The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.

PDF Version Also Available for Download.

Description

The oxidation in air of high-purity Al foil was studied as a function of temperature using Thermogravimetric Analysis with Differential Scanning Calorimetry (TGA/DSC). The rate and/or extent of oxidation was found to be a non-linear function of the temperature. Between 650 and 750 %C2%B0C very little oxidation took place; at 850 %C2%B0C oxidation occurred after an induction period, while at 950 %C2%B0C oxidation occurred without an induction period. At oxidation temperatures between 1050 and 1150 %C2%B0C rapid passivation of the surface of the aluminum foil occurred, while at 1250 %C2%B0C and above, an initial rapid mass increase was observed, followed ... continued below

Physical Description

24 p.

Creation Information

Coker, Eric Nicholas October 1, 2013.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The oxidation in air of high-purity Al foil was studied as a function of temperature using Thermogravimetric Analysis with Differential Scanning Calorimetry (TGA/DSC). The rate and/or extent of oxidation was found to be a non-linear function of the temperature. Between 650 and 750 %C2%B0C very little oxidation took place; at 850 %C2%B0C oxidation occurred after an induction period, while at 950 %C2%B0C oxidation occurred without an induction period. At oxidation temperatures between 1050 and 1150 %C2%B0C rapid passivation of the surface of the aluminum foil occurred, while at 1250 %C2%B0C and above, an initial rapid mass increase was observed, followed by a more gradual increase in mass. The initial rapid increase was accompanied by a significant exotherm. Cross-sections of oxidized specimens were characterized by scanning electron microscopy (SEM); the observed alumina skin thicknesses correlated qualitatively with the observed mass increases.

Physical Description

24 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2013-8424
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 1096501
  • Archival Resource Key: ark:/67531/metadc833953

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 2013

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • June 17, 2016, 3:23 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 13

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Coker, Eric Nicholas. The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry., report, October 1, 2013; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc833953/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.