthStage 1, EX-03 (EX-03-HS/EX-CS-02, Q4) 10.586 MWthStage 3, EX-05 (EX-05-HS/EX-CS-02, Q5) 16.340 MWthEX-06, SO ₂ Stripper Feed Interchanger 54.136 MWthStage 1 3.570 MWthStage 2 4.704 MWthStage 3 7.991 MthDR-01, Hydrogen Dryer 6.774 MWthDR-02, Oxygen Dryer 0.131 MWthHX-01, Bayonet Product First Stage Flash Condenser 6.598 MWthHX-02, First Stage Ejector Condenser 9.066 MWthHX-03, First Acid Flash Stage Condenser 9.066 MWthHX-04, Second Acid Flash Stage Condenser 9.0256 MWthHX-05, First Stage Ejector Condenser 4.187 MWth	PP-09, Second Flash Stage Vapor Condensate Pump	0.041	MW _e
PP-11, Vacuum Column Distillate Pump0.111MWePP-12, Second Stage Ejector Condensate Pump0.000MWePP-13, SO2 Stripper Bottoms Pump0.888MWePP-14, O2 Dryer Liquids Pump0.000MWeTotal electric power requirement:124.811MWgHeat recuperation summary:124.811MWeEX-01, Catholyte Interchanger (EX-01-HS/EX-CS-01, Q1)42.019MWthEX-02, Anolyte Interchanger (EX-02-HS/EX-CS-01, Q2)11.583MWthBayonet Vapor Product Interchangers24.766MWthStage 1, EX-03 (EX-03-HS/EX-CS-02, Q3)24.766MWthStage 3, EX-05 (EX-05-HS/EX-CS-02, Q4)10.586MWthEX-06, SO2 Stripper Feed Interchanger54.136MWthEX-06, SO2 Stripper Feed Interchanger54.136MWthStage 13.570MWthStage 24.704MWthStage 37.991MWthDR-01, Hydrogen Dryer6.774MWthDR-02, Oxygen Dryer0.131MWthHX-01, Bayonet Product First Stage Flash Condenser0.0131MWthHX-03, First Acid Flash Stage Condenser9.066MWthHX-04, Second Acid Flash Stage Condenser30.256MWthHX-05, First Stage Ejector Condenser30.256MWthHX-06, Second Stage Ejector Condenser0.258MWthHX-06, Second Stage Ejector Condenser0.258MWth	PP-10, First Stage Ejector Condensate Pump	0.000	MW _e
PP-12, Second Stage Ejector Condensate Pump 0.000 MWePP-13, SO2 Stripper Bottoms Pump 0.888 MWePP-14, O2 Dryer Liquids Pump 0.000 MWe	PP-11, Vacuum Column Distillate Pump	0.111	MW _e
PP-13, SO2 Stripper Bottoms Pump 0.888 MWePP-14, O2 Dryer Liquids Pump 0.000 MWeTotal electric power requirement: 124.811 MWeHeat recuperation summary: 124.811 MWeEX-01, Catholyte Interchanger (EX-01-HS/EX-CS-01, Q1) 42.019 MWthEX-02, Anolyte Interchanger (EX-02-HS/EX-CS-01, Q2) 11.583 MWthBayonet Vapor Product Interchangers $342,019$ 11.583 MWthBayonet Vapor Product Interchangers 24.766 MWthStage 1, EX-03 (EX-03-HS/EX-CS-02, Q3) 24.766 MWthStage 3, EX-05 (EX-04-HS/EX-CS-02, Q4) 10.586 MWthStage 3, EX-05 (EX-05-HS/EX-CS-02, Q5) 16.340 MWthEX-06, SO2 Stripper Feed Interchanger 54.136 MWthStage 1 3.570 MWthStage 2 4.704 MWthStage 3 7.991 MWthDR-01, Hydrogen Dryer 6.774 MWthDR-02, Oxygen Dryer 0.131 MWthHX-03, First Acid Flash Stage Condenser 9.066 MWthHX-04, Second Acid Flash Stage Condenser 9.066 MWthHX-05, First Stage Ejector Condenser 4.187 MWthHX-05, Second Stage Ejector Condenser 4.187 MWthHX-06, Second Stage Ejector Condenser 0.258 MWth	PP-12, Second Stage Ejector Condensate Pump	0.000	MW _e
PP-14, O_2 Dryer Liquids Pump0.000MWe 124.811Meat recuperation summary: EX-01, Catholyte Interchanger (EX-01-HS/EX-CS-01, Q1)124.811MWe 2EX-01, Catholyte Interchanger (EX-01-HS/EX-CS-01, Q1)42.019MWth 4EX-02, Anolyte Interchanger (EX-02-HS/EX-CS-01, Q2)11.583MWth Bayonet Vapor Product Interchangers Stage 1, EX-03 (EX-03-HS/EX-CS-02, Q3)24.766MWth MWth 5Bayonet Vapor Product Interchangers Stage 1, EX-03 (EX-03-HS/EX-CS-02, Q4)10.586MWth MWth Stage 3, EX-05 (EX-05-HS/EX-CS-02, Q5)16.340MWth MWth Stage 3, EX-05 (EX-05-HS/EX-CS-02, Q5)16.340MWth MWth Stage 3, EX-05 (EX-05-HS/EX-CS-02, Q5)16.340MWth MWth Stage 3, EX-05 (EX-05-HS/EX-CS-02, Q5)16.340MWth MWth MWth Stage 3, EX-05 (EX-05-HS/EX-CS-02, Q5)16.340MWth MWth Mth Stage 3, EX-05 (EX-05-HS/EX-CS-02, Q5)16.340MWth Mth Mth Mth Stage 3, EX-05 (EX-05-HS/EX-CS-02, Q5)16.340MWth Mth Mth Mth Mth Stage 33.570MWth Mth Mth Mth Mt-01, Bayonet Product Compressor Intercoolers Stage 13.570MWth Mth Mth Mt-01, Bayonet Product First Stage Flash Condenser0.131MWth Mth Mth Mt-03, First Acid Flash Stage Condenser9.066MWth Mth Mth Mt-04, Second Acid Flash Stage Condenser9.0256MWth Mth Mth Mt-04, Second Acid Flash Stage Condenser4.187MWth Mth Mt-04, Second Stage Ejector Condenser4.187MWth Mth Mth Mth Mt-05, First Stage Ejector Condenser4.187MWth Mth Mth Mth Mth Mth Mth Mth <th< td=""><td>PP-13, SO₂ Stripper Bottoms Pump</td><td>0.888</td><td>MW_e</td></th<>	PP-13, SO ₂ Stripper Bottoms Pump	0.888	MW _e
Total electric power requirement:124.811 MW_e Heat recuperation summary:EX-01, Catholyte Interchanger (EX-01-HS/EX-CS-01, Q1)42.019 MW_{th} EX-01, Catholyte Interchanger (EX-02-HS/EX-CS-01, Q2)11.583 MW_{th} Bayonet Vapor Product InterchangersStage 1, EX-03 (EX-03-HS/EX-CS-02, Q3)24.766 MW_{th} Stage 2, EX-04 (EX-04-HS/EX-CS-02, Q4)10.586 MW_{th} Stage 3, EX-05 (EX-05-HS/EX-CS-02, Q5)16.340 MW_{th} EX-06, SO2 Stripper Feed Interchanger54.136 MW_{th} Stage 13.570 MW_{th} Stage 37.991 MW_{th} Stage 37.991 MW_{th} Stage 37.991 MW_{th} NR-01, Hydrogen Dryer6.774 MW_{th} NR-02, Oxygen Dryer0.131 MW_{th} HX-01, Bayonet Product First Stage Flash Condenser9.066 MW_{th} HX-03, First Acid Flash Stage Condenser9.066 MW_{th} HX-04, Second Acid Flash Stage Condenser4.187 MW_{th} HX-05, First Stage Ejector Condenser4.187 MW_{th} HX-06, Second Stage Ejector Condenser0.258 MW_{th}	PP-14, O ₂ Dryer Liquids Pump	0.000	MW _e
Heat recuperation summary:EX-01, Catholyte Interchanger (EX-01-HS/EX-CS-01, Q1) 42.019 MW _{th} EX-02, Anolyte Interchanger (EX-02-HS/EX-CS-01, Q2) 11.583 MW _{th} Bayonet Vapor Product Interchangers Stage 1, EX-03 (EX-03-HS/EX-CS-02, Q3) 24.766 MW _{th} Stage 2, EX-04 (EX-04-HS/EX-CS-02, Q4) 10.586 MW _{th} Stage 3, EX-05 (EX-05-HS/EX-CS-02, Q5) 16.340 MW _{th} EX-06, SO ₂ Stripper Feed Interchanger 54.136 MW _{th} Cooling water requirements: CO-01 SO ₂ Recycle Compressor Intercoolers Stage 1 3.570 MW _{th} Stage 3 7.991 MW _{th} DR-01, Hydrogen Dryer 6.774 MW _{th} DR-02, Oxygen Dryer 0.131 MW _{th} HX-03, First Acid Flash Stage Condenser 9.066 MW _{th} HX-04, Second Acid Flash Stage Condenser 30.256 MW _{th} HX-05, First Stage Ejector Condenser 4.187 MW _{th} HX-06, Second Stage Ejector Condenser 0.258 MW _{th}	Total electric power requirement:	124.811	MWe
Heat recuperation summary:EX-01, Catholyte Interchanger (EX-01-HS/EX-CS-01, Q1)42.019MWthEX-02, Anolyte Interchanger (EX-02-HS/EX-CS-01, Q2)11.583MWthBayonet Vapor Product Interchangers511.583MWthStage 1, EX-03 (EX-03-HS/EX-CS-02, Q3)24.766MWthStage 2, EX-04 (EX-04-HS/EX-CS-02, Q4)10.586MWthStage 3, EX-05 (EX-05-HS/EX-CS-02, Q5)16.340MWthEX-06, SO2 Stripper Feed Interchanger54.136MWthCooling water requirements:54.136MWthCO-01 SO2 Recycle Compressor Intercoolers3.570MWthStage 13.570MWthStage 37.991MWthDR-01, Hydrogen Dryer6.774MWthDR-02, Oxygen Dryer0.131MWthHX-01, Bayonet Product First Stage Flash Condenser20.141MWthHX-03, First Acid Flash Stage Condenser9.066MWthHX-04, Second Acid Flash Stage Condenser30.256MWthHX-05, First Stage Ejector Condenser4.187MWthHX-06, Second Stage Ejector Condenser0.258MWth	<u>* * * </u>		<u> </u>
EX-01, Catholyte Interchanger (EX-01-HS/EX-CS-01, Q1) 42.019 MWthEX-02, Anolyte Interchanger (EX-02-HS/EX-CS-01, Q2) 11.583 MWthBayonet Vapor Product Interchangers 11.583 MWthStage 1, EX-03 (EX-03-HS/EX-CS-02, Q3) 24.766 MWthStage 2, EX-04 (EX-04-HS/EX-CS-02, Q4) 10.586 MWthStage 3, EX-05 (EX-05-HS/EX-CS-02, Q5) 16.340 MWthEX-06, SO2 Stripper Feed Interchanger 54.136 MWthCooling water requirements: $CO-01 - SO_2$ Recycle Compressor Intercoolers 3.570 MWthStage 1 3.570 MWthStage 3 7.991 MWthDR-01, Hydrogen Dryer 6.774 MWthDR-02, Oxygen Dryer 0.131 MWthHX-03, First Acid Flash Stage Condenser 9.066 MWthHX-04, Second Acid Flash Stage Condenser 30.256 MWthHX-05, First Stage Ejector Condenser 4.187 MWthHX-06, Second Stage Ejector Condenser 0.258 MWth	Heat recuperation summary:		
EX-02, Anolyte Interchanger (EX-02-HS/EX-CS-01, Q2)11.583 MW_{th} Bayonet Vapor Product Interchangers Stage 1, EX-03 (EX-03-HS/EX-CS-02, Q3)24.766 MW_{th} Stage 2, EX-04 (EX-04-HS/EX-CS-02, Q4)10.586 MW_{th} Stage 3, EX-05 (EX-05-HS/EX-CS-02, Q5)16.340 MW_{th} EX-06, SO2 Stripper Feed Interchanger54.136 MW_{th} Cooling water requirements: CO-01 SO2 Recycle Compressor Intercoolers Stage 13.570 MW_{th} Stage 37.991 MW_{th} DR-01, Hydrogen Dryer6.774 MW_{th} DR-02, Oxygen Dryer0.131 MW_{th} HX-01, Bayonet Product First Stage Flash Condenser6.598 MW_{th} HX-03, First Acid Flash Stage Condenser9.066 MW_{th} HX-04, Second Acid Flash Stage Condenser30.256 MW_{th} HX-05, First Stage Ejector Condenser4.187 MW_{th}	EX-01, Catholyte Interchanger (EX-01-HS/EX-CS-01, Q1)	42.019	MW _{th}
Bayonet Vapor Product Interchangers Stage 1, EX-03 (EX-03-HS/EX-CS-02, Q3)24.766MWth MthStage 2, EX-04 (EX-04-HS/EX-CS-02, Q4)10.586MWth BXStage 3, EX-05 (EX-05-HS/EX-CS-02, Q5)16.340MWth MthEX-06, SO2 Stripper Feed Interchanger54.136MWthCooling water requirements: CO-01 SO2 Recycle Compressor Intercoolers Stage 13.570MWthMatter Stage 24.704MWthStage 37.991MWthDR-01, Hydrogen Dryer6.774MWthDR-02, Oxygen Dryer0.131MWthHX-03, First Acid Flash Stage Condenser9.066MWthHX-04, Second Acid Flash Stage Condenser30.256MWthHX-05, First Stage Ejector Condenser4.187MWthHX-06, Second Stage Ejector Condenser0.258MWth	EX-02, Anolyte Interchanger (EX-02-HS/EX-CS-01, Q2)	11.583	MW _{th}
Stage 1, EX-03 (EX-03-HS/EX-CS-02, Q3)24.766 MW_{th} Stage 2, EX-04 (EX-04-HS/EX-CS-02, Q4)10.586 MW_{th} Stage 3, EX-05 (EX-05-HS/EX-CS-02, Q5)16.340 MW_{th} EX-06, SO2 Stripper Feed Interchanger54.136 MW_{th} Cooling water requirements: CO-01 SO2 Recycle Compressor Intercoolers Stage 13.570 MW_{th} Stage 24.704 MW_{th} Stage 37.991 MW_{th} DR-01, Hydrogen Dryer6.774 MW_{th} DR-02, Oxygen Dryer0.131 MW_{th} HX-01, Bayonet Product First Stage Flash Condenser6.598 MW_{th} HX-03, First Acid Flash Stage Condenser9.066 MW_{th} HX-04, Second Acid Flash Stage Condenser30.256 MW_{th} HX-05, First Stage Ejector Condenser4.187 MW_{th} HX-06, Second Stage Ejector Condenser0.258 MW_{th}	Bayonet Vapor Product Interchangers		ui
Stage 2, EX-04 (EX-04-HS/EX-CS-02, Q4)10.586MWthStage 3, EX-05 (EX-05-HS/EX-CS-02, Q5)16.340MWthEX-06, SO2 Stripper Feed Interchanger54.136MWth $Cooling water requirements:54.136MWthCO-01 SO2 Recycle Compressor Intercoolers54.136MWthStage 13.570MWthStage 24.704MWthStage 37.991MWthDR-01, Hydrogen Dryer6.774MWthDR-02, Oxygen Dryer0.131MWthHX-04, Bayonet Product First Stage Flash Condenser6.598MWthHX-03, First Acid Flash Stage Condenser9.066MWthHX-04, Second Acid Flash Stage Condenser30.256MWthHX-05, First Stage Ejector Condenser4.187MWthHX-06, Second Stage Ejector Condenser0.258MWth$	Stage 1, EX-03 (EX-03-HS/EX-CS-02, Q3)	24.766	MW _{th}
Stage 3, EX-05 (EX-05-HS/EX-CS-02, Q5)16.340MWthEX-06, SO2 Stripper Feed Interchanger 54.136 MWthCooling water requirements: CO-01 SO2 Recycle Compressor Intercoolers Stage 1 3.570 MWthStage 2 4.704 MWthStage 3 7.991 MWthDR-01, Hydrogen Dryer 6.774 MWthDR-02, Oxygen Dryer 0.131 MWthHX-01, Bayonet Product First Stage Flash Condenser 20.141 MWthHX-02, Bayonet Product Second Stage Flash Condenser 9.066 MWthHX-03, First Acid Flash Stage Condenser 30.256 MWthHX-04, Second Acid Flash Stage Condenser 4.187 MWthHX-05, First Stage Ejector Condenser 4.187 MWthHX-06, Second Stage Ejector Condenser 0.258 MWth	Stage 2, EX-04 (EX-04-HS/EX-CS-02, 04)	10.586	MW _{th}
EX-06, SO2 Stripper Feed Interchanger 54.136 MW_{th} Cooling water requirements: CO-01 SO2 Recycle Compressor Intercoolers Stage 1 3.570 MW_{th} Stage 2 4.704 MW_{th} Stage 3 7.991 MW_{th} DR-01, Hydrogen Dryer 6.774 MW_{th} DR-02, Oxygen Dryer 0.131 MW_{th} HX-01, Bayonet Product First Stage Flash Condenser 20.141 MW_{th} HX-03, First Acid Flash Stage Condenser 9.066 MW_{th} HX-04, Second Acid Flash Stage Condenser 30.256 MW_{th} HX-05, First Stage Ejector Condenser 4.187 MW_{th} HX-06, Second Stage Ejector Condenser 0.258 MW_{th}	Stage 3, EX-05 (EX-05-HS/EX-CS-02, 05)	16.340	MW _{th}
Cooling water requirements: CO-01 SO2 Recycle Compressor Intercoolers Stage 13.570MWth MWth Stage 2Stage 24.704MWth MWthStage 37.991MWth DR-01, Hydrogen DryerDR-01, Hydrogen Dryer6.774MWth DR-02, Oxygen DryerDR-02, Oxygen Dryer0.131MWth HX-01, Bayonet Product First Stage Flash CondenserHX-02, Bayonet Product Second Stage Flash Condenser9.066MWth HX-03, First Acid Flash Stage CondenserHX-04, Second Acid Flash Stage Condenser30.256MWth HX-05, First Stage Ejector CondenserHX-06, Second Stage Ejector Condenser0.258MWth	EX-06, SO ₂ Stripper Feed Interchanger	54.136	MW _{th}
$\begin{array}{llllllllllllllllllllllllllllllllllll$			u u
CO-01 SO2 Recycle Compressor IntercoolersStage 1 3.570 MWthStage 2 4.704 MWthStage 3 7.991 MWthDR-01, Hydrogen Dryer 6.774 MWthDR-02, Oxygen Dryer 0.131 MWthHX-01, Bayonet Product First Stage Flash Condenser 20.141 MWthHX-02, Bayonet Product Second Stage Flash Condenser 6.598 MWthHX-03, First Acid Flash Stage Condenser 9.066 MWthHX-04, Second Acid Flash Stage Condenser 30.256 MWthHX-05, First Stage Ejector Condenser 4.187 MWthHX-06, Second Stage Ejector Condenser 0.258 MWth	Cooling water requirements:		
Stage 1 3.570 MW_{th} Stage 2 4.704 MW_{th} Stage 3 7.991 MW_{th} DR-01, Hydrogen Dryer 6.774 MW_{th} DR-02, Oxygen Dryer 0.131 MW_{th} HX-01, Bayonet Product First Stage Flash Condenser 20.141 MW_{th} HX-02, Bayonet Product Second Stage Flash Condenser 6.598 MW_{th} HX-03, First Acid Flash Stage Condenser 9.066 MW_{th} HX-04, Second Acid Flash Stage Condenser 30.256 MW_{th} HX-05, First Stage Ejector Condenser 4.187 MW_{th} HX-06, Second Stage Ejector Condenser 0.258 MW_{th}	CO-01 SO ₂ Recycle Compressor Intercoolers		
Stage 2 4.704 MW_{th} Stage 3 7.991 MW_{th} DR-01, Hydrogen Dryer 6.774 MW_{th} DR-02, Oxygen Dryer 0.131 MW_{th} HX-01, Bayonet Product First Stage Flash Condenser 20.141 MW_{th} HX-02, Bayonet Product Second Stage Flash Condenser 6.598 MW_{th} HX-03, First Acid Flash Stage Condenser 9.066 MW_{th} HX-04, Second Acid Flash Stage Condenser 30.256 MW_{th} HX-05, First Stage Ejector Condenser 4.187 MW_{th} HX-06, Second Stage Ejector Condenser 0.258 MW_{th}	Stage 1	3.570	MW _{th}
Stage 37.991 MW_{th} DR-01, Hydrogen Dryer6.774 MW_{th} DR-02, Oxygen Dryer0.131 MW_{th} HX-01, Bayonet Product First Stage Flash Condenser20.141 MW_{th} HX-02, Bayonet Product Second Stage Flash Condenser6.598 MW_{th} HX-03, First Acid Flash Stage Condenser9.066 MW_{th} HX-04, Second Acid Flash Stage Condenser30.256 MW_{th} HX-05, First Stage Ejector Condenser4.187 MW_{th} HX-06, Second Stage Ejector Condenser0.258 MW_{th}	Stage 2	4.704	MW _{th}
DR-01, Hydrogen Dryer 6.774 MW_{th} DR-02, Oxygen Dryer 0.131 MW_{th} DR-01, Bayonet Product First Stage Flash Condenser 20.141 MW_{th} HX-01, Bayonet Product Second Stage Flash Condenser 20.141 MW_{th} HX-02, Bayonet Product Second Stage Flash Condenser 6.598 MW_{th} HX-03, First Acid Flash Stage Condenser 9.066 MW_{th} HX-04, Second Acid Flash Stage Condenser 30.256 MW_{th} HX-05, First Stage Ejector Condenser 4.187 MW_{th} HX-06, Second Stage Ejector Condenser 0.258 MW_{th}	Stage 3	7.991	MW _{th}
DR-02, Oxygen Dryer 0.131 MWthHX-01, Bayonet Product First Stage Flash Condenser 20.141 MWthHX-02, Bayonet Product Second Stage Flash Condenser 6.598 MWthHX-03, First Acid Flash Stage Condenser 9.066 MWthHX-04, Second Acid Flash Stage Condenser 30.256 MWthHX-05, First Stage Ejector Condenser 4.187 MWthHX-06, Second Stage Ejector Condenser 0.258 MWth	DR-01. Hydrogen Dryer	6.774	MW _{th}
HX-01, Bayonet Product First Stage Flash Condenser 20.141 MW_{th} HX-02, Bayonet Product Second Stage Flash Condenser 6.598 MW_{th} HX-03, First Acid Flash Stage Condenser 9.066 MW_{th} HX-04, Second Acid Flash Stage Condenser 30.256 MW_{th} HX-05, First Stage Ejector Condenser 4.187 MW_{th} HX-06, Second Stage Ejector Condenser 0.258 MW_{th}	DR-02. Oxygen Dryer	0.131	MW _{th}
HX-02, Bayonet Product Second Stage Flash Condenser6.598MWthHX-03, First Acid Flash Stage Condenser9.066MWthHX-04, Second Acid Flash Stage Condenser30.256MWthHX-05, First Stage Ejector Condenser4.187MWthHX-06, Second Stage Ejector Condenser0.258MWth	HX-01, Bayonet Product First Stage Flash Condenser	20.141	MW _{th}
HX-03, First Acid Flash Stage Condenser9.066MWthHX-04, Second Acid Flash Stage Condenser30.256MWthHX-05, First Stage Ejector Condenser4.187MWthHX-06, Second Stage Ejector Condenser0.258MWth	HX-02. Bayonet Product Second Stage Flash Condenser	6.598	MW _{th}
HX-04, Second Acid Flash Stage Condenser30.256MWthHX-05, First Stage Ejector Condenser4.187MWthHX-06, Second Stage Ejector Condenser0.258MWth	HX-03, First Acid Flash Stage Condenser	9.066	MWth
HX-05, First Stage Ejector Condenser4.187MWthHX-06, Second Stage Ejector Condenser0.258MWth	HX-04, Second Acid Flash Stage Condenser	30.256	MW _{th}
HX-06, Second Stage Ejector Condenser 0.258 MW _{th}	HX-05, First Stage Ejector Condenser	4.187	MW _{th}
	HX-06, Second Stage Ejector Condenser	0.258	MW _{th}

Table 3 950°C ROT HyS process flowsheet energy utilization summary.

HX-07, Second Stage SO ₂ Absorber Feed Cooler	20.184	MW_{th}
TO-01 Vacuum Column Condenser	96.383	MW_{th}
TO-04 SO ₂ Stripper Condenser	15.891	MW_{th}
Total cooling water requirement:	226.133	MW_{th}
High-temperature heat requirements:		
Secondary helium supply temperature	900.0	°C
Minimum helium return temperature (utility pinch)	514.4	°C
Bayonet Reactor high-temperature heat duty:	<u>340.245</u>	<u>MW_{th}</u>
Low-temperature steam heat requirements:		
Vacuum Ejector Steam Feed (100-psig)	4.376	MW_{th}
TO-01 Vacuum Column Reboiler (30-psig)	5.967	MW _{th}
TO-04 SO2 Stripper Reboiler (10-psig)	39.981	MW_{th}
Total low-pressure steam requirement:	<u>50.324</u>	<u>MW_{th}</u>
Power conversion efficiency (kJ _e /kJ _{th})	48%	
Thermal equivalent of total electric power requirement	260.023	MW_{th}
High-temperature (HTGR) heat requirement	340.245	MW _{th}
Low-temperature (low-pressure steam) heat requirement	50.324	MW_{th}
Total heat requirement:	<u>650.592</u>	<u>MW_{th}</u>
Total heat requirement (excluding low-pressure steam)*:	<u>600.268</u>	$\underline{MW}_{\underline{th}}$
Higher heating value of Hydrogen	286	MJ/kmol H ₂
Hydrogen production rate	1	kmol/sec
Equivalent energy content of Hydrogen product	286	$\mathrm{MW}_{\mathrm{th}}$
HHV efficiency upper limit, free steam*	47.6%	
HHV efficiency upper limit	44.0%	

* Assumes that excess 10- to 100-psig steam is available on-site at no penalty

Stream		M	olar flow r	ates, kmol	/sec*		Tempe	Temperature,		Phase
ID	H ₂ O	H_2SO_4	SO_2	O_2	H_2	Total	°C	Κ	bar	
1	137.20	0	0	0	0.04195	137.24	115.45	388.60	22.750	L
2	21.834	5.7659	2	4.9E-05	0	29.600	112.50	385.65	22.750	L
3	136.20	0	0	0	1.0420	137.24	120.00	393.15	21.750	L + V
4	0.10347	0	0	0	1	1.1035	120.00	393.15	21.750	V
5	0	0	0	0	1	1	48.00	321.15	20.000	V
6	136.09	0	0	0	0.04195	136.13	120.00	393.15	21.750	L
7	136.09	0	0	0	0.04195	136.13	116.00	389.15	21.000	L + V
8	0.10347	0	0	0	0	0.10347	48.00	321.15	20.000	L
9	1	0	0	0	0	1	40.00	313.15	20.000	L
10	137.20	0	0	0	0.04195	137.24	115.42	388.57	20.000	L + V
11	20.834	6.7659	1	4.9E-05	0	28.600	120.00	393.15	21.750	L
12	20.834	6.7659	1	4.9E-05	0	28.600	116.00	389.15	21.000	L
13	3.0796	1.0001	0.14782	7.2E-06	0	4.2276	116.00	389.15	21.000	L
14	3.0796	1.0001	0.14782	7.2E-06	0	4.2276	105.57	378.72	1.013	L + V
15	3.0357	1.0001	0.00862	5.5E-09	0	4.0445	105.57	378.72	1.013	L
16	3.0357	1.0001	0.00862	5.5E-09	0	4.0445	103.47	376.62	0.330	L + V
17	3.0210	1.0001	0.00125	0	0	4.0224	103.47	376.62	0.330	L
18	3.0210	1.0001	0.00125	0	0	4.0224	103.47	376.62	0.430	L
19	3.0210	1.0001	0.00125	0	0	4.0224	103.47	376.62	0.330	L + V
20	3.0210	1.0001	0.00125	0	0	4.0224	115.29	388.44	0.130	L + V
21	0.6050	1.0001	0	0	0	1.6051	188.36	461.51	0.130	L
22	0.6050	1.0001	0	0	0	1.6051	188.71	461.86	11.100	L
23	5.8682	3.4292	0.02148	0.00113	0	9.3200	256.78	529.93	11.100	L
24	5.8682	3.4292	0.02148	0.00113	0	9.3200	256.88	530.03	12.700	L
25	6.8682	2.4292	1.02147	0.50113	0	10.820	287.73	560.88	11.700	L + V
26	6.8682	2.4292	1.0215	0.50113	0	10.820	245.69	518.84	11.100	L + V
27	1.6050	0.00013	1	0.5	0	3.1051	235.00	508.15	11.100	V
28	1.6050	0.00013	1	0.5	0	3.1051	142.37	415.52	10.500	L + V
29	1.6050	0.00013	1	0.5	0	3.1051	48.00	321.15	9.900	L + V
30	0.01718	0.00000	0.86680	0.49987	0	1.3838	48.00	321.15	9.900	V
31	0.01718	0.00000	0.86680	0.49987	0	1.3838	130.20	403.35	21.100	V
32	0.01718	0.00000	0.86680	0.49987	0	1.3838	48.00	321.15	21.000	L + V
33	0.00157	0.00000	0.36103	0.49975	0	0.86235	48.00	321.15	21.000	V
34	0.01561	0.00000	0.50577	0.00011	0	0.52149	48.00	321.15	21.000	L
35	1.5878	0.00013	0.13320	0.00013	0	1.7213	48.00	321.15	9.900	L
36	1.5878	0.00013	0.13320	0.00013	0	1.7213	48.16	321.31	21.000	L
37	17.754	5.7658	0.85218	4.1E-05	0	24.372	116.00	389.15	21.000	L
38	21.833	5.7668	1.9991	4.9E-05	0	29.599	112.49	385.64	21.000	L
39	0.04389	3.1E-09	0.13920	7.2E-06	0	0.18309	105.57	378.72	1.013	V
40	0.04389	3.1E-09	0.13920	7.2E-06	0	0.18309	48.00	321.15	0.913	L + V
41	0.02044	0	0.14581	7.2E-06	0	0.16625	48.00	321.15	0.913	V
42	0.00664	0	0.43063	0.00610	0	0.44337	48.00	321.15	21.000	L + V

Table 4 750°C ROT HyS process flowsheet stream table.

43	0.00663	0	0.42617	9.1E-05	0	0.43290	48.00	321.15	21.000	L
44	0.02847	0	0.58781	9.1E-05	0	0.61638	47.24	320.39	21.000	L
45	0.04941	0	0.00141	2.3E-08	0	0.05082	48.00	321.15	2.501	L
46	0.04941	0	0.00141	2.3E-08	0	0.05082	49.13	322.28	21.000	L
47	0.02184	0.0000	0.16164	4.3E-07	0	0.18348	48.00	321.15	7.308	L
48	0.02184	0.0000	0.16164	4.3E-07	0	0.18348	49.08	322.23	21.000	L
49	9.9E-06	0	0.00445	0.00601	0	0.01047	48.00	321.15	21.000	V
50	0.02441	3.1E-09	0.00024	0	0	0.02465	48.00	321.15	0.913	L
51	0.02441	3.1E-09	0.00024	0	0	0.02465	49.22	322.37	21.000	L
52	0.01472	9.6E-10	0.00737	5.5E-09	0	0.02208	103.47	376.62	0.330	V
53	0.01472	9.6E-10	0.00737	5.5E-09	0	0.02208	43.00	316.15	0.230	L + V
54	0.01029	9.6E-10	2.4E-05	0	0	0.01031	43.00	316.15	0.230	L
55	0.01029	9.6E-10	2.4E-05	0	0	0.01031	44.25	317.40	21.000	L
56	0.00463	0	0.00768	5.5E-09	0	0.01231	43.00	316.15	0.230	V
57	0.08289	0	0.00000	0	0	0.08289	169.98	443.13	7.908	L + V
58	0.08752	0	0.00768	5.5E-09	0	0.09520	137.12	410.27	1.013	V
59	0.08656	0	0.00084	0	0	0.08740	48.00	321.15	0.913	L
60	0.08656	0	0.00084	0	0	0.08740	48.01	321.16	1.013	L
61	0.00096	0	0.00685	5.5E-09	0	0.00781	48.00	321.15	0.913	V
62	2.4140	0	0.00090	0	0	2.4149	44.57	317.72	0.110	L
63	2.4140	0	0.00090	0	0	2.4149	44.81	317.96	21.000	L
64	0.00206	0	0.00036	0	0	0.00242	44.57	317.72	0.110	V
65	0.00446	0	0	0	0	0.00446	169.98	443.13	7.908	L + V
66	0.00652	0	0.00036	0	0	0.00688	113.21	386.36	0.330	V
67	0.00631	0	1.5E-05	0	0	0.00633	43.00	316.15	0.230	L
68	0.00631	0	1.5E-05	0	0	0.00633	43.05	316.20	1.013	L
69	0.09288	0	0.00085	0	0	0.09373	47.68	320.83	1.013	L
70	0.00021	0	0.00034	0	0	0.00055	43.00	316.15	0.230	V
71	2.3565	0	0.00088	0	0	2.3574	44.81	317.96	21.000	L
72	2.4481	4.4E-09	0.24974	0.00046	0	2.6983	68.67	341.82	21.000	L
73	0.00908	3.2E-10	0.32955	0.00079	0	0.33942	112.49	385.64	21.000	V
74	0.01532	0	0.44811	0.50610	0	0.96953	66.64	339.79	20.900	V
75	0.05746	0	2.1E-05	0	0	0.05748	44.81	317.96	21.000	L
76	20.000	0	0.00010	0	0	20.000	48.00	321.15	21.000	L
77	20.012	0	0.44821	0.00610	0	20.466	55.37	328.52	20.900	L
78	0.0121	0	0.00027	3.7E-06	0	0.01237	55.37	328.52	20.900	L
79	20	0	0.44794	0.00609	0	20.454	55.37	328.52	20.900	L
80	20	0	0.44794	0.00609	0	20.454	53.60	326.75	1.800	L + V
81	20	0	0.44794	0.00609	0	20.454	79.69	352.84	1.050	L + V
82	19.943	0	7.9E-05	0	0	19.943	102.31	375.46	1.100	L
83	19.943	0	7.9E-05	0	0	19.943	102.55	375.70	22.500	L
84	19.943	0	7.9E-05	0	0	19.943	63.60	336.75	21.750	L
85	19.943	0	7.9E-05	0	0	19.943	48.00	321.15	21.000	L
86	0.05746	0	0.44786	0.00609	0	0.51141	48.00	321.15	1.000	L + V
87	0.00322	0	5E-07	0.5	0	0.50322	48.04	321.19	20.800	V
88	0	0	0	0.5	0	0.5	48.04	321.19	19.800	V

89	0.00322	0	5E-07	0	0	0.00322	48.04	321.19	19.800	L
90	0.00322	0	5E-07	0	0	0.00322	48.11	321.26	21.000	L
BFW	0.08735	0	0	0	0	0.08735	38.00	311.15	1.000	L
MAKEUP	0.00468	0.00085	0	0	0	0.00553	38.00	311.15	21.000	L
STEAM	0.08735	0	0	0	0	0.08735	170.08	443.23	7.910	V
DT1						2.9636†	120.00	393.15	2.000	L
DT2						2.9636†	120.13	393.28	6.500	L
DT3						2.9636†	153.84	426.99	5.750	L
DT4						2.9636†	156.38	429.53	5.000	L
DT5						2.9636†	250.00	523.15	4.250	L
DT6						2.9636†	246.91	520.06	3.500	L
DT7						2.9636†	164.43	437.58	2.750	L

* Individual component molar flow rates $< 1 \times 10^{-9}$ kmol/sec are shown as zero. † Molar flow rate of DOWTHERM G, kmol/sec.

Electric power requirements:		
EL-01, Electrolyzer	115.782	MW _e
CO-01, SO ₂ Recycle Compressor		
Stage 1	2.900	MW_e
Stage 2	2.736	MW _e
Stage 3	1.765	MW _e
CO-02, SO ₂ /O ₂ Compressor	3.983	MW_e
PP-01, Catholyte Feed Pump	0.837	MW _e
PP-02, Vacuum Column Feed Pump	0.001	MW_e
PP-03, Quench Column Feed Pump	0.096	MW_e
PP-04, Bayonet Reactor Feed Pump	0.067	MW _e
PP-05, Quench Column Overhead Condensate Pump	0.052	MW_e
PP-06, Anolyte Feed Pump	0.155	MW_e
PP-07, First Stage Intercooler Condensate Pump	0.006	MW_e
PP-08, Second Stage Intercooler Condensate Pump	0.017	MW_e
PP-09, First Flash Stage Vapor Condensate Pump	0.003	MW_e
PP-10, Second Flash Stage Vapor Condensate Pump	0.001	MW_e
PP-11, First Stage Ejector Condensate Pump	0.000	MW_e
PP-12, Vacuum Column Distillate Pump	0.124	MW_e
PP-13, Second Stage Ejector Condensate Pump	0.000	MW_e
PP-14, SO ₂ Stripper Bottoms Pump	0.935	MW_e
PP-15, O ₂ Dryer Liquids Pump	0.000	MW_e
PP-16, Dowtherm Pump	0.332	MW_e
Total electric power requirement:	<u>129.795</u>	<u>MW_e</u>
Heat recuperation summary:		
EX-01, Catholyte Interchanger (EX-01-HS/EX-CS-01, Q1)	41.772	MW _{th}
EX-02, Anolyte Interchanger (EX-02-HS/EX-CS-01, Q2)	11.583	MW _{th}
EX-03, SO ₂ Stripper Feed Interchanger	58.748	MW_{th}
Cooling water requirements:		
CO-01 SO ₂ Recycle Compressor Intercoolers		
Stage 1	5.139	MW _{th}
Stage 2	7.277	MW _{th}
Stage 3	11.354	MW _{th}
DR-01, Hydrogen Dryer	6.774	MW _{th}
DR-02, Oxygen Dryer	0.131	MW _{th}
HX-03, Quench Column Overhead Cooler	55.332	MW _{th}
HX-04, SO ₂ /O ₂ Compressor Effluent Cooler	15.818	MW _{th}
HX-05, First Acid Flash Stage Condenser	1.478	MW _{th}
HX-06, Second Acid Flash Stage Condenser	0.494	$\mathbf{M}\mathbf{W}_{\mathrm{th}}$
HX-07, First Stage Ejector Condenser	3.902	MW_{th}
HX-08, Second Stage Ejector Condenser	0.290	MW_{th}
HX-09, Second Stage SO ₂ Absorber Feed Cooler	23.450	MW_{th}

Table 5 750°C ROT HyS process flowsheet energy utilization summary.

TO-01 Vacuum Column Condenser	115.140	MW_{th}
TO-02 Quench Column Condenser	2.861	MW_{th}
TO-04 SO ₂ Stripper Condenser	24.644	MW _{th}
Total cooling water requirement:	274.084	MW_{th}
Intermediate temperature heat sources:		
HX-01, Bayonet Reactor Effluent Cooler	115.571	MW_{th}
Inlet Temperature:	287.7	°C
Outlet Temperature:	245.7	°C
TO-02 Quench Column Condenser	2.861	MW_{th}
Inlet Temperature:	256.8	°C
Outlet Temperature:	235.0	°C
HX-02, Quench Column Overhead Cooler	37.010	MW_{th}
Inlet Temperature:	234.4	°C
Outlet Temperature:	142.4	°C
Total intermediate temperature heat sources:	<u>155.443</u>	MW_{th}
Intermediate temperature heat sinks:		
TO-01 Vacuum Column Reboiler	102.309	MW_{th}
Inlet Temperature:	114.8	°C
Outlet Temperature:	188.4	°C
TO-05 SO ₂ Stripper Reboiler	49.027	MW_{th}
Inlet Temperature:	101.9	°C
Outlet Temperature:	102.3	°C
SG-01, Steam Generator	4.106	MW_{th}
Inlet Temperature:	37.9	°C
Outlet Temperature:	170.1	°C
Total intermediate temperature heat sinks:	<u>155.443</u>	MW_{th}
High-temperature heat requirements:		
Secondary helium supply temperature	700.0	°C
Minimum helium return temperature (utility pinch)	425.5	°C
Bayonet Reactor high-temperature heat duty:	428.291	$\underline{MW}_{\underline{th}}$
Power conversion efficiency (kJ_e/kJ_{th})	45%	
Thermal equivalent of total electric power requirement	288.433	MW_{th}
High-temperature (HTGR) heat requirement	428.291	MW_{th}
Total heat requirement:	716.724	<u>MW_{th}</u>
Higher heating value of Hydrogen	286	MJ/kmol H ₂
Hydrogen production rate	1	kmol/sec 2
Equivalent energy content of Hydrogen product	286	$\mathrm{MW}_{\mathrm{th}}$
HHV efficiency upper limit	39.9%	1
		1