CYTOCIDAL EFFECT OF RIFAMYCIN DERIVATIVES ON ASCITES TUMOR CELLS: STUDIES WITH 125I-IODODEOXYURIDINE

PDF Version Also Available for Download.

Description

We have previously reported the chemotherapeutic effect of rifamycin derivatives on an ascites tumor, using increased life span as a criterion. These derivatives inhibit (1) RNA-instructed DNA polymerase in crude viral extracts; (2) virus-induced transformation in tissue cultures; and (3) the growth of tumors in vivo. One rifamycin derivative, rifazone-8{sub 2} (R-8{sub 2}), not only inhibits transformation in chick fibroblasts but affects the growth of transformed cells. The present study demonstrates that rifampicin and R-8{sub 2} act as cytocidal (rather than cytostatic) agents against some ascites cell lines.

Creation Information

Hughes, Ann M. & Calvin, Melvin August 1, 1978.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We have previously reported the chemotherapeutic effect of rifamycin derivatives on an ascites tumor, using increased life span as a criterion. These derivatives inhibit (1) RNA-instructed DNA polymerase in crude viral extracts; (2) virus-induced transformation in tissue cultures; and (3) the growth of tumors in vivo. One rifamycin derivative, rifazone-8{sub 2} (R-8{sub 2}), not only inhibits transformation in chick fibroblasts but affects the growth of transformed cells. The present study demonstrates that rifampicin and R-8{sub 2} act as cytocidal (rather than cytostatic) agents against some ascites cell lines.

Source

  • Journal Name: Cancer Letters

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBL-8115
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 1014065
  • Archival Resource Key: ark:/67531/metadc833842

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 1978

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • July 26, 2016, 3:50 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hughes, Ann M. & Calvin, Melvin. CYTOCIDAL EFFECT OF RIFAMYCIN DERIVATIVES ON ASCITES TUMOR CELLS: STUDIES WITH 125I-IODODEOXYURIDINE, article, August 1, 1978; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc833842/: accessed April 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.