kt-factorization for Hard Processes in Nuclei

PDF Version Also Available for Download.

Description

Two widely proposed kt-dependent gluon distributions in the small-x saturation regime are investigated using two particle back-to-back correlations in high energy scattering processes. The Weizsacker-Williams gluon distribution, interpreted as the number density of gluon inside the nucleus, is studied in the quark-antiquark jet correlation in deep inelastic scattering. On the other hand, the unintegrated gluon distribution, defined as the Fourier transform of the color-dipole cross section, is probed in the direct photon-jet correlation in pA collisions. Dijet-correlation in pA collisions depends on both gluon distributions through combination and convolution in the large Nc limit. We calculate these processes in two ... continued below

Physical Description

8

Creation Information

Dominguez, Fabio; Xiao, Bo-Wen & Yuan, Feng September 13, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Two widely proposed kt-dependent gluon distributions in the small-x saturation regime are investigated using two particle back-to-back correlations in high energy scattering processes. The Weizsacker-Williams gluon distribution, interpreted as the number density of gluon inside the nucleus, is studied in the quark-antiquark jet correlation in deep inelastic scattering. On the other hand, the unintegrated gluon distribution, defined as the Fourier transform of the color-dipole cross section, is probed in the direct photon-jet correlation in pA collisions. Dijet-correlation in pA collisions depends on both gluon distributions through combination and convolution in the large Nc limit. We calculate these processes in two approaches: the transverse momentum dependent factorization approach and the color-dipole/color glass condensate formalism, and they agree with each other completely.

Physical Description

8

Source

  • Journal Name: Physical Review Letters

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-4078E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 1000855
  • Archival Resource Key: ark:/67531/metadc833926

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 13, 2010

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • June 15, 2016, 8:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Dominguez, Fabio; Xiao, Bo-Wen & Yuan, Feng. kt-factorization for Hard Processes in Nuclei, article, September 13, 2010; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc833926/: accessed November 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.