Mesoporous silica nanoparticles as smart and safe devices for regulating blood biomolecule levels

PDF Version Also Available for Download.

Description

Stimuli-responsive end-capped MSN materials are promising drug carriers that securely deliver a large payload of drug molecules without degradation or premature release. A general review of the recent progress in this field is presented, including a summary of a series of hard and soft caps for drug encapsulation and a variety of internal and external stimuli for controlled release of different therapeutics, a discussion of the biocompatibility of MSN both in vitro and in vivo, and a description of the sophisticated stimuli-responsive systems with novel capping agents and controlled release mechanism. The unique internal and external surfaces of MSN were ... continued below

Physical Description

73,702 Kb

Creation Information

Zhao, Yan May 15, 2011.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 18 times . More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Author

Sponsor

Publisher

  • Ames Laboratory
    Publisher Info: Ames Laboratory (AMES), Ames, IA (United States)
    Place of Publication: Ames, Iowa

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

Stimuli-responsive end-capped MSN materials are promising drug carriers that securely deliver a large payload of drug molecules without degradation or premature release. A general review of the recent progress in this field is presented, including a summary of a series of hard and soft caps for drug encapsulation and a variety of internal and external stimuli for controlled release of different therapeutics, a discussion of the biocompatibility of MSN both in vitro and in vivo, and a description of the sophisticated stimuli-responsive systems with novel capping agents and controlled release mechanism. The unique internal and external surfaces of MSN were utilized for the development of a glucose-responsive double delivery system end-capped with insulin. This unique system consists of functionalized MSNs capable of releasing insulin when the concentration of sugar in blood exceeds healthy levels. The insulin-free nanoparticles are then up taken by pancreatic cells, and release inside of them another biomolecule that stimulates the production of more insulin. The in vivo application of this system for the treatment of diabetes requires further understanding on the biological behaviors of these nanoparticles in blood vessels. The research presented in this dissertation demonstrated the size and surface effects on the interaction of MSNs with red blood cell membranes, and discovered how the surface of the nanoparticles can be modified to improve their compatibility with red blood cells and avoid their dangerous side effects. In order to optimize the properties of MSN for applying them as efficient intracellular drug carriers it is necessary to understand the factors that can regulate their internalization into and exocytosis out of the cells. The correlation between the particle morphology and aggregation of MSNs to the effectiveness of cellular uptake is discussed and compared with different cell lines. The differences in the degree of exocytosis of MSNs between healthy and cancer cells is reported and found to be responsible for the asymmetric transfer of the particles between both cell types. The fundamental studies on the hemocompatibility, endo- and exocytosis of MSN along with its ability to sequentially release multiple therapeutics in response to different stimuli, allow us to propose MSN as an intravascular vehicle with a great potential for various biomedical applications.

Physical Description

73,702 Kb

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: IS-T 3016
  • Grant Number: DE-AC02-07CH11358
  • DOI: 10.2172/1029552 | External Link
  • Office of Scientific & Technical Information Report Number: 1029552
  • Archival Resource Key: ark:/67531/metadc833879

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • May 15, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 3, 2016, 6:36 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 18

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Zhao, Yan. Mesoporous silica nanoparticles as smart and safe devices for regulating blood biomolecule levels, thesis or dissertation, May 15, 2011; Ames, Iowa. (digital.library.unt.edu/ark:/67531/metadc833879/: accessed July 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.